Memoirs on Differential Equations and Mathematical Physics
VOLUME 56, 2012, 9-35

Malkhaz Ashordia

ON TWO-POINT SINGULAR

BOUNDARY VALUE PROBLEMS

FOR SYSTEMS OF LINEAR GENERALIZED
ORDINARY DIFFERENTIAL EQUATIONS



Abstract. The two-point boundary value problem is considered for the
system of linear generalized ordinary differential equations with singularities
on a non-closed interval. The constant term of the system is a vector-
function with bounded total variations components on the closure of the
interval, and the components of the matrix-function have bounded total
variations on every closed interval from this interval.

The general sufficient conditions are established for the unique solvability
of this problem in the case where the system has singularities. Singularity is
understand in a sense the components of the matrix-function corresponding
to the system may have unbounded variations on the interval.

Relying on these results the effective conditions are established for the
unique solvability of the problem.

2010 Mathematics Subject Classification. 34K06, 34K10.

Key words and phrases. Systems of linear generalized ordinary dif-
ferential equations, singularity, the Lebesgue—Stiltjes integral, two-point
boundary value problem.

©9boydy. aobbepomybym Bgymgdcey Fege3 wogitibgeory® yobhmmy-
domo 1)01)(8):]301)003301) Logbﬂgoﬁmbai‘)om oéogo&]@)OQ 05@)363\)@%3 E)OEBOQ-UQOO
mﬁ?gﬁ@n@mgogo Bol)o%gf\)gém oamGOGQ. od 1)01)(‘*)3301) mo301)-:]030;120 Vagén 1)\)1)6-:]—
0 306008001) 30’)33@536(")360060 g'jj(*‘)mﬁ-:]gzqo (BUEjGO‘)‘) OQEO‘QGUQO 06(“):]630;:'\)01)
Bogi30bg, beomer dophGagmo gbjgeeb 30ddebybingdh 3o oj3b bobegmo goto-
08032)0 439 &)&3(3)0;2 1)36336(9)%3 od oB@Jﬁ:}QQOQoB.

306700 03 0dm(30b0b (3ombobom 0dmbbbowmbolb bma oo bojdocobo JoGrem-
b330, Geoio bobpgdob aooBbos bobymmommdgde. bobymmommds googgdo 0d ob-
6003, &ed 1)01)(3)3301) ‘331)06.)301)0 3‘)(3)600"3(;20 ‘B':]gj(jo‘ﬂ) &masmEJGJGX]&) ‘3303@360
3ijgQ31) ‘Baamvgl).)%g:r)éaggo 3060080360 6OELQBOQ33QQ IHUOQ:];Q%J.

03 30092 707 OYEbMEoM oy bormos 03 vdm30bob (3ombobor ©dmbbbore-
dob :](B:]j(“)'gﬁm 306(*)2):]2)0.



On Two-Point Singular BVPs for Systems of Linear Generalized ODEs 11

1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

In the present paper, for a system of linear generalized ordinary differ-
ential equations with singularities

dx(t) = dA(t) - z(t) + df (t) (1.1)
we consider the two-point boundary value problem
zi(la+)=0 (i=1,...,n0), z;(b—)=0 (i=no+1,...,n), (1.2)

where —o00 < a < b < +o0, ng € {1,...,n}, 1,...,x, are the components
of the desired solution x, ng € {1,...,n}, f : [a,b] — R™ is a vector-function
with bounded total variation components, and A :]a, b[ — R™*" is a matrix-
function with bounded total variation components on every closed interval
from the interval ]a, b[.

We investigate the question of unique solvability of the problem
(1.1),(1.2), when the system (1.1) has singularities. Singularity is under-
stand in a sense that the components of the matrix-function A may have
unbounded variation on the closed interval [a, b], in general. On the basis of
this theorem we obtain effective criteria for the solvability of this problem.

Analogous and related questions are investigated in [17-24] and [26] (see
also references therein) for the singular two-point and multipoint boundary
value problems for linear and nonlinear systems of ordinary differential equa-
tions, and in [1,3,6,8,10] (see also references therein) for regular two-point
and multipoint boundary value problems for systems of linear and nonlinear
generalized differential equations. As for the two-point and multipoint sin-
gular boundary value problems for generalized differential systems, they are
little studied and, despite some results given in [12] and [13] for two-point
singular boundary value problem, their theory is rather far from comple-
tion even in the linear case. Therefore, the problem under consideration is
actual.

To a considerable extent, the interest in the theory of generalized ordinary
differential equations has been motivated by the fact that this theory enables
one to investigate ordinary differential, impulsive and difference equations
from a unified point of view (see e.g. [1-13,15,16,25,27-29] and references
therein).

Throughout the paper, the use will be made of the following notation
and definitions.

R =] — 00, 400[; Ry = [0,+0o0[; [a,], |a,b[ and ]a,b], [a,b] are, respec-
tively, closed, open and half-open intervals.

R™*™ ig the space of all real n x m-matrices X = (x;;)

n,m

+ =1 With the norm

n,m

X1 = |eal.

il=1

RP™ = {(mzz)zlzl cxg>00@=1,...,n; 1= 1,...,m)}.
Opnxm (or O) is the zero n x m matrix.
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If X = (zy);" € R™™, then [X| = (|lzal);Z, -

R™ = R"*! is the space of all real column n-vectors z = (z;)/_; R} =
Rnxl

.

If X € R"™™ then X!, det X and r(X) are, respectively, the matrix
inverse to X, the determinant of X and the spectral radius of X; I,, is the
identity n x m-matrix; J;; is the Kroneker symbol, i.e., §;; = 1 and §; = 1
fori#£1 (i,l=1,...,n).

d
V(X), where a < ¢ < d < b, is the variation of the matrix-function

c
X :]a,b[— R™ ™ on the closed interval [¢, d], i.e., the sum of total variations
of the latter components x;; (i =1,...,n; l =1,...,m) on this interval; if

d < ¢, then \?(X) = —\:/(X); V(X)(t) = (v(za)(t);Z,, where v(z)(co) =

0, v(zy)(t) = \t/(xll) fora <t < b, and ¢y = (a +b)/2.

co
X (t—) and X (t+) are the left and the right limits of the matrix-function
X :]a,b[— R™ ™ at the point t €]a, b[ (we assume X (t) = X (a+) fort < a
and X (t) = X (b—) for t > b, if necessary).
i X(t)=X(t)— X(t—-), do X (1) = X(t+) — X (¢).
BV ([a, b], R™*™) is the set of all matrix-functions of bounded variation

b
X : [a,b] — R™™ (i.e., such that \/(X) < +00);

b

IIXH =sup {|X(®)[| : t € [a,b]}, | X[l = [ X(a)]| + V(X);

@)

Vs([a, b], R"*™) is the normed space (BV([a, b], R™*™) || - ||s);

BV ([a, b], R™*™) is the Banach space (BV([a,b],R™*™), || - |,).

BVZOC(]a b[,R™*™) is the set of all matrix-functions X :]a,b[— R™*™
d

such that \/(X) < 400 for every a < ¢ < d < b.
c

If X € BVyoe(Ja,b[,R"*™), det(I, + (—1)7d; X (t)) # 0 for t €]a,b[ (j =
1,2),and Y € BVi,c(]a, b[, R™*™), then A(X,Y)(t) = B(X,Y)(co, t), where
B is the operator defined by

B(X, Y)(t t) = Opxm for t €la,bf,

B(X.,Y)(s,1) = Y (1) + D AX(T) (L= di X (7)Y (r)-
s<t<t
= Y dX(1) (In + daX (7)) doY(7) for a<s<t<b
s<t<t
and

B(X,Y)(s,t) = —B(X,Y)(t,s) for a<t<s<b.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.
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If @ € BV([a, b], R) has no more than a finite number of points of discon-
tinuity, and m € {1,2}, then Do = {taml;- - tamna, } Fam1i < - <
tamna,,) 1S the set of all points from [a,b] for which d,a(t) # 0, and
tom = max{dna(t) : t € Dam} (m=1,2).

If 5 € BV([a,b],R), then

VamBj :max{djﬁ(taml)—l— Z d;p(r): 1= 1,...7nam}
tami+1-m<T<tamit+2—m
(j,m = 1,2), here taQO =a— 17 talnal-f—l =b+ 1.
sj : BV([a,b],R) — BV([a,b],R) (j = 0,1,2) are the operators defined,
respectively, by

s1(z)(a) = s2(z)(a) =0,
s1(x)(t) = Z diz(T) and ss(x)(t) = Z dox(7) for a <t <b,

a<r<t a<r<t
and
so(x)(t) = x(t) — s1(x)(t) — s2(x)(t) for t € [a,b].
If g : [a,b] — R is a nondecreasing function, = : [a,b] - R and a < s <
t < b, then

t

/JU(T) dg(r) = / (1) dso(9)(7) + Y w(r)dig(r) + Y x(r)dag(r),
: o] s<r<t s<T<t

where [ x(7)dso(g)() is the Lebesgue-Stieltjes integral over the open
interva]187f;,t[ with respect to the measure pg(so(g)) corresponding to the
function so(g); if @ = b, then we assume fbx(t) dg(t) = 0. Moreover, we put

a

t

/tm(r) dg(t) = lim /33(7') dg(T)
s+

e—0, >0
s+e
and
t— t—e
[amrdstr) = _tim_ [ a(r)dgir)

L([a,b],R; g) is the space of all functions z : [a,b] — R measurable and
integrable with respect to the measure p(g) with the norm

b
lellny = / j(t)] dg(t).
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If g(t) = g1(t) — g2(t), where g1 and go are nondecreasing functions, then

t t ¢
/1‘(7’) dg(T) Z/I(T)dg1(7')—/x(7')dgg(7') for s <t.
It G = (gik)ﬁ’,zzl : [a,b] — R™™ is a nondecreasing matrix-function

and D C R™*™  then L([a,b], D;G) is the set of all matrix-functions X =
(xk])Z;”1 : la,b] — D such that x; € L([a,b],R;gix) (i = 1,...,1; k =
1,...,n;5=1,...,m);

t

/dG(T) L X(r) = (zn:/txkj(T)dgik(T))Lm for a <s<t<b,

p ,j=1

SHG)(E) = (s;(m) (1)1, (G =0,1,2).
1

If Gj : [a,b] — R>™ (j = 1,2) are nondecreasing matrix-functions,
G(t) = Gl( ) — Ga(t) and X : [a b] — R™™ then

t t t

/dG(T)~X(T) :/dGl(T)-X(T)—/dGQ(T)-X(T) for s <t,

S S S

Sk(G) = Sk(G1) — Sk(G2) (k=0,1,2),

L([a’b]vD; G) = ﬂ L([a’b]aD§Gj)a

The inequalities between the vectors and between the matrices are un-
derstood componentwise.

We assume that the vector-function f = (f;)?_, belongs to BV({[a, b],
and the matrix-function A = (a;)},_, is such that a; € BV([a, b], R) (i
i, =1,...,n), a;; € BV(Ja,b],R) (: = 1,...,n9) and a;; € BV([a,b[,R
(i =no + 1 )

A vector- functlon x=(x )Z 1 is said to be a solution of the system (1 1) if
x; € BViee(]a, b, R) (i=1,...,n0), ; € BVioe([a,b],R) (i=no+1,...,n)
and

R™),
71

" +Z/ ™) dau(7) + fi(t) — fi(s)
=1

for a<s<t<b (i= ,...,no) and for a<s<t<b (i=no+1,...,n).

Under the solution of the problem (1.1),(1.2) we mean a solution z(t) =
(xi(t)), of the system (1.1) such that the one-sided limits z;(a+) (i =
1,...,mn0) and z;(b—) (i =no+1,...,n) exist and the equalities (1.2) are
fulfilled. We assume z;(a) =0 (i = 1,...,n9) and x;(b) = 0 (i = ng +
1,...,n), if necessary.
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A vector-function z € BV([a, b], R™) is said to be a solution of the system
of generalized differential inequalities
dx(t) —dB(t) - x(t) — dq(t) <0 (> 0) for t € [a,b],
where B € BV([a, b],R"*™), ¢ € BV([a, b],R"), if
¢
x(t) —x(s) + /dB(T) cx(1) —q(t) +q(s) <0 (>0) for a <s<t<b.

Without loss of generality we assume that A(a) = Opxn, f(a) = 0.
Moreover, we assume

det(I, + (—1)7d;A(t)) # 0 for t €la, b (j =1,2). (1.3)

The above inequalities guarantee the unique solvability of the Cauchy
problem for the corresponding system (see [29, Theorem III.1.4]).
If s €)a,b] and @ € BVy4c(]a, b[,R) are such that

L+ (=1)7d;B(t) #0 for (—1)i(t—5) <0 (j=1,2),
then by 7v3(-, s) we denote the unique solution of the Cauchy problem
dy(t) =~v()dB(t), v(s) =1.
It is known (see [15,16]) that

exp (s0()(t) — s0(8)(s)) X
X H (1—dya(r))~! H (1+dy5(7)) for t > s,
Yalt, ) = { exp (s0(B(t) — s0(B(s))x (1.4)
< []=dip(r)) [ 1 +dap(r))™" for t <s,
1 . e for t =s.

It is evident that if the last inequalities are fulfilled on the whole interval
[a,b], then v, 1(t) exists for every t € [a, b].

Definition 1.1. Let ng € {1,...,n}. We say that a matrix-function
C = (ci)i1=, € BV([a,b],R"*™) belongs to the set U(a+,b—;ng) if the
functions ¢;; (i # I; 4,1 = 1,...,n) are nondecreasing on [a,b] and the
system

sgn (no—l—%—i) dx;(t) < le(t) dey(t) for t € [a,b] (i=1,...,n) (1.5)

has no nontrivial nonnegative solution satisfying the condition (1.2).

The similar definition of the set ¢ has been introduced by I. Kiguradze
for ordinary differential equations (see [20,21]).
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Theorem 1.1. Let the components of the matriz-function A=(au); -, €
BV ioc(]a, b[ , R™™™) satisfy the conditions

(solaie) (1) — solasi) () sem (o + 5 — 1) <

< so(ei — @) (t) — soley —ay)(s) for a<s<t<b (i=1,...,n), (1.6)
(17 (U (1Y djaa(t)] 1) s (mo + 5 — ) <
<dj(cii(t) — oi(t)) for t€la,b] (j=1,2;i=1,...,n0)
and for t € [a,b] (j=1,2;i=mng+1,...,n), (1.7)
|so(air)(t) — so(ai)(s)| <
< solei)(t) —so(ca)(s) fora<s<t<b (i#1l; i,l=1,...,n) (1.8)
and
|djaq(t)| < djeq(t) for t€la,b] (i £ i,0=1,...,n),  (19)
where
C = (cit)i1=1 € U(a+,b—; ng), (1.10)

a; Ja,b) = R (i =1,...,n0) and o; : [a,b]— R (i = ng+1,...,n) are
nondecreasing functions such that

thm dgai(t) <1 (Z =1,... ,7’L0)7
ot _ (1.11)
thrgl dio;(t) <1 (i=nog+1,...,n)
and
tlim lim sup~yg, (t,a+1/k) =0 (i=1,...,n0),
—.>a+ k—.>oo ' (1.12)
thrl? khm supvg, (t,b—1/k) =0 (i=mno+1,...,n),

where (3;(t) = «i(t)sgn(ng + § —4) (i = 1,...,n). Then the problem
(1.1), (1.2) has one and only one solution.

Corollary 1.1. Let the components of the matriz-function A= (ail)?,lzl €
BVioc(Ja, b[ ,R™*™) satisfy the conditions

(s0(ais) (8) = soass)(5)) sen (o + % i) < ~(so@)(1) = so(as)(s))
+/hii(7) dso(Bi)(T) for a<s<t<b (i=1,...,n), (1.13)

S

(=1 (|1 + (=1)djaii(t)| — 1) sgn (ng + % - z) <
< hig(t)d; Bi(t) — djoy(t)) for t €lab] (j=1,2;i=1,...,n9)

and for t € [a,b] (j=1,2; i=np+1,...,n),
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|s0(ai)(t) — so(ax)(s)| <

S/hil(r)dso(ﬁl)(r) fora<s<t<b (i#l; i,l=1,...,n) (1.14)

S

and
|djai(t)] < hu(t)d;Bi(t) for t€la,b] (i #1;i,l=1,...,n), (1.15)

where a; :]a,b] = R (i =1,...,n9) and o; : [a,b)[—= R (i =ng+1,...,n)
are nondecreasing functions satisfying the conditions (1.11) and (1.12), 5
(I = 1,...,n) are functions nondecreasing on [a,b] and having not more
than a finite number of points of discontinuity, hy; € L*([a,b],R; 3;), hy €
LA ([a,b], Ry 68) (i £ 4,0=1,...,n), 1 < pu < +oo. Let, moreover,

r(H) <1, (1.16)
where the 3n x 3n-matric H = (H;11 m+1)im:0 is defined by
Hjsrmer = Memig ikl (60) g ey (G =10,1,2),
l . .
&ij = (55(8)(0) = 5;(Bi)(@))* (7 =0,1,2,; i=1,...,n);

4\%
Ak0io = (ﬁ) 5’30 if s0(B:)(t) = s0(Br) (1),
Ero&io if s0(B:)(t) Z s0(Br)(t) (i,k=1,...,n);
)‘k:mij :gkmgw Zf m2+j2 >0, mj=0 (jvm:()v 1,2, i,k=1,..., n)7

1

); Gym=1,2 i,k=1,...,n),

™

1 =2
)\kmij = (1 HopmVapmao;j S m

and i—!—% = 1. Then the problem (1.1), (1.2) has one and only one solution.

Remark 1.1. The 3n x 3n-matrix ‘H, appearing in Corollary 1.1 can be
replaced by the n x n-matrix

2 n
(maX{ZAkmiﬂhika"Sm(ak) m = 07 1,2})

j=0 i,k=1

By Remark 1.1, Corollary 1.1 has the following form for h;(t) = hy =
const (i,1=1,...,n), a;(t) =at) i=1,...,n), Bi(t) =6¢) (i=1,...,n)
and p = 4o00.

Corollary 1.2. Let the components of the matriz-function A= (ai;)};_; €
BV ioc(]a, b[ ,R™™™) satisfy the conditions

(soaio) () — soasi) () sem (o + 5 — 1) < hus (s0() (1) — so(5)()) ~

—(so(@)(t) = so(@)(s)) for a<s<t<b (i=1,...,n),
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(—1)j(|1 + (—1)jdjaii(t)| - 1) sgn (no + % - Z) < hiidjﬁ(t) - dj()é(t))
for t€la,b] (j=1,2;i=1,...,n9)
and for t € [a,b] (j=1,2;i=mng+1,...,n),
|so(ai)(t) — so(ai)(s)| < hu(so(B)(t) — so(B)(s))
fora<s<t<b (i#1l; i,l=1,...,n)

and

|dj(lil(t)| < hildjﬁ(t) fOT’ te [a,b} (Z 7é l;0,l=1,... ,’I’L)

hold, where « : [a,b] — R is a nondecreasing function satisfying the condi-
tions (1.11) and (1.12), B is a function nondecreasing on [a,b] and having
not more than a finite number of points of discontinuity, h;; € R, hy € Ry
(i#1;4,l=1,...,n). Let, moreover,
Lo T(H) < 17
where
2

H = (hir)} =1, Po= maX{Z)\mj tm = 0,1,2}7

=0

doo = = (50(8)b) — sol) (@),

Joj = Ao = (s0(A)) = s0(@)(@))? (5,(8)(8) - s;(H)@)? (5 =1.2).
>\mj % (,Uamyamaj)% sin™ men% (m7] = 172)

Then the problem (1.1), (1.2) has one and only one solution.

Theorem 1.2. Let the components of the matriz-function A= (CLil)ZlZl €
BV ioe(]a, b[ , R™*™) satisfy the conditions (1.6)—(1.9), where ¢;;(t) = hyFi(t)
+Bu(t) (i,1=1,...,n),

doBi(a) <0 and 0<diB;(t)<|m;i| ™' for a<t<b (i=1,...,n9), (1.17)

d1Bi(b)<0 and 0<doBi(t)<|mi|™' for a<t<b (i=no+1,...,n), (1.18)
where a; :]a,b] = R (i=1,...,n9) and o; : [a,b] = R (i =ng+1,...,n) are
nondecreasing functions satisfying the conditions (1.11) and (1.12), hy; <0,
hy>0,m <0G #1;4l=1,...,n), B (i =1,...,n) are the functions
nondecreasing on [a,b]; Bu, i € BV([a,b],R) (i # ;4,0 =1,...,n) are the

functions nondecreasing on the interval |a,b] for i € {1,...,n0} and on the
interval [a,b] for i € {ng+1,...,n}. Let, moreover, the condition (1.16)
hold, where H = (§u)7' 11,
ha . .
fii = i, fil = ﬁ (Z#la Zal: 1,...,71),

= V(A(Ci,ai))(b) - V(A(Ci,ai))(aJr) for ie{l,...,no},
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ni =V (A(G, 1)) (b=) = V(A(G, a0))(a) for ie{ng+1,...,n};

Gt =3 6ult) (=1,....m),
k=l
a,(t) = (ﬂ7(t) — ﬂl(a+))h“ fO’f’ a<t<b (Z =1,... ,no),
a;(t) = (ﬂi(bf) - Bl(t))h“ for a<t<b (i=mnog+1,...,n).
Then the problem (1.1), (1.2) has one and only one solution.

Remark 1.2. If
m<l(@=1,...,n), (1.19)
then, in Theorem 1.2, we can assume that
hil
gu Oa g’Ll (1 — Th)|h“|
Theorem 1.3. Let the matriz-function C' = (cy)},—; € BV([a,b],R"*")
be such that the functions c¢; (i #1; i,1 = 1,...,n) are nondecreasing on
[a,b] and the problem (1.5), (1.2) has a nontrivial nonnegative solution, i.e.,
the condition (1.10) is violated. Let, moreover, a; :]a,b] = R (i =1,...,ng)
and o : [a,b[— R (i =np +1,...,n) be nondecreasing functions satisfying
the conditions (1.11), (1.12) and

(i#Lil=1,...n). (1.20)

; 1
1+ (—1)7 sgn (no +5 - Z)dj (cis(t) — ai(t)) >0
for t €la,b] (j=1,2;i=1,...,n0)

and for t € [a,b] (j=1,2;i=no+1,...,n). (1.21)

Then there exist a matriz-function A = (au)}j—; € BV([a,b,R™*"), a

vector-function f = (f1)]~, € BV([a,b], R") and nondecreasing functions

@; :]a,b] = R (i =1,...,n0) and &; : [a,b[— R (i = ng+1,...,n) such
that the conditions (1.6)—(1.12) and

&i(t) — &Z(S) S Ozi(t) — ai(s)
fora<t<s<b and for a<t<s<b (i=ng+1,...,n) (1.22)

are fulfilled, but the problem (1.1),(1.2) is unsolvable. In addition, if the
matriz-function C = (ci)i—, s such that

. 1 n
det ((51-1 + (—1)eidjcq(t) sgn (no + 3~ z) A l_1> #0
for t €la,b]; e1,...,e4 €[a,b] (j=1,2), (1.23)
then the matriz-function A = (au)j—, satisfies the condition (1.3).
Remark 1.3. The condition (1.23) holds, for example, if either

D ldjea(t)| <1 for tefa,b] (j=1,2 i=1,...,n), (1.24)
=1
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n

: 1
>° Mgl <1+ (=17 sgn (no + 5 — i) dyea(®)
1=1, l#4
for t €a,b] (j=1,2; i=1,...,n) (1.25)
or

n

; 1
Z |djcii(t)] <1+ (1) sgn (no + 5~ i)djcn‘(t)
1=1, 1
for tefa,b] (j=1,2; i=1,...,n). (1.26)

2. AUXILIARY PROPOSITIONS

Lemma 2.1. Lettg€[a,b], a and ¢ €BV,c([a, to] , R")NBV e (]to, b], R™)
be such that
1+ (—=1)7 sgn(t — to)d;a(t) > 0 for t € [a,b] (j=1,2). (2.1)
Let, moreover, x € BV ,.([a, to[,R™) NBVee(Jto, ], R™) be a solution of the
linear generalized differential inequality

sgn(t — to)dx(t) < z(t)da(t) + dq(t) (2.2)
on the intervals [a,to| and ]to,b], satisfying the inequalities
z(tot+) < yltot) and x(to—) < y(to—), (2.3)

where y € BV oe([a, to[ , R™) N BViec(Jto, b], R™) is a solution of the general
differential equality

sgn(t —to)dy(t) = y(t)da(t) + dq(t). (2.4)

Then
x(t) < y(t) for t € [a,to[U]to, b]. (2.5)
Proof of Lemma 2.1. Assume to < b and consider the closed interval [ty +

g,b], where ¢ is an arbitrary sufficiently small positive number.
By (2.1), the Cauchy problem

dy(t) = y(t)de(t), ~v(s)=1

has the unique solution v, for every s € [tg + ¢,b] and, by (1.4), this is
positive, i.e.,

vs(t) > 0 for ¢ € [to+¢,b]. (2.6)

According to the variation-of-constant formula (see [29, Corollary I11.2.14]),
from (2.4) we have

y(t) = a(t) — q(s)+
+7(t){7‘1(8)y(8)— / (q<r>—q<s>)dv-1<r>} for s,t€ltore b, (27)

where ¥(t) = g1 (t)-
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From (2.2), we have
dz(t) < z(t)da(t) + d(q(t) — q-(t)) for t € [to +€,b]

and, therefore,

x(t)ZCI(t)—Q(t0+€)—qa(t)+qa(to+€)+7(t){7_1(t0+5)x(t0+5)—
- / (q(7) — q(to +€) — q=(7) + q-(to +€)) d“Yl(T)} for ¢ € [ty +¢,b],
to+e

where
t

ge(t) = —(t) + x(to + &) + qlt) — alto + ) + / 2(r)do(r)
to+e
for t € [to+¢,b].

Hence, by (2.7), we get
w(t) = y(t) + ()7~ (to + &) (x(to +€) — y(to +¢))+
+ g-(¢t) for t € [ty +¢,b], (2.8)

where
t

G () = —g:(t) + ge(to +2) + () / (4:(7) — et + €))dr~(7)
to+e
for ¢ € [to+¢,b].

Using the formula of integration-by-parts (see [29, Theorem 1.4.33]), we
find

ge<t>v<t>( [ 7@ dsa)n+

to+e

+ Z v (7=)dig-(T)+ Z 7_1(T+)d2q5(7)> for tefto+e,b]. (2.9)

tot+e<T<t tot+e<lr<t
According to (2.6) and (2.9), we have
ge(t) <0 for t € [tg+¢,b],

since by the definition of a solution of the generalized differential inequality
(2.2) the function g, is nondecreasing on the interval J¢o, b]. By the equality
~(to +¢€) = 1, from this and (2.8) we get

z(t) < y(t) +v(t) (z(to + ) — y(to +€)) for t € [to+e,b].
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Passing to the limit as € — 0 in the latter inequality and taking into account
(2.3) and (2.6), we conclude

x(t) < y(t) for t €to,bl.

Analogously we can show the validity of the inequality (2.5) for t € [a, to] .
The lemma is proved.

O

The following lemma makes more precise the ones (see Lemma 6.5) in [10].

Lemma 2.2. Let ti,...,t, € [a,b], l; : BVy([a,b],R}) — Ry (i =
1,...,n) be linear bounded functzonals, and Cyj = (ckm)?’l”nl’ €

BV([a,b], R™>"3) (k,j = 1,2) be such that the system
ns
sgn(t — t;)dx;(t) < Za:z (t)derra(t) + Z$n1+l(t)dcl2il(t)
=1

for te€ab], t#£t; (i=1,...,n1),

(1) djai(t;) < Zwu djciia(t +Z$n1+z )djciza(ts)

(2.10)
(.7 - 172a i=1,..., 1)7
ni n2
dxnl +i (t) = ZJJ[(t)dCQlil (t) + Z LTny +l(t)dc22il (t)
= =1
for t €la,b] (i=1,...,n9),
has a nontrivial nonnegative solution under the condition
(t) < li(x1,...,xy) for i € Ny,
zi(ti) < li(2 ) [ (2.11)

x;(t;) = li(xr, ..., xp) for i € {1,...,n}\ Ny,

where ny and ny (N1 + n2 = n) are some nonnegative integers, and Ny, is

some subset of the set {1,...,n}. Let, moreover, the functions ai,...,a,, €
BV ([a,b],R™) be such that

dja;(t) >0 for t€la,b] (j=1,2; i=1,...,n1) (2.12)
and

1+ (—1)7 sgn(t — t;)d; (cr144(t) — ou(t)) > 0
for te€lab] (j=1,2; i=1,...,n1). (2.13)
Then there exist matriz-functions Ciy = (Ekm)%’"f € BV([a, b], R">m1)
(k = 1,2), functions a; € BV([a,b],R™) (i = 1,...,n1), linear bounded

functionals l; : BV,([a,b],R") — R (i = 1,...,n) and numbers cg; € R
(i=1,...,n) such that

s0(C114)(t) — s0(C114i)(s) <
< (so(cr1ii — i) (t) — so(c11i — @i)(s)) sgn(t — s)
for (t—s)(s—1t;) >0, s,te€fa,b] (i=1,...,n1), (2.14)
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for (=)™t —t)>0 (jym=1,2;i=1,...,n1); (2.15)
|s0(C21i1) (t) — so(Carar)(s)| <

t
S\/(so(621il)) for a<s<t<b (i=1,...,n9, l=1,...,n1), (2.16)

|djE21il(t)’ S |dj521¢l(t)’ fOT’ te [a, b] (Z: ]., ...y No, l:L - ,’I’Ll)7 (217)
0 < d;d; < djoy(t) for t€lab] (j=1,2 i=1,...,m), (2.18)
and the system
dz(t) = dA(t) - z(t) (2.19)
under the n-condition
is unsolvable, where

o _ (Cu(t), Cua(t)
A(t):<521(t)a 022@)). @21)

Proof. Let x = (x;)7~; be the nonnegative solution of the problem (2.10),
(2.11). Let, moreover, ¢; € BV([a,b],R) (¢ = 1,...,n1) be the functions
defined by

wi(t) = <Zl/xl(7) deyyq(T)+

=1}

ny t
+ Z/xn,1+l(7') deya (1) — /Ii(T)dbi(T)> sgn(t—t;) (i=1,...,n1),
=17
where bz (t) = C114i — O (t)

By the condition (2.13), it is evident that the Cauchy problem

dy(t) = y(t) db(t) + depi (t), (2.22)
y(ti) = zi(ts), (2.23)
where b;(t) = b;(t)sgn(t — t;), has a unique solution y; for every i €

{17...,77,1}.

In addition, by (2.10) it is easy to verify that the function
zi(t) = @i(t) — yi(t)
satisfies the conditions of Lemma 2.1 and the problem
du(t) = u(t) dbi(t), u(t;) =0

has only the trivial solution for every i € {1,...,n1}.
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According to this lemma, we have
x;(t) <wy(t) for t €a,b] (i=1,...,m1)
and therefore
zi(t) = ni(H)yi(t) for t € a,b] (i =1,...,m),

where for every i € {1,...,n}, n;(t) = x;(t)/y:(t) if t € [a,b] is such that
yi(t) # 0, and n;(t) = 1 if ¢ € [a, b] is such that y;(t) = 0.
It is evident that

0<mn;(t) <1 for t€[a,b] and n;(t;) =1 (i=1,...,n). (2.24)

Moreover, for every i € {1,...,n}, n; : [a,b] — [0,1] is the function
bounded and measurable with respect to every measure along with x; and
y; are integrable functions.

Hence there exist the integrals appearing in the notation

Ellii(t) = (Cllii(t) — &Z(t)) sign(t — tz) (’L = ]., e 71’L1),

Ellil(t)zsgn(t—ti)/m(f) depa(r) GA£L il=1. ) 2
and ’

zzlil(t)z/tm(f)dcm(f) (i=1,.eomss I=1,...om1),  (2.26)
where ’ .

&i(t)z/(l—m(r)) dou(7) (i=1,....m0). (2.27)

t;

Due to (2.11) and (2.22)—(2.24), the vector-function z(t) = (z;(t))’,
Zz(t) = yz(t) (7’ = 17' . 7”1)7 an-‘ri(t) = In1+i(t) (Z = 17 s 7”2)7 is a non-
trivial nonnegative solution of the problem

dz(t) = dA(t) - 2(t), (2.28)
zi(t) =Li(z1,. .. 20) (i=1,...,n), (2.29)

where the matrix-function A is defined by (2.21), (2.25)-(2.27); I;
BV,([a,b],R™) — R (i =1,...,n) are linear bounded functionals defined by

li(zla"'7Zn17zn1+17"'7zn) =
:51'11'(77131,---a77n1zn1aznl+17~'~7zn) for (zl);;leBVU([avb]’Rn)a (230)
and 0; € [0,1] (i = 1,...,n), 6; = 1 for i € {1,...,n} \ N,, are some
numbers.

On the other hand, by Remark 1.2 from [9], there exist numbers cp; € R
(¢ =1,...,n) such that the problem (2.19), (2.20) is not solvable, where the
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matrix-function A(¢) and the linear functionals I; (i = 1,...,n) are defined
as above.

Let us show the estimates (2.14)—(2.18). To this end, we use the following
formulas obtained from Theorem 1.4.12 and Lemma 1.4.23 given in [29]. Let
the functions g € BV([a,b],R) and f : [a,b] — R be such that the integral

¢

o(t) = [ f(7)dg(7) exists for t € [a,b]. Then the equalities

s0(0)(t) E/f(T)dSO(g)(T)v dip(t) = f(t)dgt) (G=1,2)  (2.31)

hold.

Using (2.31), from (2.24)—(2.26) we get the estimates (2.14), (2.16) and
(2.17). Moreover, by (2.12), (2.24) and (2.31), the estimate (2.18) holds. As
for the estimate (2.15), it holds by general inequality a—|b| < (a—b) sgn a for
thecasest > t;, j=1(i=1,...,n1)and t <t;, j =2 (i=1,...,n1), and
follows from (2.13) by using (2.18) for the casest > t;, j =2 (i =1,...,n1)
andt <t;, j=1(i=1,...,n1). The lemma is proved. O

Remark 2.1. In Lemma 2.2, if the functions a; and ca1y; are nondecreas-
ing for some i € {1,...,n1} and k € {1,...,n2}, L € {1,...,n1}, then the
functions a; and ¢a1x, respectively, are nondecreasing as well, and

a;(t) — ai(s) < ai(t) — ai(s) and Corri(t) — Ca1ri(s) < carma(t) — c21mi(s)
for a<s<t<hb.

The statement of Remark 2.1 follows from (2.26) and (2.27) with regard
for (2.24).

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. Let us assume
t*k:a—i—% and tZ:b—%
cit(t) — ci(ter—) + au(tae—) for a <t <ty,
aq(t) for tug, <t <t
cit(t) — cu(ti+) + au(tp+) for tp <t <b
(i l=1,....,n k=12,..)

(k=1,2,...);

aik(t) = (3.1)

and
Ap(t) = (ailk(t))?,lzl (k=1,2,...).

It is evident that Ay € BV([a,b],R™*") (k=1,2,...).
For every natural k, consider the system

dx(t) = dAg(t) - z(t) + df (t) for t € [a,b)]. (3.2)
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We show that the problem (3.2), (1.2) has the unique solution. By The-
orem 1.1 from [9] (see also [28]), for this it suffices to verify that the corre-
sponding homogeneous system

dx(t) = dAg(t) - z(t) for ¢ € [a, b (3.20)

has only the trivial solution under the condition (1.2).

Let us show that the problem (3.2¢), (1.2) has only the trivial solution.

Indeed, if z = (z;)7_; is an arbitrary solution of this problem, then due to
Lemma 6.1 from [10], with regard for the conditions (1.6)—(1.9), the vector-
function z satisfies the system (1.5) of generalized differential inequalities.
But, by the condition (1.10), this system has only the trivial solution under
the condition (1.2). Thus z;(t) =0 (i =1,...,n).

We put

ti=a for ie{l,...,no} and t; =b for i€ {ng+1,...,n}.  (3.3)

Let now k be an arbitrary fixed natural number, and z, = (x;;)", be
the unique solution of the problem (3.2),(1.2). Then by the conditions
(1.6)—(1.9) and the equalities (3.1) and (3.2), using Lemma 2.2 from 8]
(or Lemma 6.1 from [10]), we find that the vector-function z; = (z;)™,
satisfies the system

sgn(t — t;)d|x (t)] < E |1k (t)] deq () + sgnlxq () (¢ — t;)]df:(t)
=1
for t €a,b], t#t; (i=1,...,n),

(=1 djlaan (t:)] < Z | (t)| djea(ts) + (=1)7 sgnlwa (t:)]dfi (t:)
(j=1,2; i=1,...,n),
where t1,...,t, are defined by (3.3). From this, we have
sgn(t — t;)dleaw ()] <Y law(t)] dea(t) + do(f:)(1)

1=1
for t €la,b], t#£t; (i=1,...,n),

(—=1)7dj|zir(t; \<ka ) djcalts)+do(fi) () (G=1,2; i=1,...,n).
Therefore, due to Lemma 2.4 from [8], there exists a number py > 0

independent of k such that
lziells <po (i=1,....,m; k=1,2,...). (3.4)

Let for cvcry natural k, t;, = a+ ¢+ and Ay, =]t ] for i € {1,...,no},
and t;; =b— ¢ and Ak = [a,tig] for i € {ng +1,...,n}. Then, as above,
using Lemma 2 2 from [8] and the estimate (3.4), we conclude that there
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exists a sufficiently large natural number kg such that for every k € {ko +
1,ko +2,...}, the vector-function x) = (z;,), satisfies the inequalities
sgn(t — tir)d|wik (t)] < — |2k (t)|dov (t) + dai(t)
for te Ay (i=1,...,n),
(=1 dj|lzin(ti)| < —|zir(tin)|djo (tix) + djqi(ti)
(j=1,2; i=1,...,n),

(3.5)

where

ai(t) = po (\/(Cii) + Z (ca(t) = ca (tik))) sgn(t — tir)+
tik I=1,1#i

+o(fi)t) —v(fi)tix) (i=1,...,n).

Let i € {1,...,n0} and k € {ko + 1,ko + 2,...}. Consider the Cauchy
problem

dy(t) = —y(t) da;(t), ~(ti) =1

Due to the condition (1.11), this problem has the unique solution 7;; on the
interval Ajps = [tig,a + §] for sufficiently small § > 0. Then v (t) =
v8: (t,ti) for t € Ay, where the function -y,, is defined according to
(1.4). Moreover, this function is positive and nonincreasing on the interval
t € Ajrs. In addition, we can assume without loss of generality that the
conditions of Lemma 2.1 are fulfilled on this interval. Therefore, according
to this lemma, (3.5) and the variation-of-constant formula mentioned above,
we have the estimate

|z ()| < qi(t) — qi(tar)+

+ %—k(t){po — / (qi(T) — qi(tik)d’yi;1 (7’)} for t € Ajks. (3.6)

tik

Taking into account the first equality of the condition (1.12) and the fact
that the function ¢; is nondecreasing on A;xs, from (3.6) we get

lim sup{|xik(t)|: k:k0+1,k0+2,...}:0 (i=1,...,n0). (3.7)

t—a+

Analogously, using the second parts of the conditions (1.11) and (1.12),
as above we show that

tlirgl sup{|a:ik(t)\: k:ko—l—l,ko—i—Q,...}:O (i=no+1,...,n). (3.8)

Without loss of generality, we can assume that the natural number kg is
such that a < t1x, < tog, < b. Consider the sequence xy (k = ko + 1, ko +
2,...). Then by (3.1),(3.4) and the definition of the solution of the system
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(3.2), we have

law(t) — z()l < 176 — £ + H / e >—xk<s>>H <

< [lF @) = fs)ll +po\/ (Ak,) for tin, < s <t < tok,

S
since Ak(t) = Ako(t) = A(t) for t € [tlkoatQko} (k =ko+ 1,ky +2,.. )
Hence there exists a positive number py, such that

takg

\ (@) < pry (k=ho+1,ko+2,...).

tikg

Consequently, in view of Helly’s choose theorem, without loss of generality
we can assume that the sequence zy (k = ko + 1,ko + 2,...) converges
to some function zo = (2i0)1" 1 € BV ([t1k,, tok,b], R™). If we continue this
process, then in a standard way we can assume without loss of generality
that

lim z(t) = zo(t) for t €la,b|, (3.9)

k—o0

where zo = (240)"_; € BVioc(]a, o[, R™).
Let now [ag, bo] Cla,b[ be an arbitrary closed interval. Then

ek (t) = zx(s)| < le + [lgct) — g(s)
for ag < s <t <by (k‘:k‘o—l—l,ko—FQ,...),

where

/dAko  20(7), lk_H/dV A )(7) - |20 (r)— 20(7)

On the other hand, due to (3.9) and the Lebesgue theorem, we have I, — 0
as k — oo. Therefore, according to Lemma 2.3 from [7],

klim 2k (t) = 2o(t) uniformly on [ag, bo].
— 00

Moreover, by (3.7), the sequences {x;x}3> (i = 1,...,n9) converge uni-
formly on the interval ]a,%o], and by (3.8), the sequences {zix}3>, (i =
no+1,...,n) converge uniformly on the interval [to, b[ for every to €]a,b].
Therefore, there exist one-sided limits x;9(a+) (i = 1,...,n0) and x;0(b—)
(i =ng+1,...,n) and, in addition, they are equal to zero. Thus, due to
(3.1) and (3.2), we have established that zo € BV sc(]a, b[,R™) is a solution
of the problem (1.1),(1.2).

Let us show that the problem (1.1),(1.2) has only one solution. Let
x and y be two arbitrary solutions of the problem. Then the function
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z(t) = x(t) —y(t), z(t) = (2:(t))7_1, will be a solution of the homogeneous
problem

dz(t) = dA(t) - 2(t),
zila+) =0 (i=1,...,n9), #(b—)=0 (i=no+1,...,n).

From this, by (1.6)—(1.9), z is a solution of the system of differential inequal-
ities (1.5) under the condition (1.2). Thus, due to the condition (1.10), we
conclude that z(t) = 0. The theorem is proved. O

Proof of Corollary 1.1. The proof of this corollary slightly differs from that
of Lemma 2.6 given in [3]. We give the main aspect of this proof for com-
pleteness.

It suffices to show that the problem (1.5),(1.2) has only the trivial non-
negative solution.

Let (x;)?_, be an arbitrary nonnegative solution of the problem (1.5),
(1.2). Let i € {1,...,n0} be fixed, and € be an arbitrary sufficiently small
positive number. Then by (1.13)—(1.15) and Holder’s inequality, we have

2 n

s ()] < |zila+ o)+ (Ihzkllusaww / |2k (7)| % dso (Br)(T) >
a-+te

o=0 k=0

for t €a,b).
This, in view of Minkowski’s inequality, implies

n
1
v

illv,s; (8 <lwi(a+e)l (s5(B:)(b) =55 (Bi) (@) +

X (/b‘ /t |21(7)] 2 dsq (Br) (7) 2

a a+te

ikl .5 (81) X
k=0

ﬂﬁw

NS

ds; (B:)(t )) (=0,1,2). (3.10)

On the other hand, by virtue of Holder’s inequality, in case o + 52 + (i —
k)2 >0, j = 0, and by the generalized Wirtinger’s inequalities (see Lemma
2.5 from [3]), in the other case we have

§%</’/hm £ ds, (5,)(r)

a a-+te

v

dsj (@')(t)) <

2

<_)\kai' xk7 dso ﬁk T ’ j,O'_—O,l,Q; k——l,...,n.
J
a+
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By this, (1.2) and (3.10), we get

||xi||V15j(ﬁi) <
2 n

< Z Z)\koij”hik”p,sa(ﬁk) ||xk||y,sg([3k) (.7:07 ]-7 27 i=1,... ) nO)' (311)
o0=0k=0
Analogously, we show that the estimate (3.11) is valid for i € {ng +
1,...,n}, as well.
Therefore,

(I3, — H)r <0, (3.12)
where r € R3" is the vector with the components
Titnj = Hxi||l/,3j(5i) (j:0a152a 1= 17"'7”)'

From (3.12), due to (1.2) and (1.16), we find that » = 0 and z;(t) = 0
(¢t = 1,...,n). Consequently, the problem (1.5),(1.2) has no nontrivial
nonnegative solution. The corollary is proved. (]

Proof of Theorem 1.2. It suffices to show that the problem (1.5), (1.2), whe-
re ¢;(t) = hyBi(t) + Bu(t) (4,1 =1,...,n), has only the trivial nonnegative
solution.

Let (z;)?_; be an arbitrary nonnegative solution of the problem (1.5),
(1.2). Let i € {1,...,n0} be fixed. Then from (1.5), we have

dx;(t) < x;(t)da;(t) + dg;(t) for t €]a,b], (3.13)
where
9i(t) = g1:(t) + g2:(1),
gu(t) = > riha(Bi(t) = Bila+)) and gai(t) =Y ri(Bu(t) — Bula+))
I=1,1i 1=1
and

rp=sup{|lzi(t)] : t €la,b]} (=1,...,n).

Hence the function x; satisfies the inequality (2.2) for ty = a, a(t) = a;(¢)
and ¢(t) = g;(t). Moreover, by (1.17), the condition (2.1) is fulfilled. There-
fore, according to Lemma 2.1, we find

x;(t) <y;(t) for a <t <b, (3.14)
where y; is the solution of the Cauchy problem of the equation

dy(t) = y(t)dai(t) + dgi(t), y(a+)=0.
Due to the variation-of-constant formula mentioned above, we have
t

yi(t) = gi(t) — Ai(t) /gi(T)d)\i_l(T) for t €]a,b), (3.15)
a+
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where J\; is the solution of the Cauchy problem
dX\(t) = A(t)da;(t), Aa+)=1.

From (3.15), using the formula of integration-by-parts (see [29, Theorem
1.4.33]), we conclude

yi(t) = Ni(t)i(2), (3.16)
where
t
,(/Jl(t) = /)‘ dg’b Z dlgz dl Z dQQz d2 )
at a<lt<t a<t<t
for a <t <hb.

Moreover, by the equalities

AT () = A7) - (1+ (1 djai(t) dyai(t) (5 =1,2),
we have
’(/Ji (t) = wli (t) + 1/)22‘ (t) for a <t < b,
where
t

yi(t) = / AL (r) dA(gjian)(7) for a <t <b (j=1,2).

a+

Then by the equality d\; ' (t) = =\, (t)dA(a;.a;)(t) (see Lemma 2.1 from
[11]) and the definition of the operator A, we get

n

1/111 Z 7Alhzl‘/ dA azaal)( ) - Z 7“1% (Az_l(t) - ]‘)

1=1,1i 1=1,1i

and
¢2z —Tz//\ d-A szaz)( )S

<A (O (VIAGH @) () = V(AGs a) (a+)) <
< rml-)\;l(t) for a<t<b.
Hence, in view of (3.14) and (3.16), we find

n
ri Smirik YT

(3.17)
=1, i

forie{1,...,n0}.
Analogously, we show the validity of the estimate (3.17) for ¢ € {ng +
1,...,n}, too.
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Thus the constant vector r = (r;)?_; satisfies the system of inequalities
(I -H)r <0. (3.18)

Therefore, according to the condition (1.16), we have r = 0 and ;(t) = 0
(¢=1,...,n). The theorem is proved. (I

Let us show Remark 1.2. Due to the condition (1.19), it is evident that
(3.17) implies that the constant vector r, appearing in the proof of Theo-
rem 1.2, satisfies the system (3.18), where the constant matrix H = (i)},
is defined by (1.20). Therefore, by (1.16), we obtain z;(t) =0 (i =1,...,n)
as in the proof of Theorem 1.2.

Proof of Theorem 1.3. Let the vector-function z* = ()7, be the non-

trivial nonnegative solution of the system (1.5) under the condition (1.2).
Obviously, it will be a solution of the system (2.10), (2.11), where C11(t) =
C(T), Clg(t) = OannQ, Cgl(t) = On2><n17 CQQ(t) = On2><n2, ti = a and
li(x1,...,2n) = —dazi(a) for i € {1,...,n0}, t; = b and l;(z1,...,2,) =
dyz;(b) for i € {no +1,...,n}, and N,, = @. In addition, the condition
(1.21) of Theorem 1.3 is equivalent to the condition (2.13) of Lemma 2.2.
Therefore, according to Lemma 2.2 and Remark 2.1, there exist a matrix-
function A € BV ([a,b],R"*"™) and nondecreasing functions &; : [a,b] — R
(1 = 1,...,n) satisfying the conditions (2.14))—(2.18) of Lemma 2.2 and
the condition (1.22), and a constant vector ¢ = (¢;); € R™ such that the
system
dz(t) = dA(t) - z(t)

under the condition

Zl(tl) = li(2’1,...,zn) + ¢ (Z = 1,...,7’1,)
is unsolvable, where z(t) = (z;(t))?; and, due to the equalities (2.30),
we have Z(zl, cooyzn) = li(z1,. .., 2n). Consequently, using the mapping
x;(t) = zi(t) + ¢; (¢ = 1,...,n) and definitions of the functionals I; (i =
1,...,n), it is not difficult to see that the problem (1.1), (1.2) is not solvable
as well, where A(t) = A(t) and f(t) = A(t) - c. Moreover, it is evident that
in this case the conditions (1.6)—(1.9) coincide with the conditions (2.14)—
(2.17), respectively. From the conditions (2.18) (or (1.22)) and (1.11) it
follows that the functions a; (¢ = 1,...,n) satisfy the condition (1.22) as
well. Therefore there exists the sufficiently small § > 0 such that

1+ (=1)d;Bs(t) > 0 for t €la,a+0d] (i=1,...,n0)
or telb—6,b] (i=no+1,...,n), (3.19)

where 3;(t) = & (t) sgn(no + 1—1).

Let us show that the condition (1.12) is valid. Let ¢ € {1,...,n0} be
fixed and let a natural number kg be such that a + % < a+ 9 for k > k.
Then, by the condition (3.19), there exists the nonnegative function 5 (t)

(t €la,a+4[), since the corresponding Cauchy problem is uniquely solvable.
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Let t €]a,a + 0] and k > ko be such that a + % < t. Then, by definition of
the solution, we have

15,0 =1+ [ 75 () dBi(r) <

a

~ ;\i_,_.\ﬁ.

t

L+ [ v5(7)doi(T) + / 5, (T) d(@i(r) — ai(7)).

a+%

IN

a

+
=

Consequently, the function V3, is a solution of the problem

sgn(t — tix)dyt) < yt)dBi(t) for ¢ €ty a+d[, ~(tw) =1,

where t;;, = a + % On the other hand, the function V3, is the unique
solution of the problem

sgn(t — ta)dyt) = yt)dBi(t) for t €t a+0[, ~(ty)=1.
Therefore, due to Lemma 2.1, we have
V3, (t) < g, (t) for t €ltip,a+9d].

From this, by (1.12) it follows that the function 73, satisfies the first equality
of the condition (1.12).

Analogously we show the second equality of the condition (1.12).

Let now the condition (1.23) hold. By definition of the matrix-function

A(t) = A(t) (see (2.21), (2.25)-(2.27)), we get

d;A(t) = (ni(t)djcil(t) sgn (no + % —i)yll for ¢ € [a,b] (j=1,2).

From this, by (1.23), it follows that the condition (1.3) holds. Thus the
theorem is proved. O

Consider now Remark 1.3. The first case is evident. Indeed, by definition
of the matrix-function A = (a;)j;_,, we have

djaq(t)=m(t)d;cu(t) sgn (no+%—z‘) for tefa,b] (j=1,2; i,1=1,...,n)
and
|d;jai(t)] <|djcu(t)] for t€la,b] (j=1,2; i,l=1,...,n).
Taking this into account, by (1.24), we have

> ldjaq(t)] <1 for t€a,b] (j=1,2 i=1,...,n).
=1

Hence the condition (1.23) holds.
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Let now the condition (1.25) be valid. Then we have

n

D

1=1, I#i

<

1
Eidjcil(t) sgn (’flo + 5 — Z)

) 1 . 1
< 5i+(_1)35idjcii(t) sgn (n0—|—§—i> < 1+(—1)]€idjcii(t) sgn (n0+§—i)

for tefa,b] (=1,2; i=1,...,n). (3.20)
Therefore, by Hadamard’s theorem (see [14, p. 382]), the condition (1.23)

holds. Remark 1.3 is proved analogously to the conditions (1.26).
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