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Abstract. We consider the Cauchy problem for the semi-linear fractional
telegraph equation

D2γ
0|tu + Dγ

0|tu + (−∆)
β
2 u = h(x, t)|u|p

with the given initial data, where p > 1, 1
2 ≤ γ < 1 and 0 < β < 2. The

Nonexistence results and the necessary conditions for global existence are
established.
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ðâèâàîŽòæï àŽêðëèâĲæïŽåãæï

D2γ
0|tu + Dγ

0|tu + (−∆)
β
2 u = h(x, t)|u|p

éëùâéñèæ ïŽûõæïæ ìæîëĲâĲæå, ïŽáŽù p > 1, 1
2 ≤ γ < 1 áŽ 0 < β < 2.

áŽáàâêæèæŽ ŽîŽîïâĲëĲæï öâáâàâĲæ áŽ ŽñùæèâĲâèæ ìæîëĲâĲæ àèëĲŽèñîæ
ŽîïâĲëĲæïŽåãæï.
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1. Introduction

The telegraph equation has recently been considered by many authors,
see for instance [2, 3, 8, 12, 15] and references therein. Cascaval et al. [2]
discussed the fractional telegraph equations

D2βu + Dβu−∆u = 0

dealing with well-posedness and presenting a study involving asymptotic by
using the Riemann–Liouville approach, it has been shown that as t tends to
infinity, solutions of the telegraph equations can be approximated by solving
the parabolic part. Beghin and Orsingher [15] discussed the time fractional
telegraph equations and telegraph processes with Brownian time, showing
that some processes are governed by time-fractional telegraph equations
with well-posedness. Chen et al. [3] also discussed and derived the solution
of the time-fractional telegraph equation with three kinds of nonhomoge-
neous boundary conditions.

To focus our motivation, we shall mention below only some results related
to Todorova and Yordanov [20] for the Cauchy problem

utt −∆u + ut = |u|p, u(0) = u0, ut(0) = u1. (1)

It has been shown that the damped wave equation has the diffuse structure
as t → ∞ (see e.g. [20, 22]). This suggests that problem (1) should have
pc(n) := 1 + 2

n as critical exponent which is called the Fujita exponent
[5, 7] named after Fujita, in general space dimension. Indeed, Todorova and
Yordanov have showed that the critical exponent is exactly pc(n), that is,
if p > pc(n), then all small initial data solutions of (1) are global, while if
1 < p < pc(n), then all solutions of (1) with initial data having positive
average value blow-up in finite time regardless of the smallness of the initial
data.

In this paper, we consider the following nonlinear fractional telegraph
equation:

{
D2γ

0|tu + Dγ
0|tu + (−∆)

β
2 u = h(x, t)|u|p in Q = Rn × R+

u(0, x) = u0(x) and ut(0, x) = u1(x), x ∈ Rn,
(2)

where Dγ
0|t (resp. D2γ

0|tu) denotes the so-called fractional time-derivative of

power γ (resp. 2γ), γ ∈ [1/2, 1] in the Caputo sense (see [11], [18]), (−∆)
β
2

(β ∈ [0, 2]) is the (β/2)-fractional power of the Laplacian (−∆) defined by

(−∆)
β
2 v(x, t) = F−1(|ξ|βF(v)(ξ))(x, t),

where F denotes the Fourier transform and F−1 is its inverse, h(x, t) is the
positive function satisfying certain growth condition. We will generalize the
results obtained in [20] to the problem (2). The nonexistence results as well
as the necessary conditions for local and global existence are obtained.

The difficulties we encounter here arise mainly from the nonlocal na-
ture of the fractional derivative operators; to overcome these difficulties, we
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present a brief and versatile proof of the equation (2) which is based on
the method used by Mitidieri and Pohozaev [14], Pohozaev and Tesei [17],
Hakem [6], Berbiche [1], Fino and Karch [4] and Zhang [22]. This method
consists in a judicious choice of the test function in the weak formulation of
the sought for solution of (2).

This paper is organized as follows: in Section 2, we present some defi-
nitions, properties concerning fractional derivative and prove results con-
cerning positivity of solutions; Section 3 contains the proof of the blow-up
result; in Section 4, we establish some necessary conditions for local and
global existence.

2. Preliminaries

In this section we present some definitions of a fractional derivative and
a result concerning the positivity of a solution.

The left-hand fractional derivative and the right-hand fractional deriva-
tive in the Riemann–Liouville sense for Ψ ∈ L1(0, T ), 0 < α < 1, are defined
as follows:

Dα
0|tΨ(t) =

1
Γ(1− α)

d

dt

t∫

0

Ψ(σ)
(t− σ)α

dσ,

where the symbol Γ stands for the usual Euler gamma function, and

Dα
t|T Ψ(t) = − 1

Γ(1− α)
d

dt

T∫

t

Ψ(σ)
(σ − t)α

dσ,

respectively.
The Caputo derivative

Dα
0|tΨ(t) =

1
Γ(1− α)

t∫

0

Ψ
′
(σ)

(t− σ)α
dσ

requires Ψ
′ ∈ L1(0, T ). Clearly, we have

Dα
0|tΨ(t) =

1
Γ(1− α)

[
Ψ(0)
tα

+

t∫

0

Ψ
′
(σ)

(t− σ)α
dσ

]

and

Dα
t|T Ψ(t) =

1
Γ(1− α)

[
Ψ(T )

(T − t)α
−

T∫

t

Ψ
′
(σ)

(σ − t)α
dσ

]
. (3)

Therefore, the Caputo derivative is related to the Riemann–Liouville deriv-
ative by

Dα
0|tΨ(t) = Dα

0|t[Ψ(t)−Ψ(0)] (4)
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and, in general,

Dα
0|tΨ(t) =

1
Γ(1− α)

t∫

0

Ψ
(n)

(σ)
(t− σ)2γ−n

dσ, n = [α] + 1, α > 0,

we have the formula of integration by parts (see [18, p. 26]),
T∫

0

f(t)Dα
0|tg(t) dt =

T∫

0

g(t)Dα
t|T f(t) dt, 0 < α < 1.

We show the following result:

Proposition 1 (Positivity of solutions). If u0 ≥ 0, u1 = 0, f ≥ 0 and u
is a solution of the nonhomogeneous problem{

D2γ
0|tu + Dγ

0|tu + (−∆)
β
2 u = f(x, t), (x, t) ∈ Rn × R+

u(0, x) = u0(x) and ut(0, x) = 0, x ∈ Rn,
(5)

then u is nonnegative.

Proof. Applying the temporal Laplace and spatial Fourier transforms to (5),
we get

s2γ ũ(x, s)− s2γ−1u0(x) + sγ ũ(x, s) + (−∆)β/2ũ(x, s) = f̃(x, s),

s2γ ̂̃u(k, s)− s2γ−1û0(k) + sγ ̂̃u(k, s) + |k|β ̂̃u(k, s) = ̂̃
f(k, s).

Then we derive

̂̃u(k, s) =
s2γ−1 + sγ−1

s2γ + sγ + |k|β û0(k) +
1

s2γ + sγ + |k|β
̂̃
f(k, s) :=

:= ̂̃
G1(k, s)û0(k) + ̂̃

G2(k, s)̂̃f(k, s), (6)

where
̂̃
G2(k, s) :=

1
s2γ + sγ + |k|β , (7)

̂̃
G1(k, s) :=

s2γ−1 + sγ−1

s2γ + sγ + |k|β := ̂̃
G1,1(k, s) + ̂̃

G1,2,

̂̃
G1,1(k, s) :=

s2γ−1

s2γ + sγ + |k|β ,
̂̃
G1,2 :=

sγ−1

s2γ + sγ + |k|β .

(8)

We invert the Fourier transform in (6) and obtain

u(x, t) =
∫

Rn

G1(x− y)u0(y) dy +
∫

Rn

t∫

0

G2(x− y, τ)f(x, τ) dτ dy,

where G1(x, t), G2(x, t) is the corresponding Green’s function or the fun-
damental solution obtained when u0(x) = δ(x), f = 0 and u0(x) = 0,
f(x, t) = δ(x)δ(t), respectively, which is characterized by (7), (8).
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To express the Green’s function, we recall two Laplace transform pairs
and one Fourier transform pair,

F
(γ)
1 (ct) := t−γMγ(ct−γ) L←→ sγ−1e−csγ

,

F
(γ)
2 (ct) := cwγ(ct) L←→ e−(s/c)γ

,

where Mγ denotes the so-called M function (of the Wright type) of order
γ, which is defined by

Mµ(z) =
∞∑

i=0

(−z)i

i!Γ(−µi + (1− µ))
, 0 < µ < 1.

Mainardi, see, for example, [12] has shown that Mµ(z) is positive for z> 0,
the other general properties can be found in some references (see e.g. [12,
13, 16]).

wµ (0 < µ < 1) denotes the one-sided stable (or Lévy) probability density
which can be explicitly expressed by the Fox function [19]

wµ(t) = µ−1t−2H10
11

(
t−1

∣∣∣∣
(−1, 1)

(−1/µ, 1/µ)

)
.

It is well known that

e−λ|x|β F−→ p(x, λ), 0 < β ≤ 2,

where p(x, λ) is the probability density function.
From ([21, pp. 259–263]) we have

p(x, λ) :=

+∞∫

0

fλ, β
2
(τ)T (x, τ) dτ for 0 < β ≤ 2,

and
p(x, λ) = T (x, λ) if β = 2,

where

fλ, β
2
(s)=

τ+i∞∫

τ−i∞

ezs−λz
β
2 dz≥0, T (x, λ)=

( 1
4πλ

)n
2
e−

|x|2
4λ , τ >0, λ>0.

Then the Fourier–Laplace transform of Green’s function G1 can be rewritten
in the integral form

̂̃
G1(k, s) = (s2γ−1 + sγ−1)

+∞∫

0

e−v(s2γ+sγ+|k|β) dv =

=

+∞∫

0

(s2γ−1e−vs2γ

)e−vsγ

e−v|k|β dv+

+∞∫

0

(sγ−1e−vsγ

)e−vs2γ

e−v|k|β dv =
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=

+∞∫

0

L{
F

(2γ)
1 (vt)

}L{
F

(γ)
2 (v−1/γt)

}F{p(x, v)} dv+

+

+∞∫

0

L{
F

(γ)
1 (vt)

}L{
F

(2γ)
2 (v−1/2γt)

}F{p(x, v)} dv =

=

+∞∫

0

L
[
F

(2γ)
1 (vt) ∗ F

(γ)
2 (v−1/γt)

]
F{p(x, v)} dv+

+

+∞∫

0

L
[
F

(γ)
1 (vt) ∗ F

(2γ)
2 (v−1/2γt)

]
F{p(x, v)} dv.

Going back to the space-time domain, we obtain the relation

G1(x, t) =

+∞∫

0

F
(2γ)
1 (vt) ∗ F

(γ)
2 (v−1/γt)p(x, v) dv+

+

+∞∫

0

F
(γ)
1 (vt) ∗ F

(2γ)
2 (v−1/2γt)p(x, v) dv.

By the same technique, we obtain the expression of G2(x, t)

̂̃
G2(k, s) =

+∞∫

0

e−v(s2γ+sγ+|k|β) dv =

+∞∫

0

e−vs2γ

e−vsγ

e−v|k|β dv =

=

+∞∫

0

L
[
F

(2γ)
2 (v−1/2γt) ∗ F

(γ)
2 (v−1/γt)

]
F{p(x, v)} dv.

Going back to the space-time domain, we obtain the relation

G2(x, t) =

+∞∫

0

[
F

(2γ)
2 (v−1/2γt) ∗ F

(γ)
2 (v−1/γt)

]
{p(x, v)} dv.

Thus, by the nonnegativity property of functions F
(γ)
1 , F

(γ)
2 , p(x, v), we

deduce that the solution u is nonnegative. ¤

3. Blow-up of Solutions

This section is devoted to the blow-up of solutions of the problem (2),
where we have assumed that the function h satisfies h

(
Ry, T β/γτ

)
=

RσT ρβ/γh (y, τ) for large R and T , where σ, ρ are some positive constants,
under some restrictions on the initial data.
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Definition 1. Let u0 ≥ 0, u0 ∈ L1(Rn), u1 = 0. A function u ∈ Lp
loc(QT )

is a weak solution to (2) defined on QT := Rn × [0, T ], if
∫

QT

hϕ|u|p dx dt +
∫

Rn

u0D
2γ−1
t|T ϕ(0) dx +

∫

QT

u0D
γ
t|T ϕ dx dt =

=
∫

QT

uD2γ
t|T ϕ dx dt +

∫

QT

u(−∆)
β
2 ϕ dx dt +

∫

QT

uDγ
t|T ϕ dx dt

for any test function ϕ ∈ C2,1
x,t (QT ) such that

ϕ(x, T ) = D2γ−1
t|T ϕ(x, T ) = 0.

If in the above definition T = +∞, the solution is called global.
We now are in a position to announce our first result.

Theorem 1. Let n ≥ 1, 1 < p < min
(
ρ + 1, 1

1−γ

)
. Assume that u0 ∈

L1(Rn), u0(x) ≥ 0, and u1 = 0. If

p ≤ pc = 1 +
γ(σ + β

γ ρ) + γβ

(1− γ)β + nγ
,

then the problem (2) admits no global weak positive solutions other than the
trivial one.

Proof. The proof proceeds by contradiction. Suppose that u is a nontrivial
nonnegative solution to problem (2) which exists globally in time. For later
use, let Φ be a smooth nonincreasing function such that

Φ(z) =

{
1 if z ≤ 1,

0 if z ≥ 2,

and 0 ≤ Φ ≤ 1. Let

ϕ(x, t) := Φl
( t2γ

R2β

)
Φl

( |x|
R

)
= ϕl

1(t)ϕ
l
2(x),

where R is a fixed positive number and l is a positive number to be chosen
later. Multiplying the equation (2) by ϕ(x, t) and integrating the result on
QTRβ/γ , we obtain

∫

Q
T Rβ/γ

hϕ|u|p dx dt +
∫

Rn

u0D
2γ−1
t|TRβ/γ ϕ(0) dx +

∫

Q
T Rβ/γ

u0D
γ
t|TRβ/γ ϕ dx dt =

=
∫

Q
T Rβ/γ

uD2γ
t|TRβ/γ ϕ dx dt +

∫

Q
T Rβ/γ

u(−∆)
β
2 ϕ dx dt +

∫

Q
T Rβ/γ

uDγ
t|TRβ/γ ϕ dx dt. (9)



The Necessary Conditions for the Existence . . . 45

Now we estimate the right-hand side of (9). We have

∫

Q
T Rβ/γ

u(−∆)
β
2 ϕ dx dt =

∫

Q
T Rβ/γ

(hΦl)
1
p u(hΦl)−

1
p (−∆)

β
2 Φl dx dt ≤

≤ l

∫

Q
T Rβ/γ

(hΦl)
1
p u(hΦl)−

1
p Φl−1(−∆)

β
2 Φ dx dt,

where we have used the Ju’s inequality (−∆)β/2ξl(x)≤ lξl−1(x)(−∆)β/2ξ(x)
which is satisfied for every ξ ∈ C∞0 (Rn) (see [10]).

By the ε-Young’s inequality, we can estimate

∫

Q
T Rβ/γ

u(−∆)
β
2 ϕ dx dt ≤ εl

∫

Q
T Rβ/γ

hΦup dx dt+

+ C(ε)
∫

Q
T Rβ/γ

h
−q
p Φ(l−1− l

p )q|(−∆)
β
2 Φ|q dx dt =

= εl

∫

Q
T Rβ/γ

hΦup dx dt + C(ε)
∫

Q
T Rβ/γ

h
−q
p ϕ(1− q

l )
∣∣(−∆)

β
2 ϕ

1
l

∣∣q dx dt<∞, (10)

so, we choose l > q to ensure the convergence of the integral in (10).

∫

Q
T Rβ/γ

uD2γ
t|TRβ/γ ϕ dx dt ≤

≤ ε

∫

Q
T Rβ/γ

hϕup dx dt + C(ε)
∫

Q
T Rβ/γ

(hϕ)1−q|D2γ
t|TRβ/γ ϕ|q dx dt, (11)

and

∫

Q
T Rβ/γ

uDγ
t|TRβ/γ ϕ dx dt ≤

≤ ε

∫

Q
T Rβ/γ

hϕup dx dt + C(ε)
∫

Q
T Rβ/γ

(hϕ)1−q|Dγ
t|TRβ/γ ϕ|q dx dt, (12)
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where q is the conjugate of p. Gathering up (10), (11) and (12), with ε
small enough, we infer that

∫

Q
T Rβ/γ

hϕ|u|p dx dt +
∫

Q
T Rβ/γ

u0D
γ
t|TRβ/γ ϕ dx dt ≤

≤ C

∫

Q
T Rβ/γ

h
−q
p ϕ(1− q

l )|(−∆)
β
2 ϕ

1
l |q dx dt+

+ C

∫

Q
T Rβ/γ

(hϕ)1−q
(
|D2γ

t|TRβ/γ ϕ|q + |Dγ
t|TRβ/γ ϕ|q

)
dx dt, (13)

for some positive constant C independent of R and T . At this stage, let us
perform the change of variables τ = t/R

β
γ , y = x

R , and ϕ(x, t) = ψ(y, τ),
clearly

τ = t/R
β
γ , x = Ry, dxdt = Rn+ β

γ dydτ.

We have the estimates

∫

Q
T Rβ/γ

h
−q
p ϕ(1− q

l )
∣∣(−∆)

β
2 ϕ

1
l

∣∣q dx dt =

= R−βq+n+β/γ+(1−q)(σ+ β
γ ρ)

∫

QT

h1−qψ(1− q
l )

∣∣(−∆)
β
2 ψ

1
l

∣∣q dy dτ,

∫

Q
T Rβ/γ

(hϕ)1−q
∣∣D2γ

t|TRβ/γ ϕ
∣∣q dx dt =

= R−
β
γ (2γ)q+n+ β

γ +(1−q)(σ+ β
γ ρ)

∫

QT

(hψ)1−q
∣∣D2γ

τ |T ψ
∣∣q dy dτ,

and

∫

Q
T Rβ/γ

(hϕ)1−q
∣∣Dγ

t|TRβ/γ ϕ
∣∣q dx dt =

= R−βq+n+ β
γ +(1−q)

(
σ+ β

γ ρ
) ∫

QT

(hψ)1−q
∣∣Dγ

τ |T ψ
∣∣q dy dτ.
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It is clear from (3) that D2γ−1
t|TRβ/γ ϕ ≥ 0, Dγ

t|TRβ/γ ϕ ≥ 0. Then we obtain

∫

Q
T Rβ/γ

hϕ|u|p dx dt ≤

≤ C(ε)R−βq+n+β/γ+(1−q)(σ+ β
γ ρ)

[ ∫

QT

h1−qψ1− q
l

∣∣(−∆)
β
2 ψ

1
l

∣∣q dy dτ+

+
∫

QT

(hψ)1−q
(∣∣Dγ

τ |T ψ
∣∣q +

∣∣D2γ
τ |T ψ

∣∣q
)

dy dτ

]
, (14)

where C is positive constant independent of R. Now let R → +∞ in (14).
We distinguish two cases. If p < pc (which is equivalent −βq + n + β/γ +
(1− q)(σ + β

γ ρ) < 0), then we have
∫

Rn×R+

h|u|p dx dt ≤ 0.

This implies that u ≡ 0 a.e. on Rn ×R+ since h(x, t) > 0 a.e. on Rn ×R+.
This is a contradiction.

In the case p = pc (i.e. critical case), from (14) we find that
∫

Rn×R+

h|u|p dx dt ≤ C. (15)

Let us modify the test function ϕ by introducing a new fixed number S
(1 < S < R) such that

ϕ(x, t) := Φl
( t2γ

(SR)2β

)
Φl

( |x|
R

)
,

we set x = yR, t = (SR)
β
γ τ ,

ΩSR =
{

(x, t) ∈ Rn × R+ : |x| ≤ 2R, t2γ ≤ 2(SR)2β
}

,

Ω =
{

(y, τ) ∈ Rn × R+ : |y| ≤ 2, τ2γ ≤ 2
}

.

Then we have
∫

ΩSR

h
−q
p ϕ(1− q

l )
∣∣(−∆)

β
2 ϕ

1
l

∣∣q dx dt =

= Sβ/γ+(1−q) β
γ ρ

∫

Ω

h1−qψ1− q
l

∣∣(−∆)
β
2 ψ

1
l

∣∣q dy dτ,
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∫

ΩSR

(hϕ)1−q
∣∣Dγ

t|TRβ/γ ϕ
∣∣q dx dt =

= S−βq+β/γ+(1−q) β
γ ρ

∫

Ω

(hψ)1−q
∣∣Dγ

τ |T ψ
∣∣q dy dτ,

and
∫

ΩSR

(hϕ)1−q
∣∣D2γ

t|TRβ/γ ϕ
∣∣q dx dt =

= S−2βq+β/γ+(1−q) β
γ ρ

∫

Ω

(hψ)1−q
∣∣D2γ

t|T ψ
∣∣q dy dτ.

Combining the above estimates we find

(1− 3ε)
∫

ΩSR

hϕupc dx dt ≤

≤ S
β
γ +(1−q) β

γ ρ

( ∫

Ω

h1−qψ1− q
l |(−∆)

β
2 ψ

1
l |q dy dτ

)
+ S−βq+β/γ+(1−q) β

γ ρ×

×
( ∫

Ω

(hψ)1−q|Dγ
τ |T ψ|q dy dτ +

∫

Ω

(hψ)1−q|D2γ
τ |T ψ|q dy dτ

)
. (16)

Now, by taking ε = 1
6 and using (15), we obtain via (16), after passing to

the limit as R →∞,
∫

Rn×R+

hup dx dt ≤ C
(
S−βq+β/γ+(1−q) β

γ ρ + S
β
γ +(1−q) β

γ ρ
)
, (17)

we notice that the assumption p < min(ρ + 1, 1
1−γ ) yields −βq + β/γ +

(1 − q) β
γ ρ < 0 and β

γ + (1 − q) β
γ ρ < 0, and the left-hand side of (17) is

independent of S. Passing to the limit S →∞, we get immediately
∫

Rn×R+

h|u|p dx dt ≤ 0.

Thus
∫

Rn×R+

h|u|p dx dt = 0, which implies u ≡ 0 a.e. and completes the

proof. ¤

Remark 1. When β = 2, γ = 1 and h = 1, this agrees with Todorova–
Yordanov [20].
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4. The Necessary Conditions for the Local and Global
Existence

In this section we assume that inf
t>0

h(x, t) > 0, we see that the existence

of solutions of the problem (2) depends on the behavior of initial data at
infinity.

Theorem 2. Let u be a local solution to (2), where T < +∞, and
1 < p < 1

1−γ . Assume that u0 ≥ 0 and u1 ≥ 0. Then the following two
estimates

lim
|x|→+∞

inf
(

inf
t>0

h
)q−1

u0(x) ≤ C
(
T γ(1−q) + T γ−2γq

)
,

lim
|x|→+∞

inf
(

inf
t>0

h
)q−1

u1(x) ≤ C ′
(
T 2γ−1−γq + T 2γ(1−q)−1

)

hold for some positive constants C and C ′.

Proof. Multiply the equation (2) by ϕ(x, t) and integrating the result on
ΩR × [0, T ], we get

∫

ΩR×[0,T ]

hϕ|u|p dx dt +
∫

ΩR

u0D
2γ−1
t|T ϕ(0) dx+

+
∫

ΩR×[0,T ]

u0D
γ
t|T ϕ dx dt +

∫

ΩR×[0,T ]

u1D
2γ−1
t|T ϕ dx dt =

=
∫

ΩR×[0,T ]

uD2γ
t|T ϕ dx dt +

∫

ΩR×[0,T ]

u(−∆)
β
2 ϕ dx dt +

∫

ΩR×[0,T ]

uDγ
t|T ϕ dx dt. (18)

where ΩR := {x ∈ Rn; R ≤ |x| ≤ 2R}. Let us consider the function Φ ∈
Hβ([1, 2]), Φ ≥ 0, such that (−∆)β/2Φ = KΦ for some positive constants
K. We take

ϕ(x, t) := Φ
( x

R

)(
1− t2

T 2

)l

, (x, t) ∈ ΩR × [0, T ], l > q.

Applying the ε-Young’s inequality to the right-hand side of (18), one obtains
∫

ΩR

u0D
2γ−1
t|T ϕ(0) dx +

∫

ΩR×[0,T ]

u0D
γ
t|T ϕ dx dt +

∫

ΩR×[0,T ]

u1D
2γ−1
t|T ϕ dx dt ≤

≤ C

∫

ΩR×[0,T ]

(hϕ)
−q
p

(∣∣(−∆)
β
2 ϕ

∣∣q +
∣∣D2γ

t|T ϕ
∣∣q +

∣∣Dγ
t|T ϕ

∣∣q
)

dx dt. (19)

In order to estimate the right-hand side of (19) in terms of T and R, we
have ∫

ΩR×[0,T ]

(hϕ)1−q
∣∣(−∆)β/2ϕ

∣∣q dx dt = CTR−βq

∫

ΩR

h1−qΦ
( x

R

)
dx,
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where we have used (−∆)β/2Φ
(

x
R

)
= KR−βΦ( x

R ). An easy computation
(using the Euler substitution y = s−t

T−t ) yields

Dγ
t|T

(
1− t2

T 2

)l

=
−T 2l

Γ(1− γ)
×

×
l∑

k=0

2l−kCl
kMlktl−k−1(T − t)l−k−γ

[
(l − k)T − (2l + 1− γ)t

]
, (20)

where Mlk := Γ(l + 1)
k∑

n=0
Ck

n
Γ(n−β+1)

Γ(l−β+n+2) and Cl
k = l!

k!(l−k!) ,

D2γ
t|T (1− t2

T 2
)l =

T 2l

Γ(2− 2γ)

l∑

k=0

2l−kCl
kMlktl−k−2(T − t)l−k−2γ×

×
[
(l−k)(l−k−1)T 2−2tT (l−k)(2l−2γ+1)+(2l−2γ+1)(2l−2γ+2)t2

]
, (21)

and
T∫

0

Dγ
t|T

(
1− t2

T 2

)l

dt =
T 1−γ

Γ(1− γ)

l∑

k=0

LγkCl
k, (22)

where

Lγk :=
Γ(l + 1)Γ(k + 1− γ)

Γ(l + k + 2− γ)
.

By (20) and (21), we can see that
∣∣∣Dγ

t|T
(
1− t2

T 2

)l∣∣∣ ≤ T−γ

Γ(1− γ)

l∑

k=0

2(l−k)(3l + 1− γ − k)Cl
kMlk (23)

and
∣∣∣D2γ

t|T
(
1− t2

T 2

)l∣∣∣ ≤ T−2γ

Γ(2− 2γ)
×

×
l∑

k=0

2(l−k)Cl
kMlk

[
(l−k)(l−k−1)+(2l+1−2γ)(4l−2k+2−2γ)

]
. (24)

Passing to the new variable t = Tτ and by the relations (22), (23) and (24),
we obtain∫

ΩR×[0,T ]

u1D
2γ−1
t|T ϕ dx dt =

C3

Γ(1− α)
T−2γ+2

∫

ΩR

u1(x)Φ
( x

R

)
dx, (25)

∫

ΩR×[0,T ]

(hϕ)1−q
∣∣Dγ

t|T ϕ
∣∣q dx dt ≤ CT 1−γq

∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx, (26)

∫

ΩR×[0,T ]

(hϕ)1−q
∣∣D2γ

t|T ϕ
∣∣q dx dt ≤ CT 1−2γq

∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx, (27)
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and
∫

ΩR×[0,T ]

(hϕ)1−q
∣∣(−∆)

β
2 ϕ

∣∣q dx dt ≤

≤ CTR−βq

∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx. (28)

Gathering all the estimates (25)–(28) together with (19), we find

T 1−γ

∫

ΩR

u0(x)Φ
( x

R

)
dx + T 2−2γ

∫

ΩR

u1(x)Φ
( x

R

)
dx ≤

≤ C
(
T 1−γq + T 1−2γq + TR−βq

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−q(x)Φ

( x

R

)
dx. (29)

The estimate (29) and the following estimates
∫

ΩR

u0(x)Φ
( x

R

)
dx ≥

≥ inf
|x|>R

(
u0(x)

[
inf
t>0

h(x, t)
]q−1

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx,

∫

ΩR

u1(x)Φ
( x

R

)
dx ≥

≥ inf
|x|>R

(
u1(xt)

[
inf
t>0

h(x, t)
]q−1

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx,

yield
(
T−γ inf

|x|>R

(
u0(x)

[
inf
t>0

h(x, t)
]q−1

)
+ T 1−2γ inf

|x|>R

(
u1(x)

[
inf
t>0

h(x, t)
]q−1

))
×

×
∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C
[
T−γq + T−2γq + R−βq

] ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx. (30)

Dividing the both sides of (30) by
∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

(
x
R

)
dx > 0, after

passing to the limit R → +∞, we deduce

T−γ lim
|x|→+∞

inf
(
u0(x)

[
inf
t>0

h(x, t)
]q−1

)
+

+ T 1−2γ lim
|x|→+∞

inf
(
u1(x)

[
inf
t>0

h(x, t)
]q−1

)
≤ C(T−γq + T−2γq).
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Then we have

lim
|x|→+∞

inf
(
u0(x)

[
inf
t>0

h(x, t)
]q−1

)
≤ C(T γ−γq + T γ−2γq)

and

lim
|x|→+∞

inf
(
u1(x)

[
inf
t>0

h(x, t)
]q−1

)
≤ C(T 2γ−1−γq + T 2γ(1−q)−1). ¤

Corollary 1. Assume that the problem (2) has a nontrivial global solu-
tion. Then at least one of the following conditions is satisfied:

lim
|x|→+∞

inf
(
u0(x)

[
inf
t>0

h(x, t)
]q−1

)
= 0,

lim
|x|→+∞

inf
(
u1(x)

[
inf
t>0

h(x, t)
]q−1

)
= 0.

Corollary 2. If one of the conditions

lim
|x|→+∞

inf
([

inf
t>0

h(x, t)
]q−1

u0(x)
)

= +∞
or

lim
|x|→+∞

inf
([

inf
t>0

h(x, t)
]q−1

u1(x)
)

= +∞

is fulfilled, then the problem (2) cannot have any local weak solution.

Theorem 3. Suppose that the problem (2) has a global solution. Then
there exist two positive constants K1 and K2 such that

lim
|x|→+∞

inf
(
u0(x)|x|β(q−1)

[
inf
t>0

h(x, t)
]q−1

)
≤ K1,

and
lim

|x|→+∞
inf

(
u1(x)|x| β

γ (γ(q−1)+1−γ)
[
inf
t>0

h(x, t)
]q−1

)
≤ K2.

Proof. From the relation (30) we infer that

inf
|x|>R

([
inf
t>0

h(x, t)
]q−1

u0(x)
) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C
[
T γ−γq + T γ−2γq + T γR−βq

] ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx

Then, by taking T > 1, we have

inf
|x|>R

(
u0(x)

[
inf
t>0

h(x, t)
]q−1

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C
[
T γ−γq + T γR−βq

] ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx. (31)
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Now, taking in (31) T = R
β
γ , we find

inf
|x|>R

(
u0(x)

[
inf
t>0

h(x, t)
]q−1

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ CRβ(1−q)

∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx.

The last inequality implies

inf
|x|>R

(
u0(x)|x|β(q−1)

[
inf
t>0

h(x, t)
]q−1

)
×

×
∫

ΩR

|x|β(1−q)
[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C22β(q−1)

∫

ΩR

|x|β(1−q)
[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx. (32)

After division of both sides of (32) by
∫

ΩR

|x|β(1−q)
[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx > 0,

we deduce that

inf
|x|>R

(
u0(x)|x|β(q−1)

[
inf
t>0

h(x, t)
]q−1

)
≤ C22β(q−1).

Finally, we pass to the limit |x| → +∞.
Similarly, we have

inf
|x|>R

(
u1(x)

[
inf
t>0

h(x, t)
]q−1

) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C
[
T 2γ−1−γq + T 2γ−1−2γq + T 2γ−1R−βq

] ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx,

and, by taking T > 1, we get

inf
|x|>R

([
inf
t>0

h(x, t)
]q−1

u1(x)
) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C
[
T 2γ−1−γq + T 2γ−1R−βq

] ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx.
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Likewise, T = R
β
γ . Therefore, by the substitution, we find

inf
|x|>R

([
inf
t>0

h(x, t)
]q−1

u1(x)
) ∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ CR
β
γ (2γ−1)−βq

∫

ΩR

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx.

Hence

inf
|x|>R

(
|x|βq− β

γ (2γ−1)
[
inf
t>0

h(x, t)
]q−1

u1(x)
)
×

×
∫

ΩR

|x| β
γ (2γ−1)−βq

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx ≤

≤ C22
(

β
γ (2γ−1)−βq

) ∫

ΩR

|x| β
γ (2γ−1)−βq

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx. (33)

Finally, we divide both sides of the resulting relation by the expression∫

ΩR

|x| β
γ (2γ−1)−βq

[
inf
t>0

h(x, t)
]1−qΦ

( x

R

)
dx > 0,

and pass to the limit as |x| → +∞. ¤

References

1. M. Berbiche, Nonexistence of solutions results for certain fractional differential equa-
tions. Math. Model. Anal. 16 (2011), No. 3, 488–497.

2. R. C. Cascaval, E. C. Eckstein, C. L. Frota and J. A. Goldstein, Fractional
telegraph equations. J. Math. Anal. Appl. 276 (2002), No. 1, 145–159.

3. J. Chen, F. Liu, and V. Anh, Analytical solution for the time-fractional telegraph
equation by the method of separating variables. J. Math. Anal. Appl. 338 (2008),
No. 2, 1364–1377.

4. A. Fino and G. Karch, Decay of mass for nonlinear equation with fractional Lapla-
cian. Monatsh. Math. 160 (2010), No. 4, 375–384. DOI 10.1007/s00605-009-0093-3.

5. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u+u1+α.
J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124.

6. A. Hakem, Blow-up results for evolution problems on Rn. Math. Nachr. 278 (2005),
No. 9, 1033–1040.

7. K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic dif-
ferential equations. Proc. Japan Acad. 49 (1973), 503–505.

8. F. Huang, Analytical solution for the time-fractional telegraph equation. J. Appl.
Math. 2009, Art. ID 890158, 9 pp.

9. R. Gorenflo, Y. Luchko, and F. Mainardi, Wright functions as scale-invariant
solutions of the diffusion-wave equation. Higher transcendental functions and their
applications. J. Comput. Appl. Math. 118 (2000), No. 1-2, 175–191.

10. N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-
geostrophic equations. Comm. Math. Phys. 255 (2005), No. 1, 161–181.

11. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of
fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier
Science B.V., Amsterdam, 2006.



The Necessary Conditions for the Existence . . . 55

12. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenom-
ena. Chaos Solitons Fractals 7 (1996), No. 9, 1461–1477.

13. F. Mainardi, Y. Luchko, and G. Pagnini, The fundamental solution of the space-
time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), No. 2, 153–192.

14. E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions
of nonlinear partial differential equations and inequalities. (Russian) Tr. Mat. Inst.
Steklova 234 (2001), 1–384; English transl.: Proc. Steklov Inst. Math. 2001, No. 3
(234), 1–362.

15. E. Orsingher and L. Beghin, Time-fractional telegraph equations and telegraph
processes with Brownian time. Probab. Theory Related Fields 128 (2004), No. 1,
141–160.

16. I. Podlubny, Fractional differential equations. An introduction to fractional deriva-
tives, fractional differential equations, to methods of their solution and some of their
applications. Mathematics in Science and Engineering, 198. Academic Press, Inc.,
San Diego, CA, 1999.

17. S. I. Pohozaev and A. Tesei, Blow-up of nonnegative solutions to quasilinear par-
abolic inequalities. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei
(9) Mat. Appl. 11 (2000), No. 2, 99–109.

18. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional integrals and deriva-
tives. Theory and applications. Edited and with a foreword by S. M. Nikol’skǐı. Trans-
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