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Abstract. The purpose of this paper is to consider three-dimensional
version of Aifantis’ equations of statics of the theory of consolidation with
double porosity and to study the uniqueness and existence of solutions of
basic boundary value problems (BVPs). In this work we intend to extend
the potential method and the theory of integral equation to BVPs of the
theory of consolidation with double porosity. Using these equations, the po-
tential method and generalized Green’s formulas, we prove the existence and
uniqueness theorems of solutions for the first and second BVPs for bounded
and unbounded domains. For Aifantis’ equation of statics we construct one
particular solution and we reduce the solution of basic BVPs of the theory
of consolidation with double porosity to the solution of the basic BVPs for
the equation of an isotropic body.
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îâäæñéâ. êŽöîëéæï éæäŽêæŽ ŽæòŽêðæïæï ëîàãŽîæ òëîëãêëĲæï çëêïëèæ-
áŽùææï åâëîææï ïðŽðæçæï àŽêðëèâĲâĲæï àŽêýæèãŽ ïŽéæ àŽêäëéæèâĲæï öâé-
åýãâãŽöæ áŽ úæîæåŽáæ ïŽïŽäôãîë ŽéëùŽêâĲæïŽåãæï ŽéëêŽýïêâĲæï ŽîïâĲëĲæïŽ
áŽ âîåŽáâîåëĲæï ïŽçæåýâĲæï öâïûŽãèŽ. Žé ŽéëùŽêâĲæï öâïŽïûŽãèŽá êŽö-
îëéöæ àŽéëõâêâĲñèæŽ ìëðâêùæŽèåŽ éâåëáæ áŽ æêðâàîŽèñîæ àŽêðëèâĲâĲæ
ëîàãŽîæ òëîëãêëĲæï çëêïëèæáŽùææï åâëîææïŽåãæï. ìæîãâèæ áŽ éâëîâ
ïŽïŽäôãîë ŽéëùŽêâĲæïŽåãæï òîâáßëèéæï æêðâàîŽèñîæ àŽêðëèâĲâĲæïŽ áŽ
àîæêæï òëîéñèâĲæï àŽéëõâêâĲæå áŽéðçæùâĲñèæŽ éŽåæ ŽéëêŽýïêâĲæï ŽîïâĲëĲŽ
áŽ âîåŽáâîåëĲŽ, îëàëîù ïŽïîñèæ, æïâ ñïŽïîñèë ŽîââĲæïŽåãæï. ŽæòŽê-
ðæïæï ëîàãŽîæ òëîëãêëĲæï çëêïëèæáŽùææï åâëîææï ïðŽðæçæï àŽêðëèâ-
ĲâĲæïŽåãæï âîåæ çâîúë ŽéëêŽýïêæï ŽàâĲæå ïðŽðæçæï ŽéëùŽêâĲæï ŽéëýïêŽ éæõ-
ãŽêæèæŽ æäëðîëìñèæ áîâçŽáæ ðŽêæï ïðŽðæçæï úæîæåŽáæ ŽéëùŽêâĲæï Žéëý-
ïêŽäâ.
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Introduction

In a material with two degrees of porosity, there are two pore systems,
the primary and the secondary. For example, in a fissured rock (i.e., a mass
of porous blocks separated from each other by an interconnected and con-
tinuously distributed system of fissures) most of the porosity is provided
by the pores of the blocks or primary porosity, while most of permeability
is provided by the fissures or secondary porosity. When fluid flow and de-
formation processes occur simultaneously, three coupled partial differential
equations can be derived [1], [2] to describe the relationships governing pres-
sure in the primary and secondary pores (and therefore the mass exchange
between them) and the displacement of the solid.

A theory of consolidation with double porosity has been proposed by
Aifantis. The physical and mathematical foundations of the theory of dou-
ble porosity were considered in the papers [1]–[3], where analytical solutions
of the relevant equations are also given. In part I of a series of papers on
the subject, R. K. Wilson and E. C. Aifantis [1] gave detailed physical in-
terpretations of the phenomenological coefficients appearing in the double
porosity theory. They also solved several representative boundary value
problems. In part II of that series, uniqueness and variational principles
were established by D. E. Beskos and E. C. Aifantis [2] for the equations
of double porosity, while in part III M. Y. Khaled, D. E. Beskos and E. C.
Aifantis [3] provided a related finite element to consider the numerical solu-
tion of Aifantis’ equations of double porosity (see [1]–[3] and the references
therein). The basic results and the historical information on the theory of
porous media were summarized by R. de. Boer in [4]. The fundamental
solution in the theory of consolidation with double porosity is given in [5].

In this work we prove the existence and uniqueness theorems of solu-
tions of basic BVPs of the theory of consolidation with double porosity for
bounded and unbounded domains. For the proof of all theorems we used
the method given in [6].

1. Formulation of Boundary Value Problems and Uniqueness
Theorems

The basic equations of statics of the theory of consolidation with double
porosity are given by the partial differential equations in the form ([1], [2])

A(∂x)u = grad(β1p1 + β2p2), (1.1)

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0, (1.2)

A(∂x)u = µ∆u + (λ + µ) grad div u, (1.3)

where u = (u1, u2, u3) is the displacement vector, p1 is the fluid pressure
within the primary pores and p2 is the fluid pressure within the secondary
pores, mj = kj

µ∗ , j = 1, 2. The constant λ is the Lamé modulus, µ is the
shear modulus and the constants β1 and β2 measure the change of porosities
due to an applied volumetric strain. The constant µ∗ denotes the viscosity
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of the pore fluid and the constant k measures the transfer of fluid from the
secondary pores to the primary pores. All quantities λ, µ, βj , k (j = 1, 2)
and µ∗ are positive constants; 4 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

is the Laplace operator.
Let D+(D−) be a bounded (an unbounded) three-dimensional domain

surrounded by the surface S. D
+

= D+ ∪ S; D− = E2 \D
+
. Suppose that

S ∈ C1,α, 0 < α ≤ 1.
First of all, we introduce the definition of a regular vector-function.

Definition 1. A vector-function U(U1, U2, U3, U4, U5)=(u1, u2, u3, p1, p2)
defined in the domain D+(D−) is called regular if it has integrable continu-
ous second order derivatives in D+(D−), and U and its first order derivatives
are continuously extendable at every point of the boundary of D+(D−), i.e.,
U ∈ C2(D+)∩C1(D+) (U ∈ C2(D−)∩C1(D−)). Note that for the infinite
domain D− the vector U(x) additionally satisfies the following conditions
at infinity:

Uk(x) = O(|x|−1),
∂Uk

∂xj
= O(|x|−2),

|x|2 = x2
1 + x2

2 + x2
3, k = 1, 2, . . . , 5, j = 1, 2, 3.

(1.4)

For the equations (1.1)–(1.2) we pose the following boundary value prob-
lems:

Find a regular vector U satisfying in D+(D−) the equations (1.1)–(1.2),
and on the boundary S one of the following conditions is given:

Problem 1. The displacement vector and the fluid pressures are given
on S :

u±(z) = f(z)±, p±1 (z) = f±4 (z), p±2 (z) = f±5 (z), z ∈ S.

Problem 2. The stress vector and the normal derivatives of the pressure
functions ∂pj

∂n are given on S :

(Pu(z))± = f(z)±,
(∂p1(z)

∂n

)±
= f±4 (z),

(∂p2(z)
∂n

)±
= f±5 (z), z ∈ S.

Problem 3.

u±(z) = f(z)±,
(∂p1(z)

∂n

)±
= f±4 (z),

(∂p2(z)
∂n

)±
= f±5 (z), z ∈ S.

Problem 4.

(Pu(z))± = f(z)±, p±1 (z) = f±4 (z), p±2 (z) = f±5 (z), z ∈ S,

where (·)± denote the limiting values on S from D± and f = (f1, f2, f3),
f4, f5 are given functions. Pu(x) is the stress vector which acts on an
element of the surface with the exterior to D+ unit normal vector n(x) =
(n1(x), n2(x), n3(x)) at the point x ∈ S,

P (∂x, n)u = T (∂x, n)u− n(β1p1 + β2p2), (1.5)
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where [6]

T (∂x, n) =‖ Tkj(∂x, n) ‖3×3,

Tkj(∂x, n) = µδkj
∂

∂n
+ λnk

∂

∂xj
+ µnj

∂

∂xk
, k, j, = 1, 2, 3,

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
.

(1.6)

Now we introduce the generalized stress vector. Denoting the generalized
stress vector by

κ

P(∂x, n)u, we have
κ

P(∂x, n)u =
κ

T(∂x, n)u− n(β1p1 + β2p2),

where κ is an arbitrary positive constant and

κ

T(∂x, n)u = (2µ− κ)
∂u

∂n
+ (λ + κ)n div u + (κ− µ)n× rotu, (1.7)

with a × b denoting the cross product of two vectors a and b. Further, let
us introduce the generalized stress tensor, ‖σkj(∂x, n)‖3×3 : [6]

σjj = (λ + κ) div u + (2µ− κ)
∂uj

∂xj
, j = 1, 2, 3,

σ12 = µ
∂u2

∂x1
+ (µ− κ)

∂u1

∂x2
, σ21 = µ

∂u1

∂x2
+ (µ− κ)

∂u2

∂x1
,

σ13 = µ
∂u3

∂x1
+ (µ− κ)

∂u1

∂x3
, σ31 = µ

∂u1

∂x3
+ (µ− κ)

∂u3

∂x1
,

σ23 = µ
∂u3

∂x2
+ (µ− κ)

∂u2

∂x3
, σ32 = µ

∂u2

∂x3
+ (µ− κ)

∂u3

∂x2
.

(1.8)

If κ = 0, from (1.7) we have
κ

T(∂x, n)u = T (∂x, n)u. We set
κ

T(∂x, n)u =
N(∂x, n)u for κ = 2λ+3µ

λ+3µ .

Generalized Green’s formulas. Let us write the generalized Green’s
formulas for the domains D+ and D−. Let u be a regular solution of the
equation (1.1) in D+. Multiply first equation of (1.1) by u. Integrate the
result over D+ and apply the integration by parts formula to obtain

∫

D+

[ κ

E(u, u)− (β1p1 + β2p2) div u
]
dx =

∫

S

u
κ

P(∂x, n)u dS, (1.9)

where
κ

E(u, u) =
3λ + 2µ− κ

2
(div)2 +

κ

2
(rot u)2 +

2µ− κ

4

∑

k 6=j

(∂uk

∂xj
+

∂uj

∂xk

)2

+

+
2µ− κ

6

[(∂u1

∂x1
− ∂u2

∂x2

)2

+
(∂u1

∂x1
− ∂u3

∂x3

)2

+
(∂u2

∂x2
− ∂u3

∂x3

)2
]
.
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If the vector u satisfies the conditions (1.4), Green’s formula for the
domain D− takes the form∫

D−

[ κ

E(u, u)− (β1p1 + β2p2) div u
]
dx = −

∫

S

u
κ

P(∂x, n)u dS. (1.10)

For the positive definiteness of the potential energy, the inequalities

3λ + 2µ− κ > 0, κ > 0, κ < 2µ

are necessary and sufficient.
Analogously we obtain Green’s formula for pj , j = 1, 2,∫

D+

[
m1(grad p1)2 + m2(grad p2)2 + k(p1 − p2)2

]
dx =

=
∫

S

[
m1p1

∂p1

∂n
+ m2p2

∂p2

∂n

]
dS,

∫

D−

[
m1(grad p1)2 + m2(grad p2)2 + k(p1 − p2)2

]
dx =

= −
∫

S

[
m1p1

∂p1

∂n
+ m2p2

∂p2

∂n

]
dS.

(1.11)

Note that if β1p1 + β2p2 = const, in view of the equality
∫

D+

div u dx =
∫
S

nudS from (1.9) we get

∫

D+

κ

E(u, u) dx =
∫

S

u
κ

T(∂x, n)u dS. (1.12)

Uniqueness theorems. In this subsection we prove the uniqueness
theorems of solutions to the above formulated problems. Let the above
formulated problems have two regular solutions U (1) and U (2), where U (k) =
(u(k)

1 , u
(k)
2 , u

(k)
3 , p

(k)
1 , p

(k)
2 ), k = 1, 2. We put

U = U (1) − U (2).

Evidently, the vector U satisfies the equations (1.1)–(1.2) and the homoge-
neous boundary conditions

1. u±(z) = 0, p±j (z) = 0, j = 1, 2, z ∈ S,

2. (P (∂z, n)u(z))± = 0,
(∂pj(z)

∂n

)±
= 0, j = 3, 4, z ∈ S,

3. u±(z) = 0,
(∂pj(z)

∂n

)±
= 0, j = 1, 2, z ∈ S,

4.
(
P (∂z, n)u

)±(z) = 0, p±j (z) = 0, j = 1, 2, z ∈ S.

Now we prove the following theorems.
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Theorem 1. The first boundary value problem has at most one regular
solution in the bounded domain D+.

Proof. Evidently, the vector U satisfies (1.1)–(1.2) and the boundary con-
dition U+ = 0 on S. Note that if U is a regular solution of (1.1)–(1.2),
we have Green’s formulas (1.9), (1.11). Taking into account the fact that

the potential energy
κ

E(u, u) is positive definite, we conclude that U = C,
x ∈ D+, where C = const. Since U+ = 0, we have C = 0 and U(x) = 0,
x ∈ D+. ¤

Theorem 2. The first boundary value problem has at most one regular
solution in the infinite domain D−.

Proof. The vectors U (1) and U (2) in the domain D− must satisfy the condi-
tion (1.4). In this case the formulas (1.11) are valid and U(x) = C, x ∈ D−,
where C is again a constant vector. But U on the boundary satisfies the
condition U− = 0, which implies that C = 0 and U(x) = 0, x ∈ D−. ¤

Analogously can be proved the following theorems.

Theorem 3. A regular solution of the second boundary value problem is
not unique in the domain D+. Two regular solutions may differ by a vector
(u, p1, p2), where u(x) = a+b×x+c(β1+β2)x, pj(x) = c, j = 1, 2, x ∈ D+,
with a and b constant vectors, and c be an arbitrary constant.

Theorem 4. Two regular solutions of the boundary value problem (III)+

may differ by the vector (u, p1, p2), where u = 0 and pj = c, j = 1, 2, with c
be an arbitrary constant.

Theorem 5. Two regular solutions of the boundary value problem (IV )+

may differ by the vector (u, p1, p2), where u is a rigid displacement and
pj = 0, j = 1, 2.

Theorem 6. The boundary value problems (II)−, (III)−, (IV )− have
at most one regular solution in the domain D−.

Note that from the equation (1.2) one may define the functions pj(x),
j = 1, 2. Further we assume that pj is known, when x ∈ D+ or x ∈ D−. Sub-
stitute β1p1 +β2p2 in (1.1) and search a particular solution of the following
equation

µ∆u + (λ + µ) grad div u = grad(β1p1 + β2p2).
We put

u0 = − 1
4π

∫

D

Γ(x− y) grad(β1p1 + β2p2) dx, (1.13)

where

Γ(x− y) =

=
1

4µ(λ+2µ)

∥∥∥ (λ+3µ)δkj

r
+

(λ+µ)(xk−yk)(xj−yj)
r3

∥∥∥
3×3

, r= |x−y|.
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Substituting the volume potential u0 into (1.1), we obtain (see [6])

µ∆u0 + (λ + µ) grad div u0 = grad(β1p1 + β2p2). (1.14)

Thus we have proved that u0(x) is a particular solution of the equation
(1.1). In (1.13) D denotes either D+ or D−, grad(β1p1 + β2p2) is a contin-
uous vector in D+ along with its first order derivatives. When D = D−,
the vector grad(β1p1 + β2p2) has to satisfy the following decay condition at
infinity

grad(β1p1 + β2p2) = O(|x|−2−α), α > 0.

Thus the general solution of the equation (1.1) is representable in the form
u = V + u0, where

A(∂x)V = µ∆V + (λ + µ) grad div V = 0. (1.15)

This equation is the equation of an isotropic elastic body. Thus we have
reduced the solution of basic BVPs of the theory of consolidation with
double porosity to the solution of the basic BVPs for the equation of an
isotropic elastic body.

First of all we will construct a fundamental matrix of solutions for the
equation (1.2). We look for pj in the form

(
p1

p2

)
=

(
m2∆− k −k
−k m1∆− k

)
ψ, (1.16)

where the vector ψ(x) is the fundamental solution of the scalar equation

∆(∆− λ2
0)ψ = 0, λ2

0 =
k

m1
+

k

m2
, ψ =

e−λ0r − 1
λ2

0r
.

From (1.16) it follows that the fundamental matrix of solutions of the equa-
tion (1.2) is the following matrix

M(x− y) =

=




m2
e−λ0r

r
− k

λ2
0

e−λ0r − 1
r

− k

λ2
0

e−λ0r − 1
r

− k

λ2
0

e−λ0r − 1
r

m1
e−λ0r

r
− k

λ2
0

e−λ0r − 1
r


 . (1.17)

The following theorem is valid:

Theorem 7. Each column of the matrix M(x − y) is a solution to the
equation (1.2) with respect to x for x 6= y.

2. Integral Equations of BVPs

A solution of the first boundary value problem (p±1 = f±4 , p±2 = f±5 ,
V ± = F±) in the domains D± for the systems (1.2), (1.15) will be sought
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in the form of the double layer potential
(

p1(x)
p2(x)

)
=

1
2π

∫

S

∂

∂n(y)
M(x− y)ϕ(y) dyS, (2.1)

V (x) =
1
π

∫

S

[
N(∂y, n)Γ(x− y)

]T
g(y) dyS, (2.2)

where S ∈ C1,α, ϕ ∈ C0,β , g ∈ C0,β , 0 < β < α ≤ 1, M(x − y) is given by
(1.17),

[
N(∂y, n)Γ(x− y)

]T

kj
=

=
∂

∂n

δkj

r
+

3∑

k=1

Mkj(∂y, n)
[ (λ + µ)(xk − yk)(xj − yj)

(λ + 3µ)r3

]
,

Mkj = nj
∂

∂xk
− nk

∂

∂xj
.

Then for determining the unknown vectors ϕ and g we obtain the following
system of Fredholm integral equations of the second kind on S

±(
(

m2 0
0 m1

)
ϕ(z) +

1
2π

∫

S

∂

∂n
M(z − y)ϕ(y) dyS =

(
f±4 (z)
f±5 (z)

)
, (2.3)

∓g(z) +
1
π

∫

S

[
T (∂y, n)Γ(y − z)

]
g(y) dyS = F±(z). (2.4)

If a solution of the first BVP is sought in the form

V (x) =
1
π

∫

S

[
T (∂y, n)Γ(x− y)

]T
g(y) dyS, (2.5)

for determining of the unknown vector g we obtain the following singular
integral equation of the second kind

∓g(z) +
1
π

∫

S

[
T (∂y, n)Γ(y − z)

]
g(y) dyS = F±(z). (2.6)

A solution of the second boundary value problem ((∂p1
∂n )± = f±4 , (∂p2

∂n )± =
f±5 , (T (∂x, n)V )± = Φ±) in the domains D± for the systems (1.2)–(1.15)
will be sought in terms of the single layer potential

(
p1(x)
p2(x)

)
=

1
2π

∫

S

M(x− y)ϕ(y) dyS, (2.7)

V (x) =
1
π

∫

S

Γ(x− y)h(y) dyS, (2.8)
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Then for determining the unknown vectors ϕ and g we obtain the following
system of Fredholm integral equations of the second kind

∓
(

m2 0
0 m1

)
ϕ(z) +

1
2π

∫

S

∂

∂n(z)
M(z − y)ϕ(y) dyS =

(
f±4 (z)
f±5 (z)

)
, (2.9)

±h(z) +
1
π

∫

S

T (∂z, n)Γ(z − y)h(y) dyS = Φ±(z), (2.10)

where [6]

T (∂y, n)Γ(x− y) =

=
∥∥∥∥

∂

∂n

δkj

r
+

3∑

k=1

Mkj(∂y, n)
[ 2δkj

(λ+2µ)r
+

2(λ+µ)(xk−yk)(xj−yj)
(λ+2µ)r3

]∥∥∥∥
3×3

.

3. Analysis of the Basic BVPs in the Domains D+ and D−

Problem (I)+. First let us prove the existence of solution of the first
boundary value problem in the domain D+. Consider the equation (2.3)

−
(

m2 0
0 m1

)
ϕ +

1
2π

∫

S

∂

∂n
M(z − y)ϕ(y) dyS =

(
f+
4 (z)

f+
5 (z)

)
, (3.1)

Let us prove that the equation (3.1) is solvable for any continuous right-
hand side. To this end, consider the associated to (3.1) homogeneous equa-
tion

−
(

m2 0
0 m1

)
ψ(z) +

1
2π

∫

S

∂

∂n
M(z − y)ψ(y) dyS = 0, (3.2)

and prove that it has only the trivial solution. Assume the contrary and
denote by ψ0 a nontrivial solution of (3.2). The equation (3.2) corresponds
to the boundary conditions

(∂p1

∂ν

)−
= 0,

(∂p2

∂ν

)−
= 0,

whence we have
∫
S

ψk ds = 0, k = 4, 5.

Now taking into account the continuity of the simple layer potential and
using the uniqueness theorem for the solution of the first boundary value
problem, we will have pk(x) = c, x ∈ D−.

Note that
(∂p1

∂ν

)−
−

(∂p1

∂ν

)+

= 2m2ψ4 = 0,
(∂p2

∂ν

)−
−

(∂p2

∂ν

)+

= 2m1ψ5 = 0,

hence the equation (3.2) has only the trivial solution. This implies that the
associated to (3.2) homogeneous equation also has only the trivial solution,
and the equation (3.1) is solvable for any continuous right-hand side.
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For the regularity of the double layer potential in the domain D+ it
is sufficient to assume that S ∈ C2,β (0 < β < 1) and fk ∈ C1,α(S)
(0 < α < β), k = 4, 5.

Problem (I)−. Now consider the first boundary value problem in the
domain D−. Consider the equation (2.3)

(
m2 0
0 m1

)
ϕ +

1
2π

∫

S

∂

∂n
M(z − y)ϕ(y) dyS =

(
f−4 (z)
f−5 (z)

)
. (3.3)

Prove that the equation (3.3) is solvable for any continuous right-hand
side. We consider the associated to (3.3) homogeneous equation

(
m2 0
0 m1

)
ϕ +

1
2π

∫

S

∂

∂ν
M(z − y)ϕ(y) dyS = 0. (3.4)

Let us prove that (3.4) has only the trivial solution. Suppose that it has
a nonzero solution ϕ(z). From (3.4) by integration we obtain

∫

S

ϕdS = 0.

In this case the equation (3.4) corresponds to the boundary condition
(∂pk

∂ν

)+

= 0.

We find that pk = c, x ∈ D+, where c is a constant vector.
Taking into account the equation

∫
S

ϕds = 0 and the fact that the single

layer potential is continuous while passing through the boundary, and using
Green’s formula for κ = κn, we obtain pk = 0, x ∈ D−. Since

(∂p1

∂ν

)−
−

(∂p1

∂ν

)+

= 2m2ϕ4 = 0,
(∂p2

∂ν

)−
−

(∂p2

∂ν

)+

= 2m1ϕ5 = 0,

we have ϕ(x) = 0.
Thus we conclude that the associated to (3.4) homogeneous equation has

only the trivial solution, and the equation (3.3) is solvable for any continuous
right-hand side.

To prove the regularity of the potential (2.1) in the domain D−, it is
sufficient to assume that S ∈ C2,β(0 < β < 1) and fk ∈ C1,α(S) (0 < α <
β), k = 4, 5.

4. Problems (1)+ and (2)−

Consider the equations (2.4), (2.10)

−g(z) +
1
π

∫

S

[
T (∂y, n)Γ(y − z)

]T
g(y) dyS = F+(z), (4.1)
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−h(z) +
1
π

∫

S

T (∂z, ν)Γ(y − z)h(y) dyS = Φ−(z), (4.2)

where F+ ∈ C1,β(S), Φ− ∈ C1,β(S), 0 < α < β are given vectors on the
boundary.

Let us prove that the homogeneous equation corresponding to (4.2) has
only the trivial solution. Assume that it has a nontrivial solution denoted
by h0(z). Compose the simple layer potential

V (x) =
1
4π

∫

S

Γ(y − x)h0(y) dS. (4.3)

It is obvious, that [T (∂z, n)V (z)]− = 0,
∫
S

h0(y) ds = 0. V ∈ C0,β(D−) and

satisfies the conditions (1.4). This implies that V (z) = 0, z ∈ D−, whence
V + = V − = 0. Now taking into account the continuity of the simple
layer potential and using the uniqueness theorem for the solution of the
first boundary value problem, we will have V (x) = 0, x ∈ D+. Thus V (x)
vanishes on the whole space and therefore h0(x) = 0. Due to the fredholm
theorem we conclude that the nonhomogeneous equation is solvable for an
arbitrary Hölder continuous vector Φ−.

Finally, from the solvability of the equations (4.1) and (4.2) it follows
that the solutions of BVPs (1)+ and (2)− are representable in the form of
second kind double and single-layer potentials, respectively. On the basis
of the general theory, the following theorems are valid.

Theorem 8. If S ∈ C2,β(S) and F+ ∈ C1,β, then the BVP (1)+ has
unique solution. Moreover, this solution is given in the form of the double-
layer potential (2.5), where g is a solution of the equation (4.1).

Theorem 9. If S ∈ C2,β(S) and Φ− ∈ C1,β, then the BVP (2)− has
unique solution satisfying the conditions (1.4) in the neighborhood of infinity.
Moreover, this solution is given in the form of the single-layer potential
(2.8), where h is a solution of the equation (4.2).

5. Problems (1)− and (2)+

Consider the first external BVP (when on S it is given V − = F−). A
solution of the equation (1.15) is sought in the form

V (x, g) =
1
2π

∫

S

[
N(∂y, n)Γ(z − x)

]∗
g(y) dyS +

1
2

Γ(x)α, (5.1)

where

α =
1
2π

∫

S

[
N(∂y, n)Γ(y)

]∗
g(y) dyS.

The origin is assumed to lie in the domain D+. Taking into account the
boundary behavior of the potential V (x) and the boundary condition, to
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define the unknown vector g from (5.1) we obtain the Fredholm integral
equation of the second kind

g(z) +
1
2π

∫

S

[
N(∂y, n)Γ(y − z)

]∗
g(y) dyS +

1
2

Γ(z)α = F−(z). (5.2)

The conjugate equation is

h(z)+
1
2π

∫

S

[
N(∂y, n)Γ(y−z)+

1
2

N(∂z, n)Γ(z)α
]
h(y) dyS = Φ+(z). (5.3)

Let us show that the equation (5.3) is always solvable. For this it is sufficient
to show that the homogeneous equation corresponding to (5.3) has only the
trivial solution. Denote the homogeneous equation by (5.3)0 and assume
that it has a solution h0 different from zero.

From (5.3)0 we get

1
2π

∫

S

Γ(y)h(y) dyS = 0. (5.4)

and the equation (5.3)0 obtain the form

h(z) +
1
2π

∫

S

N(∂y, n)Γ(y − z)h(y) dyS = 0. (5.5)

Construct now the potential

V (x) =
1
2π

∫

S

Γ(x− y)h0(y) dyS.

Here N(V )+ = 0 and V (0) = 0. From this we get V (x) = 0, x ∈ D−.
Since h0(x) = 0. Thus our assumption is not valid. The equation (5.2)
has a solution for an arbitrary right-hand side. Note that a solution of the
equation (5.2) exists if S ∈ C2,β(S), F−(z) ∈ C1,β(S), 0 < β < α ≤ 1.

Consider the second BVP. The solution of the equation (1.15) is sought
in the form (when on S it is given (TV )+ = Φ+)

V (x) =
1
2π

∫

S

Γ(y − z)h(y) dyS − 1
2

Γ(x)A− 1
2

Γ0(x)B, (5.6)

where A and B are defined as follows:

A =
1
2π

∫

S

Γ(y)h(y) dyS, B =
1
2π

∫

S

Γ0(y)h(y) dyS, (5.7)

Γ0 = rotx Γ(x− y)x=0.
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To define h(z), we have the integral equation

h(z) +
1
2π

∫

S

T (∂y, n)Γ(y − z)h(y) dyS−

1
4

T (∂z, n)Γ(z)A− 1
4

T (∂z, n)Γ0(z)B = Φ+(z), (5.8)

Let us now show that the integral equation (5.8) is always solvable. Let
h(y) 6= 0. From (5.8) we have

A =
∫

S

Φ+(z) dS, (5.9)

B =
1
2π

∫

S

r(y)× Φ+ dS, (5.10)

where r(y) = (y1, y2, y3). If Φ+ = 0, then A = 0, B = 0, (Tu)+ = 0,
u = a + [b, r]. If the principal vector A and the principal moment B are
equal to zero, we have u = 0, h = 0. Thus (5.8) is solvable for any right-hand
side.

Consider the conjugate equation

g(z) +
1
2π

∫

S

T (∂y, n)Γ(y − z)∗g(y) dyS − 1
2

Γ(z)α− 1
4

Γ0(z)β =

= F−(z), (5.11)

where

α =
1
2π

∫

S

[
T (∂y, n)Γ(y)

]∗
g(y) dyS,

β =
1
2π

∫

S

[
T (∂y, n)Γ0(y)

]∗
g(y) dyS.

The equation (5.11) is always solvable if F− ∈ C1,α(S), S ∈ C1,α(S), 0 <
β < α ≤ 1.

If the solution of BVP (1)− is sought in the form

V (x) =
1
2π

∫

S

[
T (∂y, n)Γ(y − z)

]∗
g(y) dS − 1

2
Γ(x)α− 1

4
Γ0(x)β, (5.12)

then to define the unknown vector g we obtain the integral equation (5.11).
Therefore we formulate the final result.

Theorem 10. The problem (1)− is solvable for an arbitrary vector F− ∈
C1,β(S) for S ∈ C2,α(S), and the solution is represented by the formula
(5.12).
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Theorem 11. The problem (2)+ is solvable for the vector Φ+ ∈ C0,β(S),
only if the principal vector and the principal moment of external stresses are
equal to zero, A = 0 and B = 0. The solution is represented by the formula
(5.6). The solution is defined to within rigid displacement.

The existence theorems for the third and fourth BVPs will be proved
analogously.
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