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Abstract. Let D be a simply connected domain bounded by a simple
closed rectifiable curve Γ and Lp(t)(D) denote the Lebesgue space with
variable exponent.

The present work reveals different conditions regarding the functions p(t)
and the domain D under fulfilment of which the Cauchy type integrals with
density from Lp(t)(Γ) belong to the Smirnov class Ep(t)(D).

When the domain D is bounded by the Lavrent’yev curve, the analogue
of the well-known Smirnov’s theorem is stated: if φ ∈ Ep1(·)(D), φ+(t) ∈
Lp2(t)(Γ), then φ ∈ Ep̃(t)(D), where p̃(t) = max(p1(t), p2(t)).
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îâäæñéâ. ãåóãŽå, D éŽîðæãæ, öâçîñèæ, àŽûîòâãŽáæ Γ ûæîæå öâéëïŽä-
ôãîñèæ ïŽïîñèæ ŽîâŽ, ýëèë Lp(t)(D) Žîæï èâĲâàæï ùãèŽáéŽøãâêâĲèæŽêæ
ïæãîùâ.

àŽéëãèâêæèæŽ p(t) òñêóùææïŽ áŽ D Žîæï éæéŽîå æïâåæ ìæîëĲâĲæ, îëéâèåŽ
öâïîñèâĲŽ æûãâãï Lp(t)(Γ) çèŽïæï ïæéçãîæãæï éóëêâ çëöæï ðæìæï æêðâàîŽèåŽ
éæçñåãêâĲŽï ïéæîêëãæï Ep(t)(D) çèŽïæïŽáéæ.

îëùŽ D öâéëïŽäôãîñèæŽ èŽãîâêðæâãæï Γ ûæîæå, áŽáàâêæèæŽ ïéæîêëãæï
ùêëĲæèæ åâëîâéæï öâéáâàæ ïŽýæï ŽêŽèëàæ: åñ φ ∈ Ep1(·)(D), ýëèë φ+(t) ∈
Lp2(t)(Γ), éŽöæê φ ∈ Ep̃(t)(D), ïŽáŽù p̃(t) = max(p1(t), p2(t)).
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1. Introduction

Quite recently it became clear that for investigation of a number of ques-
tions dealing with analysis and in studying the problems of applied charac-
ter, the Lebesgue spaces Lp(t) with a variable exponent are very useful. In
particular, in studying boundary value problems of the theory of analytic
and harmonic functions it is advisable to consider them in classes of func-
tions representable by the Cauchy type integral with density from Lp(t) and
their real parts as well as in classes of functions which reasonably generalize
Smirnov classes Ep(D) in the case of a variable exponent p(t).

The works [1]–[3] suggest one (of the possible) such generalization under
which all significant properties, inherent in these classes for a constant p,
remain valid.

In the present paper we continue investigation of these classes. Special
attention is attached to the problem of finding different conditions for the
domains D and functions p(t) under fulfilment of which the Cauchy type
integrals with density from Lp(t)(Γ) belong to the class Ep(t)(D) (Γ is a
simple closed curve bounding the domain D).

To achieve the purpose in view, for the domains bounded by piecewise
smooth curves we establish one criterion in order for the analytic in D
function φ to belong to the class Ep(t)(D) (depending on the properties of
conformal mapping of the unit circle onto D). However, when the domain
D is bounded by the Lavrent’yev curve (i.e. the curves with the chord-arc
condition), the analogue of the well-known Smirnov’s theorem is fully jus-
tified; namely, the conditions are revealed under which: if φ(x) ∈ Ep1(t)(D)
and φ+(x) ∈ Lp2(t)(Γ), then φ(z) ∈ Ep̃(t)(D), p̃(t) = max(p1(t), p2(t)).

2. Some Definitions and Auxiliary Statements

2.1. The Curves.
(i) Let D be a simply connected domain bounded by a simple finite

rectifiable curve Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ l < ∞} with arc-length
measure ν(t) = s. Let Γ(t, r) = Γ ∩ B(t, r), where B(t, r) = {τ ∈ C :
|τ − t| < r}, t ∈ Γ, r > 0.

A curve Γ is called Carleson one (or regular one), if

sup
t∈Γ,r>0

ν[Γ(t, r)]
r

< ∞.

(ii) By Λ we denote a set of all Lavrent’yev curves, i.e., the curves Γ for
which

sup
t1,t2∈Γ

s(t1, t2)
|t1 − t2| < ∞,

where s(t1, t2) is length of the smallest of the two arcs lying on Γ and
connecting the points t1 and t2.

(iii) If Γ is a piecewise smooth closed simple curve with angular points
Ak, k = 1, . . . , n, and it is boundary of the domain D, and πνk, 0 ≤ νk ≤ 2
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are sizes of interior with respect to D angles at these points, we say that

Γ ∈ C1
D(A1, A2, . . . , An; ν1, ν2, . . . , νn).

The set of piecewise Lyapunov curves with the same properties we denote by

C1,L
D (A1, A2, . . . , An; ν1, ν2, . . . , νn).

(iv) Assume

SΓ : f → SΓf, (SΓf)(t) =
1
πi

∫

Γ

f(τ)
τ − t

dτ, t ∈ Γ.

We write Γ ∈ Rp, p > 1, if the operator is continuous in Lp(Γ).

2.2. Conformal Mappings.

2.2.1. If z = z(w) is a conformal mapping of the circle U = {w : |w| < 1}
onto the domain D with the boundary Γ∈C1,L

D (A1, A2, . . . , An;ν1, ν2, . . . , νn),
0 < νk ≤ 2, then

z′(w) ∼
n∏

k=1

(w − ak)νk−1, Ak = z(ak), (1)

where f ∼ g denotes that 0 < inf | fg | ≤ sup | fg | < ∞ [4].

2.2.2. If Γ is a simple closed curve bounding the domain D, and Γ ∈ Λ,
then there exist positive numbers η and σ such that

z′ ∈ H1+η,
1
z′
∈ Hσ, (2)

where Hσ is the Hardy class of analytic in U functions (see, e.g., [5, p. 170]).

2.2.3. If Γ ∈ C1
D(A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2, then

z′(w) ∼
n∏

k=1

(w − ak)νk−1 exp
∫

γ

ψ(ζ)
ζ − w

ds, (3)

where ψ(ζ) is the real continuous function on γ, γ = {ζ : |ζ| = 1} ([6], see
also [7, p. 144]).

2.2.4. Let D be the bounded domain with a simple rectifiable boundary
Γ, and let z = z(w) be the conformal mapping of U onto D. D is said to
be Smirnov’s domain (and Γ is said to be Smirnov’s curve), if the function
ln |z′(w)| is representable by the Poisson integral, i.e.,

ln |z′(reiϕ)| = 1
2π

2π∫

0

ln |z′(eiϑ)| 1− r2

1 + r2 − 2r cos(ϑ− ρ)
dϑ

(for these classes see, e.g., [8, pp. 250–252]).
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2.3. Some Properties of the Operator SΓ and of the Cauchy Type
Integrals.

(i) If p > 1, then Γ ∈ Rp if and only if Γ is a regular curve ([9]).
(ii) If Γ is a simple closed curve bounding the domain D and the operator

SΓ is continuous from Lp(Γ) to Ls(Γ), p > 1, s ≤ p, then:
(a) D is Smirnov’s domain and
(b) the Cauchy type integral

(KΓf)(z) =
1

2πi

∫

Γ

f(τ)
τ − z

dτ, z ∈ D, f ∈ Lp(Γ),

belongs to the Smirnov class Es(D).
In particular, if Γ is a regular curve, then (KΓf)(z) belongs to the class

Ep(D) when f ∈ Lp(Γ), p > 1 ([10], [11], see also [7, p. 29]).
(c) Smirnov’s Theorem: if D is Smirnov’s domain and φ ∈ Ep1(D), while

φ ∈ Lp2(Γ), p2 > p1, then φ ∈ Ep2(D) ([12], see also [8, p. 260]).

2.4. Spaces Lp(t)(Γ;ω). Classes of Exponents P[Γ] and P̃(Γ). Let Γ
be a simple rectifiable curve with the equation t = t(s), 0 ≤ s ≤ l, with
arc-length measure, and let on Γ be assigned measurable functions p(t) and
ω(t), where p(t) is positive and ω(t) is almost everywhere other than zero
finite function.

Consider a set of measurable on Γ functions f(t) for which

I
p(·)
Γ (fω) =

b∫

0

∣∣f(t(s))ω(t(s))
∣∣p(t(s))

ds < ∞.

Denote

‖f‖Lp(·)(Γ;ω) = inf
{

λ > 0 : Ip(·)
(fω

λ

)
≤ 1

}
.

By Lp(·)(Γ;ω) we denote a space of measurable functions f such that
‖f‖Lp(·)(Γ;ω) < ∞. Assume Lp(·)(Γ) := Lp(·)(Γ; 1). (For detailed account on
these spaces see, e.g., [13]).

2.4.1. Classes of Functions P(Γ) and P̃(Γ). The spaces Lp(·)(Γ; ω) in which
the function p(t) satisfies the conditions below are thoroughly studied and
frequently used in applications:

(1) there is the constant A such that for any t1, t2 we have

|p(t1)− p(t2)| < A

| ln |t1 − t2|| ; (4)

(2)
min
t∈Γ

p(t) = p > 1. (5)

The set of all functions p(t) satisfying the conditions (4), (5) we denote
by P(Γ).
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If p ∈ P(Γ), then the set Lp(·)(Γ;ω) is the Banach space with the norm
‖ · ‖Lp(·)(Γ;ω).

Along with the class P(Γ), we introduce into consideration one more class
of functions P1+ε(Γ), ε > 0. This is a subset of those functions p(t) from
P(Γ) for which the condition (4) is replaced by the condition

|p(t1)− p(t2)| < A

|λ|t1 − t2||1+ε
. (6)

Assume
P̃(Γ) =

⋃
ε>0

P1+ε. (7)

2.5. The Hardy and Smirnov Classes with a Variable Exponent.
Let D be the inner domain bounded by a simple closed curve Γ, and let
p = p(t) be the given on Γ measurable positive function. Moreover, let
z = z(w) be the conformal mapping of the circle U with boundary γ onto
the domain D, and let ω = ω(z) be the measurable on D function.

By Ep(t)(D; ω) we denote a set of all those analytic in D functions φ(z)
for which

sup
0<z<1

2π∫

0

∣∣∣φ(z(reiϑ))ω(z(reiϑ))
∣∣∣
p(z(eiϑ))

|z′(reiϑ)| dϑ < ∞. (8)

Assume
Hp(·)(ω) := Ep(·)(U ;ω), Hp(·) := Hp(·)(1).

For the constant p, these classes coincide with the well-known Smirnov and
Hardy classes.

2.5.1. On the Continuity of the Operator SΓ in the Spaces Lp(·)(Γ; ω). In
[14], the authors have proved theorems on the continuity of the operator SΓ

in the spaces Lp(·)(Γ;ω). (More earlier works relating to this subject-matter
can be found therein).

Combining the results of these theorems, we find that the theorem below
is valid.

Theorem A. For the operator SΓ to be continuous in the space
Lp(·)(Γ;ω), where p ∈ P(Γ) and

ω(t) =
n∏

k=1

|t− tk|αk , tk ∈ Γ, α ∈ R,

it is necessary and sufficient that Γ is a regular curve and αk satisfy the
condition

− 1
p(tk)

< αk <
1

p′(tk)
, k = 1, . . . , n.
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3. One Criterion for Belonging of the Analytic Function to
the Class Ep(·)(D)

If p(t) = p = const, then when studying the properties of functions from
classes Ep(D), the fact that the involution of the function φ ∈ Ep(D) is
equivalent to the belonging of the function Ψ(w) = φ(z(w))[z′(w)]1/p to the
Hardy class Hp plays an important role. For variable p, the function Ψ(w)
is not even analytic.

It is desirable to have a certain analogue of the above-indicated result
for a variable exponent, as well. It is particularly desirable to reveal those
classes of domains D and functions p(t) for which reasonable generalization
of the above property would be possible.

In [2], such aim has been achieved under the assumption that p ∈ P(Γ)
and the domain D is bounded by a piecewise Lyapunov curve, free from ex-
ternal cusps. Relying on the theorem from item 2.2.1, the following theorem
is proved.

Theorem B. If D is the bounded domain with the boundary Γ ∈
C1,L

D (A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2, and p ∈ P(Γ), then the
analytic in D function φ(z) belongs to the class Ep(·)(D) if and only if

Ψ(w) = φ(z(w))
n∏

k=1

(w − ak)
νk−1
l(ak) ∈ H l(·), l(τ) = p(z(τ)). (9)

3.1. In this section we will show that Theorem B can be generalized to
a sufficiently wide class of functions p(t) for arbitrary piecewise smooth
curves.

Theorem 1. Let Γ ∈ C1
D(A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 ≤ νk ≤ 2,

and z = z(w) be conformal mapping of the circle U onto the domain. Next,
let p be the function of the class

Q(Γ) =
{

p : p ∈ P̃(Γ), l(τ) = p(z(τ)) ∈ P̃(γ)
}

. (10)

The analytic in D function φ(z) belongs to the class Ep(·)(D) if and
only if

Ψ(w) = Φ(z(w))ρ(w) ∈ H l(·), (11)

where

ρ(w) =
n∏

k=1

(w − ak)νk−1l(ak) exp
∫

γ

ψ(ζ)
l(ζ)

dζ

ζ − w
, z(ak) = Ak, (12)

in which ψ(ζ) is the function from the representation (3) of the function
z′(w).

When Γ ∈ C1,L
D (A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2, and p ∈

P(Γ), the condition (11) is equivalent to the condition (9).
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Proof. Let φ ∈ Ep(·)(D). This is equivalent to the fact that

Ψ(w) = φ(z(w)) ∈ H l(·)(m(w)), (13)

where
m(w) = m(reiϑ) = |z′(reiϑ)|

1
p(z(eiϑ)) . (14)

Thus

φ(z) ∈ Ep(·)(D) ⇐⇒ Ψ(w) = φ(z(w)) ∈ H l(·)(m(w)). (15)

Let us now make use of the result given in [15]:
if l ∈ P̃(γ), then

m(w) ∼ m0(w) = m0(reiϑ) =

=
n∏

k=1

(w − ak)
νk−1
l(ak) exp

(
1

l(eiϑ)

∫

γ

ψ(ζ)
ζ − reiϑ

dζ

)
, (16)

and

m0(w) ∼ ρ(w) =
n∏

k=1

(w − ak)
νk−1
l(ak) exp

∫

γ

ψ(ζ)
l(ζ)

dζ

ζ − w
. (17)

It follows from (16), (17) that m(w) ∼ ρ(w), and hence by virtue of (15),
we conclude that

H l(·)(m(w)) = H l(·)(ρ(w)), (18)

whence, in view of (13), it follows that the first statement of the theorem is
valid.

Let now Γ ∈ C1,L
D (A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2, and p ∈

P(Γ). In this case, the function ψ in the representation (3) belongs to the
Hölder class ([7, pp. 146] and [16]). Therefore the function

∫
γ

ψ(ζ)
ζ−w dζ is

bounded in U (see, e.g., [17, pp. 50, 71]). But then in U are bounded
likewise the functions

exp
(
± 1

l(eiϑ)

∫

γ

ψ(ζ)
ζ − reiϑ

dζ

)
.

Thus, on the basis of (16), we find that the second statement of the
theorem is also valid. ¤

3.2. One Condition for Coincidence of the ClassesQ(Γ) and P̃(Γ).

Theorem 2. If the domain D is such that for conformal mapping z =
z(w) of the circle U onto D we have

z′(w) ∈
⋃

δ>0

H1+δ, (19)

then
Q(Γ) = P̃(Γ). (20)
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Proof. By virtue of the definition of the class of functions Q(Γ) (see (10)),
it suffices to state that: if p ∈ P̃(Γ), then l ∈ P̃(γ). Towards this end, we
shall use the following statement from [3]:

If p ∈ P(Γ), then under the condition (19), we have

|l(τ1 − l(τ2)| ≤ A

| ln |z(τ1)− z(τ2)|| <
A′

| ln |τ1 − τ2|| . (21)

If p ∈ P̃(Γ), then there exists the number ε > 0 for which the condition
(6) is fulfilled. Then

|l(τ1 − l(τ2)| ≤ A

| ln |z(τ1)− z(τ2)||1+ε

and (21) yields |l(τ1 − l(τ2)| ≤ A′| ln |τ1 − τ2||−(1+ε). Consequently, l ∈
P1+ε(γ), and hence l ∈ P̃(γ). ¤

Corollary 1. If Γ ∈ Λ, then the equality (20) holds.

This statement follows immediately from Theorem 2, if we take into
account the fact that the inclusions (2) in the case under consideration are
valid (see item 2.2.2).

Corollary 2. If Γ ∈ C1
D(A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2,

k = 1, . . . , n, then Q(Γ) = P̃(Γ).

Indeed, since the function exp
∫
γ

ψ(ζ)
ζ−w dζ for the continuous real ψ belongs

to
⋂

δ>1

Hδ (see [12] and [7, p. 96]), it is not difficult to state that z′ ∈ H1+δ0

for some δ0 > 0.

Corollary 3. In the assumption of Corollary 2, the class Q(Γ) in The-
orem 1 can be replaced by the class P̃(Γ).

3.3. One Subset of the Class P̃(Γ) Contained in Q(Γ). Note first
that according to Corollary 2, for p ∈ P̃(Γ) the curves Γ of the class Γ ∈
C1

D(A1, A2, . . . , An; ν1, ν2, . . . , νn), 0 < νk ≤ 2, belong to Q(Γ). However,
if for some j we have νj = 0, then this statement is, generally speaking,
doubtful. Therefore for such curves it is desirable to indicate certain sets of
functions p(t) for which the equality (20) remains valid.

Let p(t) be such a function from P(Γ) (P̃(Γ)) which is constant in some
neighborhoods of the points Aνj . By virtue of the above-said, there ex-
ists the number σ > 0 such that as soon as |t1 − t2| < σ, the inequality
(4) ((6)) will be fulfilled. Since the conformal mapping of the domains of
above-mentioned type transfers the arcs of the boundary Γ into those of
the circumference γ (see., e.g., [18, p. 46]), there exist neighborhoods of
the points aνj at which the condition (4) ((6)) is fulfilled. Consequently,
there exists the number σγ > 0 such that for |τ1 − τ2| < σγ , τ1, τ2 ∈ γ, the
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inequality (4) ((6)) will be fulfilled. It is easy to verify that (4) ((6)) is valid
for any pairs τ1, τ2 lying on γ. This implies that l(τ) ∈ P(γ).

From the above, in particular, it follows that for the curves and func-
tions p(t) under consideration, we have P̃(Γ) = Q(Γ). Moreover, in these
assumptions, the set Q(Γ) in Theorem 1 can be replaced by the set P̃(Γ).

4. The Cauchy Type Integrals and Smirnov Classes

It is not difficult to state that if D is a simply connected domain bounded
by a simple rectifiable curve Γ, and p ∈ P(Γ), then the functions of the class
Ep(·)(D) are representable by the Cauchy type integral with density from
Lp(·)(Γ) (see Theorem 3 below). However, one fails to inverse this statement
to a full entent. It is shown in [2] that in the case of piecewise Lyapunov
curves this way is quite possible.

In this section we prove that the integrals (KΓϕ)(z), ϕ ∈ Lp(·)(Γ), be-
long to Ep(·)(D) under some, very important for applications, assumptions
regarding Γ and p(t), including the case in which Γ is an arbitrary piecewise
smooth curve, and p(t) ∈ Q(Γ).

4.1. The Representability of Functions from Ep(·)(D) by the Cauchy
Type Integral.

Theorem 3. If D is the inner domain bounded by a simple rectifiable
curve Γ, and φ ∈ Ep(·)(D), where p ∈ P(Γ), then φ is representable by the
Cauchy type integral with density from Lp(·)(Γ).

Proof. It follows from the definition of the class Ep(·)(D) that Ep(·)(D) ⊂
Ep(D), and since p ∈ P(Γ), hence p > 1. Thus Ep(·)(D) ⊂ E1(D). This
implies that φ is representable by the Cauchy type integral, i.e.,

φ(z) = (KΓφ+)(z), z ∈ D, (22)

(see, e.g., [8, p. 205]). Moreover, the function F (w) = φ(z(w))[z′(w)]1/p is
of the Hardy class Hp, and hence almost everywhere on γ there exists an
angular boundary value F+(τ). Since z′ ∈ H1 (see, e.g., [8, p. 405]), there
likewise exists [z′(w)]+ = z′(τ). Thus the boundary value of the function
Φ(z(w)) exists. Relying on this fact, we can conclude that

lim
r→1

(
|Φ(reiϑ)|p(z(eiϑ))|z′(reiϑ)|

)
=

∣∣φ(z(eiϑ))
∣∣p(z(eiϑ))|z′(eiϑ)|.

Using the Fatou lemma, by virtue of (8), we conclude that
2π∫

0

∣∣φ(z(eiϑ))
∣∣p(z(eiϑ))|z′(eiϑ)| dϑ < ∞.

The above-said is equivalent to the fact that
∫
Γ

|φ+(t)|p(t) |dt| < ∞, i.e.,

φ+ ∈ Lp(·)(Γ). But then the equality (22) implies that φ(z) is represented
by the Cauchy type integral with density from Lp(·)(Γ). ¤
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4.2. On the Belonging of the Cauchy Type Integral to the Class
Ep(·)(D) for Domains with Piecewise Smooth Boundaries.

Theorem 4. Let D be the simply connected finite domain bounded by the
curve Γ of the class C1

D(A1, A2, . . . , An; ν1, ν2, . . . , νn), and p ∈ Q(Γ). Then
the Cauchy type integral φ(z) = (KΓϕ)(z), where ϕ ∈ Lp(·)(Γ), belongs to
the class Ep(·)(D).

Proof. Since Lp(·)(Γ) ⊂ Lp(Γ), therefore ϕ ∈ Lp(Γ), p > 1. It is easy to
verify that the piecewise smooth curve is regular, and according to statement
(ii) of item 2.3, we can conclude that φ ∈ Ep(D). Using Theorem 1, we
find that the analytic in U function Ψ(w) = φ(z(w))ρ(w)), where ρ, defined
by the equality (12), belongs to the class Hp. Let us now show that Ψ+ ∈
Ll(·)(γ).

As far as Γ is the regular curve, and from the condition p ∈ Q(Γ) follows
p ∈ P(Γ), the operator SΓ is continuous in Lp(·)(Γ) (see statement (i) of
item 2.3). Thus the function φ+(t0) = 1

2 ϕ(t0) + 1
2 (SΓϕ)(t0) belongs to

Lp(·)(Γ), i.e., the function φ(z(τ))[z′(τ)]
1

p(z(τ)) ∼ φ(z(τ))m+(τ) (see (14))
belongs to Lp(·)(Γ). This is the same thing as Ψ+ ∈ Ll(·)(γ).

Thus Ψ ∈ Hp and Ψ+ ∈ Ll(·)(γ), where l ∈ P(γ). We now apply the
generalized Smirnov’s theorem: if Ψ(z) ∈ H l1(·) and Ψ+(t) ∈ Ll2(·)(γ),
l2 ∈ P(γ), then Ψ(z) ∈ H l̃(·), where l̃(t) = max(l1(τ), l2(τ)) (under such
a statement, this theorem has been proven in [2]). In our case, l̃(τ) =
max(p, l(τ)) = l(τ). Hence Ψ(w) ∈ H l(·), i.e., φ(z(w)) ∈ H l(·)(ρ) =
H l(·)(m(w)) (see(18)), and this is the same thing as φ(z) ∈ Ep(·)(D). ¤

4.3. On the Belonging of the Cauchy Type Integrals with Density
from Lp(·)(Γ) to the Class Ep(·)(D) when p(t) is the Hölder Continu-
ous Function. If we assume that p(t) is the Hölder class function, then the
class of piecewise smooth curves in Theorem 4 can be replaced by another
wide set of curves.

Upon our investigation we use Theorem 5 proven below. This theorem
generalizes Smirnov’s theorem (see 2.3.1) to the case of classes Ep(·)(D),
when D belongs to a rather wide class of functions.

4.3.1. Generalization of Smirnov’s Theorem.

Theorem 5. Let Γ be the simple, rectifiable, closed, regular curve bound-
ing the domain D such that

z′(w) ∈
⋃
σ>1

Hσ,
1

z′(w)
∈

⋃
η>0

Hη, (23)

where z = z(w) is the conformal mapping of the circle U onto the domain D.
If φ(z) ∈ Eµ(·)(D), min

t∈Γ
µ(t) = δ > 0 and φ+(t) ∈ Lp(t)(Γ), where p(t) is

the Hölder class function on Γ, then φ(z) ∈ Ep̃(·)(D), p̃(t) = max(µ(t), p(t)).
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Proof. Assume Ψ(w) = φ(z(w)) and show that the function Ψ(w) in the
adopted assumptions belongs to a certain Hardy class Hε, ε > 0.

Let ε be a number from the interval (0, δ). We have

Ir =

2π∫

0

|Ψ(reiϑ)|ε dϑ =

2π∫

0

|φ(reiϑ)|ε|z′(reiϑ)| ε
δ |z′(reiϑ)|− ε

δ dϑ.

Using Hölder’s inequality with the exponent δ/ε > 1, we obtain

Ir ≤
( 2π∫

0

|φ(reiϑ)|δ|z′(reiϑ)| dϑ

) ε
δ
( 2π∫

0

|z′(reiϑ)|− ε
δ−ε dϑ

) δ−ε
δ

≤

≤ [M(r)]
ε
δ

( 2π∫

0

dϑ

|z′(reiϑ)| ε
δ−ε

) δ−ε
δ

, M(r)=

2π∫

0

|φ(reiϑ)|δ|z′(reiϑ)| dϑ. (24)

It follows from the condition φ ∈ Eµ(·)(D) that φ ∈ Eδ(D), and hence

sup
0<r<1

M(r) = C < ∞. (25)

Further, the condition 1
z′ ∈

⋃
η>0

Hη provides us with 1
z′ ∈ Hη0 for some

η0 > 0. We choose ε such that ε
δ−ε = η0 (i.e., we take ε = ε0 = δη0

1+η0
).

Since 1
z′ ∈ Hη0 , therefore

sup
0<r<1

2π∫

0

dϑ

|z′(reiϑ)|η0
< ∞.

In view of the above-said and the inequality (25), from (24) it follows
that sup Ir < ∞. Thus we have stated that Ψ ∈ Hε0 , ε0 = δη0

1+η0
.

Since Ψ ∈ Hε0 , we have Ψ(w) = eiλb(w)σ(w)D(w), where b(w) is the
Blaschke product, σ(w) 6= 0, |σ(w)| ≤ 1, λ ∈ R, and

D(w) = exp
1
2π

2π∫

0

ln |Ψ(eiϕ)| e
iϕ + w

eiϕ − w
dϕ, |w| < 1

(see [8, p. 110]).
Assume l(τ) := l(eiϑ) = p(z(eiϑ)) = p(z(τ)), τ = eiϑ. Then since p(t) is

the Hölder class function on Γ, there exist numbers M and α ∈ (0, 1] such
that |p(t1)− p(t2)| < M |t1 − t2|α. Consequently,

|p(t1)− p(t2)| =
∣∣p(z(τ1))− p(z(τ2))

∣∣ ≤

≤ AM |z(τ1 − z(τ2)|α = AM

∣∣∣∣
τ2∫

τ1

z′(τ) dτ

∣∣∣∣
α

.
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It follows from the inclusion z′ ∈ ⋃
σ>1

Hσ (see (23)) that z′ ∈ Hσ0 for

some σ0 > 1. Then the last inequality (in view of the fact that on γ we
have s(τ1, τ2) ∼ |τ1 − τ2|) yields

|l(τ1)− l(τ2) ≤ AM

( τ2∫

τ1

|z′(τ)|σ0 |dτ |
) α

σ0 |τ1 − τ2|
σ0−1

σ0
α.

Thus l(τ) is the function from the Hölder class on γ. In view of the
above, we can apply the inequality proven in [2]:

|Ψ(reiϑ)|l(ϑ) ≤ A(r, ϑ)B(r, ϑ), (26)

where

A(r, ϑ) = exp
1
2π

2π∫

0

l(ϕ) ln |Ψ̃(eiϕ)|P (r, ϑ− ϕ) dϕ,

Ψ̃(eiϕ) =

{
Ψ(eiϕ), if |Ψ(eiϕ)| ≥ 1
1, if |Ψ(eiϕ)| < 1

, P (r, x) =
1− r2

1 + r2 − 2r cosx
,

and for B(r, ϑ), the following estimate is valid:

|B(r, ϑ)| ≤ k1 exp k2

2π∫

0

|Ψ(eiϕ)| dϕ = k3,

where k1, k2 does not depend on Ψ.
The inequality (26) results now in

2π∫

0

|Ψ(reiϑ)|l(ϑ)|z′(reiϑ)| dϑ ≤

≤ k3

2π∫

0

exp
(

1
2π

2π∫

0

ln |Ψ̃(eiϕ)|l(ϕ)P (r, ϑ− ϕ) dϕ

)
|z′(reiϑ)| dϑ. (27)

Since Γ is the regular curve, therefore D is Smirnov’s domain (see state-
ment (ii) of item 2.3), and hence

|z′(reiϑ)| = |z′(w)| = exp ln |z′(w)| =

= exp
1
2π

2π∫

0

ln |z′(reiϑ)|P (r, ϑ− ϕ) dϕ. (28)

Moreover, we have
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ln |Ψ̃(eiϕ)|l(ϕ) = ln
∣∣∣ |Ψ̃(eiϕ)|l(ϕ)z′(eiϕ)

z′(eiϕ)

∣∣∣ =

= ln
[
|Ψ̃(eiϕ)|l(ϕ)|z′(eiϕ)| − ln |z′(eiϕ)|

]
. (29)

From (27), by virtue of (28) and (29), we can conclude that

2π∫

0

|Ψ(reiϑ)|l(ϑ)|z′(reiϑ)| dϑ ≤

≤ k3

2π∫

0

exp
1
2π

2π∫

0

ln |Ψ̃(eiϕ)|l(ϕ)|z′(eiϕ)|P (z, ϑ− ϕ) dϕdϑ ≤

≤ k3

2π∫

0

|Ψ̃(reiϕ)|l(ϕ)|z′(eiϕ)| dϕ ≤

≤ k3

2π∫

0

|Ψ(eiϕ)|l(ϕ)|z′(eiϕ)| dϕ +

2π∫

0

|z′(eiϕ)| dϕ ≤

≤ k3

2π∫

0

|Ψ(eiϕ)|l(ϕ)|z′(eiϕ)| dϕ + k4. (30)

By the assumption of the theorem, φ+ ∈ Lp(·)(Γ). But
2π∫

0

|Ψ(eiϕ)|l(ϕ)|z′(eiϕ)| dϕ =
∫

Γ

|φ+(t)|p(t) |dt|

and from (30) follows

sup
r<1

2π∫

0

|Ψ(eiϕ)|l(ϕ)|z′(eiϕ)| dϕ < ∞.

Hence φ ∈ Ep(·)(D); and since φ ∈ Eµ(·)(D), then φ ∈ Ep̃(·)(D), p̃(t) =
max(p(t), µ(t)). ¤

4.4. The Cauchy Type Integrals in the Domains with Lavrentiev
Boundary.

Theorem 6. If D is the inner domain bounded by a simple rectifiable
curve of the class Λ, and p is the Hölder class function on Γ, then the
Cauchy type integral φ(z) = (KΓϕ)(z), where ϕ ∈ Lp(·)(Γ), belongs to the
class Ep(·)(D).

Proof. In the case under consideration, the both conditions in (23) are ful-
filled. Moreover, it can be easily verified that any curve from Λ is regular
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one. Next, since ϕ ∈ Lp(Γ), p = min
t∈Γ

p(t), in view of property (ii) in item 2.3,

we conclude that φ ∈ Ep(D). Along with the above-said, φ+ = 1
2 ϕ+ 1

2 SΓϕ,
ϕ ∈ Lp(·)(Γ). Since p ∈ P(Γ), therefore SΓϕ ∈ Lp(·)(Γ) (see Theorem A).
Consequently, φ+ ∈ Lp(·)(Γ).

Thus φ ∈ Ep(D) and φ+ ∈ Lp(·)(Γ), where p(t) is the Hölder class
function on Γ. This implies that all requirements of Theorem 5 are fulfilled
and hence φ ∈ Ep(·)(D). ¤
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