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Abstract. The Kirsch problem on the tension of an elastic plane with
a circular hole free from external traction is considered. It is assumed
that complementary surface stresses are applied at the boundary. Based
on Kolosov—Muskhelishvili’s method, the solution of the problem is reduced
to the solution of a singular integro-differential equation for an unknown
surface stress. A solution to the obtained equation is derived in an explicit
form and shows that stress concentration at the boundary depends on the
elastic properties of a surface and bulk material, and the radius of a hole as
well if surface stresses are taken into account.

The paper is an example of the modern applications of Muskhelisvili’s
outstanding achievements to the problems of the nanomechanics.
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It is known, that taking into account surface stresses in rigid bodies [1]-
[4] might be most important for nanoobjects. Here unexpected effects, not
correspond to our traditional representations, may turn out [5], [6].

From these positions the classical Kirsch problem concerning the ten-
sion of an elastic plane weakened by a circular hole will be considered.
Assume that complementary surface stresses occur along the boundary of
the circular hole [1]-[4]. The problem will be treated with the help of the
Kolosov—Muskhelishvili method [7].

According to the Laplace—Young law [1], [4], the boundary conditions in
the absence of external stresses on the circular boundary are given as follows

Tho _ 0. 1005 . (1)
r r 06
Here oj, is the surface stress, r, 6 are the polar coordinates with the center
coinciding with that of the circular hole.

First, we construct a solution for the hole of unit radius and, therefore,
introduce r = 1 in equation (1).

Suppose that the conditions of uniaxial tension along the x;-axis at in-
finity are imposed, i.e.,

Orp +

oo oo oo oo __
o1 =0, 035 =015 =w> =0, (2)

where w is a turning angle of the material particle.
In the complex writing the conditions (1) for » = 1 take the form

S
00y

Wzt, (3)

Opp + 1009 = —0gg + 1

where 7 is the imaginary unit.
To solve the problem, we will apply the Kolosov—Muskhelishvili formulas
[7] which express stresses in the plane o, and displacements u; (j,k = 1,2)
in the Cartesian coordinates z1, xo in terms of complex functions &, ¥

holomorphic for r = /2% + 23 > 1:
011 + 022 = 4Re®(2),
o9z — 011 + 20012 = 2 (29 (2) + ¥(2)),

2u(uy + iug) = %/@(z)dz —2®(2) — /@dz. (5)

Here z = 1 + ix2, 2 = 3 — 4v for the plane strain, s = (3 —v)/(1 + v)
for the plane stress, v and p are, respectively, the Poisson ratio and the
shear modulus of the elastic medium. A quantity with the bar denotes
complex conjugation and the prime denotes the derivative with respect to
the argument.

We will introduce a local orthogonal system of coordinates n, ¢, rotated
with respect to the system x1, z2 by the angle o — /2. Then from formulas
(4), (5) we derive the joint expression for the traction o, = o,y + 0, on
an element of area with the normal vector n and the displacement vector

(4)
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u = uy + fug (8]

G(e2) = nb(z) + B + 7 (W) + T0), (©

where G = o, for n = 1 and G = —2udu/dz for n = —s. The increment dz
is taken in the direction of the axis ¢. i.e., along the chosen area element.
Thus in (6), dz = |dz|e®, dz = d=.

Following N. I. Muskhelishvili’s method [7], we introduce the function
T(z), holomorphic in the circle |z| < 1, except the point z = 0, where it
might have a pole up to the second order, inclusive:

T(z) = —®(z71) + 27 10/(z7 1) + 2720 (z1). (7)

Using equality (7) from (6) we derive the following

Gl %) = nd(2) + B2 + % [212 (®6+ T(%)) (- i)@’(z)} (8)

|z] > 1.

We take the limit z — ¢ = €¥ in equation (8) and direct the vector n
towards the center z = 0. Since in this case a = 0+37/2 and dz = —i|dz|e®’,
by virtue of conditions (3) from (8) we derive that

o(¢) = 1(¢) = t°(¢)- (9)

Here ®(({), T(¢) are the limiting values of the corresponding functions on
the circumference of unit radius ~.

Introducing the function W(z), holomorphic in the complex plane except
the circumference ~,

d 1
W) = 2@ l2l>1 (10)
T(z), |z|<1
we reduce equation (9) to the following Hilbert problem
W) =W () = —t(¢), I¢]=1. (11)

Taking into account the existence of the pole, a solution to the problem
(11) is written in the form (cf. [7])

W(z) = —I(z) + S(z) + D1, (12)
where
I(z) = %m / ;Eni dn, S(z) = % + % (13)
and

Dy = lim ®(z) = o0/4.

Z— 00
Since the principal vector of forces applied to the boundary of the hole
equals zero we have ¢; =0, co = —0/2.
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For the problem under consideration the constitutive relation, connecting
the surface stress and the corresponding strain, takes the form (cf. [4])

ohe = (2ps + As)gGe, 2 =, (14)

where A;, ps are the modules of the surface elasticity, similar to the Lamé
constants of the bulk material.

We impose the continuity constraint on the displacements vector under
passing from the volume to the boundary

lim wu(z) =u*((), ¢ en, (15)
|z|>1
z—(C

where u*(¢) is the displacement vector of the boundary point ¢ € 4. From
(15) follows the same for the volume deformations egg and the deformation
on the boundary €5, i.e.,

lim  egg(2) = €59(C), Cen. (16)
|z|>1
z—(

The relations (14)—(16) result in the equation for the surface stress
oo = (215 + As)evn, z2=C. (17)

The expression for the deformation egg is derived by using the relation
(8). Putting in (8) successively dz = dx; and dz = idxy for n = —3¢, and
z = (, after some transformations we find expressions for the deformations
€k in (21, z2)-system of coordinates. After passing to the polar coordinates
r, 8, we obtain

2uegp = Re [2®(¢) + Y(¢)]. (18)

Introducing (18) into (17) and taking into account (10) and (11), we
arrive at the following equation:

M+ 1)o

04y = =M Re [ (0) + I*(0)] + ——

(1 - CQ - C_Q)u (19)
where M = % .

Let 7 = 0j,. Since 07/00 = i(01/0¢ = i(7'((), the Sokhotskii-Plemelj
formulas for the Cauchy type integral I(z) acquire the form

Q) ¢ 1 [7(n)+nr'(n)
Ii(C) = :FT + 9 - Tm / T’f}, (20)

where the integral is understood in the sense of the Cauchy principal value.
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Introducing 1% (¢) from (20) into (19), we obtain the following integral
equation

CM(x+1)
(o) - M(%_HQ
) ') 1 ) +ar'(n) ]
X[Zm P 2wi! P
:m(l—g2—<2). (21)

Taking into account the relations 7 = 0=, ¢ = ¢, 7(n) = 7(n),
nt'(n) = —n7'(n), dj = —n~2dn, equation (21) for the hole of radius r
transforms into the following singular integro-differential equation

M +1)
T(C)—mx
i [T, ),

o n—¢ 7 om n—C -
Y Y
_ Mr(x+41)o o o
T OM(x—1) +4r (1-¢=). (22

In (22) we denote n = m/r, ( = (1/r, where 71, (1 are points on the
circumference of radius 7.

From physical considerations for ¢ = 0 the surface stress o}, is absent.
This implies that the homogeneous equation corresponding to the integral
equation (21), or (22), has only the trivial solution 7 = 0.

A particular solution to equation (22) is sought in the form of infinite
sum

+oo
> dict. (23)
k=—o0
Introducing (23) into (22), after integration and reduction of similar
terms, we get
Mr(x+1)
4(r— M)

Mr(»x+1)
202r — M(+3)
k#0,-2,2.

do = g, dg = d,Q = — dk = 0, (24)

Find now the hoop stresses gy on the boundary. From (8), when z —
¢ =€ and dz = dre’, we obtain

006(C1) +iore(C1) = @(¢) +22(C) + Y(Q), [¢i| =1 (25)
Using (10), (11)—(13), in view of (23) and (24), the equality (25) yields
ogo9 = do + 6dz cos 26 + (1 — 2 cos 20)o. (26)
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The first two summands in the right-hand side of (26) show the influence
of surface stresses on the hoop stress ogg on the boundary of the hole. The
tensile stress ogg in the absence of surface stresses attains its maximum at
the points # = +7/2 on the boundary of the hole. In the presence of surface
stresses for the value ogg we get a different formula, namely,

M (3¢ + 1)[14r — M (15 + )]
4(r — M)[2r — M (3 + 3)]

It is rather evident from (27) that if A > 0 then for r < M and M (15 +

) < 14r < TM(3+ 5) the stress concentration diminishes when the surface

stresses are present, while for 14M < 14r < M(15+ ») and 2r > M (3 + »)
the stress concentration increases.

000|0=r/2 = o+ 3o. (27)
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