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Abstract. We consider the first initial-boundary value problem for linear
heat conductivity equation with constant coefficient in Ω× (0, T ], where Ω
is a unit square. A high order accuracy ADI two level difference scheme
is constructed on a 18-point stencil using Steklov averaging operators. We
prove that the finite difference scheme converges in the discrete L2-norm
with the convergence rate O(hs + τs/2), when the exact solution belongs to
the anisotropic Sobolev space W

s,s/2
2 , s ∈ (2, 4].
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îâäæñéâ. Ω × (0, T ] Žîâöæ, ïŽáŽù Ω âîåâñèëãŽêæ çãŽáîŽðæŽ, àŽê-
ýæèñèæŽ éñáéæãçëâòæâêðæŽêæ ïæåĲëàŽéðŽîëĲæï ûîòæãæ àŽêðëèâĲæïŽåãæï
áŽïéñèæ ìæîãâèæ ïŽûõæï-ïŽïŽäôãîë ŽéëùŽêŽ. ïðâçèëãæï àŽïŽöñŽèâĲæï ëìâ-
îŽðëîâĲæï àŽéëõâêâĲæå 18 ûâîðæèæŽê öŽĲèëêäâ ŽàâĲñèæŽ éŽôŽèæ îæàæï
ïæäñïðæï ëîöîæŽêæ ùãŽèâĲŽáæ éæéŽîåñèâĲæå ŽîŽùýŽáæ ïýãŽëĲæŽêæ ïóâéŽ.
áŽéðçæùâĲñèæŽ, îëé åñ äñïðæ ŽéëêŽýïêæ éæâçñåãêâĲŽ ïëĲëèâãæï Žêæäëð-

îëìñè W
s,s/2
2 , s ∈ (2, 4] ïæãîùâï, éŽöæê ïŽïîñè-ïýãŽëĲæŽêæ ïóâéæï áæïçîâ-

ðñèæ L2-êëîéæå çîâĲŽáëĲæï ïæøóŽîâŽ O(hs + τ s/2).
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1. Introduction

The purpose of this paper is to study the difference schemes approximat-
ing the first initial-boundary value problem for linear second order parabolic
equations and to obtain some convergence rate estimates.

The finite difference method is a basic tool for the solution of partial dif-
ferential equations. When studying the convergence of the finite difference
schemes, Taylor’s expansion was used traditionally. Often, the Bramble-
Hilbert lemma [1], [2] takes the role of Taylor’s formula for the functions
from the Sobolev spaces.

As a model problem, we consider the first initial-boundary value prob-
lem for linear second-order parabolic equations with constant coefficients.
We suppose that the generalized solution of this problem belongs to the
anisotropic Sobolev space W

s,s/2
2 (Q), s > 2.

In the case of difference schemes constructed for the mentioned problem,
when obtaining convergence rate estimate compatible with smoothness of
the solution, various authors assume that the solution of the problem can
be extended to the exterior of the domain of integration, preserving the
Sobolev class.

Our investigations have shown that if instead of the exact initial condition
its certain approximation is taken, then this restriction can be removed.

A high order alternating direction implicit (ADI) difference scheme is
constructed in the paper for which the convergence rate estimate

‖y − u‖L2(Qh,τ ) ≤ c(hs + τ s/2)‖u‖
W

s,s/2
2 (Q)

, s ∈ (2, 4],

is obtained. Here y is a solution to the difference scheme, Qh,τ is a mesh
in Q, c is a positive constant independent of h, τ and u, and h and τ are
space and time steps, respectively.

2. The Problem and Its Approximation

Let Ω = {x = (x1, x2) : 0 < xα < 1, α = 1, 2} be the unit square in R2

with boundary Γ and let T denote a positive real number. In Q = Ω×(0, T ]
we consider the equation of heat conductivity

∂u

∂t
=

∂2u

∂x2
1

+
∂2u

∂x2
2

− au + f(x, t), a = const ≥ 0, (x, t) ∈ QT , (1)

under the initial and first kind boundary conditions

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = 0, x ∈ Γ, t ∈ [0, T ]. (2)

We mean that the solution to the problem (1), (2) belongs to the aniso-
tropic Sobolev space W

s,s/2
2 (Q), s > 2.

Throughout the paper ‖·‖
W

λ,λ/2
2 (Q)

will denote the norms and |·|
W

λ,λ/2
2 (Q)

the highest semi norms of corresponding Sobolev spaces [6].
We assume that ω̄ is a uniform mesh in Ω with the step h = 1/n. ω =

ω ∩ Ω, γ = ω \ ω. We cover the segment [0, T ] with a uniform mesh ωτ
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(with the mesh step τ = T/N). Let ωτ = ωτ ∩ (0, T ), ω+
τ = ωτ ∩ (0, T ],

ω−τ = ωτ ∩ [0, T ), Qh,τ = ω × ωτ . We assume that there exist two positive
constants c1h

2 ≤ τ ≤ c2h
2. For functions defined on the mesh cylinder

ω × ωτ we use the notation:

y = y(x, t) = yj , x ∈ ω, t = tj ∈ ωτ ,

ŷ(x, t) = y(x, t + τ), y̌(x, t) = y(x, t− τ),

yt =
ŷ − y̌

τ
, yxα =

(I(+α) − I)y
h

, yxα =
(I − I(−α))y

h
, κ :=

h2

12
,

where Iy := y, I±αy := y(x ± hrα, t) and rα represents the unit vector of
the axis xα.

We define also the Steklov averaging operators:

T1u(x, t) =
1
h2

x1+h∫

x1−h

(
h− |x1 − ξ|)u(ξ, x2, t) dξ,

Ŝu(x, t) =
1
τ

t+τ∫

t

u(x, ζ) dζ.

The operator T2 is defined similarly. Note that these operators are commu-
tative and

Tα
∂2u

∂x2
α

= Λαu, Ŝ
∂u

∂t
= ut.

If we apply the operator ŜT1T2 to the eq. (1), we will get

(T1T2u)t = Λ1(ŜT2u) + Λ2(ŜT1u)− aŜT1T2u + ŜT1T2f. (3)

It is easy to check that on the set of sufficiently smooth functions the fol-
lowing operators:

Tα ∼ I + κΛα with errors of order O(h4),

Ŝ ∼ (I + Î)/2 with errors of order O(τ2)

are equivalent and, therefore, within the accuracy O(h4 + τ2) we obtain

T1T2 ∼ (I + κΛ1)(I + κΛ2), (4)

ŜT1T2 ∼ (I + κΛ1 + κΛ2)
Î + I

2
, (5)

ŜTα ∼ (I + κΛα)
Î + I

2
. (6)
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Taking into the account the relations (4)–(6), we denote:

η0 = T1T2u− (I + κΛ1)(I + κΛ2)u− (τ2/4)Λ1Λ2u, (7)

ηα = ŜT3−αu− (I + κΛ3−α)
û + u

2
, α = 1, 2, (8)

η = ŜT1T2u− (I + κΛ1 + κΛ2)
û + u

2
+

+
(τκ

4
+

τ2

8

)(
Λ1 + Λ2

)
ut − aτ2

16
ut. (9)

In the equalities (7), (9) the additional terms are introduced with the
aim that the resulting difference scheme operator should be factorizable.

Due to (7)–(9), from (3) we get

(I + κΛ1)(I + κΛ2)ut +
τ2

4
Λ1Λ2ut + (η0)t =

= Λ1(I + κΛ2)
û + u

2
+ Λ2(I + κΛ1)

û + u

2
+ Λ1η1 + Λ2η2−

−a

(
(I + κΛ1 + κΛ2)

û + u

2
−

(τκ
4

+
τ2

8

)
(Λ1 + Λ2)ut +

aτ2

16
ut + η

)
+

+ŜT1T2f,

that is,
(
I + κΛ1 − τ

2
Λ1 +

aτ

4
I
)(

I + κΛ2 − τ

2
Λ2 +

aτ

4
I
)
ut =

=
(
Λ1(I + κΛ2) + Λ2(I + κΛ1)− a(I + κΛ1 + κΛ2)

)
u+

+ŜT1T2f + ψ, (10)

where

ψ = Λ1η1 + Λ2η2 − aη − (η0)t. (11)

Finally, if in the equation (10) we reject the remainder term and change u
by the mesh function y, we will come to the difference scheme

Byt + Ay = ϕ, (x, t) ∈ ω × ω−τ , (12)

where

A := A1(I − κA2) + A2(I − κA1) + a(I − κA1 − κA2),

B :=
(
I − κA1 +

τ

2
A1 +

aτ

4
I
)(

I − κA2 +
τ

2
A2 +

aτ

4
I
)
.

We define the initial and boundary conditions as follows:

By0 = T1T2u0 +
τ

2
Au0, x ∈ ω, y(x, t) = 0, (x, t) ∈ γ × ωτ . (13)
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3. An a Priori Estimate of the Solution Error

Let H be the space of mesh functions defined on ω and vanishing on γ,
with inner product and norm

(y, v) =
∑
x∈ω

h2y(x)v(x), ‖y‖ = ‖y‖L2(ω) = (y, y)1/2.

Besides, let

‖y‖0 = ‖y‖L2(Qh,τ ) =
( ∑

t∈ωτ

τ‖y(·, t)‖2L2(ω)

)1/2

.

In the case of self-conjugate positive operators we will use the notation

(y, v)D := (Dy, v), ‖y‖D :=
√

(Dy, y), D = D∗ > 0.

Let
C := B − τ

2
A. (14)

It is easy to verify that

C = (I − κA1)(I − κA2) +
(aτ2

8
+

aτκ
4

)
(A1 + A2)+

+
a2τ2

16
I +

τ2

4
A1A2 ≥ 4

9
I +

τ2

4
A1A2 > 0. (15)

The following lemma plays a significant role in getting the needed a priori
estimate of the solution of the difference scheme.

Lemma 1. Let A = A∗ > 0, B = B∗ > 0 be arbitrary independent on t
operators and B > (τ/2)A. Then for the solution of the problem

Bvt + Av = ψt, (x, t) ∈ ω × ω−τ , (16)

Bv0 = ψ0, x ∈ ω (17)

the estimate
‖v‖L2(Qh,τ ) ≤ ‖C−1ψ‖L2(Qh,τ )

is valid with C defined in (14).

Proof. Summing up by t = 0, τ, . . . , (k − 1)τ , from (16) we find

Bvk −Bv0 +
k−1∑

j=0

τAvj = ψk − ψ0, k = 1, 2, . . . ,

that is, taking into account the initial condition (17),

Bvk +
k−1∑

j=0

τAvj = ψk, k = 1, 2, . . . . (18)
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Since C = C∗ > 0, the inverse operator C−1 = (C−1)∗ > 0 exists.
Multiply (18) scalarly by C−1vk:

(Bvk, C−1vk) +
( k−1∑

j=0

τAvj , C−1vk
)

= (ψk, C−1vk), k = 1, 2, . . . . (19)

Denote

χ0 = 0, χk =
k−1∑

j=0

τvj , k = 1, 2, . . . .

Then (19) yields

(Bvk, C−1vk) +
(
Aχk, C−1 χk+1 − χk

τ

)
= (ψk, C−1vk),

from which, after some transformations, we obtain

τ

((
B − τ

2
A

)
vk, C−1vk

)
+

1
2
‖χk+1‖2AC−1 − 1

2
‖χk‖2AC−1 =

= τ(ψk, C−1vk)

or

2τ‖vk‖2 + ‖χk+1‖2AC−1 − ‖χk‖2AC−1 = 2τ(C−1ψk, vk), k = 1, 2, . . . . (20)

Using the Cauchy–Bunyakovski inequality, we estimate the right-hand side
of (20)

2τ(C−1ψk, vk) ≤ τ‖C−1ψk‖2 + τ‖vk‖2
and sum up the obtained result by k = 1, 2, . . . , N . We get

N∑

k=1

τ‖vk‖2 + ‖χN+1‖2AC−1 − ‖χ1‖2AC−1 ≤
N∑

k=1

τ‖C−1ψk‖2. (21)

From (14) we have

B2 = C2 + τAC +
τ2

4
A2 > C2 + τAC.

Hence
τAC−1 ≤ B2C−2 − I.

Using this inequality and taking into account the relation χ1 = τv0, we get

‖χ1‖2AC−1 = (τAC−1v0, τv0) ≤ (
(B2C−2

I )v0, τv0
)

=

= τ‖BC−1v0‖2 − τ‖v0‖2 = τ‖C−1ψ0‖2 − τ‖v0‖2,
which together with (21) proves the lemma. ¤

Consider the error z = y−u. From (10)–(13) we get the following problem
for it:

Bzt + Az = A1η1 + A2η2 + aη + (η0)t, (x, t) ∈ ω × ω−τ ,

Bz0 = η0
0 , x ∈ ω, z ∈ H.

(22)
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We define the functions η1, η2 to be zeros on t = T and substitute z in (22)
by the following expression

z = v + A−1(A1η1 + A2η2 + aη). (23)

Then for v we obtain the problem (16), (17), where

ψ = η0 −BA−1(A1η1 + A2η2 + aη).

Using Lemma 1 for v, we get the estimate

N∑

k=0

τ‖vk‖2 ≤
N∑

k=0

τJ2
k ,

Jk :=
∥∥C−1ηk

0 − C−1BA−1(A1η
k
1 + A2η

k
2 + aηk)

∥∥.

(24)

Because of (14), (15) we have

C−1BA−1 = A−1 +
τ

2
C−1 ≤ A−1 +

9τ

8
I, C−1 ≤ (9/4)I.

Therefore

Jk ≤ 9
4
‖ηk

0‖+
∥∥A−1(A1η

k
1 + A2η

k
2 + aηk)

∥∥ +
9τ

8

∥∥A1η
k
1 + A2η

k
2 + aηk

∥∥.

Taking into account the operator inequalities

A ≥ 2
3

(A1 + A2), A ≥ 32
3

I, A−1Aα ≤ 3
2

I,

we get

Jk ≤ 9
4
‖ηk

0‖+
3
2

(
‖ηk

1‖+ ‖ηk
2‖+

a

16
‖ηk‖

)
+

9τ

8

∥∥A1η
k
1 + A2η

k
2 + aηk

∥∥.

On the basis of this and the following algebraic inequalities
{ ∑

k

( ∑

i

aik

)2
}1/2

≤
∑

i

( ∑

k

a2
ik

)1/2

, aik ≥ 0,

we get from (24)

‖v‖0 ≤ 9
4
‖η0‖0 +

3
2

(
‖η1‖0 + ‖η2‖0 +

a

16
‖η‖0

)
+

+
9τ

8
(‖A1η1‖0 + ‖A2η2‖0 + a‖η‖0

)
. (25)

(23), (25) enable us to assert the validity of the following

Theorem 1. For the solution of the difference problem (22) the following
a priori estimate is true

‖z‖0 ≤ 9
4
‖η0‖0 + 3(‖η1‖0 + ‖η2‖0) +

9τ

8
(‖A1η1‖0 + ‖A2η2‖0

)
. (26)
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4. Convergence of the Finite-Difference Scheme

Let E denote a bounded open set in R2 with Lipschitz continuous bound-
ary, and let G = E × (0, 1). We introduce the set of multi-indices

Bk =
{

(α1, α2, β) : αi, β = 0, 1, 2, . . . ; α1 + α2 + 2β ≤ k
}

.

Further, let [s]− denote the largest integer less than s. The convergence
analysis of our finite difference scheme is based on the following lemma.

Lemma 2. If ϕ is a bounded linear functional on W
s,s/2
2 (G) such that

ϕ(xα1
1 xα2

2 tβ) = 0, ∀ (α1, α2, β) ∈ B[s]− ,

then there exists a positive constant c = c(G, s) such that

|ϕ(v)| ≤ c|v|
W

s,s/2
2 (G)

, ∀ v ∈ W
s,s/2
2 (G).

Lemma 2 is an easy consequence of the Dupont–Scott approximation
theorem [4] (see also [5]).

If we use Lemma 2 and the well-known techniques (see, e.g., [1]–[3], [5])
for estimation of the terms in the right-hand side of the equation (26), we
will get convinced in the validity of the following

Theorem 2. Assume that the solution u to the problem (1), (2) belongs
to the space W

s,s/2
2 (Qh,τ ), 2 < s ≤ 4. Then the rate of convergence of the

difference scheme (12), (13) in the L2 grid norm is described by the estimate

‖y − u‖L2(Qh,τ ) ≤ chs‖u‖
W

s,s/2
2 (Q)

, s ∈ (2, 4],

where the constant c does not depend on h and u.

Remark. A more detailed analysis enables us to obtain the estimate

‖y − u‖L2(Qh,τ ) ≤ c(hs + τ s/2)‖u‖
W

s,s/2
2 (Q)

, s ∈ (2, 4],

as well without restriction τ ∼ h2.

The results of the paper were announced on Sixth International Congress
on Industrial Applied Mathematics (ICIAM07), Zürich, 2007 [7].
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