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Abstract. Let f ∈ Lp(Rn) and R > 0. The transform is considered
that integrates the function f over (almost) all spheres of radius R in Rn.
This operator is known to be non-injective (as one can see by taking Fourier
transform). However, the counterexamples that can be easily constructed
using Bessel functions of the 1st kind, only belong to Lp if p > 2n/(n− 1).
It has been shown previously by S. Thangavelu that for p not exceeding the
critical number 2n/(n− 1), the transform is indeed injective.

A support theorem that strengthens this injectivity result can be deduced
from the results of [12], [13]. Namely, if K is a convex bounded domain in
Rn, the index p is not above 2n/(n − 1), and (almost) all the integrals of
f over spheres of radius R not intersecting K are equal to zero, then f is
supported in the closure of the domain K.

In fact, convexity in this case is too strong a condition, and the result
holds for any what we call R-convex domain.

We provide a simplified and self-contained proof of this statement.
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îâäæñéâ. àŽêãæýæèëå f ∈ Lp(Rn) áŽ R > 0. àŽêæýæèâĲŽ æêðâàîŽèñîæ
àŽîáŽóéêŽ, îëéâèæù àŽîáŽïŽóéêâè f òñêóùæŽï ŽæêðâàîâĲï (åæåóéæï) õãâ-
èŽ R-îŽáæñïæŽê ïòâîëäâ Rn ïæãîùâöæ. ùêëĲæèæŽ, îëé âï ëìâîŽðëîæ
ŽîŽæêâóùæñîæŽ (ŽéŽöæ öâæúèâĲŽ áŽãîûéñêáâå òñîæâï àŽîáŽóéêæï éŽàŽèæå-
äâ). éæñýâáŽãŽá ŽéæïŽ, çëêðîéŽàŽèæåâĲæ, îëéâèåŽ ŽàâĲŽù ŽáãæèæŽ Ĳâïâèæï
I àãŽîæï òñêóùæâĲæï àŽéëõâêâĲæå, àŽîáŽóéêŽ éæâçñåãêâĲŽ Lp ïæãîùâï, åñ
p > 2n/(n− 1). ï. ðŽêàŽãâèñï éæâî Žáîâ êŽøãâêâĲæ æõë, îëé åñ p ìŽîŽéâð-
îæ Žî ŽôâéŽðâĲŽ 2n/(n−1) éêæöãêâèëĲŽï, æêðâàîŽèñîæ àŽîáŽóéêŽ éŽîåèŽù
æêâóùæñîæŽ.

ïŽõîáâêæ åâëîâéŽ, îëéâèæù ŽúèæâîâĲï öâáâàï æêâóùæñîëĲæï öâïŽýâĲ, öâ-
æúèâĲŽ éæôâĲñè æóêŽï [12], [13] êŽöîëéåŽ öâáâàâĲäâ áŽõîáêëĲæå. çâîúëá,
åñ K ûŽîéëŽáàâêï Žéëäêâóæè öâéëïŽäôãîñè Žîâï Rn ïæãîùâöæ, ýëèë p
æêáâóïæ Žî ŽôâéŽðâĲŽ 2n/(n − 1) éêæöãêâèëĲŽï, áŽ (åæåóéæï) õãâèŽ æêðâà-
îŽèæ f òñêóùææáŽê ïòâîëâĲäâ R îŽáæñïæå, îëéèâĲæù Žî æçãâåâĲæŽê K
ïæéîŽãèâïåŽê ñðëèáâĲæŽê êñèï, éŽöæê f òñêóùææï ïñìëîðæ àŽêèŽàâĲñèæŽ
K ïæéîŽãèæï øŽçâðãŽöæ.

ïæêŽéáãæèâöæ, ïæéîŽãèæï ŽéëäêâóæèëĲŽ Žé öâéåýãâãŽöæ ûŽîéëŽáàâêï àŽ-
áŽéâðâĲñè éëåýëãêŽï áŽ öâáâàæ ïŽéŽîåèæŽêæŽ ŽîââĲæïŽåãæï, îëéâèåŽù
øãâê ãñûëáâĲå R-Žéëäêâóæèï.

øãâê éëàãõŽãï Žôêæöêñèæ áâĲñèâĲæï àŽéŽîðæãâĲñèæ áŽ åãæåçéŽîæ áŽé-
ðçæùâĲŽ.
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1. Introduction

We consider the transform acting on functions defined on Rn by inte-
grating them over all spheres of a fixed radius R > 0. Let f ∈ Lp(Rn),
1 ≤ p ≤ ∞, then such integrals exist for almost every center. One can
easily construct examples of non-injectivity of this transform at least for
some values of p (see the proof of Theorem 1 below for details). However,
such constructions, which use Bessel functions of the 1st kind, work only
when p > 2n/(n − 1). And indeed, it was shown by S. Thangavelu [10]
that for p ≤ 2n/(n − 1), the transform is injective. In this text, we prove
a stronger statement (comparable to S. Helgason’s “hole” support theorem
[4, Theorem 2.6 and Corollary 2.8] for the Radon transform):

Theorem 1. Let K be the closure of a bounded convex domain in Rn

with n > 1, a function f(x) belong to Lp(Rn) with p ≤ 2n/(n − 1), and
R > 0. If the integrals of f over almost all spheres of radius R contained
in Rn \K are equal to zero, then f is compactly supported and its support
is contained in K.

This conclusion does not hold for p > 2n/(n− 1).

It is interesting to notice the appearance of the same critical power
2n/(n− 1) in a similar situation, where however the set of spheres of inte-
gration is defined differently: one allows arbitrary radii of the spheres, but
restricts the set of their centers to the points of a closed hypersurface S ⊂ Rn

only. It is shown in [1] that this transform is injective when p ≤ 2n/(n− 1)
and injectivity fails otherwise, for instance when S itself is a sphere.

Convexity is too strong condition in this case. The statement holds
for a larger class of domains that is natural for the problem under the
consideration.

Definition 2. Let R be a positive number. A bounded closed domain
K ⊂ Rn is said to be R-convex, if

(1) Its complement CK := Rn \K is the union of all closed balls B ∈
CK of radius R.

(2) The set of centers of all such balls is connected.

Theorem 3. The statement of Theorem 1 holds for R-convex bounded
domains K.

Theorem 1 is proven in the next section. In the following section, an
auxiliary local result is established in Theorem 10. In the next section,
Theorem 3 is derived from Theorems 1 and 10. The paper ends with the
remarks and acknowledgments sections.

A few month after the paper was posted on May 8th 2009, the book [13]
appeared, which apparently contains results implying the theorems of this
article. Moreover, it has been pointed out to us that these results can be
derived from [12, Chapter 3.3, Section 3.2, Corollary 3.3]. It is, however,
difficult to reconstruct the proof, which is distributed among various parts
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of the very technical books [12], [13]. The authors thus think that a stream-
lined and self-contained proof would be useful to researchers in the area of
integral geometry and harmonic analysis.

2. Proof of Theorem 1

We start with the hardest part of the proof, when p ≤ 2n/(n− 1).
Let f ∈ Lp(Rn), p ∈ [1, 2n/(n− 1)] be such that

∫

|ω|=1

f(y + Rω) dσ(ω) = 0 (1)

for almost all y ∈ Rn such that dist (y, K) > R, where dσ(ω) is the standard
surface area measure on the unit sphere in Rn. We need to show that then
f(x) = 0 for almost all x /∈ K.

Since K, being a closed bounded convex domain, is the intersection of all
balls it is contained within, it is sufficient to prove the statement when K
is a ball. Rescaling and shifting, we can assume without loss of generality
that K is the unit ball B(0, 1) centered at the origin.

Convolving with small support smooth radial functions, one reduces the
problem to the case when f is infinitely differentiable and, moreover, all its
derivatives belong to the same space Lp as f itself.

Consider for each m ∈ Z+ an orthonormal basis Y m
l , 1 ≤ l ≤ d(m) of

the space of all spherical harmonics of degree m in Rn (the natural repre-
sentation of the group O(n) in this space is irreducible). Then function f
can be expanded into the Fourier series with respect to spherical harmonics
as follows:

f(x) =
∑

m,l

fm,l(|x|)Y m
l (θ), (2)

where θ = x
|x| and

fm,l(|x|) =
∫

θ∈S

f(|x|θ)Y m
l (θ) dθ. (3)

Due to the obvious rotational invariance of the problem, each term
fm,l(|x|)Y m

l (θ) of the series also has the corresponding spherical integrals
(1) vanishing (see a more detailed consideration in Lemma 6 below). Since
clearly fm belongs to the same Lp-space that f does, it is sufficient to prove
the statement of the theorem for the functions of the form

f(|x|)Y m
l (θ) (4)

only, where, as before, θ = x
|x| . Hence, we will assume from now on that f

is in the form (4).
Let δR(x) be the delta function supported on the sphere of radius R

centered at the origin. Then condition (1) can be rewritten as follows:

h(x) := (f ∗ δR)(x) = 0 for |x| > R + 1, (5)
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where the star ∗ denotes the n-dimensional convolution. Considering f(x)
as a tempered distribution, one can pass to Fourier images in the left hand
side of (5) to get

ĥ(ξ) = f̂(ξ)δ̂R(ξ), ξ ∈ Rn
ξ . (6)

Notice that due to (5), function h := f ∗ δR is compactly supported (with
the support in the ball of radius R + 1) and smooth, and thus the standard
Paley–Wiener theorem applies [9]. Therefore, the Fourier transform ĥ(ξ) of
h is an entire function satisfying for any N > 0 the estimate:

|ĥ(ξ)| ≤ CN (1 + |ξ|)−Ne(R+1)|=ξ|. (7)

We also recall that δ̂R(ξ) coincides, up to a constant factor, with
j(n−2)/2(R|ξ|), where jp is the so called normalized or spherical Bessel func-
tion [8]:

jp(λ) =
2pΓ(p + 1)Jp(λ)

λp
. (8)

Here we use the standard notation Jp(λ) for Bessel functions of the first
kind.

Due to (6), we have

ĥ(ξ) = const j(n−2)/2(R|ξ|)f̂(ξ). (9)

We can now explain the strategy of the proof. The claim we are proving
is equivalent to f̂(ξ) being an entire function of the following Paley–Wiener
class:

|f̂(ξ)| ≤ CN (1 + |ξ|)−NeR|=ξ| (10)

(notice the exponent R in (10) instead of R +1 present in (7)). Taking into
account (9), this task will be achieved, if we could show that:

(1) The distribution f̂ does not have any delta-type terms supported
at zeros of j(n−2)/2(R|ξ|), and thus f̂ can be obtained by dividing
ĥ by j(n−2)/2(R|ξ|).

(2) This ratio is entire, i.e. ĥ in fact vanishes at zeros of j(n−2)/2(R|ξ|).
(3) The estimate (10) holds, which due to (7) requires one to get an

estimate from below for j(n−2)/2(R|ξ|) that would eliminate the un-
necessary +1 in R + 1 in (7).

We will deal with these steps in the reverse order. The last one is achieved
by the following simple statement:

Lemma 4 (e.g., [3, Lemma 6] or [2, Lemma 4]). On the entire complex
plane, except for a disk S0 centered at the origin and a countable number of
disks Sk of radii π/6 centered at points π(k + 2ν+3

4 ), one has

|Jν(z)| ≥ Ce|Im z|
√
|z| , C > 0. (11)
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In order to handle the other two issues, we need to do some preparations.
The following lemma allows one to represent spherical means as volume

integrals.

Lemma 5. Let λ0 > 0 satisfy

j(n−2)/2(Rλ0) = 0.

Then the spherical mean h = δR ∗ f can be represented as

h = const (∆ + λ2
0)(f ∗ΨR), (12)

where
ΨR(x) = j(n−2)/2(λ0|x|)χR(x)

and χR is the characteristic function of the ball of radius R centered at the
origin.

Proof. Indeed, this follows easily from Stokes formula. Denoting by B(x,R)
and S(x,R) the ball and sphere centered at x and of radius R, one gets

∫

B(x,R)

{[
(∆+λ2

0)f
]
(v)j(n−2)/2(λ0|x−v|)−f(v)

[
(∆+λ2

0)j(n−2)/2

]
(λ0|x−v|)

}
dv =

=
∫

S(x,R)

{
f(v)

dj(n−2)/2

dr
(Rλ0)− df

dr
(v)j(n−2)/2(Rλ0)

}
dA(v). (13)

Here r = |x| and ∂/∂r is the external normal derivative on the sphere
|x| = t.

We now take into account that, according to our choice of λ0, the Bessel
function j(n−2)/2(λ0u) satisfies the following two equalities:

j(n−2)/2(Rλ0) = 0

and
(∆ + λ2

0)j(n−2)/2(λ0|y|) = 0.

Also, due to the simplicity of zeros of j(n−2)/2,

j′(n−2)/2(Rλ0) 6= 0.

These features, combined with (13), prove the statement of the lemma. ¤

Lemma 6. Let

f(x) =
d(m)∑

l=1

fl(r)Y m
l (θ), x = rθ, |θ| = 1.

Then for any radial compactly supported continuous function ψ the convo-
lution F = ψ ∗ f has the similar representation

F (x) =
d(m)∑

l=1

Fl(r)Y m
l (θ).



Single Radius Spherical Transform 7

Proof. The convolution operator f → ψ∗f is rotationally invariant. Indeed:

(ψ ∗ f)(x) =
∫

f(y)ψ(|x− y|)) dy,

and thus for any rotation T and the rotated function fT (x) = f(Tx) one
has:

(ψ ∗ fT )(x) =
∫

f(Ty)ψ(|x− y|)) dy =
∫

f(Ty)ψ(|Tx− Ty|)) dy =

=
∫

f(y)ψ(|Tx− y|)) dy = (ψ ∗ f)T (x).

This implies that the convolution preserves the subspaces of harmonics of
a fixed degree, which proves the lemma. ¤

According to our strategy, the next step is to prove that f̂ is an entire
function.

Due to (9), outside of zeros of j(n−2)/2(R|ξ|), one has

f̂(ξ) = const
ĥ(ξ)

j(n−2)/2(R|ξ|)
. (14)

Notice that the denominator is an entire function of the variable ξ ∈ Cn,
since jν(u) is an even entire function of the real argument u and hence is
an entire function of u2. The next lemma shows that the numerator in
(14) vanishes at the (simple) zeros of the denominator. Therefore, the zeros
cancel, and the ratio in the right hand side of (14) is an entire function, as
needed.

Lemma 7. For any λ0 such that j(n−2)/2(Rλ0) = 0, function ĥ(ξ) van-
ishes on the complex quadric

Q =
{
ξ ∈ Cn : ξ2

1 + · · ·+ ξ2
n = λ2

0

}
.

Proof. Since λ0 6= 0, the quadric Q is irreducible and has a maximal dimen-
sion intersection with the real subspace. Thus, due to analytic continuation,
it suffices to check vanishing of the entire function ĥ(ξ) on the intersection
Q

⋂
Rn, i.e. on the sphere |ξ| = λ0 in Rn.

Since, by assumption, h vanishes outside of the unit ball, we can write

ĥ(ξ) =
∫

|x|≤t

h(x)e−iξ·x dx,

for arbitrary t > 1.
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Let us substitute for h the representation (12). Then, by Stokes’ formula,

ĥ(ξ) = const
∫

|x|≤t

(∆ + λ2
0)(f ∗ΨR)e−iξ·x dx =

= const
∫

|x|≤t

(f ∗ΨR)(∆ + λ2
0)e

−iξ·x dx+

+ const
∫

|x|=t

( ∂

∂r
(f ∗ΨR)e−iξ·x−(f ∗ΨR)

∂

∂r
e−iξ·x

)
dA(x). (15)

Since |ξ| = λ0, the exponential function e−iξ·x is annihilated by the operator
∆ + λ2

0. Therefore, ĥ(ξ) is expressed by the surface term alone:

ĥ(ξ) = const
∫

|x|=t

( ∂

∂r
(f ∗ΨR)e−iξ·x − (f ∗ΨR)

∂

∂r
e−iξ·x

)
dA(x).

Here, as before, r = |x| and ∂
∂r is the external normal derivative on the

sphere |x| = t.
The function ΨR is radial and thus, due to Lemma 6, the convolution

F := f ∗ ΨR has the form F (x) =
d(m)∑
l=1

Fl(r)Yl(θ). Projection of the expo-

nential function e−iξ·x on the space of spherical harmonics of degree m can
be given in terms of Bessel functions (see [9, Theorem 3.10]), which leads
to the following formula:

ĥ(ξ)=cmλm
0 tn+m−1

d(m)∑

l=1

(
F ′l (t)jn/2+m−1(λ0t)−Fl(t)j′n/2+m−1(λ0t)

)
. (16)

In what follows, the estimate is done the same way for any l between 1 and
d(m), so we will drop the sum over l and work with a single term.

In order to prove that ĥ(ξ) = 0, it suffices to check that the expression
in the right hand side tends to 0 as t → ∞. This can now be easily shown
using the Lp condition on F and the known estimate for Bessel functions:

jn/2+m−1(t), j′n/2+m−1(t) = O(t−
n+2m−1

2 ), t →∞. (17)

Indeed, let us pick t0 > t and average both sides of (16) for t from t0 to 2t0:

ĥ(ξ) = cm
1
t0

2t0∫

t0

[
F ′l (t)jn/2+l−1(λ0t)− Fl(t)j′n/2+l−1(λ0t)

]
tn+m−1 dt. (18)

Let A(t) := |F ′l (t)|+ |Fl(t)|. From (17) and (18) one obtains:

|ĥ(ξ)| ≤ cm

t0

2t0∫

t0

A(t)t
n−1

2 dt =
cm

t0

2t0∫

t0

A(t)t
n−1

p t(n−1) p−2
2p dt. (19)
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Functions Fl(r) and F ′l (r) are the radial parts of functions in Lp(Rn) and
therefore belong to Lp((0,∞), rn−1dr). So is the function A(r). We now
apply Hölder inequality to (19) to get

|ĥ(ξ)| ≤ cm

t0

( 2t0∫

t0

Ap(t)tn−1 dt

) 1
p
( 2t0∫

t0

t(
n−1

2 −n−1
p )q dt

) 1
q

, (20)

where the index q dual to p is introduced in the standard manner: p−1 +
q−1 = 1, or q = p/(p−1). The second factor in (20) can be easily computed:

( 2t0∫

t0

t(
n−1

2 −n−1
p )q dt

) 1
q

= Ct
n−1

2 −n
p +1

0 ,

and hence (20) leads to the estimate:

|ĥ(ξ)| ≤ cm‖A‖Lp((t0,2t0),tn−1dt)t
n−1

2 −n
p

0 . (21)

The condition p ≤ 2n/(n−1) shows that (n−1)/2−n/p ≤ 0, and hence the
last factor in (21) is bounded. Since the condition that F ∈ Lp(Rn) implies

‖A‖Lp((t0,2t0),tn−1dt) → 0 when t0 →∞,

this shows the required equality ĥ(ξ) = 0. ¤
Corollary 8. The function

Φ(ξ) :=
ĥ(ξ)

j(n−2)/2(R|ξ|)
is entire of the Paley–Wiener class (10).

The only remaining step is to show that the same statement as in Corol-
lary 8 applies to the function f̂(ξ):

Lemma 9. The Fourier transform f̂(ξ) is an entire function of the
Paley–Wiener class (10).

Proof. Corollary 8 says that the right hand side in (14) is an entire function
of the Paley–Wiener class (10). The Lemma (and thus the Theorem 1) will
be proven if we show that in fact f̂ = Φ.

The tempered distribution f̂(ξ), ξ ∈ Rn coincides with Φ(ξ) outside of
the union of the discrete set of spheres Sk defined by (simple) zeros of Bessel
function:

Sk =
{
ξ ∈ Rn : ξ2

1 + · · ·+ ξ2
n = λ2

k

}
,

where
j(n−2)/2(λkR) = 0.

This means that f̂ can differ from Φ only by terms supported on these
spheres:

f̂(ξ) = Φ(ξ) +
∑

k

ck(ξ)δ(|ξ| − |λk|).
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Although in principle higher order distibituions concentrated on the spheres
could have arised, the equality (9), together with the simplicity of zeros of
the Bessel function involved, shows that these higher order terms are not
present.

We now observe that since

f(x) =
d(m)∑

l=1

fl(r)Y m
l (θ),

the coefficients ck(ξ) must have the similar form

ck(ξ) =
d(m)∑

l=1

ak,lY
m
l (η), ak = const , ξ = |ξ|η, |η| = 1.

Our aim is to show that there are no such distributional terms in f̂ , i.e. all
coefficients ak,l must vanish.

Fix k and choose a positive number ε so small that the spherical layer

L :=
{
λk − ε ≤ |ξ| ≤ λk + ε

}

containing Sk, does not contain other spheres Sm with m 6= k.
Let now ψ be a radial function from the Schwartz class, whose Fourier

transform vanishes outside the spherical layer L and such that ψ̂(ξ) = 1, ξ ∈
Sk. We can now localize the sphere Sk in the spectrum of f by considering
the convolution g = ψ ∗ f . By construction,

ĝ(ξ) = Φ(ξ)ϕ̂(ξ) + ckYl(η)(δ(|ξ| − λk).

The first term is in the Schwartz class, while the second one is, up to a con-
stant factor, Fourier transform of Bessel function jn/2+l−1(|x|) and therefore
after convolving with ψ we have

g(x) = ψ ∗ ϕ + const akjn/2+l−1(|x|),
where ψ is inverse Fourier transform of Ψ and hence is also a Schwartz
function. By the condition for f and by the construction, the functions
g and ψ ∗ ϕ belong to Lp(Rn) with p < 2n/n − 1, while Bessel function
jn/2+l−1 is not in this class. Therefore the coefficient ak must be equal to
zero.

Thus, there is no δ-function terms in f̂ and f̂ = Ψ is an entire function
in Cn satisfying, as it was explained above, the Paley–Wiener estimate that
implies that suppf ⊂ B(0, R).

Let now p > 2n/(n−1). Then one can find a counterexample, where even
compactness of support of f cannot be guaranteed, using Bessel functions.
The function

f(x) = |x|1−n/2Jn/2−1(λ|x|) (22)
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provides such a counterexample (due to L. Zalcman). Indeed, consider the
following spherical mean mapping M :

Mg(x, t) =
1

ωn

∫

S(0,1)

g(x + tθ) dθ,

which averages any continuous function g over spheres. It is well known
that f defined in 22 satisfies the following functional identity:

Mf(x, t) = const f(x)f(t). (23)

Thus, if λ is chosen as a zero of Jn/2−1, the relation (23) implies that the
spherical means of f(x) over all spheres of radius 1 are equal to zero. Also,
the known asymptotic behavior of Bessel functions shows that f ∈ Lq(Rn)
for any q > 2n/(n− 1). This completes the proof of Theorem 1. ¤

3. A Local Result

In order to extend the statement of Theorem 1 to all R-convex domains,
we need to establish first the following local theorem, which in some par-
ticular cases as well as in different related versions has been established
previously [6], [12].

Theorem 10. Let f(x) be an infinitely differentiable function in the ball
B(0, R + ε) ⊂ Rn and its spherical averages over all spheres of radius R
contained in this ball are equal to zero. If f vanishes in the ball B(0, R),
then it vanishes in the whole ball B(0, R + ε).

Proof. Without loss of generality, we can assume that R = 1. As in [6],
[12], we will exploit relations between spherical and plane waves [6, Ch. 1
and 4].

For a function u(x) on Rn we will denote by u#(x) its radialization

u#(x) :=
∫

k∈O(n)

u(kx) dk,

where dk is the normalized Haar measure on O(n). Function u#(x) is clearly
radial and thus is a function of a single variable |x|. Abusing notations, we
will write u#(x) = u#(|x|).

The following simple statement (which we will prove for completeness)
will be useful:

Lemma 11. Let u(x), v(x) be continuous functions on Rn and v(x) be
radial and compactly supported. Then

(u ∗ v)# = u# ∗ v.

Proof. Indeed,

(u ∗ v)#(x) =
∫

O(n)

∫

Rn

u(kx− y)v(y) dy dk.
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Changing the variables in the y-integral from y to ky, using the rotational
invariance of v, and changing the order of integration, one gets

(u ∗ v)#(x) =
∫

Rn

( ∫

O(n)

u(kx− ky) dk

)
v(y) dy = (u# ∗ v)(x).

This proves the lemma. ¤

In particular, the convolution of two radial functions is radial.
The relation between plane waves and radial functions that we need is

contained in the following result of [6, Ch.4, formulas (4.13) and (4.16)]:

Lemma 12 ([6]). Let e ∈ Rn and g(p) be a function of a scalar vari-
able p ∈ R. We consider the ridge function g(〈x, e〉) and its radialization
g(〈·, e〉)#, which we will identify with a function f(r) of scalar variable r.
Then the relations between the functions f(r) and g(p) are provided by the
following Abel type transforms:

f(r) = (Ag)(r) := 2
ωn−1

ωn
r2−n

r∫

0

(r2 − s2)
n−3

2 g(p) dp (24)

and

g(p) = (A−1f)(p) :=
2n−1p

(n− 2)!

( d

dp2

)n−1
p∫

0

rn−1(p2 − r2)
n−3

2 f(r) dr. (25)

We can now derive the following useful relation:

Lemma 13. Let δS denote the normalized measure supported by the unit
sphere. Let also g(p) be a continuous function on R. Then

(Ag ∗ δS)(p) = constA(
g ∗1 (1− |p|2)

n−3
2

+

)
, (26)

where ∗1 denotes one-dimensional convolution and Ag in the left hand side
is considered as a radial function on Rn, i.e. Ag(|x|) for x ∈ Rn.

Proof. Since Ag = g(〈·, e〉)#, the left hand side, according to Lemma 11
can be rewritten as (

g(〈·, e〉) ∗ δS

)#
.

It is straightforward to check that
(
g(〈·, e〉) ∗ δS

)
(x)

is equal to the ridge function
(
g ∗1 (1− |p|2)

n−3
2

+

)∣∣∣
p=〈x,e〉

.

Now radialization of this ridge function gives the right hand side expression
in (26). ¤



Single Radius Spherical Transform 13

We can complete now the proof of our theorem. We start with the case
of a radial function, which we write as f(|x|) for some function f(r) of a
single variable. By the assumption, (f ∗ δS)(x) = 0 for |x| < ε. Then (26)
implies that

(
g ∗R1 (1− |p|2)n−3

2
)
(s) = 0 (27)

for s ≤ ε, where g(p) := (A−1f)(p). It follows from (25) that the condition
f(x) = 0 for |x| ≤ 1 implies g(p) = 0 for |p| ≤ 1, and therefore ( 27) can be
rewritten as

1+ε∫

1

g(p)(1− |p− s|2)
n−3

2
+ dp = 0, s ≤ ε.

Thus the Titchmarsh theorem [11] (see also [5, Theorem 4.3.3], [7, Lecture
16], or [14, Ch. VI]) implies that g(p) = 0 for 1 ≤ p ≤ 1 + ε. Since f = Ag,
the relation (24) leads to the conclusion that f(x) = 0 for |x| ≤ 1 + ε. This
proves the statement of the theorem in the radial case.

It remains now to pass from radial to non-radial functions. To this end,
we observe that the C∞ function f has zero integrals over all spheres of
radius 1 centered in the open ball B(0, ε). Thus, all its partial derivatives
Dαf have the same property. Since this vanishing condition is invariant
under rotations, according to Lemma 11, it also holds for radializations
(Dαf)#. Since the theorem is already proven for radial functions, all these
radializations vanish, i.e.

∫

|x|=r

Dαf(x) dA(x) = 0 (28)

for all 0 < r < 1 + ε.
Let us prove now that on each sphere |x| = t for t ∈ [0, 1+ε) the function

f , along with all its derivatives, is orthogonal to all monomials. This, due
to the Weierstrass Theorem will imply the needed property that f = 0 in
B(0, 1 + ε).

We prove this claim by induction with respect to the degree of the mono-
mial. For a zero degree monomial, the claim is true, due to (28). Suppose
that ∫

|x|=t

p(x)Dαf(x) dA(x) = 0, (29)

for all monomials p(x) of degree not exceeding N and all multiindices α.
Integrating both sides of this identity with respect to t from 0 to any r < 1+ε
yields ∫

|x|≤r

p(x)Dαf(x) dx = 0.
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We now replace the multiindex α with β = α + δj , where the multiindex δj

has 1 in jth place and 0s otherwise and write

p(x)Dβf(x) =
∂

∂xj
(p(x)Dαf(x))− ∂p

∂xj
Dαf(x). (30)

The second term on the right does not contribute to the integral over the
ball |x| ≤ r, due to the induction assumption, and thus identity (29), where
α is replaced by β, reduces to

∫

|x|≤r

∂

∂xj
(p(x)Dαf(x)) dx = 0.

Using Stokes’ formula, we obtain
∫

|x|=r

xjp(x)Dαf(x) dA(x) = 0.

Since j = 1, . . . , n is arbitrary, we conclude that identity (29) holds for all
monomials of degree N + 1. This completes the proof of theorem. ¤

4. Proof of Theorem 3

We can now prove Theorem 3 that extends Theorem 1 to the case of R-
convex domains. So, we assume that K ⊂ Rn is a closed R-convex domain
and a function f ∈ Lp(Rn) with p ≤ 2n/(n − 1) is such that its spherical
means over almost every sphere of radius R not intersecting K is zero. As
it has been shown before, one can assume, without restriction of generality,
that the function is smooth. Consider the set C of centers of all balls of
radius K not intersecting K. Due to R-convexity of K, this set is connected,
and the union of the corresponding balls covers the whole complement of
K. Consider also the subset Cf ⊂ C of such centers x that f vanishes in
the ball B(x,R). If we establish that in fact Cf = C, this will prove the
theorem.

Theorem 1 implies that f = 0 outside the convex hull of K. Thus, in
particular, the set Cf is non-empty, since it contains all points x with a
sufficiently large norm. It is also obvious that, due to continuity of f , the
set Cf is relatively closed in C. Let us now prove that it is also relatively
open. Due to connectedness of C, this will imply that Cf = C and thus
f = 0 in the whole complement of K, which is the statement of the theorem.

Indeed, let x ∈ Cf . This means that f = 0 in B(x,R). There exists a
positive ε such that the ball B(x,R+ε) is inside the complement of K. Then
the function f satisfies the conditions of Theorem 10 in B(x,R + ε), and
thus f = 0 in B(x,R + ε). In particular, f vanishes in the ball B(y, R) for
any y ∈ Rn such that |y− x| < ε. This means that all such points y belong
to Cf , and hence Cf is open. This finishes the proof of the theorem. ¤
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5. Remarks

(1) The statement of Theorem 10 holds also for functions of finite
smoothness, if one knows that spherical averages of f vanish for
all spheres of radius r < R (rather than r = R as in Theorem 10).

(2) The local Theorem 10, has been established previously in some par-
ticular cases, as well as in different related versions in [6], [12]. For
instance, one can check that the consideration in the second section
of [6, Ch. VI] provides such a result in 3D, although the local for-
mulation is not stated there. In [12], a theorem similar to Theorem
10 is proven for the case of integrals over balls.
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