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Abstract. The purpose of this paper is to construct explicitly, in terms
of elementary functions, fundamental matrices of solutions to the differen-
tial equations of the elasticity theory of hemitropic materials with regard
to thermal stresses. We consider the differential equations corresponding to
the static equilibrium case, and also to the pseudo-oscillations and steady
state oscillations cases. We derive the corresponding Green’s formulas and
construct the integral representation formulas of solutions by means of gen-
eralized layer and Newtonian potentials. We formulate the basic boundary
value problems in appropriate function spaces and prove the uniqueness
theorems. We develop the potential method and prove the existence and
regularity theorems for basic and mixed type boundary value problems.
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1. Introduction

The main goal of our investigation is to study the basic boundary value
and initial boundary value problems of the theory of elasticity for bodies
with complex inner structure. Technological and industrial developments,
and also great success in biological and medical sciences require to use more
generalized and refined models for elastic bodies. In a generalized solid con-
tinuum, the usual displacement field has to be supplemented by a microro-
tation field. Such materials are called micropolar or Cosserat solids. They
model composites with a complex inner structure whose material particles
have 6 degree of freedom (3 displacement components and 3 microrotation
components). Recall that the classical elasticity theory allows only 3 degrees
of freedom (3 displacement components).

Experiments have shown that micropolar materials possess quite different
properties in comparison with the classical elastic materials (see, e.g., [2],
[3], [6], [13], [29], and the references therein). For example, in noncentrosym-
metric micropolar materials (which are called also as hemitropic or chiral
materials) there propagate the left-handed and right-handed elastic waves.
Moreover, the twisting behaviour under an axial stress is a purely hemitropic
(chiral) phenomenon and has no counterpart in classical elasticity. Note that
hemitropic materials are not isotropic with respect to inversion, i.e., they
are isotropic with respect to all proper orthogonal transformations but not
with respect to mirror reflections.

Materials may exhibit chirality on the atomic scale, as in quartz and in
biological molecules - DNA, as well as on a large scale, as in composites
with helical or screw–shaped inclusions, certain types of nanotubes, bone,
fabricated structures such as foams, chiral sculptured thin films and twisted
fibers. For a wider overview of the subject concerning different areas of
applications we refer to the references [2], [3], [13], [22], [55], [52], [28], [29],
[31], [32], [40], [48], [11], [60].

Mathematical models describing the chiral properties of elastic hemitropic
materials have been proposed by Aero and Kuvshinski [2], [3] (for the his-
torical notes see also [13], [48], [11], and the references therein).

Our main goal is to investigate mathematical problems of the elasticity

theory for hemitropic solids with regard to thermal effects. In this case, be-
side the above mentioned displacement and microrotation vectors the field
equations contain the temperature distribution scalar function (see, e.g.,
[11]). Note that in the theory of hemitropic elasticity there are introduced
the asymmetric force stress tensor and moment stress tensor, which are
related with the asymmetric strain tensor, torsion (curvature) tensor and
temperature function via the constitutive equations. All these mechanical
quantities are expressed in terms of the components of the displacement
vector, microrotation vector and temperature distribution. In turn the dis-
placement vector, microrotation vector and temperature function satisfy
a coupled complex system of second order partial differential equations of
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dynamics. When the mechanical characteristics do not depend on time
variable t we have the differential equations of statics. If the characteristics
are time harmonic dependent (i.e., they are represented as the product of
the time dependent exponential function exp{−iσt} and a function of the
spatial variable x ∈ R

3) then we have the steady state oscillation equations.
Here σ is a real frequency parameter. Note that if σ = 0, then we obtain
the equations of statics. If σ = σ1 + iσ2 is a complex parameter, then we
have the so called pseudo-oscillation equations (which are related to the dy-
namical equations via Laplace transform). The corresponding simultaneous
equations generate 7× 7 strongly elliptic, formally non-self-adjoint differen-
tial operators with constant coefficients involving 14 material parameters.

In this paper, first we collect the field equations and introduce the cor-
responding matrix operators. Afterwards, we derive the corresponding
Green’s formulas and formulate the basic boundary value problems. Fur-
ther, we construct the matrices of fundamental solutions explicitly, in terms
of elementary functions, for the differential operators of statics, steady
state oscillations and pseudo-oscillations. We formulate the generalized
Sommerfeld–Kupradze type radiation conditions which play a crucial role to
establish the uniqueness results in the case of exterior boundary value prob-
lems (BVP). Applying the theory of pseudodifferential equations and the
potential method we investigate the basic and mixed type BVPs and prove
the corresponding uniqueness and existence theorems in Hölder, Bessel po-
tential and Besov spaces. We study the smoothness properties of solutions
and derive almost the best regularity results for mixed type BVPs.

The basic boundary value problems (BVPs) corresponding to the model
when thermal effects are not taken into consideration are well investigated
for general domains of arbitrary shape and the uniqueness and existence
theorems are proved, and regularity results for solutions are established by
potential methods as well as by variational methods (see [11], [51], [44], [45],
[46], and the references therein).

2. Field Equations

2.1. Constitutive relations and basic differential equations. Denote
by R3 the three-dimensional Euclidean space and let Ω+ ⊂ R3 be a bounded
domain with a boundary S := ∂Ω+, Ω+ = Ω+ ∪ S. Further, let Ω− =
R3\Ω+. We assume that Ω ∈ {Ω+,Ω−} is filled with an elastic material
possessing the hemitropic properties.

Denote by u = (u1, u2, u3)
> and ω = (ω1, ω2, ω3)

> the displacement
vector and the microrotation vector, respectively. By ϑ we denote the tem-
perature increment – temperature distribution function. Here and in what
follows the symbol (·)> denotes transposition. Note that the microrotation
vector in the hemitropic elasticity theory is kinematically distinct from the
macrorotation vector 1

2 curl u.
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Throughout the paper the central dot denotes the real scalar product,

i.e., a · b :=
N∑

k=1

ak bk for a, b ∈ CN .

The force stress {τpq} and the couple stress {µpq} tensors in the lin-
ear theory of hemitropic thermoelasticity read as follows (the constitutive
equations)

τpq = τpq(U) := (µ+ α)∂puq + (µ− α)∂qup + λδpq div u+ δδpq divω+

+ (κ + ν)∂pωq + (κ − ν)∂qωp − 2α

3∑

k=1

εpqkωk − δpqηϑ, (2.1)

µpq = µpq(U) := δδpq div u+ (κ + ν)
[
∂puq −

3∑

k=1

εpqkωk

]
+ βδpq divω+

+ (κ−ν)
[
∂qup−

3∑

k=1

εqpkωk

]
+(γ+ε)∂pωq+(γ−ε)∂qωp−δpqζϑ, (2.2)

where U = (u, ω, ϑ)>, δpq is the Kronecker delta, εpqk is the permutation
(Levi–Civitá) symbol, and α, β, γ, δ, λ, µ, ν, κ, and ε are the material
constants, while η > 0 and ζ > 0 are constants describing the coupling of
mechanical and thermal fields (see [2], [11]), ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂xj ,
j = 1, 2, 3.

The linear equations of dynamics of the thermoelasticity theory of he-
mitropic materials have the form (see, e.g., [11])

3∑

p=1

∂pτpq(x, t) + %Fq(x, t) = %
∂2uq(x, t)

∂t2
, q = 1, 2, 3,

3∑

p=1

∂pµpq(x, t)+

3∑

l,r=1

εqlrτlr(x, t)+%Gq(x, t)=I
∂2ωq(x, t)

∂t2
, q=1, 2, 3,

κ′∆ϑ(x, t)−η ∂

∂t
div u(x, t)−ζ ∂

∂t
divω(x, t)−κ′′ ∂

∂t
ϑ(x, t)+Q(x, t)=0,

where t is the time variable, F = (F1, F2, F3)
> and G = (G1, G2, G3)

> are
the body force and body couple vectors per unit mass, Q is the heat source
density, % is the mass density of the elastic material, and I is a constant
characterizing the so called spin torque corresponding to the interior micro-
rotations (i.e., the moment of inertia per unit volume); here κ′ = λ0

T0
and

κ′′ = c0

T0
, where λ0 > 0 is the heat conduction coefficient, T0 > 0 is a natural

state temperature and c0 > 0 is the specific heat coefficient.
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Using the relations (2.1)–(2.2) we can rewrite the above dynamic equa-
tions as

(µ+ α)∆u(x, t) + (λ + µ− α) graddiv u(x, t) + (κ + ν)∆ω(x, t)+

+(δ + κ − ν) graddivω(x, t) + 2α curlω(x, t)−

−η gradϑ(x, t) + %F (x, t) = %
∂2u(x, t)

∂t2
,

(κ + ν)∆u(x, t) + (δ + κ − ν) graddiv u(x, t) + 2α curlu(x, t)+

+(γ + ε)∆ω(x, t) + (β + γ − ε) graddivω(x, t) + 4ν curlω(x, t)−

−4αω(x, t)− ζ gradϑ(x, t) + %G(x, t) = I ∂
2ω(x, t)

∂t2
,

κ′∆ϑ(x, t) − η
∂

∂t
div u(x, t)− ζ

∂

∂t
divω(x, t)−

−κ′′ ∂
∂t
ϑ(x, t) +Q(x, t) = 0 ,

(2.3)

where ∆ is the Laplace operator.
If all the quantities involved in these equations are harmonic time de-

pendent, i.e., u(x, t) = u(x) exp{−itσ}, ω(x, t) = ω(x) exp{−itσ}, ϑ(x, t) =
ϑ(x) exp{−itσ}, F (x, t) = F (x) exp{−itσ}, G(x, t) = G(x) exp{−itσ} and
Q(x, t) = Q(x) exp{−itσ} with σ ∈ R and i =

√
−1, we obtain the steady

state oscillation equations of the hemitropic theory of thermoelasticity:

(µ+ α)∆u(x) + (λ+ µ− α) graddiv u(x) + (κ + ν)∆ω(x)+

+(δ + κ − ν) graddivω(x) + 2α curlω(x)−
−η gradϑ(x) + %σ2u(x) = −%F (x),

(κ + ν)∆u(x) + (δ + κ − ν) graddiv u(x) + 2α curlu(x)+

+(γ + ε)∆ω(x) + (β + γ − ε) graddivω(x) + 4ν curlω(x)−
−ζ gradϑ(x) + (Iσ2 − 4α)ω(x) = −%G(x),

(κ′∆ + iσκ′′)ϑ(x) + iησ div u(x) + iζσ divω(x) = −Q(x);

(2.4)

here u, ω, F , and G are complex-valued vector functions, while ϑ and Q are
complex-valued scalar functions, and σ is a frequency parameter.

If σ = σ1 + iσ2 is a complex parameter with σ2 6= 0, then the above
equations are called the pseudo–oscillation equations, while for σ = 0 they
represent the equilibrium equations of statics.

Let us introduce the block wise 7× 7 matrix differential operator corre-
sponding to the system (2.4):

L(∂, σ) :=



L(1)(∂, σ) L(2)(∂, σ) L(5)(∂, σ)

L(3)(∂, σ) L(4)(∂, σ) L(6)(∂, σ)

L(7)(∂, σ) L(8)(∂, σ) L(9)(∂, σ)




7×7

, (2.5)
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where

L(1)(∂, σ) :=
[
(µ+ α)∆ + %σ2

]
I3 + (λ + µ− α)Q(∂),

L(2)(∂, σ)=L(3)(∂, σ) :=(κ+ν)∆I3+(δ+κ−ν)Q(∂)+2αR(∂),

L(4)(∂, σ) :=
[
(γ+ε)∆+(Iσ2−4α)

]
I3+(β+γ−ε)Q(∂)+4νR(∂),

L(5)(∂, σ) := −η∇>, L(6)(∂, σ) := −ζ∇>, L(7)(∂, σ) := iησ∇,
L(8)(∂, σ) := iζσ∇, L(9)(∂, σ) := κ′∆ + iσκ′′.

(2.6)

Here and in the sequel Ik stands for the k × k unit matrix and

R(∂) :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




3×3

,

Q(∂) := [∂k∂j ]3×3, ∇ ≡ ∇(∂) := [∂1, ∂2, ∂3].

(2.7)

It is easy to see that for v = (v1, v2, v3)
>

R(∂)v =



∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1


 = curl v, Q(∂)v = graddiv v, (2.8)

R(−∂) = −R(∂) = [R(∂)]>, Q(∂)R(∂) = R(∂)Q(∂) = 0,

Q(∂) = [Q(∂)]>, [R(∂)]
2

= Q(∂)−∆I3, [Q(∂)]
2

= Q(∂)∆.
(2.9)

Due to the above notation, the system (2.4) can be rewritten in matrix
form as

L(∂, σ)U(x) = Φ(x), U = (u, ω, ϑ)>, Φ = (−%F,−%G,−Q)>. (2.10)

Note that L(∂, σ) is not formally self-adjoint. Further, let us remark that
the differential operator

L(∂) := L(∂, 0) (2.11)

corresponds to the static equilibrium case, while the formally self-adjoint
differential operator

L0(∂) :=



L

(1)
0 (∂) L

(2)
0 (∂) [0]3×1

L
(3)
0 (∂) L

(4)
0 (∂) [0]3×1

[0]1×3 [0]1×3 κ′∆




7×7

(2.12)

with

L
(1)
0 (∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L
(2)
0 (∂) = L

(3)
0 (∂) := (κ + ν)∆I3 + (δ + κ − ν)Q(∂),

L
(4)
0 (∂) := (γ + ε)∆I3 + (β + γ − ε)Q(∂),

(2.13)

represents the principal homogeneous part of the operators (2.5) and (2.11).
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Denote

L̃(∂, σ) :=

[
L(1)(∂, σ) L(2)(∂, σ)

L(3)(∂, σ) L(4)(∂, σ)

]

6×6

,

L̃0(∂) :=

[
L

(1)
0 (∂) L

(2)
0 (∂)

L
(3)
0 (∂) L

(4)
0 (∂)

]

6×6

.

(2.14)

These operators correspond to the equations of hemitropic elasticity when
thermal effects are not taken into consideration ([44]). It is clear that the

operator L0(∂), L̃(∂, σ) and L̃0(∂) are formally self-adjoint.

2.2. Generalized stress operators. The components of the force stress
vector τ (n) and the coupled stress vector µ(n), acting on a surface element
with a normal vector n = (n1, n2, n3), read as

τ (n)
q =

3∑

p=1

τpqnp, µ(n)
q =

3∑

p=1

µpqnp, q = 1, 2, 3. (2.15)

It is also well known that the normal component of the heat flux vector
across a surface element with a normal vector n = (n1, n2, n3) is expressed
by the normal derivative of the temperature function

κ′n · ∇ϑ = κ′
3∑

p=1

np∂pϑ = κ′∂nϑ, (2.16)

where ∂n = ∂/∂n denotes the usual normal derivative.
Throughout the paper we will refer the six vector (τ (n), µ(n))> as the

mechanical thermo-stress vector, while the seven vector (τ (n), µ(n), κ′∂nϑ)>

as generalized thermo-stress vector.
Let us introduce the generalized thermo-stress operators

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n) −ηn>
T (3)(∂, n) T (4)(∂, n) −ζn>

]

6×7

, (2.17)

P(∂, n) =



T (1)(∂, n) T (2)(∂, n) −ηn>
T (3)(∂, n) T (4)(∂, n) −ζn>

[0]1×3 [0]1×3 κ′∂n




7×7

, (2.18)

where

T (j) = [T (j)
pq ]3×3, j = 1, 4, n> = (n1, n2, n3)

>,

T (1)
pq (∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q ,

T (2)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑

k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q ,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑

k=1

εpqknk.

(2.19)
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It can be easily checked that for an arbitrary vector U = (u, ω, ϑ)> we have

T (∂, n)U = (τ (n), µ(n))>, P(∂, n)U = (τ (n), µ(n), κ′∂nϑ)>,

i.e., the six vector T (∂, n)U corresponds to the mechanical thermo-stress
vector and the seven vector P(∂, n)U corresponds to the generalized thermo-
stress vector.

Further, let us introduce the associated boundary operators which oc-
cur in Green’s formulas and are related to the adjoint differential operator
L∗(∂, σ) := L>(−∂, σ):

T ∗(∂, n) =

[
T (1)(∂, n) T (2)(∂, n) −iση0n>
T (3)(∂, n) T (4)(∂, n) −iσζ0n>

]

6×7

, (2.20)

P∗(∂, n) =



T (1)(∂, n) T (2)(∂, n) −iση0n>
T (3)(∂, n) T (4)(∂, n) −iσζ0n>

[0]1×3 [0]1×3 κ′∂n




7×7

. (2.21)

Note that the principal homogeneous parts of the operators T (∂, n) and
T ∗(∂, n) are the same, as well as the principal homogeneous parts of the
operators P(∂, n) and P∗(∂, n).

Note that when the thermal effects are not taken into consideration the
hemitropic stress operator reads as [44]

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

. (2.22)

Evidently, for U = (u, ω, 0) and Ũ = (u, ω) we have T (∂, n)U = T (∂, n)Ũ
in view of (2.17) and (2.22).

2.3. Green’s formulae. For vector functions Ũ = (u, ω)>, Ũ ′ = (u′, ω′)>∈
[C2(Ω+)]6, we have the following Green formula [44]

∫

Ω+

[
Ũ ′ · L̃(∂, 0)Ũ + E(Ũ ′, Ũ)

]
dx =

∫

∂Ω+

{Ũ ′}+ · {T (∂, n)Ũ}+ dS, (2.23)

where the operators L̃(∂, 0) and T (∂, n) are given by (2.14) and (2.22) re-
spectively, ∂Ω+ is a piecewise smooth manifold, n is the outward unit normal
vector to ∂Ω+, the symbols { · }± denote the limiting values on ∂Ω± from
Ω± respectively, E(· , ·) is the so called energy bilinear form,

E(Ũ ′, Ũ) = E(Ũ , Ũ ′) =

3∑

p,q=1

{
(µ+ α)u′pqupq + (µ− α)u′pquqp+

+ (κ+ν)(u′pqωpq+ω′pqupq)+(κ−ν)(u′pqωqp+ω′pquqp)+(γ+ε)ω′pqωpq+

+ (γ − ε)ω′pqωqp + δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
(2.24)
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with

upq = ∂puq −
3∑

k=1

εpqkωk, ωpq = ∂pωq , p, q = 1, 2, 3. (2.25)

In what follows the over bar denotes complex conjugation. The necessary

and sufficient conditions for the quadratic form E(Ũ , Ũ) to be positive def-
inite are the following inequalities (see [3], [11], [17])

µ > 0, α > 0, γ > 0, ε > 0,

λ+ 2µ > 0, µγ − κ
2 > 0, αε− ν2 > 0,

(λ+µ)(β+γ)−(δ+κ)2>0, (3λ+2µ)(3β+2γ)−(3δ+2κ)2>0,

(µ+α)(γ+ε)−(κ+ν)2>0, (λ+2µ)(β+2γ)−(δ+2κ)2>0,

µ
[
(λ+ µ)(β + γ)− (δ + κ)2

]
+ (λ+ µ)(µγ − κ

2) > 0,

µ
[
(3λ+ 2µ)(3β + 2γ)− (3δ + 2κ)2

]
+ (3λ+ 2µ)(µγ − κ

2) > 0.

(2.26)

Let us note that, if the condition 3λ + 2µ > 0 is fulfilled, which is very
natural in the classical elasticity, then the above conditions are equivalent
to the following simultaneous inequalities

µ>0, α>0, γ>0, ε>0, 3λ+2µ>0, µγ−κ
2>0, αε−ν2>0,

(µ+α)(γ+ε)−(κ+ν)2>0, (3λ+2µ)(3β+2γ)−(3δ+2κ)2>0.
(2.27)

For simplicity in what follows we assume that 3λ+2µ > 0 and therefore the
conditions (2.27) imply positive definiteness of the energy quadratic form

E(Ũ , Ũ) defined by (2.24).
From (2.27) it follows that

γ > 0, ε > 0, λ+ µ > 0, β + γ > 0,

d1 := (µ+ α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ+ 2µ)(β + 2γ)− (δ + 2κ)2 > 0.

(2.28)

The formula (2.24) can be rewritten as

E(Ũ , Ũ ′)=
3λ+2µ

3

(
div u+

3δ+2κ

3λ+2µ
divω

)(
div u′+

3δ+2κ

3λ+2µ
divω′

)
+

+
1

3

(
3β + 2γ − (3δ + 2κ)2

3λ+ 2µ

)
(divω)(divω′) +

(
ε− ν2

α

)
curlω · curlω′+

+
µ

2

3∑

k,j=1, k 6=j

[∂uk

∂xj
+
∂uj

∂xk
+

κ

µ

(∂ωk

∂xj
+
∂ωj

∂xk

)][∂u′k
∂xj

+
∂u′j
∂xk

+
κ

µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(∂ωk

∂xk
− ∂ωj

∂xj

)][∂u′k
∂xk

−
∂u′j
∂xj

+
κ

µ

(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+
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+
(
γ − κ2

µ

) 3∑

k,j=1, k 6=j

[
1

2

(∂ωk

∂xj
+
∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1

3

(∂ωk

∂xk
− ∂ωj

∂xj

)(∂ω′k
∂xk

−
∂ω′j
∂xj

)]
+

+ α
(

curlu+
ν

α
curlω − 2ω

)
·
(

curlu′ +
ν

α
curlω′ − 2ω′

)
. (2.29)

In particular,

E(Ũ , Ũ) =
3λ+ 2µ

3

∣∣∣ div u+
3δ + 2κ

3λ+ 2µ
divω

∣∣∣
2

+

+
1

3

(
3β + 2γ − (3δ + 2κ)2

3λ+ 2µ

)
| divω|2 +

+
µ

2

3∑

k,j=1, k 6=j

∣∣∣∂uk

∂xj
+
∂uj

∂xk
+

κ

µ

(∂ωk

∂xj
+
∂ωj

∂xk

)∣∣∣
2

+

+
µ

3

3∑

k,j=1

∣∣∣∂uk

∂xk
− ∂uj

∂xj
+

κ

µ

(∂ωk

∂xk
− ∂ωj

∂xj

)∣∣∣
2

+

+
(
γ − κ2

µ

) 3∑

k,j=1, k 6=j

[1

2

∣∣∣∂ωk

∂xj
+
∂ωj

∂xk

∣∣∣
2

+
1

3

∣∣∣∂ωk

∂xk
− ∂ωj

∂xj

∣∣∣
2
]

+

+
(
ε− ν2

α

)
| curlω|2 + α

∣∣∣ curlu+
ν

α
curlω − 2ω

∣∣∣
2

. (2.30)

We formulate here the following technical lemma.

Lemma 2.1. Let Ũ = (u, ω)> ∈ [C1(Ω+)]6 be a complex–valued vector

and E(Ũ , Ũ) = 0 in Ω+. Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω+, (2.31)

where a and b are arbitrary three-dimensional constant complex vectors.

Moreover,

(i) for an arbitrary vector Ũ = (u, ω)> defined by formulas (2.31) and

an arbitrary unit vector n = (n1, n2, n3) the generalized hemitropic

stress vector T (∂, n)Ũ vanishes identically, i.e., T (∂, n)Ũ(x) = 0
for all x ∈ Ω+.

(ii) for an arbitrary vector U := (Ũ , 0)> = (u, ω, 0)>, where u and

ω are given by formulas (2.31), and an arbitrary unit vector n =
(n1, n2, n3) the generalized hemitropic thermo-stress vector P(∂, n)U
vanishes identically, i.e., P(∂, n)U(x) = 0 for all x ∈ Ω+.

Proof. The first part of the lemma is shown in [44]. The second part easily
follows from the first part and from the formulas (2.17), (2.18), (2.22). �

Throughout the paper Lp, W
s
p , Hs

p , and Bs
p,q (with s ∈ R, 1 < p < ∞,

1 ≤ q ≤ ∞) denote the well-known Lebesgue, Sobolev–Slobodetski, Bessel
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potential, and Besov spaces, respectively (see, e.g., [56], [57], [36]). We
recall that Hs

2 = W s
2 = Bs

2,2, W
t
p = Bt

p,p, and Hk
p = W k

p , for any s ∈ R, for
any positive and non-integer t, and for any non-negative integer k.

Further, let M0 be a Lipschitz surface without boundary. For a Lipschitz

sub-manifold M ⊂ M0 we denote by H̃s
p(M) and B̃s

p,q(M) the subspaces
of Hs

p(M0) and Bs
p,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂M
}
,

B̃s
p,q(M) =

{
g : g ∈ Bs

p,q(M0), supp g ⊂M
}
,

while Hs
p(M) and Bs

p,q(M) denote the spaces of restrictions on M of func-
tions from Hs

p(M0) and Bs
p,q(M0), respectively,

Hs
p(M) =

{
r
M
f : f ∈ Hs

p(M0)
}
,

Bs
p,q(M) =

{
r
M
f : f ∈ Bs

p,q(M0)
}
.

Here r
M

is the restriction operator.

If Ũ = Ũ (1)+iŨ (2) is a complex–valued vector, where Ũ (j) = (u(j), ω(j))>

(j = 1, 2) are real-valued vectors, then

E(Ũ , Ũ) = E(Ũ (1), Ũ (1)) +E(Ũ (2), Ũ (2)),

and, due to the positive definiteness of the energy form for real–valued
vector functions, we have

E(Ũ , Ũ) ≥ c∗
3∑

p,q=1

[
(u(1)

pq )2 + (u(2)
pq )2 + (ω(1)

pq )2 + (ω(2)
pq )2

]
, (2.32)

where c∗ is a positive constant depending only on the material constants,

and u
(j)
pq and ω

(j)
pq are defined by formulae (2.25) with u(j) and ω(j) for u

and ω.
From the positive definiteness of the energy form E(·, ·) with respect to

the variables (2.25) it easily follows that there exist positive constants c1
and c2 such that for an arbitrary real–valued vector U ∈ [C1(Ω+)]6

B̃(Ũ , Ũ) :=

∫

Ω+

E(Ũ , Ũ) dx ≥

≥ c1

∫

Ω+

{ 3∑

p,q=1

[
(∂puq)

2 + (∂pωq)
2
]
+

3∑

p=1

[u2
p + ω2

p]

}
dx−

− c2

∫

Ω+

3∑

p=1

[u2
p + ω2

p] dx, (2.33)

i.e., the following Korn’s type inequality holds (cf. [15, Part I, § 12], [37,
Ch. 10])

B̃(Ũ , Ũ) ≥ c1‖Ũ‖2[H1(Ω+)]6 − c2‖Ũ‖2[H0(Ω+)]6 , (2.34)
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where ‖ · ‖[Hs(Ω+)]6 denotes the norm in the Sobolev space [Hs(Ω+)]6.

These results imply that the differential operators L̃(∂, σ) and L̃0(∂) are
strongly elliptic and the following inequality (the accretivity condition) holds
(cf., e.g., [15, Part I, § 5], [37, Ch. 4, Lemma 4.5])

c′2|ξ|2|η|2 ≥ L̃0(ξ)η · η =

6∑

k,j=1

{L̃0(ξ)}kjηjηk ≥ c′1|ξ|2|η|2 (2.35)

with some constants c′k > 0 (k = 1, 2) for arbitrary ξ ∈ R3 and arbitrary
complex vector η ∈ C6.

Consequently, in view of (2.12) and (2.35) the differential operatorL(∂, σ)
is strongly elliptic as well, since

C ′2|ξ|2|η|2 ≥ L0(ξ)η · η =

6∑

k,j=1

{L0(ξ)}kjηjηk ≥ C ′1|ξ|2|η|2 (2.36)

with some constants C ′k > 0 (k = 1, 2) for arbitrary ξ ∈ R3 and arbitrary
complex vector η ∈ C7.

Now let U = (Ũ , ϑ)> = (u, ω, ϑ)> ∈ [C2(Ω+)]7, U ′ = (Ũ ′, ϑ′)> =

(u′, ω′, ϑ′)> ∈ [C2(Ω+)]7. With the help of relation (2.23) and standard
manipulations we can show that the following Green’s formulas hold

∫

Ω+

U ′ · L(∂, σ)U dx =

∫

∂Ω+

{U ′}+ · {P(∂, n)U}+ dS−

−
∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ divω′−

− iησϑ′ div u− iζσϑ′ divω − iσκ′′ϑϑ′ + κ′ gradϑ′ · gradϑ
]
dx, (2.37)

∫

Ω+

[
U ′ · L(∂, σ)U − L∗(∂, σ)U ′ · U

]
dx =

=

∫

∂Ω+

[
{U ′}+ · {P(∂, n)U}+ − {P∗(∂, n)U ′}+ · {U}+

]
dS, (2.38)

where the differential operatorL(∂, σ) is given by (2.5), L∗(∂, σ)=L>(−∂, σ)
is the formally adjoint operator to L(∂, σ), the boundary operators P(∂, n)
and P∗(∂, n) are defined by (2.18) and (2.21) respectively. The proof of
(2.37) and (2.38) easily follows from (2.23) and the identity

U ′ · L(∂, σ)U = Ũ ′ · L̃(∂, 0)Ũ + %σ2u′ · u− η gradϑ · u′ + Iσ2ω′ · ω−
− ζ gradϑ · ω′ + κ′ϑ′∆ϑ+ iησϑ′ div u+ iσζϑ′ divω + iσκ′′ϑϑ′.

By the standard limiting approach, Green’s formula (2.37) can be extended
to Lipschitz domains (see, e.g., [47], [37]) and to the case of complex-valued
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vector functions U ∈ [W 1
p (Ω+)]7 and U ′ ∈ [W 1

p′(Ω
+)]7 with 1/p+ 1/p′ = 1,

1 < p <∞, and L(∂, σ)U ∈ [Lp(Ω
+)]7 (cf. [36], [7], [37])

〈
{U ′}+, {P(∂, n)U}+

〉
∂Ω+ =

∫

Ω+

U ′ · L(∂, σ)U dx+

+

∫

Ω+

[
E(Ũ ′, Ũ)− %σ2u′ · u− Iσ2ω′ · ω − ηϑ div u′ − ζϑ divω′−

− iησϑ′ div u− iζσϑ′ divω − iσκ′′ϑϑ′ + κ′ gradϑ′ · gradϑ
]
dx, (2.39)

where 〈 · , · 〉∂Ω+ denotes the duality between the spaces [B
1/p
p,p (∂Ω+)]7 and

[B
−1/p
p′,p′ (∂Ω+)]7, which extends the usual real L2-scalar product for regular

vector–functions, i.e., for f, g ∈ [L2(S)]7 we have

〈f, g〉S =

7∑

k=1

∫

S

fk gk dS = (f, g)[L2(S)]7 . (2.40)

Clearly, the generalized trace functional {P(∂, n)U}+ ∈ [B
−1/p
p,p (∂Ω+)]7 is

correctly determined by the relation (2.39).
Let us introduce the sesquilinear form related to the operator L(∂, σ)

B(U,U ′) :=

∫

Ω+

[
E(Ũ , Ũ ′)−%σ2u · u′−Iσ2ω · ω′−ηϑ div u′−ζϑ divω′−

− iησϑ′ div u− iζσϑ′ divω − iσκ′′ϑϑ′ + κ′ gradϑ · gradϑ′
]
dx. (2.41)

With the help of (2.34) we derive the inequality

B(U,U) ≥ C1‖U‖2
[H1(Ω+)]7 − C2‖U‖2

[H0(Ω+)]7 , (2.42)

with some positive constants C1 and C2. �

2.4. Basic BVPs and uniqueness theorems for bounded domains.
We start with the formulation of the basic interior and exterior boundary
value problems for the domains Ω+ and Ω− = R \ Ω+. Let the boundary
S = ∂Ω± be divided into two disjoint submanifolds SD and SN such that
SD ∩ SN = ∅ and SD ∪ SN = S. Put ` := ∂SD = ∂SN .

Problem (I(σ))± (Dirichlet problem). Find a solution vector U =
(u, ω, ϑ)> to the differential equation

L(∂, σ)U(x) = Φ(±)(x), x ∈ Ω±, (2.43)

satisfying the boundary conditions

{U(x)}± = f(x), x ∈ S. (2.44)
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Problem (II(σ))± (Neumann problem). Find a solution vector U =
(u, ω, ϑ)> to the equation (2.43) satisfying the boundary condition

{P(∂, n)U(x)}± = F (x), x ∈ S. (2.45)

Problem (III(σ))± (Mixed problem). Find a solution vector U =
(u, ω, ϑ)> to the equation (2.43) satisfying the boundary conditions

{U(x)}± = f (D)(x), x ∈ SD , (2.46)

{P(∂, n)U(x)}± = F (N)(x), x ∈ SN . (2.47)

Note that in contrast to the Dirichlet and Neumann BVPs, solutions to
mixed BVPs, even for given C∞-regular data, in general, are not in the
Hölder space [Cα(Ω+)]7 with α > 1/2 at the collision curve `, while they are
infinitely differentiable elsewhere. Therefore we investigate the mixed BVP
in the Sobolev space [W 1

p (Ω+)]7. In the case of such generalized formulation
we assume that the data of the BVPs belong to the natural function spaces,

Φ(+) ∈ [Lp(Ω
+)]7, Φ(−) ∈ [Lp,comp(Ω

−)]7,

f ∈ [B
1− 1

p
p,p (S)]7, f (D) ∈ [B

1− 1
p

p,p (SD)]7,

F ∈ [B
− 1

p
p,p (S)]7, F (N) ∈ [B

− 1
p

p,p (SN )]7.

(2.48)

The differential equation (2.43) is understood in the distributional or in the
weak sense, the Dirichlet type conditions (2.44) and (2.46) are understood in
the trace sense, and finally the Neumann type conditions (2.45) and (2.47)
are understood in the generalized trace functional sense defined with the
help of Green’s identity (2.39).

In the case of the exterior problems for the domain Ω− the solution
vectors should satisfy some decay conditions at infinity. Namely, for pseudo-
oscillation BVPs with =σ = σ2 > 0 we assume that for sufficiently large |x|,
i.e., as |x| → ∞, the solution vectors and their derivatives are polynomially
bounded. As we shall see below in Subsection 3.5, any solution of the
differential equation (2.43) with compactly supported Φ(−) actually decrease
exponentially as |x| → ∞. For the exterior BVPs of statics (i.e., when
σ = 0) the conditions at infinity will be specified later in Section 4.

Now we prove the following uniqueness results.

Theorem 2.2. Let σ = σ1 + iσ2 with σ1 ∈ R and σ2 > 0. Then the

homogeneous boundary value problems (I (σ))+, (II(σ))+ and (III(σ))+ have

only the trivial solution in the space [W 1
2 (Ω+)]7.

Proof. Let U = (u, ω, ϑ)> ∈ [W 1
2 (Ω+)]7 be a solution of the homogeneous

boundary value problem (K(σ))+, K = I, II, III . Since L(∂, σ)U = 0 we
can apply Green’s formula of type (2.39). In particular, let us multiply the
first vector equations in (2.4) by u, the second equation by ω, the complex
conjugate of the third scalar equation by ϑ and integrate their sum over Ω+.
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Taking into account the relations (2.5) and (2.6), with the help of Gauss
formula and evident manipulations we obtain

∫

Ω+

[
L(1)(∂, σ)u · u+ L(2)(∂, σ)ω · u+ L(5)(∂, σ)ϑ · u+

+L(3)(∂, σ)u · ω + L(4)(∂, σ)ω · ω + L(6)(∂, σ)ϑ · ω+

+C0L(7)(∂, σ)uϑ+ C0L(8)(∂, σ)ωϑ+ C0L(9)(∂, σ)ϑϑ
]
dx =

=

∫

Ω+

[
L̃(∂, 0)Ũ · Ũ + %σ2|u|2 + Iσ2|ω|2 − η∇ϑ · u− ζ∇ϑ · ω−

−C0

(
iησϑ div u+ iζσϑ divω − κ′ϑ∆ϑ+ iσκ′′|ϑ|2

)]
dx =

=

∫

Ω+

[
−E(Ũ , Ũ) + %σ2|u|2 + Iσ2|ω|2

]
dx+

∫

∂Ω+

T (∂, n)Ũ · Ũ dS−

−
∫

∂Ω+

(ηϑn · u+ ζϑn · ω) dS+

+

∫

Ω+

(1− iC0σ)
(
ηϑ div u+ ζϑ div ω

)
dx−

−C0

∫

Ω+

(
κ′|∇ϑ|2 + iσκ′′|ϑ|2

)
dx+ κ′C0

∫

∂Ω+

ϑ∂nϑ dS

with Ũ = (u, ω)> ∈ [W 1
2 (Ω+)]6 and an arbitrary constant C0. In view of

(2.17) and choosing

C0 = − i

σ
=
σ2 − iσ1

|σ|2 , (2.49)

we arrive at the relation
∫

Ω+

[
L(1)(∂, σ)u · u+ L(2)(∂, σ)ω · u+ L(5)(∂, σ)ϑ · u+

+L(3)(∂, σ)u · ω + L(4)(∂, σ)ω · ω + L(6)(∂, σ)ϑ · ω+

+C0L(7)(∂, σ)uϑ+ C0L(8)(∂, σ)ωϑ+ C0L(9)(∂, σ)ϑϑ
]
dx =

=

∫

Ω+

[
−E(Ũ , Ũ) + %σ2|u|2 + Iσ2|ω|2 − κ′C0|∇ϑ|2 − κ′′|ϑ|2] dx+

+

∫

∂Ω+

[T (∂, n)U · Ũ + κ′C0ϑ∂nϑ
]
dS. (2.50)

Since U solves the homogeneous BVP problem (K(σ))+ we see that the left
hand side expression and the surface integral in the right hand side in (2.50)
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vanish, and we get∫

Ω+

[
E(Ũ , Ũ)− %σ2|u|2 − Iσ2|ω|2 + κ′C0|∇ϑ|2 + κ′′|ϑ|2

]
dx = 0. (2.51)

The imaginary part of this equation reads as

σ1

∫

Ω+

[
2σ2%|u|2 + 2σ2I|ω|2 +

κ′

|σ|2 |∇ϑ|
2
]
dx = 0. (2.52)

Whence, for σ1 6= 0 we have u = 0, ω = 0 and ϑ = const in Ω+ since σ2 > 0
and κ′ > 0. From (2.51) we then conclude ϑ = 0 in Ω+.

If σ1 = 0, then from (2.51) and (2.49) it follows
∫

Ω+

[
E(Ũ , Ũ) + σ2

2%|u|2 + σ2
2I|ω|2 +

κ′

σ2
|∇ϑ|2 + κ′′|ϑ|2

]
dx = 0.

Therefore, u = 0, ω = 0 and ϑ = 0 in Ω+. �

Note that in the case of static problems, i.e., when σ = 0, without loss of
generality we can assume that solution vectors to the basic BVPs are real
valued. Moreover, the differential equation and the corresponding boundary
conditions for the temperature function become uncoupled and we have the
following uniqueness theorem.

Theorem 2.3. The Dirichlet and mixed boundary value problems of stat-

ics (I(0))+ and (III(0))+ have at most one solution in the space [W 1
2 (Ω+)]7.

A solution U = (u, ω, ϑ)> to the Neumann BVP (II(0))+ is defined modulo

the vector U0 = ϑ0(u0, ω0, 1)>+(Ψ̃, 0)>, where Ψ̃ is an arbitrary generalized

rigid displacement vector, i.e.,

Ψ̃(x) = ([a× x] + b, a)> (2.53)

with arbitrary three-dimensional real constant vectors a and b, ϑ0 is an

arbitrary real constant, u0 = (u01, u02, u03)
> and ω0 = (ω01, ω02, ω03)

> are

such that Ṽ0 = (u0, ω0)
> is a particular solution of the problem

L̃(∂, 0)Ṽ0 = 0, x ∈ Ω+,

{T (∂, n)Ṽ0}+ = (ηn(x), ζn(x))> , x ∈ ∂Ω+
(2.54)

with η and ζ being material parameters involved in the field equations (2.1)

and (2.2); here L̃(∂, 0) and T (∂, n) are the operators defined by (2.14) and

(2.22) arising in the hemitropic elasticity without taking into consideration

of thermal effects.

Proof. Let U (j) = (u(j), ω(j), ϑ(j))> ∈ [W 1
2 (Ω+)]7, j = 1, 2, be two solutions

to the BVP of statics (K(0))+, K = I, II, III . Denote U := U (1) − U (2).
Evidently, U = (u, ω, ϑ)> ∈ [W 1

2 (Ω+)]7 solves the homogeneous BVP of
statics (K(0))+, K = I, II, III . Then by the last equation in (2.4) and
formula (2.18) we see that ϑ ∈ W 1

2 (Ω+) is a harmonic function in Ω+
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satisfying the homogeneous Dirichlet, mixed or Neumann type boundary
condition. Therefore, in the cases of the BVPs (I (0))+ and (III(0))+ we
easily derive that ϑ = 0 in Ω+ since the support of the Dirichlet condition
is not empty, while for the Neumann BVP (II (0))+ we have ϑ = ϑ0 in Ω+

with arbitrary real constant ϑ0.
Thus, an arbitrary solution to the homogeneous BVPs (I (0))+ and

(III(0))+ has the structure U = (u, ω, 0)>, where the vector Ũ = (u, ω)>

solves the differential equation L̃(∂, 0)Ũ = 0 in Ω+ with L̃(∂, 0) defined by

(2.14). Further, since T (∂, n)U = T (∂, n)Ũ for U = (u, ω, 0)>, from Green’s

formula (2.23) with Ũ ′ = Ũ we get E(Ũ , Ũ) = 0 since the surface integral in
the right hand side in (2.23) vanishes in view of the homogeneous boundary
conditions. Now, by Lemma 2.1 we easily conclude u(x) = [a × x] + b and
ω(x) = a in Ω+ where a and b are arbitrary three-dimensional real constant
vectors. The homogeneous Dirichlet conditions for u and ω on ∂Ω+ in the
case of the BVP (I(0))+ or on SD in the case of the BVP (III (0))+ then
imply that u and ω vanish identically in Ω+. This proves the first part of
the theorem.

Now we investigate the homogeneous BVP (II (0))+. As we have estab-
lished, any solution of the problem has the structure U = (u, ω, ϑ0)

> =

(Ũ , ϑ0)
>, where ϑ0 is an arbitrary real constant and Ũ = (u, ω)>. From

the formulas (2.17), (2.18), (2.22), and from the homogeneous differential
equation L(∂, 0)U = 0 in Ω+ and the homogeneous Neumann condition
{P(∂, n)U}+ = 0 on ∂Ω+ it follows that

L̃(∂, 0)Ũ = 0, x ∈ Ω+,

{T (∂, n)Ũ}+ = F̃0, x ∈ ∂Ω+,
(2.55)

where, and

F̃0(x) = ϑ0(ηn(x), ζn(x))> , x ∈ ∂Ω+. (2.56)

Here n(x) is the exterior unit normal vector to the boundary ∂Ω+ at the
point x ∈ ∂Ω+, while η and ζ are material parameters, and ϑ0 is a constant

temperature. Thus, Ũ solves the nonhomogeneous Neumann problem of the
theory of hemitropic elasticity when thermal effects are not taken into con-
sideration in the governing equations. It is shown in [44] that the necessary
and sufficient condition for the problem (2.55)–(2.56) to be solvable reads
as ∫

∂Ω+

F̃0(x) · Ψ̃(x) dS = 0, (2.57)

where Ψ̃ is given by (2.53) with arbitrary three-dimensional real constant
vectors a and b.

With the help of the relation [a× x] · n = [x× n] · a and the equalities
∫

∂Ω+

nk(x) dS = 0,

∫

∂Ω+

[xjnk(x) − xknj(x)] dS = 0, k, j = 1, 2, 3,
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we easily derive that the necessary condition (2.57) is satisfied. Conse-
quently, the BVP (2.55) is solvable for arbitrary ϑ0 and solutions are de-

fined modulo generalized rigid displacement vector Ψ̃. Now let us chose a
particular solution of the problem (2.54) (which coincides with (2.55) for

ϑ0 = 1 ) and denote it by Ṽ0 = (u0, ω0)
> with u0 = (u01, u02, u03)

> and

ω0 = (ω01, ω02, ω03)
>. Then clearly ϑ0Ṽ0 is a particular solution of the prob-

lem (2.55) and the general solution to the same problem reads as ϑ0Ṽ0 +Ψ̃.
Therefore an arbitrary solution of the homogeneous BVP (II (0))+ is rep-

resentable in the form U = (u, ω, ϑ0)
> = (Ũ , ϑ0)

> where Ũ = ϑ0Ṽ0 + Ψ̃.

In turn, this leads to the representation U = ϑ0(u0, ω0, 1)>+ (Ψ̃, 0)> which
completes the proof. �

Remark 2.4. Unfortunately, in contrast to the classical thermoelasticity

case, to find the explicit expression for the particular solution vector Ṽ0 for
arbitrary domain Ω+ is problematic in the theory of thermo-hemitropic elas-

ticity. However, Ṽ0 can be constructed explicitly in some particular cases.
For example, if the material parameters satisfy the following condition

η

2µ+ 3λ
=

ζ

2κ + 3δ
, (2.58)

then

Ṽ0 =
η

2µ+ 3λ
(x, 0)>.

Indeed, one can easily check that in this case

L̃(∂, 0)Ṽ0 = 0 in Ω+,

{T (∂, n)Ṽ0}+ =
η

2µ+ 3λ
((2µ+ 3λ)n, (2κ + 3δ)n)> =

= (ηn(x), ζn(x))> on ∂Ω+,

for arbitrary domain Ω+.

Remark 2.5. For some domains with particular geometry it is possible to

construct explicitly the particular solution vector Ṽ0 of the problem (2.54)
without the restriction (2.58). For example, let Ω+ be a ball B(O,R) cen-
tered at the origin and radius R. Let us look for a particular solution

Ṽ0 = (u0, ω0)
> of the problem (2.54) in the form (cf., [20])

u0(x) = A1x
> −A2(δ + 2κ)

dg0(r)

dr
ñ(x),

ω0(x) = A2(λ+ 2µ)
dg0(r)

dr
ñ(x),

(2.59)

where A1 and A2 are unknown scalar constants, x = (x1, x2, x3), r = |x|
and

ñ(x) =
x>

r
, g0(r) =

J1/2(iλ1r)√
r

with λ2
1 =

4α(λ+ 2µ)

d2
;
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here J1/2(iλ1r) is the Bessel function of the first kind and d2 is defined in
(2.28). Note that the vector ñ(x) for x ∈ ∂B(O,R) =: Σ(O,R) coincides
with the exterior unit normal vector, i.e., ñ(x) = n(x) = x>/R for x ∈
Σ(O,R).

One can easily verify the following identities

∆[f(r)ñ(x)] =
[ d
dr

(df(r)

dr
+

2f(r)

r

)]
ñ(x), curl[f(r)ñ(x)] = 0,

graddiv[f(r)ñ(x)] =
[ d
dr

(df(r)

dr
+

2f(r)

r

)]
ñ(x),

d2g0(r)

dr2
= −2

r

dg0(r)

dr
+ λ2

1g0(r),

where f(·) is an arbitrary C2-smooth function. With the help of these

relations we can show that the vector Ṽ0 = (u0, ω0)
> with u0 and ω0 given

by (2.59), solves the differential equation

L̃(∂, 0)Ṽ0 = 0 in B(O,R)

for arbitrary constants A1 and A2. Further we show that these unknown
constants can be chosen so that the boundary condition in (2.54) is satisfied.
In view of (2.22) we have

T (∂, n)Ṽ0 =
(
T (1)(∂, n)u0 + T (2)(∂, n)ω0, T

(3)(∂, n)u0 + T (4)(∂, n)ω0

)>
.

Taking into account the equalities (2.19) and

div [f(r) ñ(x)] =
df(r)

dr
+

2 f(r)

r
,

∂

∂n
=

∂

∂r
,

we can easily show that the traces of the force stress and couple stress
vectors on Σ(O,R) read as

{
T (1)(∂, n)u0 + T (2)(∂, n)ω0

}+
=

=
[
(3λ+ 2µ)A1 + 4(µδ − λκ)

1

R

dg0(R)

dR
A2

]
n(x),

{
T (3)(∂, n)u0 + T (4)(∂, n)ω0

}+
=

=
{
(3δ + 2κ)A1 +

[[
κ(δ + 2κ)− γ(λ+ 2µ)

] 4

R

dg0(R)

dR
+

+4α(λ+ 2µ)g0(R)
]
A2

}
n(x).

Now the boundary condition in (2.54) leads to the following system of linear
algebraic equations

(3λ+2µ)A1+4(µδ−λκ)
1

R

dg0(R)

dR
A2 =η,

(3δ+2κ)A1+

+
[[

κ(δ+2κ)−γ(λ+2µ)
] 4

R

dg0(R)

dR
+4α(λ+2µ)g0(R)

]
A2 =ζ.

(2.60)
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Whence

A1 =
4η

RD

{
[κ(δ + 2κ)− γ(λ+ 2µ)]

dg0(R)

dR
+ α(λ + 2µ)Rg0(R)

}
−

−4ζ(µδ − λκ)

RD

dg0(R)

dR
, (2.61)

A2 =
ζ(3λ+ 2µ)− η(3δ+2κ)

D
, (2.62)

where

D=
{
(3λ+ 2µ)

[
κ(δ + 2κ)−γ(λ+ 2µ)

]
+

+ (3δ+2κ)(λκ−µδ)
} 4

R

dg0(R)

dR
+ 4α(λ+2µ)(3λ+2µ)g0(R) (2.63)

is the determinant of the above system. By standard arguments we can
show that this determinant is different from zero. Otherwise, if D = 0, the
homogeneous version of the system (2.60) will possess a nontrivial solution,
A′1 and A′2. Construct the vectors u′0 and ω′0 by formulas (2.59) with A′1
and A′2 for A1 and A2 respectively. Evidently, the vector Ṽ ′0 = (u′0, ω

′
0)
>

solves then the homogeneous Neumann problem

L̃(∂, 0)Ṽ ′0 = 0, x ∈ B(O,R),

{T (∂, n)Ṽ ′0}+ = 0, x ∈ Σ(O,R).
(2.64)

On the one hand, by Green’s formula (2.23) and Lemma 2.1 it follows that

Ṽ ′0 , as a solution of the problem (2.64), is a rigid displacement vector, i.e.,

Ṽ ′0 = (a′ × x + b′, a′)>, where a′ and b′ are arbitrary three-dimensional
constant vectors. On the other hand, in accordance with the representation

(2.59) with A′1 and A′2 for A1 and A2, it is clear that the vector Ṽ ′0 =
(u′0, ω

′
0)
> does not belong to the lineal of rigid displacement vectors if |A′1|+

|A′2| 6= 0. This contradiction proves thatD 6= 0 and consequently the system

(2.60) is uniquely solvable. Therefore, the vector Ṽ0 = (u0, ω0)
>, where u0

and ω0 are defined by formulas (2.59) with the constants A1 and A2 given
by (2.61) and (2.62), solves the boundary value problem (2.54) for arbitrary
values of the material parameters.

3. Fundamental Matrices of Solutions

‘ Let Fx→ξ and F −1
ξ→x denote the direct and inverse generalized Fourier

transform in the space of tempered distributions (Schwarz space S ′(R3))

which for regular summable functions f and f̂ read as follows

Fx→ξ[f ] =

∫

R3

f(x)eix·ξ dx = f̂(ξ),

F−1
ξ→x[f̂ ] =

1

(2π)3

∫

R3

f̂(ξ)e−ix·ξ dξ = f(x),

(3.1)



118 D. Natroshvili, L. Giorgashvili, and Sh. Zazashvili

where x=(x1, x2, x3) and ξ=(ξ1, ξ2, ξ3). Note that for arbitrary multi-index
α=(α1, α2, α3) and f ∈ S ′(R3)

F [∂αf ] = (−iξ)αF [f ], F−1[ξαf̂ ] = (i∂)αF−1[f̂ ], (3.2)

where |α| = α1 + α2 + α3 and ξα = ξα1
1 ξα2

2 ξα3
3 .

Denote by Γ(x, σ) = [Γkj(x, σ)]7×7 the matrix of fundamental solutions
of the operator L(∂, σ) (see (2.5)–(2.6))

L(∂, σ)Γ(x, σ) = δ(x)I7. (3.3)

Here δ( · ) is the Dirac’s delta distribution. We assume that the frequency
parameter σ is complex, in general:

σ = σ1 + iσ2, σ1, σ2 ∈ R. (3.4)

We represent the matrix Γ(x, σ) in the block wise form

Γ(x, σ) =



Γ(1)(x, σ) Γ(2)(x, σ) Γ(5)(x, σ)

Γ(3)(x, σ) Γ(4)(x, σ) Γ(6)(x, σ)
Γ(7)(x, σ) Γ(8)(x, σ) Γ(9)(x, σ)




7×7

,

Γ(j)(x, σ) =
[
Γ(j)

pq (x, σ)
]
3×3

, j = 1, 4,

Γ(l)(x, σ) =
[
Γ(l)

pq (x, σ)
]
3×1

, l = 5, 6,

Γ(m)(x, σ) =
[
Γ(m)

pq (x, σ)
]
1×3

, m = 7, 8.

Here Γ(9)(x, σ) is a scalar function.

By Γ̂(ξ, σ) and Γ̂(k)(ξ, σ) we denote the Fourier transforms of the matrices
Γ(x, σ) and Γ(k)(x, σ), k = 1, 9.

Applying the Fourier transform to the equation (3.3), and taking into
consideration (3.2) and the equality F [δ(·)] = 1, we get

L(−iξ, σ)Γ̂(ξ, σ) = I7. (3.5)

We have to determine Γ̂(ξ, σ) from (3.5) and afterwards with the help of
the inverse Fourier transform construct the fundamental matrix Γ(x, σ) ex-
plicitly in terms of standard elementary functions. Evidently, first of all we

have to represent the matrix Γ̂(ξ, σ) = [L(−iξ, σ)]−1 in such form which is
convenient for calculation of the inverse Fourier transform.
To this end, we proceed as follows. We set r := |ξ| =

√
ξ21 + ξ22 + ξ23 and

introduce the notation

A(ξ) := L(1)(−iξ, σ) =
[
− (µ+ α)r2 + ρσ2

]
I3 − (λ + µ− α)Q(ξ),

B(ξ) := L(2)(−iξ, σ) = L(3)(−iξ, σ) =

= −(κ + ν)r2I3 − (δ + κ − ν)Q(ξ) − i2αR(ξ),

D(ξ) := L(4)(−iξ, σ) =

=
[
Iσ2 − 4α− (γ + ε)r2

]
I3 − (β + γ − ε)Q(ξ)− i4νR(ξ),

(3.6)
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where R(·) and Q(·) are defined by (2.7). In view of (2.5)–(2.8) from (3.5)
we easily derive

A(ξ)Γ̂(1)(ξ, σ) +B(ξ)Γ̂(3)(ξ, σ) + iηξ>Γ̂(7)(ξ, σ) = I3,

B(ξ)Γ̂(1)(ξ, σ) +D(ξ)Γ̂(3)(ξ, σ) + iζξ>Γ̂(7)(ξ, σ) = [0]3×3,

ησξΓ̂(1)(ξ, σ) + ζσξΓ̂(3)(ξ, σ) + (iσκ′′ − κ′r2)Γ̂(7)(ξ, σ) = [0]1×3;

(3.7)

A(ξ)Γ̂(2)(ξ, σ) +B(ξ)Γ̂(4)(ξ, σ) + iηξ>Γ̂(8)(ξ, σ) = [0]3×3,

B(ξ)Γ̂(2)(ξ, σ) +D(ξ)Γ̂(4)(ξ, σ) + iζξ>Γ̂(8)(ξ, σ) = I3,

ησξΓ̂(2)(ξ, σ) + ζσξΓ̂(4)(ξ, σ) + (iσκ′′ − κ′r2)Γ̂(8)(ξ, σ) = [0]1×3;

(3.8)

A(ξ)Γ̂(5)(ξ, σ) +B(ξ)Γ̂(6)(ξ, σ) + iηξ>Γ̂(9)(ξ, σ) = [0]3×1,

B(ξ)Γ̂(5)(ξ, σ) +D(ξ)Γ̂(6)(ξ, σ) + iζξ>Γ̂(9)(ξ, σ) = [0]3×1,

ησξΓ̂(5)(ξ, σ) + ζσξΓ̂(6)(ξ, σ) + (iσκ′′ − κ′r2)Γ̂(9)(ξ, σ) = 1.

(3.9)

Applying the relations (see (2.5)–(2.9))

A(ξ) = A(−ξ) = A>(ξ), B(ξ) = B>(−ξ), D(ξ) = D>(−ξ),
Q(ξ) = [Q(ξ)]>, [R(ξ)]> = −R(ξ) = R(−ξ),

Q(ξ)R(ξ) = R(ξ)Q(ξ) = [0]3×3,

[Q(ξ)]2 = r2Q(ξ), [R(ξ)]2 = Q(ξ)− r2I3,

(3.10)

we can easily show that the matrices A, B, and D commute to each other.
Therefore from the first and the second equations in (3.7) we obtain

[
A(ξ)D(ξ)−B2(ξ)

]
Γ̂(1)(ξ, σ)= i[ζB(ξ)−ηD(ξ)]ξ>Γ̂(7)(ξ, σ)+D(ξ),

[
A(ξ)D(ξ)−B2(ξ)

]
Γ̂(3)(ξ, σ)= i[ηB(ξ)−ζA(ξ)]ξ>Γ̂(7)(ξ, σ)−B(ξ).

(3.11)

It can be shown that

M(ξ) := A(ξ)D(ξ) −B2(ξ) = aI3 + bQ(ξ) + icR(ξ), (3.12)

where

a(ξ) := d1r
4 − d3r

2 + %σ2(Iσ2 − 4α), (3.13)

b(ξ) := (d2 − d1)r
2 −

−
[
(β + γ − ε)%σ2 + (λ+ µ− α)(Iσ2 − 4α)− 4α2

]
, (3.14)

c(ξ) := 4(µν − ακ)r2 − 4ν%σ2, (3.15)

with

d1 := (µ+ α)(γ + ε)− (κ + ν)2,

d2 := (λ+ 2µ)(β + 2γ)− (δ + 2κ)2,

d3 := (µ+ α)(Iσ2 − 4α) + (γ + ε)%σ2 + 4α2.

Moreover, in view of (2.9) by direct calculations we arrive at the following
formula for the inverse of the matrix (3.12)
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M−1(ξ) =
1

detM(ξ)
M∗(ξ) =

1

(a+ br2)(a2 − c2r2)
×

×
[
a(a+ br2)I3 − (ab+ c2)Q(ξ)− ic(a+ br2)R(ξ)

]
, (3.16)

where M∗(ξ) = [M∗
kj(ξ)] is the adjoint to the matrix M(ξ),

M∗
11(ξ) =

∣∣∣∣
a+ bξ22 bξ2ξ3 − icξ1

bξ2ξ3 + icξ1 a+ bξ23

∣∣∣∣ = a(a+ br2)− (ab+ c2)ξ21 ,

M∗
21(ξ) = −

∣∣∣∣
bξ1ξ2 + icξ3 bξ2ξ3 − icξ1
bξ1ξ3 − icξ2 a+ bξ23

∣∣∣∣ = −i(a+ br2)cξ3 − (ab+ c2)ξ1ξ2,

M∗
31(ξ) =

∣∣∣∣
bξ1ξ2 + icξ3 a+ bξ22
bξ1ξ3 − icξ2 bξ2ξ3 + icξ1

∣∣∣∣ = −(ab+ c2)ξ1ξ3 + i(a+ br2)cξ2,

M∗
12(ξ) = −

∣∣∣∣
bξ1ξ2 − icξ3 bξ1ξ3 + icξ2
bξ2ξ3 + icξ1 a+ bξ23

∣∣∣∣ = i(a+ br2)cξ3 − (ab+ c2)ξ1ξ2,

M∗
22(ξ) =

∣∣∣∣
a+ bξ21 bξ1ξ3 + icξ2

bξ1ξ3 − icξ2 a+ bξ23

∣∣∣∣ = a(a+ br2)− (ab+ c2)ξ22 ,

M∗
32(ξ) = −

∣∣∣∣
a+ bξ21 bξ1ξ2 − icξ3

bξ1ξ3 − icξ2 bξ2ξ3 + icξ1

∣∣∣∣ = −(ab+ c2)ξ2ξ3 − i(a+ br2)cξ1,

M∗
13(ξ) =

∣∣∣∣
bξ1ξ2 − icξ3 bξ1ξ3 + icξ2
a+ bξ22 bξ2ξ3 − icξ1

∣∣∣∣ = −(ab+ c2)ξ1ξ3 − i(a+ br2)cξ2,

M∗
23(ξ) = −

∣∣∣∣
a+ bξ21 bξ1ξ3 + icξ2

bξ1ξ2 + icξ3 bξ2ξ3 − icξ1

∣∣∣∣ = −(ab+ c2)ξ2ξ3 + i(a+ br2)cξ1,

M∗
33(ξ) =

∣∣∣∣
a+ bξ21 bξ1ξ2 − icξ3

bξ1ξ3 + icξ3 a+ bξ22

∣∣∣∣ = a(a+ br2)− (ab+ c2)ξ23 .

These formulae imply

M∗(ξ) = [M∗
kj(ξ)] = a(a+ br2)I3 − (ab+ c2)Q(ξ)− ic(a+ br2)R(ξ).

From (3.11) we get

Γ̂(1)(ξ, σ) = iM−1(ξ)[ζB(ξ)−ηD(ξ)]ξ>Γ̂(7)(ξ, σ)+M−1(ξ)D(ξ),

Γ̂(3)(ξ, σ) = iM−1(ξ)[ηB(ξ)−ζA(ξ)]ξ>Γ̂(7)(ξ, σ)−M−1(ξ)B(ξ).
(3.17)

With the help of the relations (3.10) and

M−1(ξ)A(ξ) = A(ξ)M−1(ξ), M−1(ξ)B(ξ) = B(ξ)M−1(ξ),

M−1(ξ)D(ξ) = D(ξ)M−1(ξ), R(ξ)ξ> = 0, ξR(ξ) = 0,

M−1(ξ)ξ> =
1

a+ br2
ξ>, ξM−1(ξ) =

1

a+ br2
ξ,

(3.18)

we can rewrite (3.17) as

Γ̂(1)(ξ, σ) =
i

a+br2
[ζB(ξ)−ηD(ξ)]ξ>Γ̂(7)(ξ, σ)+M−1(ξ)D(ξ),

Γ̂(3)(ξ, σ) =
i

a+br2
[ηB(ξ)−ζA(ξ)]ξ>Γ̂(7)(ξ, σ)−M−1(ξ)B(ξ).

(3.19)
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Substitute these expressions into the third equation in (3.7) and apply the
formulas

ξA(ξ) =
[
%σ2 − (λ+ 2µ)r2

]
ξ, ξB(ξ) = −(δ + 2κ)r2ξ,

ξD(ξ) =
[
Iσ2 − 4α− (β + 2γ)r2

]
ξ, ξξ> = r2, ξ>ξ = Q(ξ),

(3.20)

to obtain

Γ̂(7)(ξ, σ) =
c7(ξ)

(a2 − c2r2)Λ1(ξ)
ξ, (3.21)

where

c7(ξ) := σ
{
ζ(δ+2κ)r2+η

[
Iσ2−4α−(β+2γ)r2

]}
(a2−c2r2), (3.22)

Λ1(ξ) := κ′d2r
6 + r4

{
i2σηζ(δ + 2κ)− iση2(β + 2γ)−

−iσζ2(λ + 2µ)− iσκ′′d2 − κ′
[
ρσ2(β + 2γ) + (Iσ2 − 4α)(λ+ 2µ)

]}
+

+r2
{
iση2(Iσ2 − 4α) + iσκ′′

[
ρσ2(β + 2γ) + (Iσ2 − 4α)(λ + 2µ)

]
+

+iζ2ρσ3 + κ′ρσ2(Iσ2 − 4α)
}
− iκ′′ρσ3(Iσ2 − 4α), (3.23)

a2 − c2r2 = d2
1r

8 − r6
{
2d1

[
(µ+ α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2

]
+

+
[
4α(κ+ ν)− 4ν(µ+ α)

]2
}

+

+r4
{[

(µ+ α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2
]2

+

+2ρσ2(Iσ2 − 4α)d1 + 32νρσ2(νµ − ακ)
}
−

−r2
{

2ρσ2(Iσ2 − 4α)
[
(µ+ α)(Iσ2 − 4α) +

+(γ + ε)ρσ2 + 4α2
]
+ 16ν2ρ2σ4

}
+ ρ2σ4(Iσ2 − 4α)2. (3.24)

By (3.21), (3.10), (3.20) and

A(ξ)Q(ξ) =
[
%σ2 − (λ + 2µ)r2

]
Q(ξ),

B(ξ)Q(ξ) = −(δ + 2κ)r2Q(ξ),

D(ξ)Q(ξ) =
[
Iσ2 − 4α− (β + 2γ)r2

]
Q(ξ),

(3.25)

finally we arrive at the equalities

Γ̂(j)(ξ, σ) =

=
1

(a2−c2r2)Λ1(ξ)

[
aj(ξ)I3+bj(ξ)Q(ξ)+cj(ξ)R(ξ)

]
, j=1, 3, (3.26)
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where

a1(ξ) := Λ1(ξ)
{
a
[
Iσ2 − 4α− (γ + ε)r2

]
+ 4cνr2

}
,

b1(ξ) :=−
[
Iσ2−4α−(β+2γ)r2

]{
iση2a

[
Iσ2−4α−(β+2γ)r2

]
+

+i2σaηζ(δ + 2κ)r2 + (κ′r2 − iσκ′′)(ab+ c2)
}
−

−
[
4cν + a(β + γ − ε)

]
Λ1(ξ)− iσζ2

[
ab+ c2 + a(δ + 2κ)2r2

]
r2,

c1(ξ) := −iΛ1(ξ)
{
c
[
Iσ2 − 4α− (γ + ε)r2

]
+ 4aν

}
,

a3(ξ) := Λ1(ξ)
[
a(κ + ν)− 2αc

]
r2,

b3(ξ) := (δ + 2κ)r2
{
(ab+ c2)(iσκ′′ − κ′r2)−

−iσ
[
2aηζ(δ + 2κ)r2 + aζ2(%σ2 − (λ+ 2µ)r2)+

+aη2(Iσ2 − 4α− (β + 2γ)r2)
]}
−

−iσηζ(a2 − c2r2) + Λ1(ξ)
[
2αc+ a(δ + κ − ν)

]
,

c3(ξ) := iΛ1(ξ)
[
2αa− c(κ + ν)r2

]
.

(3.27)

Applying the word for word arguments to the systems (3.8) and (3.9) we
get

Γ̂(k)(ξ, σ) =
1

(a2 − c2r2)Λ1(ξ)
×

×
[
ak(ξ)I3 + bk(ξ)Q(ξ) + ck(ξ)R(ξ)

]
, k = 2, 4,

Γ̂(l)(ξ, σ) =
cl(ξ)

(a2 − c2r2)Λ1(ξ)
ξ>, l = 5, 6,

Γ̂(8)(ξ, σ) =
c8(ξ)

(a2 − c2r2)Λ1(ξ)
ξ,

Γ̂(9)(ξ, σ) =
c9(ξ)

(a2 − c2r2)Λ1(ξ)
,

(3.28)
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where

a2(ξ) = a3(ξ), b2(ξ) = b3(ξ), c2(ξ) = c3(ξ),

a4(ξ) := a
[
%σ2 − (µ+ α)r2

]
Λ1(ξ),

b4(ξ) := −iσ
{
2aηζ(δ + 2κ)

[
%σ2 − (λ+ 2µ)r2

]
r2+

+ aζ2
[
%σ2 − (λ+ 2µ)r2

]2
+ η2r2

[
ab+ c2+

+ a(δ + 2κ)2r2
]}
− a(λ+ µ− α)Λ1(ξ)−

− (ab+ c2)
[
%σ2 − (λ+ 2µ)r2

]
(κ′r2 − iσκ′′),

c4(ξ) := −ic
[
%σ2 − (µ+ α)r2

]
Λ1(ξ),

c5(ξ) := i
{
ζ(δ + 2κ)r2 + η

[
Iσ2 − 4α− (β + 2γ)r2

]}
(a2 − c2r2),

c6(ξ) := i
{
η(δ + 2κ)r2 + ζ

[
%σ2 − (λ+ 2µ)r2

]}
(a2 − c2r2),

c8(ξ) := σ
{
η(δ + 2κ)r2 + ζ

[
%σ2 − (λ+ 2µ)r2

]}
(a2 − c2r2),

c9(ξ) := −(a+ br2)(a2 − c2r2).

(3.29)

Therefore we can represent the matrix Γ̂(ξ, σ) in the form

Γ̂(ξ, σ) = [L(−iξ, σ)]−1 =
1

(a2 − c2r2)Λ1(ξ)
M(ξ, σ), (3.30)

where

M(ξ, σ) :=



a1(ξ)I3 a2(ξ)I3 [0]3×1

a3(ξ)I3 a4(ξ)I3 [0]3×1

[0]1×3 [0]1×3 c9(ξ)


 +

+



b1(ξ)Q(ξ) b2(ξ)Q(ξ) [0]3×1

b3(ξ)Q(ξ) b4(ξ)Q(ξ) [0]3×1

[0]1×3 [0]1×3 0


 +

+



c1(ξ)R(ξ) c2(ξ)R(ξ) c5(ξ)ξ

>

c3(ξ)R(ξ) c4(ξ)R(ξ) c6(ξ)ξ
>

c7(ξ)ξ c8(ξ)ξ 0


 (3.31)

It is easy to see that the entries of the 7×7 matrix M(ξ, σ) are polynomials
in ξ. Therefore to invert the Fourier transform and find an explicit form for
the fundamental matrix Γ(x, σ) we need the roots of the equation

Ξ(r) := detL(−iξ, σ) ≡ (a2 − c2r2)Λ1(ξ) = 0. (3.32)

Due to the evenness of the functions Λ1 and a2 − c2r2 with respect to r,
it is clear that if r = r0 is a root of either the equation a2 − c2r2 = 0 or
Λ1(ξ) = 0, then so is r = −r0. Denote the roots of the equation

Λ1(ξ) ≡ κ′d2r
6 + r4

{
i2σηζ(δ + 2κ)− iση2(β + 2γ)−
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− iσζ2(λ+ 2µ)− iσκ′′d2 − κ′
[
ρσ2(β + 2γ) + (Iσ2 − 4α)(λ+ 2µ)

]}
+

+ r2
{
iση2(Iσ2 − 4α) + iσκ′′

[
ρσ2(β + 2γ) + (Iσ2 − 4α)(λ + 2µ)

]
+

+ iζ2ρσ3 + κ′ρσ2(Iσ2 − 4α)
}
− iκ′′ρσ3(Iσ2 − 4α) = 0 (3.33)

by ±k1, ±k2 and ±k3, and the roots of the equation

a2 − c2r2 ≡ d2
1r

8 − r6
{
2d1

[
(µ+ α)(Iσ2 − 4α) + (γ + ε)ρσ2 + 4α2

]
+

+
[
4α(κ+ν)−4ν(µ+α)

]2}
+r4

{[
(µ+α)(Iσ2−4α)+(γ+ε)ρσ2+4α2

]2

+

+ 2ρσ2(Iσ2 − 4α)d1 + 32νρσ2(νµ− ακ)
}
−

− r2
{

2ρσ2(Iσ2−4α)
[
(µ+α)(Iσ2− 4α)+(γ+ε)ρσ2+4α2

]
+ 16ν2ρ2σ4

}
+

+ ρ2σ4(Iσ2 − 4α)2 = 0 (3.34)

by ±k4, ±k5, ±k6 and ±k7. For simplicity we assume that (see the Appen-
dix A)

kj 6= kp for j 6= p, =kj ≥ 0, and if =kj = 0, then kj > 0. (3.35)

Then we have the relations

Λ1(ξ) = κ′d2

3∏

j=1

(r2 − k2
j ), a2 − c2r2 = d2

1

7∏

j=4

(r2 − k2
j ). (3.36)

Therefore in view of (3.30) we can represent the fundamental solution as

Γ(x, σ) = F−1
ξ→x[Γ̂(ξ, σ)] =

1

κ′d2
1d2

F−1
ξ→x

[
M(ξ, σ)

1

Φ(r)

]
=

=
1

κ′d2
1d2

M(i∂, σ)F−1
ξ→x

[ 1

Φ(r)

]
, (3.37)

where

Φ(r) :=
7∏

j=1

(r2 − k2
j ). (3.38)

Note that

1

Φ(r)
=

7∑

j=1

pj

r2 − k2
j

, (3.39)

where the parameters p1, . . . , p7 solve the system of linear algebraic equa-
tions

k2m
1 p1 + k2m

2 p2 + · · ·+ k2m
7 p7 = 0, m = 0, 1, . . . , 5,

k12
1 p1 + k12

2 p2 + · · ·+ k12
7 p7 = 1.

(3.40)
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They can be represented as follows

pj =
[ 7∏

l=1,l6=j

(k2
l − k2

j )
]−1

. (3.41)

Note that, if =kj ≥ 0, then (for details see the Appendix B)

F−1
[ 1

r2 − k2
j

]
=
eikj |x|

4π|x| . (3.42)

Therefore

F−1
ξ→x

[ 1

Φ(r)

]
=

1

4π

7∑

j=1

pj
eikj |x|

|x| . (3.43)

Now from (3.37) and (3.43) it follows that

Γ(x, σ) =
1

4πκ′d2
1d2

M(i∂, σ)

7∑

j=1

pj
eikj |x|

|x| , (3.44)

or

Γ(x, σ) =
1

4πκ′d2
1d2

M(i∂, σ)Ψ(x, σ), (3.45)

where the differential operator M(i∂, σ) is given by (3.31) with i∂ for ξ and

Ψ(x, σ) =

7∑

j=1

pj
eikj |x|

|x| . (3.46)

We can calculate the expression M(i∂, σ)Ψ(x, σ) and rewrite the funda-
mental solution in a more explicit form. To this end let us note that

∆
eikj |x|

|x| = −k2
j

eikj |x|

|x| , |x| 6= 0,

and apply the formulas (3.13)–(3.15), (3.23), (3.27) and (3.29) to obtain

a(i∂)Ψ(x, σ) =

7∑

j=1

pja
∗
j

eikj |x|

|x| ,

b(i∂)Ψ(x, σ) =

7∑

j=1

pjb
∗
j

eikj |x|

|x| ,

c(i∂)Ψ(x, σ) =
7∑

j=1

pjc
∗
j

eikj |x|

|x| ,

al(i∂)Ψ(x, σ) =

7∑

j=4

a∗lj
eikj |x|

|x| , l = 1, 2, 3, 4,

bl(i∂)Ψ(x, σ) =

7∑

j=1

b∗lj
eikj |x|

|x| , l = 1, 2, 3, 4,
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cl(i∂)Ψ(x, σ) =

7∑

j=4

c∗lj
eikj |x|

|x| , l = 1, 2, 3, 4,

cm(i∂)Ψ(x, σ) =

3∑

j=1

c∗mj

eikj |x|

|x| , m = 5, 6, 7, 8, 9,

where

a∗j := d1k
4
j − d3k

2
j + %σ2(Iσ2 − 4α),

b∗j := (d2 − d1)k
2
j −

[
(β + γ − ε)%σ2 + (λ+ µ− α)(Iσ2 − 4α)− 4α2

]
,

c∗j = 4(µν − ακ)k2
j − 4ν%σ2,

a∗1j := κ′p′′j d2

{
a∗j

[
Iσ2 − 4α− (γ + ε)k2

j

]
+ 4νk2

j c
∗
j

}
,

a∗2j = a∗3j := κ′p′′j d2

[
(κ + ν)a∗j − 2αc∗j

]
k2

j ,

a∗4j := κ′p′′j d2

[
%σ2 − (µ+ α)k2

j

]
a∗j ,

b∗1j := −pj

{[
Iσ2 − 4α− (β + 2γ)k2

j

][
iση2(Iσ2 − 4α− (β + 2γ)k2

j )a
∗
j +

+i2σ(δ + 2κ)ζηk2
j a
∗
j + (κ′k2

j − iσκ′′)(a∗j b
∗
j + (c∗j )

2)
]
+

+iσζ2k2
j

[
a∗j b

∗
j + (c∗j )

2 + (δ + 2κ)2k2
ja
∗
j

]
+

+
[
(β + γ − ε)a∗j + 4νc∗j

]
Λ∗1j

}
,

b∗2j = b∗3j := pj

[
2αc∗j + (δ + κ − ν)a∗j

]
Λ∗1j+

+pj(δ + 2κ)k2
j

{
(iσκ′′ − κ′k2

j )
[
a∗j b

∗
j + (c∗j )

2
]
−

−iσ
[
2(δ + 2κ)ζηk2

j a
∗
j + ζ2(%σ2 − (λ+ 2µ)k2

j )a∗j+

+η2(Iσ2 − 4α− (β + 2γ)k2
j )a∗j

]}
− ipjσηζ

[
(a∗j )

2 − k2
j (c∗j )

2
]
,

b∗4j := −pj

[
%σ2 − (λ+ 2µ)k2

j

]{
iσζ2a∗j

[
%σ2 − (λ+ 2µ)k2

j

]
+

+i2σ(δ + 2κ)ζηk2
j a
∗
j +

[
a∗j b

∗
j + (c∗j )

2
]
(κ′k2

j − iσκ′′)
}
−

−ipjση
2k2

j

[
a∗j b

∗
j + (c∗j )

2 + (δ + 2κ)2k2
ja
∗
j

]
− pj(λ+ µ− α)a∗j Λ

∗
1j ,

c∗1j := −iκ′p′′j d2

{[
Iσ2 − 4α− (γ + ε)k2

j

]
c∗j + 4νa∗j

}
,

c∗2j = c∗3j := iκ′p′′j d2

[
2αa∗j − (κ + ν)k2

j c
∗
j

]
,

c∗4j := −iκ′p′′j d2

[
%σ2 − (µ+ α)k2

j

]
c∗j ,

c∗5j := ip′jd
2
1

{
ζ(δ + 2κ)k2

j + η
[
Iσ2 − 4α− (β + 2γ)k2

j

]}
,

c∗6j := ip′jd
2
1

{
η(δ + 2κ)k2

j + ζ
[
%σ2 − (λ + 2µ)k2

j

]}
,
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c∗7j := σp′jd
2
1

{
ζ(δ + 2κ)k2

j + η
[
Iσ2 − 4α− (β + 2γ)k2

j

]}
,

c∗8j := σp′jd
2
1

{
η(δ + 2κ)k2

j + ζ
[
%σ2 − (λ+ 2µ)k2

j

]}
,

c∗9j := −p′jd2
1

[
a∗j + k2

j b
∗
j

]
,

Λ∗1j := κ′d2

3∏

q=1

(k2
j − k2

q ),

p′j :=

3∏

q=1,q 6=j

(k2
j − k2

q )−1, p′′j :=

7∏

q=4,q 6=j

(k2
j − k2

q )−1.

From (3.31) and (3.45) with the help of the above relations we get the
following representation of the fundamental matrix

Γ(x, σ) =
1

4πκ′d2
1d2








Ψ1(x, σ)I3 Ψ2(x, σ)I3 [0]3×1

Ψ3(x, σ)I3 Ψ4(x, σ)I3 [0]3×1

[0]1×3 [0]1×3 Ψ5(x, σ)


 +

+




Q(∂)Ψ6(x, σ) Q(∂)Ψ7(x, σ) [0]3×1

Q(∂)Ψ8(x, σ) Q(∂)Ψ9(x, σ) [0]3×1

[0]1×3 [0]1×3 0


 +

+




R(∂)Ψ10(x, σ) R(∂)Ψ11(x, σ) ∇>Ψ14(x, σ)

R(∂)Ψ12(x, σ) R(∂)Ψ13(x, σ) ∇>Ψ15(x, σ)

∇Ψ16(x, σ) ∇Ψ17(x, σ) 0







, (3.47)

where

Ψl(x, σ) =

7∑

j=4

a∗lj
eikj |x|

|x| , Ψ5(x, σ) =

3∑

j=1

c∗9j

eikj |x|

|x| ,

Ψ5+l(x, σ) = −
7∑

j=1

b∗lj
eikj |x|

|x| , Ψ9+l(x, σ) = i

7∑

j=4

c∗lj
eikj |x|

|x| ,

Ψ13+l(x, σ) = i

7∑

j=1

c∗4+lj

eikj |x|

|x| , l = 1, 2, 3, 4.

Remark 3.1. Note that (3.44) can be rewritten in the form

Γ(x, σ) =

7∑

j=1

Φ(j)(x, σ), (3.48)

where

Φ(j)(x, σ) =
pj

4πκ′d2
1d2

M(i∂, σ)
eikj |x|

|x| (3.49)
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and M(i∂, σ) is defined by (3.31). Since M(i∂, σ) is a matrix differential
operator with constant coefficients from the representation (3.49) it follows

that the entries of the matrix Φ(j)(x, σ) = [Φ
(j)
pq (x, σ)]7×7 are metahar-

monic functions corresponding to the wave number kj , i.e., solutions of the
Helmholtz equation

(∆ + k2
j )Φ(j)

pq (x, σ) = 0, |x| 6= 0,

and satisfy the Sommerfeld radiation conditions at infinity:

∂

∂|x|Φ
(j)
pq (x, σ)− ikjΦ

(j)
pq (x, σ) =

= exp{−=kj |x|}O(|x|−2), p, q, j = 1, 7, (3.50)

as |x| → +∞.
The entries of the matrix Φ(j)(x, σ) and its derivatives satisfy also the

following Sommerfeld type radiation conditions at infinity (cf. [58]):

Φ(j)
pq (x, σ) = exp

{
−=kj |x|

}
O(|x|−1),

∂

∂xl
Φ(j)

pq (x, σ)− ikj
xl

|x| Φ
(j)
pq (x, σ) =

= exp
{
−=kj |x|

}
O(|x|−2), l = 1, 2, 3.

(3.51)

These asymptotic equalities can be differentiated any times with respect to
the variable x.

In accordance with formulas (3.48), (3.49) and Corollary A.2 (see the
Appendix A) we see that for =σ = σ2 > 0 the entries of the matrix Γ(x, σ)
decay exponentially as |x| → ∞ since =kj > 0, j = 1, 7.

Remark 3.2. Note that the matrix Γ∗(x, σ) := [Γ(−x, σ)]> represents a
fundamental solution to the formally adjoint differential operator L∗(∂, σ) ≡
[L(−∂, σ)]>,

L∗(∂, σ)[Γ(−x, σ)]> = I7δ(x). (3.52)

In the case of repeated roots (i.e., when (3.35) is violated) the fundamental
solution can be obtained from (3.44) by the standard limiting procedure.

3.1. Fundamental matrix of the operator of statics. Here we con-
struct the fundamental matrix for the equilibrium equations, i.e., for the
operator of statics L(∂) defined by (2.11) (see simultaneous equations (2.4)
with σ = 0). Denote this fundamental matrix by Γ(x). We apply again
the approach based on the Fourier transform technique for the equations
of statics. For the Fourier transform of the fundamental matrix then we
obtain (cf. (3.30) and (3.31))

Γ̂(ξ) = [L(−iξ, 0)]−1 =




Γ̂(1)(ξ) Γ̂(2)(ξ) Γ̂(5)(ξ)

Γ̂(3)(ξ) Γ̂4)(ξ) Γ̂(6)(ξ)

Γ̂(7)(ξ) Γ̂(8)(ξ) Γ̂(9)(ξ)




7×7

, (3.53)
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where

Γ̂(j)(ξ) = [Γ̂(j)
pq (ξ)]3×3 = ãj(ξ)I3 + b̃j(ξ)Q(ξ) + c̃j(ξ)R(ξ), j = 1, 4,

Γ̂(l)(ξ) = [Γ̂(l)
pq (ξ)]3×1 = c̃l(ξ)ξ

>, l = 5, 6,

Γ̂(m)(ξ) = [0]3×1, m = 7, 8,

Γ̂(9)(ξ) = − 1

κ′r2
, r = |ξ|,

(3.54)

and

ã1(ξ) =
1

d2
1(r

2 − λ2
2)(r

2 − λ2
3)

{
− d1(γ + ε)r2 −

−4
[
αd1 + αµ(γ + ε) + 4ν(ακ − µν)

]
− 16α2µ

r2

}
,

ã2(ξ) = ã3(ξ) =
1

d2
1(r

2 − λ2
2)(r

2 − λ2
3)
×

×
{
d1(κ + ν)r2 + 4α

[
µ(κ + ν)− 2(µν − ακ)

]}
,

ã4(ξ) = − µ+ α

d2
1(r

2 − λ2
2)(r

2 − λ2
3)

(d1r
2 + 4αµ),

b̃1(ξ) =
1

d2
1(r

2 − λ2
2)(r

2 − λ2
3)

{
d1(γ + ε) +

+4
[
αd1 + αµ(γ + ε)− 4ν(µν − ακ)

] 1

r2
+

16α2µ

r4

}
−

− 1

d2r2(r2 + λ2
1)

(
β + 2γ +

4α

r2

)
,

b̃2(ξ) = b̃3(ξ) = − 1

d2
1(r

2 − λ2
2)(r

2 − λ2
3)
×

×
{
d1(κ + ν) + 4α

[
µ(κ + ν)− 2(µν − ακ)

] 1

r2

}
+

+
δ + 2κ

d2r2(r2 + λ2
1)
,

b̃4(ξ) =
µ+ α

d2
1(r

2 − λ2
2)(r

2 − λ2
3)

(
d1 +

4αµ

r2

)
− λ+ 2µ

d2r2(r2 + λ2
1)
,

c̃1(ξ) =
4i

d2
1(r

2−λ2
2)(r

2−λ2
3)

[
− νd1+(γ+ε)(µν−ακ)− 4α2κ

r2

]
,

c̃2(ξ)= c̃3(ξ) =
2i

d2
1(r

2−λ2
2)(r

2−λ2
3)

[
αd1−2(κ+ν)(µν−ακ)+

4α2µ

r2

]
,

c̃4(ξ) =
4i(µ+ α)(µν − ακ)

d2
1(r

2 − λ2
2)(r

2 − λ2
3)
,

c̃5(ξ) =
i

κ′d2r2(r2 + λ2
1)

[
ζ(δ + 2κ)− η(β + 2γ)− 4αη

r2

]
,
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c̃6(ξ) =
i

κ′d2r2(r2 + λ2
1)

[
η(δ + 2κ)− ζ(λ + 2µ)

]
.

Here

λ2
1 =

4α(λ+ 2µ)

d2
> 0,

λ2
2,3 =

4

d2
1

{
2(µν − ακ)2 − αµd1±

± i2(µν − ακ)
√

(µ+ α)
[
α(µγ − κ2) + µ(αε− ν2)

]}
.

(3.55)

We assume that λ1 > 0, =λ2 > 0 and =λ3 > 0. Note that due to (2.26)
the expression under the square root is positive. To find the inverse Fourier

transform of the matrix Γ̂(ξ) we apply the results collected in the Appendix
B and the following decompositions:

1

(r2 − λ2
2)(r

2 − λ2
3)

=
1

λ2
2 − λ2

3

( 1

r2 − λ2
2

− 1

r2 − λ2
3

)
,

r2

(r2 − λ2
2)(r

2 − λ2
3)

=
1

λ2
2 − λ2

3

( λ2
2

r2 − λ2
2

− λ2
3

r2 − λ2
3

)
,

1

r2(r2 − λ2
2)(r

2 − λ2
3)

=
1

λ2
2λ

2
3r

2
+

1

λ2
2(λ

2
2 − λ2

3)(r
2 − λ2

2)
−

− 1

λ2
3(λ

2
2 − λ2

3)(r
2 − λ2

3)
,

1

r4(r2 − λ2
2)(r

2 − λ2
3)

=
λ2

2 + λ2
3

λ4
2λ

4
3r

2
+

1

λ2
2λ

2
3r

4
+

1

λ4
2(λ

2
2 − λ2

3)(r
2 − λ2

2)
−

− 1

λ4
3(λ

2
2 − λ2

3)(r
2 − λ2

3)
,

1

r2(r2 + λ2
1)

=
1

λ2
1

( 1

r2
− 1

r2 + λ2
1

)
,

1

r4(r2 + λ2
1)

= − 1

λ4
1r

2
+

1

λ2
1r

4
+

1

λ4
1(r

2 + λ2
1)
.

Finally we arrive at the following explicit representation for the fundamental
matrix

Γ(x) = F−1
ξ→x[Γ̂(ξ)] =



[Γ

(1)
pq (x)]3×3 [Γ

(2)
pq (x)]3×3 [Γ

(5)
pq (x)]3×1

[Γ
(3)
pq (x)]3×3 [Γ

(4)
pq (x)]3×3 [Γ

(6)
pq (x)]3×1

[Γ
(7)
pq (x)]1×3 [Γ

(8)
pq (x)]1×3 Γ(9)(x)




7×7

=

=
1

4π



Ψ̃1(x)I3 Ψ̃2(x)I3 [0]3×1

Ψ̃3(x)I3 Ψ̃4(x)I3 [0]3×1

[0]1×3 [0]1×3 Ψ̃5(x)




7×7

−
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− 1

4π



Q(∂)Ψ̃6(x) Q(∂)Ψ̃7(x) [0]3×1

Q(∂)Ψ̃8(x) Q(∂)Ψ̃9(x) [0]3×1

[0]1×3 [0]1×3 0




7×7

+

+
1

4π



R(∂)Ψ̃10(x) R(∂)Ψ̃11(x) ∇>Ψ̃14(x)

R(∂)Ψ̃12(x) R(∂)Ψ̃13(x) ∇>Ψ̃15(x)
[0]1×3 [0]1×3 0




7×7

, (3.56)

where the operators Q(∂), R(∂) and ∇ are defined by (2.7) and

Ψ̃1(x) = −γ + ε

d1|x|
− 1

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j
{
d1(γ + ε)λ2

j+

+4
[
αd1 + αµ(γ + ε) + 4ν(ακ − µν)

]
+

16α2µ

λ2
j

} eiλj |x| − 1

|x| ,

Ψ̃2(x) = Ψ̃3(x) =
κ + ν

d1|x|
+

1

d2
1(λ

2
2 − λ2

3)
×

×
3∑

j=2

(−1)j
{
d1(κ + ν)λ2

j + 4α
[
µ(κ + ν) + 2(ακ − µν)

]} eiλj |x| − 1

|x| ,

Ψ̃4(x) = −µ+ α

d1|x|
− µ+ α

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j(d1λ
2
j + 4αµ)

eiλj |x| − 1

|x| ,

Ψ̃5(x) = − 1

κ′|x| ,

Ψ̃6(x) = − (λ+ µ)|x|
2µ(λ+ 2µ)

+
(δ + 2κ)2d2

4α(λ+ 2µ)2
e−λ1|x| − 1

|x| +

+
1

λ2
2 − λ2

3

3∑

j=2

(−1)j
{γ + ε

d1
+

4

d2
1λ

2
j

[
αd1 + αµ(γ + ε) + 4ν(ακ − µν)

]
+

+
16α2µ

d2
1λ

4
j

} eiλj |x| − 1

|x| ,

Ψ̃7(x) = Ψ̃8(x) = − δ + 2κ

4α(λ+ 2µ)

e−λ1|x| − 1

|x| −

− 1

λ2
2−λ2

3

3∑

j=2

(−1)j
{

κ+ν

d1
+

4α

d2
1λ

2
j

[
µ(κ+ ν)+2(ακ−µν)

]} eiλj |x|−1

|x| ,

Ψ̃9(x)=
1

4α

e−λ1|x|−1

|x| +
1

λ2
2−λ2

3

3∑

j=2

(−1)j µ+α

d2
1

(
d1+

4αµ

λ2
j

)eiλj |x|−1

|x| ,

Ψ̃10(x)=
4

d2
1(λ

2
2−λ2

3)

3∑

j=2

(−1)j
[
νd1+(γ+ε)(ακ−µν)+ 4α2κ

λ2
j

] eiλj |x|−1

|x| ,
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Ψ̃11(x) = Ψ̃12(x) =
2

d2
1(λ

2
2 − λ2

3)
×

×
3∑

j=2

(−1)j
[
2(κ+ν)(µν−ακ)−αd1−

4α2µ

λ2
j

]eiλj |x| − 1

|x| ,

Ψ̃13(x) =
4(µ+ α)(ακ − µν)

d2
1(λ

2
2 − λ2

3)

eiλ2|x| − eiλ3|x|

|x| ,

Ψ̃14(x)=−
η|x|

2κ′(λ+ 2µ)
+

[
ζ(λ+2µ)−η(δ+2κ)

] δ + 2κ

4ακ′(λ+ 2µ)2
e−λ1|x|−1

|x| ,

Ψ̃15(x) =
η(δ + 2κ)− ζ(λ+ 2µ)

4ακ′(λ+ 2µ)

e−λ1|x| − 1

|x| .

One can easily verify that in a vicinity of the origin and at infinity the
fundamental matrix has the following asymptotic behaviour:

Γ(x)=



[O(|x|−1)]3×3 [O(|x|−1)]3×3 [O(1)]3×1

[O(|x|−1)]3×3 [O(|x|−1)]3×3 [O(1)]3×1

[0]1×3 [0]1×3 O(|x|−1)




7×7

as |x|→0, (3.57)

Γ(x)=



[O(|x|−1)]3×3 [O(|x|−2)]3×3 [κ0

xj

|x| +O(|x|−2)]3×1

[O(|x|−2)]3×3 [O(|x|−2)]3×3 [O(|x|−2)]3×1

[0]1×3 [0]1×3 O(|x|−1)




7×7

(3.58)

as |x| → ∞,

with κ0 = − η
2(λ+2µ) .

Remark 3.3. Note that from the above results we can obtain the explicit

expression for the fundamental matrix Γ̃(x) of the operator of statics L̃(∂, 0)
of the hemitropic elasticity when the thermal effects are not taken into
consideration (see (2.14)). We have to set η = ζ = 0 and delete in (3.56)
the seventh column and the seventh row. We arrive at the formula

Γ̃(x)=Fξ→x

[
Γ̂(1)(ξ) Γ̂(2)(ξ)

Γ̂(3)(ξ) Γ̂4)(ξ)

]

6×6

=

[
[Γ

(1)
pq (x)]3×3 [Γ

(2)
pq (x)]3×3

[Γ
(3)
pq (x)]3×3 [Γ

(4)
pq (x)]3×3

]

6×6

=

=
1

4π

[
Ψ̃1(x)I3 Ψ̃2(x)I3
Ψ̃2(x)I3 Ψ̃4(x)I3

]

6×6

− 1

4π

[
Q(∂)Ψ̃6(x) Q(∂)Ψ̃7(x)

Q(∂)Ψ̃7(x) Q(∂)Ψ̃9(x)

]

6×6

+

+
1

4π

[
R(∂)Ψ̃10(x) R(∂)Ψ̃11(x)

R(∂)Ψ̃11(x) R(∂)Ψ̃13(x)

]

6×6

, (3.59)

where the functions Ψ̃j are as above. From the explicit form of the functions

Ψ̃j and formula (3.59) it follows that for sufficiently large |x| (i.e., as |x| →
∞) we have the relations

Γ(1)
pq (x)=O(|x|−1), Γ(j)

pq (x)=O(|x|−2), j=2, 3, 4, p, q=1, 2, 3, (3.60)
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while Γ̃(x) = [O(|x|−1)]6×6 as |x| → 0. These asymptotic relations can be
differentiated any times with respect to the variables x1, x2, x3.

3.2. Principal singular parts of the fundamental matrices. In this
subsection we will write down explicitly the principal singular part of the
fundamental matrices (3.47) and (3.56). This principal part Γ0(x) repre-
sents a 7 × 7 fundamental matrix of the operator L0(∂) defined by (2.12)
and solves the equation:

L0(∂)Γ0(x) = δ(x)I7. (3.61)

It is clear that

Γ0(x) =

[
Γ̃0(x) [0]6×1

[0]1×6 Γ
(9)
0 (x)

]

7×7

, (3.62)

where

Γ
(9)
0 (x) = − 1

4πκ′|x| ,

and Γ̃0(x) = [Γ̃0pq(x)]6×6 is a homogeneous of order −1 fundamental matrix

of the operator L̃0(∂) defined by (2.14). This matrix is constructed in [44]
explicitly and has the form

Γ̃0(x) = − 1

8πd1d2|x|

{[
d∗1I3 d∗2I3
d∗2I3 d∗3I3

]
− 1

|x|2
[
d∗4Q(x) d∗5Q(x)
d∗5Q(x) d∗6Q(x)

]}
, (3.63)

where

d∗1 := d2(γ + ε) + d1(β + 2γ), d∗2 := −
[
d2(κ + ν) + d1(δ + 2κ)

]
,

d∗3 := d2(µ+ α) + d1(λ+ 2µ), d∗4 := d1(β + 2γ)− d2(γ + ε),

d∗5 := −
[
d1(δ + 2κ)− d2(κ + ν)

]
, d∗6 := d1(λ+ 2µ)− d2(µ+ α).

Note that Γ0(x) = Γ>0 (x) = Γ0(−x) and the entries of the matrix Γ0(x)
are homogeneous functions of order −1. For an arbitrary multi–index α =
(α1, α2, α3) and an arbitrary complex number σ it can easily be shown that
in a neighbourhood of the origin (i.e., for small |x|)

∂α
[
Γ(x, σ)− Γ0(x)

]
= O(|x|−|α|), |α| = α1 + α2 + α3, (3.64)

which shows that Γ0(x) is a principal singular part of the matrices Γ(x, σ)
and Γ(x).

3.3. Special representation of the principal singular part. In this
subsection we derive some formulae which will help us to calculate the prin-
cipal symbol matrices of the boundary integral (pseudodifferential) opera-
tors generated by the boundary layer potentials.

Due to the evenness of the entries of the matrix L0(ξ) we have

Γ0(x) = − 1

8π3

∫

R3

[L0(ξ)]
−1e−ix·ξ dξ = − 1

8π3

∫

R3

[L0(ξ)]
−1eix·ξ dξ, (3.65)
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where the above formal integrals are understood as generalized Fourier
transforms, i.e.,

Γ0(x) = −F−1[L−1
0 (ξ)] = − 1

8π3
F [L−1

0 (ξ)].

One can show that L0(ξ) is a positive definite matrix for ξ ∈ R3 \ {0}, since

L̃0(ξ) is positive definite (see [44]).
Let E = [ekj ]3×3 : R3 → R3 be an orthogonal matrix with detE = 1,

EE> = E>E = I3. (3.66)

Then

Γ0(Ex) = − 1

8π3

∫

R3

[L0(ξ)]
−1e−iEx·ξ dξ = − 1

8π3

∫

R3

[
L0(Eξ)

]−1
e−ix·ξ dξ =

=
1

4π2

∫

R2

e−ix̃·ξ̃

{
− 1

2π

∫

R1

[
L0(Eξ)

]−1
e−ix3ξ3 dξ3

}
dξ̃, (3.67)

where x̃ = (x1, x2), ξ̃ = (ξ1, ξ2), i.e.,

Γ0(Ex) = F−1

ξ̃→x̃

[
− 1

2π

∫

R1

[
L0(Eξ)

]−1
e−ix3ξ3 dξ3

]
. (3.68)

This implies (due to the Cauchy integral theorem for analytic functions)

Fx̃→ξ̃

[
Γ0(Ex)

]
= − 1

2π

∫

R1

[
L0(Eξ)

]−1
e−ix3ξ3 dξ3 =

=





− 1

2π

∫

`+

[
L0(Eξ)

]−1
e−ix3ξ3 dξ3 for x3 ≤ 0,

+
1

2π

∫

`−

[
L0(Eξ)

]−1
e−ix3ξ3 dξ3 for x3 ≥ 0,

(3.69)

where `+ [resp. `−] is a closed simple curve of positive, counter clockwise
orientation in the upper [resp. lower] half-plane of the complex ξ3-plane
(ξ3 = ξ′3 + iξ′′3 ) enveloping all the roots (with respect to ξ3) of the equation
detL0(Eξ) = 0 with positive [resp. negative] imaginary parts. Clearly,
(3.69) does not depend on the shape of `+ [resp. `−].

The integration in (3.69) is performed counter clockwise. It can easily be
shown that the entries of the matrix (3.69) with x3 = 0 are homogeneous

functions in ξ̃ of order −1. Moreover, from (3.69) it follows that the matrix[
−Fx̃→ξ̃[Γ0(Ex)]

∣∣
x3=0

]
7×7

is positive definite for arbitrary ξ̃ ∈ R2 \{0} due

to the positive definiteness of the matrix L0(Eξ). As we will see below this
matrix with opposite sign represents the principal homogeneous symbol of
the single-layer potential associated with the matrix Γ(·, σ).
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3.4. Integral representation formulae of solutions. Let us introduce
the generalized single and double layer potentials, and the Newton type
volume potential

V (ϕ)(x) =

∫

S

Γ(x− y, σ)ϕ(y) dSy, x ∈ R
3 \ S, (3.70)

W (ϕ)(x) =

∫

S

[
P∗(∂y, n(y))Γ>(x−y, σ)

]>
ϕ(y) dSy , x∈R

3\S, (3.71)

NΩ±(ψ)(x) =

∫

Ω±

Γ(x− y, σ)ψ(y) dy, x ∈ R
3, (3.72)

whereP∗(∂, n) is the boundary differential operator defined by (2.21), Γ(·, σ)
is the fundamental matrix given by (3.44) or (3.47), ϕ = (ϕ1, . . . , ϕ7)

>

is a density vector-function defined on S, while a density vector-function
ψ = (ψ1, . . . , ψ7)

> is defined on Ω± and we assume that in the case of Ω−

the support of the density vector-function ψ of the Newtonian potential is
a compact set.

Due to the equality

7∑

j=1

Lkj(∂x, σ)
([
P∗(∂y, n(y))Γ>(x− y, σ)

]>)
jp

=

=

7∑

j,q=1

Lkj(∂x, σ)P∗pq(∂y, n(y))Γjq(x− y, σ) =

=
7∑

j,q=1

P∗pq(∂y , n(y))Lkj(∂x, σ)Γjq(x − y, σ) = 0, x 6= y, k, p = 1, 7,

it can easily be checked that the potentials defined by (3.70) and (3.71) are
C∞–smooth in R3 \S and solve the homogeneous equation L(∂, σ)U(x) = 0
in R3 \ S for an arbitrary Lp-summable vector function ϕ. The volume
potential solves the nonhomogeneous equation

L(∂, σ)NΩ±(ψ) = ψ in Ω± for ψ ∈ [C0,κ(Ω±)]7. (3.73)

The relation (3.73) holds true for an arbitrary ψ∈ [Lp(Ω
±)]7 with 1<p<∞.

With the help of Green’s formula (2.38) and Remark 3.2 by standard
arguments we can prove the following assertions (cf., e.g., [36], [7], [37],
[43], Ch. I, Lemma 2.1; Ch. II, Lemma 8.2).

Theorem 3.4. Let S = ∂Ω+ be C1,κ-smooth with 0 < κ ≤ 1, either

σ = 0 or σ = σ1 + iσ2 with σ2 > 0, and let U be a regular vector of the class

[C2(Ω+)]7. Then there holds the integral representation formula

W ({U}+)(x) − V ({PU}+)(x) +NΩ+(L(∂, σ)U)(x) =
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=

{
U(x) for x ∈ Ω+,

0 for x ∈ Ω−.
(3.74)

This formula can be extended to Lipschitz domains and to vector functions

satisfying the conditions U ∈ [W 1
p (Ω+)]7 and L(∂, σ)U ∈ [Lp(Ω

+)]7 with

1 < p <∞.

Proof. For the smooth case it easily follows from Green’s formula (2.38)
with the domain of integration Ω+ \B(x, ε′), where x ∈ Ω+ is treated as a
fixed parameter, B(x, ε′) is a ball centered at the point x and radius ε′ > 0

and B(x, ε′) ⊂ Ω+. One needs to take the j-th column of the fundamental
matrix Γ∗(y−x, σ) for V (y), calculate the surface integrals over the sphere
Σ(x, ε′) := ∂B(x, ε′) and pass to the limit as ε′ → 0.

The second part of the theorem can be shown by standard limiting pro-
cedure. �

Similar representation formula holds in the exterior domain Ω− if a vector
U and its derivatives possess some asymptotic properties at infinity. In
particular, the following assertion holds.

Theorem 3.5. Let S = ∂Ω− be C1,κ-smooth with 0 < κ ≤ 1 and let

U be a regular vector of the class [C2(Ω−)]7, such that for any multi-index

α = (α1, α2, α3) with 0 ≤ |α| = α1 + α2 + α3 ≤ 2, the function ∂αUj is

polynomially bounded at infinity, i.e., for sufficiently large |x|
∣∣∂αUj(x)

∣∣ ≤ C0|x|m, j = 1, 7, (3.75)

with some constants m and C0 > 0. Then there holds the integral represen-

tation formula

−W ({U}−)(x) + V ({PU}−)(x) +NΩ−(L(∂, σ)U)(x) =

=

{
0 for x ∈ Ω+,

U(x) for x ∈ Ω−,
(3.76)

with σ = σ1 + iσ2, where σ2 > 0.
This formula can be extended to Lipschitz domains and to vector func-

tions satisfying the conditions: U ∈ [W 1
p,loc(Ω

−)]7, L(∂, σ)U ∈ [Lp,loc(Ω
−)]7

with 1 < p <∞ and L(∂, σ)U(x) is polynomially bounded at infinity.

Proof. The proof immediately follows from Theorem 3.4 and Remark 3.1.
Indeed, one needs to write the integral representation formula (3.74) for
bounded domain Ω− ∩ B(0, R), send then R to +∞ and take into con-
sideration that the surface integral over Σ(0, R) tends to zero due to the
conditions (3.75) and the exponential decay of the fundamental matrix at
infinity.

The second part of the theorem again can be shown by standard limiting
procedure. �
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Corollary 3.6. Let σ = σ1 + iσ2 with σ1 ∈ R and σ2 > 0, and U be

a solution to the homogeneous equations L(∂, σ)U = 0 in Ω± satisfying the

condition (3.75) and U ∈ [C1,κ(Ω±)]7 with some 0 < κ ≤ 1. Then the

following representation formula holds

U(x) = W ([U ]S)(x) − V ([PU ]S)(x), x ∈ Ω±, (3.77)

where [U ]S = {U}+ − {U}− and [PU ]S = {PU}+ − {PU}− on S.

Proof. It immediately follows from Theorems 3.4 and 3.5. �

4. Uniqueness Theorems for Unbounded Domains

4.1. Uniqueness results for pseudo-oscillation problems. Here we
prove the counterpart of Theorem 2.2 for the exterior BVPs.

Theorem 4.1. Let σ = σ1 + iσ2 with σ1 ∈ R and σ2 > 0, and Φ(−) ∈
[L2,comp(Ω

−)]7. Then the boundary value problems (I (σ))−, (II(σ))− and

(III(σ))− have at most one solution in the class of vector functions which

are polynomially bounded at infinity and belong to the space [W 1
2,loc(Ω

−)]7.

Proof. Let U (1) = (u(1), ω(1), ϑ(1))> and U (2) = (u(2), ω(2), ϑ(2))> be two
solutions of the BVP (K(σ))−, K = I, II, III . Denote U := U (1) − U (2).
The vector U ∈ [W 1

2,loc(Ω
−)]7 is polynomially bounded at infinity and

solves the corresponding homogeneous BVP. By Theorem 3.5, it follows

that U = (Ũ , ϑ)> with Ũ = (u, ω)> actually decays exponentially at infin-
ity. Therefore we have the following Green’s formula (cf. (2.39))

−
〈
{U ′}−, {P(∂, n)U}−

〉
∂Ω−

=

∫

Ω−

U ′ · L(∂, σ)U dx+

+

∫

Ω−

[
E(Ũ ′, Ũ)− %σ2u′ · u−Iσ2ω′ · ω−ηϑ divu′−ζϑ divω′−iησϑ′ div u−

− iζσϑ′ divω − iσκ′′ϑ′ϑ+ κ′ gradϑ′ · gradϑ
]
dx. (4.1)

where 〈 · , · 〉∂Ω− denotes the duality between the spaces [H
1/2
2 (∂Ω−)]7 and

[H
−1/2
2 (∂Ω−)]7. Now, by the same approach as in the proof of Theorem

2.2, we arrive at the relation
∫

Ω−

[
E(Ũ , Ũ)− %σ2|u|2 − Iσ2|ω|2 + κ′C0|∇ϑ|2 + κ′′|ϑ|2

]
dx = 0, (4.2)

where E(U, Ũ) and C0 are given by (2.30) and (2.49) respectively. Whence,
by the word for word arguments applied in the proof of Theorem 2.2, we
derive that U = 0 in Ω−. �
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4.2. Uniqueness results for static problems. For the readers conve-
nience let us formulate here the exterior BVP of statics.

Problem (I(0))−. Find a solution vector U = (u, ω, ϑ)> ∈ [W 1
2,loc(Ω

−)]7

to the equilibrium equation

L(∂, 0)U = Φ in Ω−, (4.3)

satisfying the Dirichlet type boundary condition

{U}− = f on S = ∂Ω−. (4.4)

Problem (II(0))−. Find a solution vector U = (u, ω, ϑ)> ∈ [W 1
2,loc(Ω

−)]7

to the equation (4.3) satisfying the Neumann type boundary condition

{P(∂, n)U}− = F on S. (4.5)

Problem (III(0))−. Find a solution vector U=(u, ω, ϑ)>∈ [W 1
2,loc(Ω

−)]7

to the equation (4.3) satisfying mixed type boundary conditions

{U}− = f (D) on SD, (4.6)

{P(∂, n)U}− = F (N) on SN . (4.7)

As above, we assume that Φ = (Φ̃,Φ7)
> with Φ̃ = (Φ1, . . . ,Φ6)

> has
a compact support and the boundary data are as in (2.48) with p = 2.
The equation (4.3) is again understood in the distributional sense, and the
Dirichlet and Neumann type boundary conditions in the usual trace and
generalized trace sense.

It is easy to see that the BVPs for the temperature function ϑ∈W 1
2,loc(Ω

−)
are separated as independent BVPs for the Laplace equation

κ′∆ϑ = Φ7 in Ω−, (4.8)

with the Dirichlet boundary condition

{ϑ}− = f7 on S, (4.9)

or with the Neumann boundary condition

κ′{∂nϑ}− = F7 on S (4.10)

or with the mixed boundary conditions

{ϑ}− = f
(D)
7 on SD, κ′{∂nϑ}− = F

(N)
7 on SN . (4.11)

If we require that ϑ vanishes at infinity, ϑ = o(1) as |x| → ∞, then these
problems are uniquely solvable and, since Φ7 has a compact support, we
have the following asymptotic for sufficiently large |x| (see, e.g., [19])

∂αϑ(x) = O(|x|−1−|α|), |x| → ∞, (4.12)
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where α = (α1, α2, α3) is an arbitrary multi-index. More precisely,

ϑ(x) =
θ0
|x| +O(|x|−2), (4.13)

gradϑ(x) = − θ0
|x|3 x+O(|x|−3), ϑ0 = const, (4.14)

where

θ0 = lim
|x|→∞

|x|ϑ(x) =

= − 1

4π

∫

S

{∂nϑ(x)}−dS − 1

4πκ′

∫

Ω∗

Φ7(x) dx, Ω∗ = Ω− ∩ supp Φ7.

Assuming that ϑ is known, the above formulated BVPs can be reformulated
as follows.

Problem (Ĩ(0))−. Find a solution vector Ũ = (u, ω)> ∈ [W 1
2,loc(Ω

−)]6 to

the equation

L̃(∂, 0)Ũ = Φ̃ + Ψ̃ in Ω−, (4.15)

satisfying the Dirichlet type boundary condition

{Ũ}− = f̃ on S. (4.16)

Problem (ĨI
(0)

)−. Find a solution vector Ũ = (u, ω)> ∈ [W 1
2,loc(Ω

−)]6

to the equation (4.15) satisfying the Neumann type boundary condition

{T (∂, n)Ũ}− = F̃ + G̃ on S. (4.17)

Problem (ĨII
(0)

)−. Find a solution vector Ũ = (u, ω)> ∈ [W 1
2,loc(Ω

−)]6

to the equation (4.15) satisfying the mixed boundary conditions

{Ũ}− = f̃ (D) on SD, (4.18)

{T (∂, n)Ũ}− = F̃ (N) + G̃ on SN . (4.19)

Here L̃(∂, 0) is defined by (2.14) with σ = 0, while T (∂, n) is given by
(2.22), and

Ψ̃ = (η gradϑ, ζ gradϑ)> in Ω−, (4.20)

G̃ = (ηϑn, ζϑn)> on S. (4.21)

We see that the right hand side vector in equation (4.15) has not a compact

support and it decays at infinity as O(|x|−2) due to (4.14), since Φ̃ has a
compact support. Therefore, solutions to equation (4.15) do not vanish at
infinity, in general.
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To establish the asymptotic of solutions at infinity, we rewrite equation
(4.15) in the form

L̃(∂, 0)Ũ = − θ0
|x|3

[
ηx
ζx

]

6×1

+ Ψ̃(1) + Φ̃, x ∈ Ω−, (4.22)

where

Ψ̃(1)(x) = (ηψ(x), ζψ(x))> , ψ(x) = gradϑ(x) +
θ0
|x|3 x. (4.23)

In view of (4.14), we have Ψ̃(1)(x) = O(|x|−3) as |x| → ∞.
Now, we prove several technical lemmas. In what follows, without loss

of generality, we assume that the origin lies in Ω+.

Lemma 4.2. A particular solution to the differential equation

L̃(∂, 0)Ũ(x) = − θ0
|x|3

[
ηx
ζx

]

6×1

, x ∈ R
3 \ {0}, (4.24)

reads as

Ũ (0)(x) = (u(0)(x), ω(0)(x))> := θ0

(
α1

x

|x| , α2
x

|x|3
)>
, (4.25)

where

α1 =
η

2(λ+ 2µ)
, α2 =

ζ(λ + 2µ)− η(δ + 2κ)

4α(λ+ 2µ)
, (4.26)

and u(0)(x) = O(1) and ω(0)(x) = O(|x|−2) as |x| → ∞.

Lemma 4.3. Let

Ũ (1)(x) = (u(1)(x), ω(1)(x))> :=

:=

∫

Ω−

Γ̃(x− y)
[
Ψ̃(1)(y) + Φ̃(y)

]
dy, x ∈ Ω−, (4.27)

where Ψ̃(1) and Φ̃ are as in (4.22) and Γ̃ is the fundamental matrix of the

operator L̃(∂, 0) given by (3.59). Then the vector (4.27) belongs to the space

[W 2
2,loc(Ω

−)]6, solves the differential equation

L̃(∂, 0)Ũ (1) = Ψ̃(1) + Φ̃ in Ω−, (4.28)

and possesses the following asymptotic

Ũ (1)(x)=(u(1)(x), ω(1)(x))>=

[[
O(|x|−1 ln |x|)

]
3×1[

O(|x|−2 ln |x|)
]
3×1

]
as |x|→∞. (4.29)

Proof. Since Φ̃ has a compact support, by Remark 3.3 we conclude that
∫

Ω−

Γ̃(x − y)Φ̃(y) dy =

[[
O(|x|−1)

]
3×1[

O(|x|−2)
]
3×1

]
as |x| → ∞. (4.30)
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Further, we use the representation

∫

Ω−

Γ̃(x− y)Ψ̃(1)(y) dy =
4∑

l=1

∫

Ωl

Γ̃(x− y)Ψ̃(1)(y) dy, (4.31)

where

Ω− =

4⋃

l=1

Ωl, Ω1 = B
(
O,

1

2
|x|

)
\ Ω+, Ω2 = B

(
x,

1

2
|x|

)
∩ Ω−,

Ω3 =
{
B

(
O,

3

2
|x|

)
∩ Ω−

}
\

{
B

(
O,

1

2
|x|

)
∪ B

(
x,

1

2
|x|

)}
,

Ω4 = Ω− \B
(
O,

3

2
|x|

)
.

We recall that B(z,R) stands for a ball centered at z and radius R.

Applying the asymptotic relation Ψ̃(1)(x) = O(|x|−3) as |x| → ∞ and

properties of the fundamental matrix Γ̃ exposed in Remark 3.3, one can
easily derive that

∫

Ω−

Γ̃(x− y)Ψ̃(1)(y) dy =

[[
O(|x|−1 ln |x|)

]
3×1[

O(|x|−2 ln |x|)
]
3×1

]
as |x| → ∞. (4.32)

Thus, the relation (4.29) holds.

Equality (4.28) can be shown by standard arguments, since Ψ̃(1) + Φ̃ ∈
L2(Ω

−) (see, e.g., [37]). �

Lemma 4.4. Any solution of the homogeneous equation

L̃(∂, 0)Ṽ = 0 in Ω−, (4.33)

which is bounded at infinity, has the following asymptotic

Ṽ (x) = C +

[[
O(|x|−1)

]
3×1[

O(|x|−2)
]
3×1

]
as |x| → ∞, (4.34)

where C = (C1, C2, C3, 0, 0, 0)> with arbitrary constants Cj , j = 1, 2, 3.

Proof. Let Ṽ be a bounded at infinity solution of equation (4.33). Due to the

ellipticity of the operator L̃(∂, 0), we have the imbedding Ṽ ∈ [C∞(Ω−)]6.

Choose a number R such that Ω+ ⊂ B(O,R) and extend the vector

function Ṽ inside the ball B(O,R) preserving the C∞-smoothness. Denote

the extended vector function by W̃ . Evidently, W̃ ∈ [C∞(R3)]6 and

W̃ (x) = Ṽ (x) for x ∈ R
3\B(O,R). (4.35)

Moreover, in accordance with (4.33),

L̃(∂, 0)W̃ (x) = H̃(x) for x ∈ R
3, (4.36)

where H̃ ∈ [C∞(R3)]6 and supp H̃ ⊂ B(O,R).
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Applying the generalized Fourier transform to (4.36) leads to the follow-
ing equation

L̃(−iξ, 0)
̂̃
W (x) =

̂̃
H, ξ ∈ R

3, (4.37)

which is understood in the sense of the Schwartz space of tempered distri-

butions S ′(R3). For the determinant of the matrix L̃(−iξ, 0) we have

det L̃(−iξ, 0) = d2
1d2|ξ|6(|ξ|2 + λ2

1)(|ξ|2 − λ2
2)(|ξ|2 − λ2

3),

where d1 and d2 are positive constants defined by (2.28), and λ2
1 > 0, λ2

2 and
λ2

3 are mutually conjugate complex constants given by (3.55). Therefore we

see that det L̃(−iξ, 0) = 0 only for ξ = 0. Note that L̃−1(−iξ, 0) is the

Fourier transform of the fundamental matrix Γ̃(x) (see Remark 3.3)

L̃−1(−iξ, 0) =
̂̃
Γ(ξ) =

[
Γ̂(1)(ξ) Γ̂(2)(ξ)

Γ̂(3)(ξ) Γ̂(4)(ξ)

]

6×6

, (4.38)

where Γ̂k(ξ), k = 1, 4, are defined by (3.54). The entries of this matrix have
the following weak singularities at the origin

̂̃
Γ(ξ) = L̃−1(−iξ, 0) =

[[
O(|ξ|−2)

]
3×3

[
O(|ξ|−1)

]
3×3[

O(|ξ|−1)
]
3×3

[
O(1)

]
3×3

]
. (4.39)

Therefore, form (4.37) we deduce

̂̃
W (ξ) =

̂̃
Γ(ξ)

̂̃
H(ξ) +

∑

|α|≤m

Cαδ
(α)(ξ), (4.40)

where δ(·) is the Dirac distribution, α = (α1, α2, α3) is a multi-index, δ(α) =
∂αδ , Cα are arbitrary constant vectors and m is some nonnegative integer.

Since H̃ has a compact support, its Fourier transform
̂̃
H is analytic and

by the inverse Fourier transform we get from (4.40)

W̃ (x) = F−1
ξ→x

[̂̃
Γ(ξ)

̂̃
H(ξ)

]
+

∑

|α|≤m

Cαx
α =

=

∫

Ω(1)

Γ̃(x− y)H̃(y)dy +
∑

|α|≤m

Cαx
α, x ∈ R

3, (4.41)

where Ω(1) = supp H̃ .
With the help of the asymptotic behaviour of the fundamental matrix

Γ̃(x) at infinity, we derive

∫

Ω(1)

Γ̃(x− y)H̃(y) dy =

[[
O(|x|−1)

]
3×1[

O(|x|−2)
]
3×1

]
as |x| → ∞. (4.42)
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Therefore, the boundedness of the vector function W̃ (x) at infinity implies
Cα = 0 for all α with |α| ≥ 1. From (4.41) we then get

W̃ (x) =

∫

Ω(1)

Γ̃(x− y)H̃(y) dy + C, x ∈ R
3, (4.43)

where C = (C1, . . . , C6)
> is an arbitrary constant vector.

Taking into account that W̃ solves the homogeneous equation in the
exterior of B(O,R),

L̃(∂, 0)W̃ (x) = 0 for x ∈ R
3 \B(O,R). (4.44)

Since the first summand in (4.43) solves the homogeneous equation (4.44),
the constant vector C must satisfy the same homogeneous equation. This
leads to the equalities C4 = C5 = C6 = 0, which along with (4.42) completes
the proof. �

Lemma 4.5. Any solution Ũ = (u, ω)> of equation (4.22), which is

bounded at infinity and satisfies the condition

lim
R→∞

1

4πR2

∫

Σ(O,R)

u(x) dΣ(O,R) = 0, (4.45)

possesses the following asymptotic behaviour at infinity

Ũ(x) =

[[
θ0α1x|x|−1 +O(|x|−1 ln |x|)

]
3×1[

O(|x|−2 ln |x|)
]
3×1

]
as |x| → ∞, (4.46)

where α1 is given by (4.26).

Proof. Let Ũ be a bounded at infinity solution of equation (4.22) and satisfy
the condition (4.45). Put

Ũ∗(x) := Ũ(x)− Ũ (0)(x) − Ũ (1)(x), x ∈ Ω−, (4.47)

where Ũ (0) and Ũ (1) are given by (4.25) and (4.27) respectively. It is clear

that Ũ∗ is bounded at infinity and solves the homogeneous equation

L̃(∂, 0)Ũ∗(x) = 0, x ∈ Ω−.

Therefore, by Lemma 4.4

Ũ∗(x) = C +

[[
O(|x|−1)

]
3×1[

O(|x|−2)
]
3×1

]
as |x| → ∞, (4.48)

where C = (C1, C2, C3, 0, 0, 0)> and Cj , j = 1, 3, are arbitrary constants.

Consequently, for the vector Ũ(x) = Ũ∗(x) + Ũ (0)(x) + Ũ (1)(x) we get

Ũ(x) = C +

[[
θ0α1x|x|−1 +O(|x|−1 ln |x|)

]
3×1[

O(|x|−2 ln |x|)
]
3×1

]
as |x| → ∞. (4.49)
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In view of the equality ∫

Σ(O,R)

x dΣ(O,R) = 0,

the condition (4.45) implies C1 = C2 = C3 = 0, which completes the proof.
�

Now, having in hand the above results, we can formulate the following
uniqueness theorem.

Theorem 4.6. The exterior BVPs of statics (I (0))−, (II(0))− and

(III(0))− have at most one solution vector U = (u, ω, ϑ)> = (Ũ , ϑ)> ∈
[W 1

2,loc(Ω
−)]7 satisfying the following conditions at infinity:

Ũ(x) = O(1) and ϑ(x) = o(1) as |x| → ∞, (4.50)

lim
R→∞

1

4πR2

∫

Σ(O,R)

u(x) dΣ(O,R) = 0. (4.51)

Proof. It suffices to show that the homogeneous BVPs have only the trivial
solution in the class of vector functions satisfying the conditions (4.50) and

(4.51). Let U = (Ũ , ϑ)> ∈ [W 1
2,loc(Ω

−)]7 be such solution. Since the homo-
geneous BVPs for the temperature function are separated, we get ϑ = 0 in
Ω− (see (4.8)–(4.11)). Consequently, θ0 = lim|x|→∞ |x|ϑ(x) = 0. Therefore,

Ũ = (u, ω)> solves the homogeneous equation

L̃(∂, 0)Ũ = 0 in Ω−, (4.52)

is bounded at infinity and satisfies the condition (4.51). Therefore, by
Lemma 4.5 we have

Ũ(x) =

[[
O(|x|−1 ln |x|0

]
3×1[

O(|x|−2 ln |x|)
]
3×1

]
as |x| → ∞. (4.53)

For vector functions with the asymptotic (4.53) at infinity, there holds
Green’s identity∫

Ω−

[
Ũ · L̃(∂, 0)Ũ +E(Ũ , Ũ)

]
dx = −

∫

∂Ω−

{Ũ}− · {T (∂, n)Ũ}− dS (4.54)

where the bilinear form E(Ũ , Ũ) is given by (2.30). Due to (4.52) and since

Ũ satisfies the homogeneous boundary conditions (see (4.16)–(4.19)), from
(4.54) we get ∫

Ω−

E(Ũ , Ũ) dx = 0. (4.55)

By Lemma 2.1,

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω−, (4.56)

and in view of (4.53) we conclude a = b = 0, i.e., Ũ = (u, ω)> = 0 in Ω−. �
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5. Properties of Layer Potentials

Here we establish the mapping and regularity properties of the single
and double layer potentials and the boundary pseudodifferential operators
generated by them in the Hölder (Cm,κ), Sobolev-Slobodetski (W s

p ), Bessel
potential (Hs

p) and Besov (Bs
p,q) spaces. They can be established by stan-

dard methods (see, e.g., [7], [8], [14], [9], [10], [19], [27], [37], [41], [42],
[43], and [44]). We remark only that the layer potentials corresponding
to the fundamental matrices with different values of the parameter σ (σ′

and σ′′ say) have the same smoothness properties and possess the same
jump relations, since the entries of the difference of the fundamental ma-
trices Γ(x, σ′)− Γ(x, σ′′) are bounded functions in R3 and their derivatives
of order m have a singularity of type O(|x|−m) in a vicinity of the origin.
Moreover, the boundary integral operators generated by the single layer
potentials (respectively, by the double layer potentials) constructed by the
kernels Γ(x, σ′) and Γ(x, σ′′) differ by a compact perturbations. Therefore,
using the word for word arguments given in [8], [27], [37], and [44] we can
prove the following theorems concerning the above introduced layer poten-
tials.

For simplicity, henceforward we assume (if not otherwise stated) that

S = ∂Ω± ∈ Cm,κ with integer m ≥ 2 and 0 < κ ≤ 1;

σ = σ1 + iσ2, σ1 ∈ R, =σ = σ2 > 0.
(5.1)

Theorem 5.1. Let S, m, and κ be as in (5.1), 0 < κ′ < κ, and let

k ≤ m− 1 be integer. Then the operators

V : [Ck,κ′(S)]7→ [Ck+1,κ′ (Ω±)]7, W : [Ck,κ′(S)]7→ [Ck,κ′(Ω±)]7 (5.2)

are continuous.

For any g ∈ [C0,κ′(S)]7, h ∈ [C1,κ′(S)]7, and any x ∈ S
[V (g)(x)]± = V (g)(x) = Hg(x), (5.3)

[
P(∂x, n(x))V (g)(x)

]±
=

[
∓ 2−1I7 +K

]
g(x), (5.4)

[W (g)(x)]± =
[
± 2−1I7 +N

]
g(x), (5.5)

[
P(∂x, n(x))W (h)(x)

]+
=

[
P(∂x, n(x))W (h)(x)

]−
= Lh(x), (5.6)

where

Hg(x) :=

∫

S

Γ(x− y, σ)g(y) dSy, (5.7)

Kg(x) :=

∫

S

[
P(∂x, n(x))Γ(x− y, σ)

]
g(y) dSy, (5.8)

N g(x) :=

∫

S

[
P∗(∂y, n(y))Γ>(x − y, σ)

]>
g(y) dSy, (5.9)
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Lh(x) := lim
Ω±3z→x∈S

P(∂z, n(x))

∫

S

[
P∗(∂y, n(y))Γ>(z−y, σ)

]>
h(y) dSy.(5.10)

Proof. The proof of the relations (5.2)–(5.5) can be performed by standard
arguments (see, e.g., [27], Ch.5, and [44]). We demonstrate here only a
simplified proof of the relation (5.6), the so called Liapunov-Tauber type

theorem. Let h ∈ [C1,κ′(S)]7 and consider the double layer potential U :=

W (h) ∈ [C1,κ′(Ω±)]7. Then by Corollary 3.6 and the jump relations (5.5),
we have

U(x) = W ([U ]S)(x) − V ([PU ]S)(x), x ∈ Ω±,

i.e.,

W (h)(x) = W (h)(x)− V ([PW (h)]S)(x), x ∈ Ω±,

since [U ]S = {W (h)}+ − {W (h)}− = h on S due to (5.5). Therefore
V ([PW (h)]S) = 0 in Ω± and in view of (5.4) we conclude

{
PV ([PW (h)]S)

}− −
{
PV ([PW (h)]S)

}+
=

= [PW (h)]S = {PW (h)}+ − {PW (h)}− = 0

on S, which completes the proof. �

With the help of the explicit form of the fundamental matrix Γ(x− y, σ)
it can easily be shown that the operators K and N are singular integral
operators, H is a smoothing (weakly singular) integral operator, while L
is a singular integro-differential operator. For a C∞-smooth surfaces S all
these operators can be treated as pseudodifferential operators on S (cf., [1],
[19]).

Theorem 5.2. Let S be a Lipschitz surface. Then the operators (5.2)
can be extended to the continuous mappings

V : [H
− 1

2
2 (S)]7 → [H1

2 (Ω±)]7, W : [H
1
2
2 (S)]7 → [H1

2 (Ω±)]7.

The jump relations (5.3)–(5.6) on S remain valid for the extended operators

in the corresponding function spaces.

Proof. It is word for word of the proofs of the similar theorems in [7], [19]
and [37]. �

Theorem 5.3. Let S, m, κ, κ′ and k be as in Theorem 5.1. Then the

operators

H : [Ck,κ′(S)]7 → [Ck+1,κ′(S)]7, (5.11)

: [H
− 1

2
2 (S)]7 → [H

1
2
2 (S)]7, (5.12)

K : [Ck,κ′(S)]7 → [Ck,κ′(S)]7, (5.13)

: [H
− 1

2
2 (S)]7 → [H

− 1
2

2 (S)]7, (5.14)

N : [Ck,κ′(S)]7 → [Ck,κ′(S)]7, (5.15)
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: [H
1
2
2 (S)]7 → [H

1
2
2 (S)]7, (5.16)

L : [Ck,κ′(S)]7 → [Ck−1,κ′(S)]7, (5.17)

: [H
1
2
2 (S)]7 → [H

− 1
2

2 (S)]7 (5.18)

are continuous. Moreover,

(i) the principal homogeneous symbol matrices of the operators ±2−1I7 +
K and ±2−1I7 + N are non-degenerate, while the principal homogeneous

symbol matrices of the operators −H and L are positive definite;

(ii) the operators H, ±2−1I7 +K, ±2−1I7 +N , and L are elliptic pseu-

dodifferential operators (of order −1, 0, 0, and 1, respectively) with zero

index;

(iii) the following equalities hold in appropriate function spaces:

NH = HK, LN = KL,
HL = −4−1I7 +N 2, LH = −4−1I7 +K2.

(5.19)

(iv) The operators (5.12), (5.14), (5.16), and (5.18) are bounded if S is

a Lipschitz surface.

Proof. Proof of the mapping properties (5.11)–(5.18) are standard and can
be performed as in [7], [8], [19], [27], [37], [43], and [44].

The item (iii) follows from the jump relations for the layer potentials and
the general integral representation formulas of solutions to the homogeneous
equation L(∂, σ)U = 0.

Proof of items (i) and (ii) is based on the positive definiteness of the
potential energy functional. Indeed, it can be shown that under the restric-
tions (2.26) the matrix L0(ξ) is positive definite for ξ = (ξ1, ξ2, ξ3) ∈ R3\{0}
(see (2.12)–(2.13)). On the other hand, due to the results obtained in Sub-
section 3.4 we can derive that the principal homogeneous symbol matrix of
the operator H, generated by the single-layer potential associated with the
matrix Γ(·, σ), in a local coordinate system reads as (see (3.69))

S(ξ̃, x;H) = − 1

2π

∫

R1

[
L0(Eξ)

]−1
dξ3 = ∓ 1

2π

∫

`±

[
L0(Eξ)

]−1
dξ3, (5.20)

where ξ̃ = (ξ1, ξ2) ∈ R
2 \ {0}, `± is as in (3.69) and E = E(x) is an

orthogonal matrix associated with a local coordinate system at the point
x ∈ S,

E(x) =



l1(x) m1(x) n1(x)
l2(x) m2(x) n2(x)
l3(x) m3(x) n3(x)


 . (5.21)

Here n(x) = (n1(x), n2(x), n3(x)) is the outward unit normal vector to the
surface S, and l(x) = (l1(x), l2(x), l3(x)) and m(x) = (m1(x),m2(x),m3(x))
are orthogonal unit vectors in the tangential plane at the point x ∈ S.

From (5.20) we conclude that S(ξ̃, x;−H) is a homogeneous matrix of

order −1 in ξ̃ and is positive definite for all x ∈ S and ξ̃ ∈ R2 \ {0}.
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The principal homogeneous symbol matrices of the operators±2−1I7+K,
±2−1I7 +N and L read as

S(ξ̃, x;∓2−1I7 +K) = ± i

2π

∫

`±

P0(Eξ, n(x))[L0(Eξ)]
−1 dξ3, (5.22)

S(ξ̃, x;±2−1I7 +N ) = ∓ i

2π

∫

`±

[L0(Eξ)]
−1P>0 (Eξ, n(x)) dξ3, (5.23)

S(ξ̃, x;L) = ∓ 1

2π

∫

`±

P0(Eξ, n(x))[L0(Eξ)]
−1P>0 (Eξ, n(x)) dξ3, (5.24)

whereE = E(x) is given by (5.21) and P0(∂, n) is the principal homogeneous
part of the operator (2.18), i.e.,

P0(∂, n) =

[
T0(∂, n) [0]6×1

[0]1×6 κ′∂n

]

7×7

(5.25)

with T0(∂, n) the principal homogeneous part of the operator T (∂, n) (see
(2.19) and (2.22))

T0(∂, n) =

[
T

(1)
0 (∂, n) T

(2)
0 (∂, n)

T
(3)
0 (∂, n) T

(4)
0 (∂, n)

]

6×6

,

T
(j)
0 = [T

(j)
0pq]3×3, j = 1, 4,

(5.26)

T
(1)
0pq(∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T
(2)
0pq(∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q ,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q ,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q .

Evidently, P0(∂, n) is the principal homogeneous part of the operator
(2.21) as well.

The entries of the matrices (5.22) and (5.23) are homogeneous functions

of order 0 in ξ̃, while the entries of the matrix (5.24) are homogeneous

functions of order +1 in ξ̃.
Applying the equalities Eξ ·n = ξ3 and ([L0(Eξ)]

−1)77 = |Eξ|−2 = |ξ|−2,
we easily derive that

[S(ξ̃, x;H)]77 = −2−1|ξ|−1, [S(ξ̃, x;L)]77 = 2−1|ξ|,
[
S(ξ̃, x;∓2−1I7+K)

]
77

=∓2−1,
[
S(ξ̃, x;∓2−1I7+N )

]
77

=∓2−1.
(5.27)

The explicit expressions for the symbol matrices (5.22)–(5.24) yield

S(ξ̃, x;−2−1I7 +K) = S>(ξ̃, x;−2−1I7 +N ),

S(ξ̃, x; 2−1I7 +K) = S>(ξ̃, x; 2−1I7 +N ).
(5.28)
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Furthermore, the matrices (5.22) and (5.23) are non-degenerate, which can
be shown by standard arguments. In fact, let us consider the Dirichlet BVP
and the Neumann BVP (associated with the operator P0(∂x, n)) for the
differential equation L0(∂x)U(x) = 0 in the half spaces R3

+(n) := n · x > 0
and R3

−(n) := n ·x < 0, where n = (n1, n2, n3) is an arbitrary constant unit
vector. Denote by l = (l1, l2, l3) and m = (m1,m2,m3) orthogonal unit
vectors lying in the plane orthogonal to n, such that detE = 1, where E is
the orthogonal matrix having the structure (5.21).

With the help of the change of variables x = Eζ, where ζ = (ζ1, ζ2, ζ3),
the domains R3

+(n) and R3
−(n) are transformed into the half spaces ζ3 > 0

and ζ3 < 0, and L0(∂x) and P0(∂x, n) into the operators L0(E∂ζ) and
P0(E∂ζ , n) respectively. Applying the partial Fourier transform Fζ̃→ξ̃ with

ζ̃ = (ζ1, ζ2), the BVPs will be transformed into the Dirichlet and Neumann
type BVPs for the system of ordinary differential equations in ζ3 either in
the interval (−∞, 0) or (0,+∞) with the operators L0(EΛ) and P0(EΛ, n),
where

Λ :=
(
− iξ1,−iξ2,

d

dζ3

)>
.

Evidently, these problems depend on the parameters ξ̃ = (ξ1, ξ2) ∈ R2 \
{0} and their homogeneous versions read as follows: Find a solution vector
U(ζ3) to the equation

L0(EΛ)U(ζ3) = 0, (5.29)

either in (−∞, 0), satisfying one of the following boundary conditions:

(I)+ : lim
ζ3→0−

U(ζ3) = 0,

(II)+ : lim
ζ3→0−

P0(EΛ, n)U(ζ3) = 0,
(5.30)

or in (0,+∞), satisfying one of the following boundary conditions:

(I)− : lim
ζ3→0+

U(ζ3) = 0,

(II)− : lim
ζ3→0+

P0(EΛ, n)U(ζ3) = 0.
(5.31)

With the help of the positive definiteness of the potential energy quadratic
form and inequalities (2.26), it can be easily verified that the homogeneous
boundary value problems (I)± and (II)± possesses only the trivial solution
in the space of vector functions decaying at infinity.

Further, we can check that the columns of the matrices (cf. (3.69))

U
(−)(ζ3) := − 1

2π

∫

`+

[L0(Eξ)]
−1e−iζ3ξ3 dξ3, (5.32)

U
(+)(ζ3) :=

1

2π

∫

`−

[L0(Eξ)]
−1e−iζ3ξ3 dξ3, (5.33)
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represent a complete system of solutions to the homogeneous differential
equation (5.29). Moreover, the entries of (5.32) decay exponentially as ζ3 →
−∞ and grow exponentially as ζ3 → +∞, while the entries of (5.33) decay
exponentially as ζ3 → +∞ and grow exponentially as ζ3 → −∞. Due to
the above mentioned uniqueness results, it follows immediately that the four
linear systems of algebraic equations with unknown C ∈ C7,

U
(±)(0)C = 0, (5.34)

P0(EΛ, n)U(±)(0)C = 0, (5.35)

have only the trivial solution, that is the corresponding determinants are
different from zero. Since the matrices P0(EΛ, n)U(±)(0) coincide with the
(5.22), it follows that the symbol matrices (5.22) are non-degenerate for

ξ̃ = (ξ1, ξ2) ∈ R2 \ {0}. By (5.28), we conclude that the matrices (5.23) are
non-degenerate as well.

Moreover, from the last equalities in (5.19) and the non-degeneracy of
the matrices (5.20) and (5.22)–(5.23) it follows that the symbol matrix

S(ξ̃, x;L) is non-degenerate.

Now, we show that the symbol matrix S(ξ̃, x;L) is positive definite. To
this end, let us consider the double layer potential W0 = W0(g) in domains
R3

+(n) and R3
−(n)

W0(g)(x) =

∫

S(n)

[
P0(∂y, n)Γ0(x− y)

]>
g(y) dS(n), (5.36)

where P0(∂, n) is defined by (5.25)–(5.26) and is the principal homogeneous
part of the operator (2.21), Γ0(·) is the principal singular part of the matrix
Γ(·, σ) (see Subsections 3.3 and 3.4), S(n) = ∂R3

±(n), n = (n1, n2, n3) is
an arbitrary constant vector which is the unit normal vector to the plane
S(n) directed into the half space R3

+(n), and g = (g1, . . . , g7)
> is an arbi-

trary complex valued vector function from the Schwartz space [S(S(n))]7

of rapidly decaying vector functions. Since W0(g) solves the homogeneous
equation L0(∂)W0(g) = 0 in R

3
±(n) and at infinity has the following de-

cay properties W0(g)(x) = O(|x|−1) and ∂αW0(g)(x) = O(|x|−1−|α|) as
|x| → ∞ for arbitrary multi-index α = (α1, α2, α3), there hold Green’s
formulas ∫

R
3
+(n)

E0(W0,W 0) = −
∫

S(n)

{P0(∂, n)W0}− · {W 0}− dS(n), (5.37)

∫

R
3
−

(n)

E0(W0,W 0) =

∫

S(n)

{P0(∂, n)W0}+ · {W 0}+ dS(n), (5.38)

where for U = (u, ω, ϑ)>

E0(U,U) =
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=
3λ+2µ

3

∣∣∣ div u+
3δ+2κ

3λ+2µ
divω

∣∣∣
2

+
1

3

(
3β+2γ− (3δ+2κ)2

3λ+2µ

)
| divω|2+

+
µ

2

3∑

k,j=1,k 6=j

∣∣∣∂uk

∂xj
+
∂uj

∂xk
+
κ

µ

(∂ωk

∂xj
+
∂ωj

∂xk

)∣∣∣
2

+

+
µ

3

3∑

k,j=1

∣∣∣∂uk

∂xk
− ∂uj

∂xj
+
κ

µ

(∂ωk

∂xk
− ∂ωj

∂xj

)∣∣∣
2

+

+
(
γ − κ2

µ

) 3∑

k,j=1,k 6=j

[
1

2

∣∣∣∂ωk

∂xj
+
∂ωj

∂xk

∣∣∣
2

+
1

3

∣∣∣∂ωk

∂xk
− ∂ωj

∂xj

∣∣∣
2
]
+

+
(
ε− ν2

α

)
| curlω|2 + α

∣∣∣ curlu+
ν

α
curlω

∣∣∣
2

+

3∑

j=1,k 6=j

∣∣∣ ∂ϑ
∂xj

∣∣∣
2

. (5.39)

In view of Liapunov–Tauber type theorem (see (5.6))
{
P0(∂, n)W0(g)

}−
=

{
P0(∂, n)W0(g)

}+
=: L0g. (5.40)

The operator L0 is a compact perturbation of the operator L and therefore
their principal homogeneous symbols coincide (see (5.24))

S(ξ̃, z;L) = S(ξ̃;L0), z ∈ S, (5.41)

provided n = n(z) in (5.40).
Due to the inequalities (2.26), we have E0(U,U) ≥ 0 and E0(U,U) = 0

implies
U(x) = (b1, . . . , b7)

>, (5.42)

where bj , j = 1, 7, are arbitrary constants.
With the help of the jump relation {W0(g)}+−{W0(g)}− = g and equal-

ity (5.40) we get from (5.37)
∫

R
3
+(n)

E0(W0,W 0) +

∫

R
3
−

(n)

E0(W0,W 0)=

∫

S(n)

L0g(x) · g(x) dS(n)≥0. (5.43)

Since W0(g) decays at infinity, it can easily be shown that in (5.43) we have
strong inequality if g does not vanish identically.

Under the change of variables x = Eζ in (5.43) and denoting h(ζ) =
g(Eζ), we arrive at the inequality

∫

S(n)

L0g(x) · g(x) dS(n) =

∫

R2

L0h(ζ̃) · h(ζ̃) dζ̃ > 0 (5.44)

for all h ∈ [S(R2)]7 and h 6≡ 0.
Applying the Parseval–Plancherel formula and the Fourier transform for-

mula of convolution,∫

R2

f(x̃) g(x̃) dx̃ =
1

4π2

∫

R2

f̂(ξ̃) ĝ(ξ̃) dξ̃, F [f ∗ g](ξ̃) = f̂(ξ̃) ĝ(ξ̃),
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from (5.44) we get
∫

S(n)

L0g(x) · g(x) dS(n) =

∫

R2

L0h(ζ̃) · h(ζ̃) dζ̃ =

=
1

4π2

∫

R2

S(ξ̃;L0)ĥ(ξ̃) · ĥ(ξ̃) dξ̃ > 0, (5.45)

Since, h ∈ [S(R2)]7 is an arbitrary nonzero vector, form (5.45) we deduce

that the matrix S(ξ̃;L0) is positive definite for all ξ̃ ∈ R2 \ {0}, which
proves positive definiteness of the principal homogeneous symbol matrix of
the operator L due to (5.41).

From positive definiteness of the matrices S(ξ̃, x;−H) and S(ξ̃, x;L) it
follows that the index of the operators H and L equal to zero.

Now we show that the operators ±2−1I7 +K and ±2−1I7 +N have zero
index as well. We demonstrate the proof for the operator 2−1I7 + K. For
the other operators the proof is word for word.

First of all, let us note that the operator

H : [H
− 1

2
2 (S)]7 → [H

1
2
2 (S)]7 (5.46)

is injective due to the uniqueness theorems for the Dirichlet interior and ex-
terior BVPs (see Theorems 2.2 and 4.1). Consequently, (5.46) is invertible.
Evidently, the adjoint operator

H∗ : [H
− 1

2
2 (S)]7 → [H

1
2
2 (S)]7 (5.47)

is invertible as well.
Further, in view of the first equality in (5.19), we get

H(2−1I7 +K) = (2−1I7 +N )H. (5.48)

On the other hand, taking into consideration that

S(ξ̃, x;−2−1I7 +K∗) = S>(ξ̃, x;−2−1I7 +K),

from the second equality in (5.28), it follows that the principal homogenous
symbol matrices of the operators 2−1I7 +N and 2−1I7 + K∗ coincide and
therefore N −K∗ is a compact operator, i.e.,

ind(2−1I7 +N ) = ind(2−1I7 +K∗), (5.49)

where K∗ is adjoint to the operator K.
From (5.48) we have

(2−1I7 + K) = H−1(2−1I7 +N )H,
(2−1I7 +K∗) = H∗(2−1I7 +N ∗)[H∗]−1,

(5.50)

which implies that

dimker(2−1I7 +K) = dimker(2−1I7 +N ),

dimker(2−1I7 +K∗) = dimker(2−1I7 +N ∗).
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Therefore,

ind(2−1I7 +K) = ind(2−1I7 +N ) = ind(2−1I7 +K∗)
due to (5.49), and since ind(2−1I7 +K) = −ind(2−1I7 +K∗), it follows that
ind(2−1I7 +K) = 0.

Finally, the item (iv) follows from Green’s formulas and Theorem 5.2 (see
similar theorems in [37]). �

The next proposition is a consequence of the general theory of elliptic
pseudodifferential operators on smooth manifolds without boundary (see,
e.g., [21], [14], [53], [54], and the references therein).

Theorem 5.4. Let V , W , H, K, N , and L be as in Theorems 5.1 and

5.3 and let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer poten-

tial operators (3.70), (3.71) and the boundary integral (pseudodifferential)
operators (5.7)–(5.10) can be extended to the following continuous operators

V : [Bs
p,p(S)]7 → [H

s+1+ 1
p

p (Ω±)]7
[

[Bs
p,q(S)]7 → [B

s+1+ 1
p

p,q (Ω±)]7
]
,

W : [Bs
p,p(S)]7 → [H

s+ 1
p

p (Ω±)]7
[

[Bs
p,q(S)]7 → [B

s+ 1
p

p,q (Ω±)]7
]
,

H : [Hs
p(S)]7 → [Hs+1

p (S)]7
[

[Bs
p,q(S)]7 → [Bs+1

p,q (S)]7
]
, (5.51)

K : [Hs
p(S)]7 → [Hs

p(S)]7
[

[Bs
p,q(S)]7 → [Bs

p,q(S)]7
]
, (5.52)

N : [Hs
p(S)]7 → [Hs

p(S)]7
[

[Bs
p,q(S)]7 → [Bs

p,q(S)]7
]
, (5.53)

L : [Hs+1
p (S)]7 → [Hs

p(S)]7
[

[Bs+1
p,q (S)]7 → [Bs

p,q(S)]7
]
. (5.54)

The jump relations (5.3)–(5.6) remain valid for arbitrary g ∈ [Bs
p,q(S)]7

with s ∈ R if the limiting values (traces) on S are understood in the sense

described in [53].
The operators (5.51)–(5.54) are elliptic pseudodifferential operators with

zero index. The null-spaces of the operators (5.51)–(5.54) are invariant with

respect to p, q, and s.

Proof. The proof follows from Theorem 5.3 by duality and interpolation
arguments (see similar theorems in [10] and [8]. �

6. Existence Results for Pseudo-Oscillation Problems

Here we apply the potential method and prove existence theorems for
the Dirichlet and Neumann type BVPs for pseudo-oscillation equations (see
Subsection 2.4). We reduce the original BVPs to the equivalent integral
equations on the boundary of the elastic body under consideration and in-
vestigate their Fredholm properties. In particular, we show that the corre-
sponding integral (pseudodifferential) operators are invertible. Without loss
of generality we consider the BVPs for the homogeneous differential equa-
tion L(∂, σ)U(x) = 0, since a particular solution to the nonhomogeneous
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equation (2.43) can be written explicitly in the form of volume potential
NΩ±(Φ) (see (3.73)).

Moreover, throughout this section we assume that the conditions (5.1)
are fulfilled if not otherwise stated.

6.1. Investigation of the Dirichlet type interior and exterior BVPs.
These problems are formulated in Subsection 2.4 as problems (I (σ))+ and
(I(σ))− (see (2.43)–(2.44)). We assume that Φ(±) = 0 and look for solutions
in Ω± in the form of double layer potential U = W (h) (see (3.71)). Applying
the jump relations for the double layer potential (see Theorem 5.1) and
taking into consideration the boundary conditions (2.44), for the unknown
density vector function h = (h1, . . . , h7)

> we get the boundary integral
equations

[2−1I7 +N ]h = f on S, (6.1)

in the case of Problem (I(σ))+, and

[−2−1I7 +N ]h = f on S, (6.2)

in the case of Problem (I(σ))−.
Here the operatorN is given by (5.9). Due to Theorem 5.3, the operators

±2−1I7 +N are singular integral operators of normal type with index zero.
This leads to the following existence theorems.

Theorem 6.1. Let S ∈ C2,α and f ∈ [C1,β(S)]7 with 0 < β < α ≤ 1.

Then the BVP (I(σ))+ is uniquely solvable in the space [C1,β(Ω+)]7 and the

solution is represented by the double layer potential W (h) defined by (3.71),
where h ∈ [C1,β(S)]7 is a unique solution of the integral equation (6.1).

Proof. The uniqueness follows from Theorems 5.1 and 2.2. It remains to
show that the singular integral operator

2−1I7 +N : [C1,β(S)]7 → [C1,β(S)]7 (6.3)

is invertible.
Due to Theorem 5.3, we conclude that (6.3) is a Fredholm operator with

zero index. Further, we show that ker[2−1I7 +N ] is trivial. Indeed, let h0

solve the homogeneous equation

[2−1I7 +N ]h0 = 0 on S. (6.4)

Construct the double layer potential W (h0). Since h0 ∈ [C1,β(S)]7, we

have W (h0) ∈ [C1,β(Ω±)]7. In view of equation (6.4), we see that then
[W (h0)(x)]

+ = 0 for x ∈ S and by the uniqueness Theorem 2.2 we get
W (h0)(x) = 0 for x ∈ Ω+. Consequently, [P(∂, n)W (h0)(x)]

+ = 0 for x ∈ S.
By the Liapunov-Tauber theorem (see Theorem 5.1)

[
P(∂, n)W (h0)(x)

]+
=

[
P(∂, n))W (h0)(x)

]−
= 0, x ∈ S,

i.e., W (h0) solves the exterior Neumann type boundary value problem
(II(σ))− and decays at infinity exponentially. Therefore, W (h0)(x) = 0
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in Ω− by Theorem 2.2. Since

[W (h0)(x)]
+ − [W (h0)(x)]

− = 2h0(x), x ∈ S,
we conclude that h0 = 0 on S, which shows that ker[2−1I7 +N ] is trivial.
Therefore, (6.3) is invertible. �

Quite similarly, by the word for word arguments and with the help of
Theorem 4.1, we can show that the operator

−2−1I7 +N : [C1,β(S)]7 → [C1,β(S)]7 (6.5)

is invertible, which leads to the existence theorem for the Dirichlet type
exterior BVP.

Theorem 6.2. Let S ∈ C2,α and f ∈ [C1,β(S)]7 with 0 < β < α ≤ 1.
Then the BVP (I(σ))− is uniquely solvable in the class of vector functions

belonging to the space [C1,β(Ω−)]7 and decaying at infinity, and the solution

is represented by the double layer potential W (h) defined by (3.71), where

h ∈ [C1,β(S)]7 is a unique solution of the integral equation (6.2).

6.2. Investigation of the Neumann type interior and exterior BVPs.
These problems are formulated in Subsection 2.4 as problems (II (σ))+ and
(II(σ))− (see (2.43), (2.45)). As above, we assume that Φ(±) = 0 and look
for solutions in Ω± in the form of the single layer potential U = V (g) (see
(3.70)). Applying the jump relations for the single layer potential (see The-
orem 5.1) and taking into consideration the boundary conditions (2.45), for
the unknown density vector function g = (g1, . . . , g7)

> we get the boundary
integral equations

[−2−1I7 +K]g = F on S, (6.6)

in the case of Problem (II (σ))+, and

[2−1I7 +K]g = F on S, (6.7)

in the case of Problem (II (σ))−.
Here the operator K is given by (5.8). Due to Theorem 5.3, the operators

±2−1I7 +K are singular integral operators of normal type with index zero.
This yields the following existence theorems.

Theorem 6.3. Let S ∈ C1,α and F ∈ [C0,β(S)]7 with 0 < β < α ≤ 1.

Then the BVP (II(σ))+ is uniquely solvable in the space [C1,β(Ω+)]7 and the

solution is represented by the single layer potential V (g) defined by (3.70),
where g ∈ [C0,β(S)]7 is a unique solution of the integral equation (6.6).

Proof. The uniqueness is a consequence of Theorems 5.1 and 2.2. Now,
we show that the operator

−2−1I7 +K : [C0,β(S)]7 → [C0,β(S)]7 (6.8)

is invertible.
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Due to Theorem 5.3, the operator (6.3) is a Fredholm operator with zero
index. Therefore, it remains to show that ker[−2−1I7 +K] is trivial. Let g0
solve the homogeneous equation

[−2−1I7 +K]g0 = 0, on S. (6.9)

Construct the single layer potential V (g0). Evidently, V (g0) ∈ [C1,β(Ω+)]7,
since g0 ∈ [C0,β(S)]7. Moreover, V (g0) solves the homogeneous Problem
(II(σ))+ and therefore it vanishes identically in Ω+, due to Theorem 2.2.
Further, by Theorem 5.1 we have [V (g0)(x)]

+ = [V (g0)(x)]
− = 0 for x ∈ S,

and since it decays at infinity, by the uniqueness theorem for the Dirichlet
exterior BVP, we conclude V (g0)(x) = 0 for x ∈ Ω−. Finally, with the help
of equality

[P(∂, n))V (g0)(x)]
− − [P(∂, n))V (g0)(x)]

+ = 2g0(x), x ∈ S,
we derive g0 = 0 on S, which proves that ker[−2−1I7 +K] is trivial. Thus,
the operator (6.8) is invertible. �

By the word for word arguments we can prove that the operator

2−1I7 +K : [C0,β(S)]7 → [C0,β(S)]7 (6.10)

is invertible, which leads to the existence theorem for the Neumann type
exterior BVP.

Theorem 6.4. Let S ∈ C1,α and F ∈ [C0,β(S)]7 with 0 < β < α ≤ 1.
Then the BVP (II(σ))− is uniquely solvable in the class of vector functions

belonging to the space [C1,β(Ω−)]7 and decaying at infinity, and the solution

is represented by the single layer potential V (g) defined by (3.70), where

g ∈ [C0,β(S)]7 is a unique solution of the integral equation (6.7).

Remark 6.5. Note that, if S ∈ C2,α, the operators

±2−1I7 +K : [C1,β(S)]7 → [C1,β(S)]7 (6.11)

are invertible as well.

6.3. Investigation of the basic BVPs by the first kind integral equa-
tions. Here we apply an alternative approach and reduce the basic interior
and exterior BVPs, considered in the previous subsections, to the first kind
integral (pseudodifferential) equations. We shall essentially apply the re-
sults obtained in this subsection in the study of mixed BVPs

6.3.1. Investigation of the Dirichlet problem with the help of the first kind in-

tegral equations. We look for a solution to the problems (I (σ))+ and (I(σ))−

(see (2.43)–(2.44) with Φ(±) = 0) in the form of the single layer potential
U = V (g) (see (3.70)). In both cases, for the interior and exterior BVPs,
we arrive at the equation

Hg = f on S, (6.12)

where H is defined by (5.7).
We have the following existence theorem.
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Theorem 6.6. Let S ∈ C2,α and f ∈ [C1,β(S)]7 with 0 < β < α ≤ 1.
Then the BVPs (I(σ))± are uniquely solvable in the class of vector functions

belonging to the space [C1,β(Ω±)]7 and decaying at infinity, and the solution

is represented by the single layer potential V (g) defined by (3.70), where

g ∈ [C0,β(S)]7 is a unique solution of the integral equation (6.12).

Proof. The uniqueness follows from Theorems 5.1, 2.2 and 4.1. Evidently,
it remains to show the invertibility of the operator

H : [C0,β(S)]7 → [C1,β(S)]7. (6.13)

To this end, we apply the operator L (see (5.10)) to both sides of equation
(6.12) and take into consideration the operator equalities (5.19),

LHg ≡ [−4−1I7 +K2]g = Lf on S. (6.14)

Clearly, Lf ∈ [C0,β(S)]7 due to Theorem 5.3. Since the operators (6.8) and
(6.10) are invertible, we conclude that the singular integral operator

LH = [−2−1I7 +K][2−1I7 +K] : [C0,α(S)]7 → [C0,α(S)]7 (6.15)

is invertible as well. Therefore, from (6.14) we get the following represen-
tation of a solution of equation (6.12)

g = [−4−1I7 +K2]−1Lf ∈ [C0,β(S)]7. (6.16)

With the help of the uniqueness Theorem 2.2, one can easily show that the
operators

H : [C0,β(S)]7 → [C1,β(S)]7, L : [C1,β(S)]7 → [C0,β(S)]7, (6.17)

are injective. Therefore, the equations (6.12) and (6.14) are equivalent and
the operator (6.13) is invertible, which completes the proof. �

Corollary 6.7. A solution U ∈ [C1,β(Ω±)]7 of the BVP (I(σ))± with

Φ(±) = 0 is uniquely representable in the form

U(x) = V (H−1f)(x), x ∈ Ω±, (6.18)

where f = {U}± on S and

H−1 : [C1,β(S)]7 → [C0,β(S)]7 (6.19)

is the inverse to the operator (6.13).

6.3.2. Investigation of the Neumann problem with the help of the first kind

integral equations. We look for a solution to the problems (II (σ))+ and
(II(σ))− (see (2.43), (2.45) with Φ(±) = 0) in the form of the double layer
potential U = W (h) (see (3.71)). In both cases, for the interior and exterior
BVPs, we arrive then at the equation

Lh = F on S, (6.20)

where L is defined by (5.10).
We have the following existence theorem.
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Theorem 6.8. Let S ∈ C2,α and F ∈ [C0,β(S)]7 with 0 < β < α ≤ 1.
Then the BVPs (II(σ))± are uniquely solvable in the class of vector functions

belonging to the space [C1,β(Ω±)]7 and decaying at infinity, and the solution

is represented by the double layer potential W (h) defined by (3.71), where

h ∈ [C1,β(S)]7 is a unique solution of the integral equation (6.20).

Proof. The uniqueness follows from Theorems 5.1, 2.2 and 4.1. Evidently,
it remains to show the invertibility of the operator

L : [C1,β(S)]7 → [C0,β(S)]7. (6.21)

To this end, we apply the operator H (see (5.7)) to both sides of equation
(6.20) and take into consideration the operator equalities (5.19),

HLh ≡ [−4−1I7 +N 2]h = HF on S. (6.22)

Clearly, HF ∈ [C1,β(S)]7 due to Theorem 5.3. Since the operators (6.3)
and (6.5) are invertible, we conclude that the singular integral operator

HL = [−2−1I7 +N ][2−1I7 +N ] : [C1,α(S)]7 → [C1,α(S)]7 (6.23)

is invertible as well. Therefore, from (6.22) we get the following represen-
tation of a solution of equation (6.20)

h = [−4−1I7 +N 2]−1HF ∈ [C1,β(S)]7. (6.24)

Since the operators (6.17) are injective, we conclude that the equations
(6.20) and (6.22) are equivalent and the operator (6.21) is invertible, which
completes the proof. �

Corollary 6.9. A solution U ∈ [C1,β(Ω±)]7 of the BVP (II(σ))± with

Φ(±) = 0 is uniquely representable in the form

U(x) = W (L−1F )(x), x ∈ Ω±, (6.25)

where F = {P(∂, n)U}± on S and

L−1 : [C0,β(S)]7 → [C1,β(S)]7 (6.26)

is the inverse to the operator (6.21).

6.4. Existence results for the data from the Bessel potential and
Besov spaces. Here we extend the existence results to that case when the
data of the BVPs are from the Bessel potential and Besov spaces and solu-
tions are sought in the space [W 1

p (Ω±)]7 (see problem setting in Subsection
2.4 and inclusions (2.48)). First we formulate the following auxiliary lemma
which directly follows from Theorems 5.4 and 6.1–6.4.

Lemma 6.10. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and S ∈ C∞. Then

the operators

H : [Hs
p(S)]7→ [Hs+1

p (S)]7
[
[Bs

p,q(S)]7→ [Bs+1
p,q (S)]7

]
, (6.27)

±2−1+K : [Hs
p(S)]7→ [Hs

p(S)]7
[
[Bs

p,q(S)]7→ [Bs
p,q(S)]7

]
, (6.28)
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±2−1+N : [Hs
p(S)]7→ [Hs

p(S)]7
[
[Bs

p,q(S)]7→ [Bs
p,q(S)]7

]
, (6.29)

L : [Hs+1
p (S)]7→ [Hs

p(S)]7
[
[Bs+1

p,q (S)]7→ [Bs
p,q(S)]7

]
, (6.30)

are invertible.

This lemma implies the following existence result.

Theorem 6.11. Let S ∈ C∞ and f ∈ [B
1− 1

p
p,p (S)]7. Then the BVPs

(I(σ))± are uniquely solvable in the space [W 1
p (Ω±)]7 and the solutions are

represented by the double layer potential W (h) defined by (3.71), where h ∈
[B

1− 1
p

p,p (S)]7 is a unique solution of the pseudodifferential equation

[2−1I7 +N ]h = f on S, (6.31)

in the case of problem (I (σ))+ and of the pseudodifferential equation

[−2−1I7 +N ]h = f on S, (6.32)

in the case of problem (I (σ))−.

Theorem 6.12. Let S ∈ C∞ and F ∈ [B
− 1

p
p,p (S)]7. Then the BVPs

(II(σ))± are uniquely solvable in the space [W 1
p (Ω±)]7 and the solutions

are represented by the single layer potential V (g) defined by (3.70), where

g ∈ [B
− 1

p
p,p (S)]7 is a unique solution of the pseudodifferential equation

[−2−1I7 +K]g = F on S, (6.33)

in the case of problem (II (σ))+ and of the pseudodifferential equation

[2−1I7 +K]g = F on S, (6.34)

in the case of problem (II (σ))−.

Theorem 6.13. Let S ∈ C∞ and f ∈ [B
1− 1

p
p,p (S)]7. Then the BVPs

(I(σ))± are uniquely solvable in the space [W 1
p (Ω±)]7 and the solutions are

represented by the single layer potential V (g), where g ∈ [B
− 1

p
p,p (S)]7 is a

unique solution of the pseudodifferential equation

Hg = f on S. (6.35)

A solution U ∈ [W 1
p (Ω±)]7 of the homogeneous equation L(∂, σ)U = 0 in

Ω± is uniquely representable in the form

U(x) = V
(
H−1{U}+

)
(x), x ∈ Ω±, (6.36)

where H−1 is inverse to the operator

H : [B
− 1

p
p,p (S)]7 → [B

1− 1
p

p,p (S)]7. (6.37)
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Theorem 6.14. Let S ∈ C∞ and F ∈ [B
− 1

p
p,p (S)]7. Then the BVPs

(II(σ))± are uniquely solvable in the space [W 1
p (Ω±)]7 and the solutions are

represented by the double layer potential W (h), where h ∈ [B
1− 1

p
p,p (S)]7 is a

unique solution of the pseudodifferential equation

Lh = F on S. (6.38)

Remark 6.15. Lemma 6.10 and Theorems 6.11− 6.14 with p = 2 remain
valid for Lipschitz domains due to Theorems 5.2, 5.3.(iv) and the uniqueness
Theorem 2.2.

6.5. Investigation of the mixed type BVPs. Having in hand the results
obtained in the previous subsections, we can investigate the mixed type
BVPs. In general, solutions to the mixed type BVPs are not regular at the
lines, where the boundary conditions change their type (e.g., Dirichlet to
Neumann). Therefore we have to look for solutions in the space [W 1

p (Ω±)]7.

First, we consider the interior mixed type BVP (III (σ))+. We have to
find a solution U = (u, ω, ϑ)> ∈ [W 1

p (Ω+)]7 to the homogeneous equation

L(∂, σ)U = 0 in Ω+, which satisfies the boundary conditions

{U}+ = f (D) on SD, (6.39)

{P(∂, n)U}+ = F (N) on SN , (6.40)

where

f (D) ∈ [B
1− 1

p
p,p (SD)]7, F (N) ∈ [B

− 1
p

p,p (SN )]7. (6.41)

For simplicity, throughout this subsection we assume that S and ∂SD =
∂SN are C∞-smooth.

Denote by f (e) a fixed extension of the vector-function f (D) from SD

onto S preserving the functional space:

f (e) ∈ [B
1− 1

p
p,p (S)]7, r

SD
f (e) = f (D) on SD. (6.42)

Recall that r
M

denotes the restriction operator to M.
Evidently, an arbitrary extension f of f (D) onto the whole of S, which

preserves the functional space, can be then represented as

f = f (e) + ϕ with ϕ ∈ [B̃
1− 1

p
p,p (SN )]7. (6.43)

In accordance with Lemma 6.10 and Theorem 6.13, we can look for a solu-
tion in the form

U = V
(
H−1(f (e) + ϕ)

)
, (6.44)

where ϕ ∈ [B̃
1− 1

p
p,p (SN )]7 is an unknown vector function.

In view of (6.42), it is easy to check that the Dirichlet condition (6.39)
on SD is satisfied automatically. It remains only to satisfy the Neumann
condition (6.40) on SN , which leads to the pseudodifferential equation

[−2−1I7 +K]H−1(f (e) + ϕ) = F (N) (6.45)

on the open subsurface SN for the unknown vector function ϕ.
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Let

A := [−2−1I7 +K]H−1, (6.46)

F (0) := F (N) − r
SN
Af (e) ∈ [B

− 1
p

p,p (SN )]7. (6.47)

The operator A is known as the Steklov–Poincaré type operator. Equation
(6.45) can be rewritten then in the form

r
SN
Aϕ = F (0) on SN , (6.48)

which is a pseudodifferential equation on the submanifold SN with boundary
∂SN . Due to Theorem 5.4 and Lemma 6.10, the operatorA has the following
mapping property

A : [B
1− 1

p
p,p (S)]7 → [B

− 1
p

p,p (S)]7, (6.49)

i.e., A is a pseudodifferential operator of order 1.

Lemma 6.16. The principal homogeneous symbol matrix of the operator

A is positive definite.

Proof. It is clear that the principal homogeneous symbol matrices of the
operators A and its main singular part A0 := [−2−1I7 + K0]H−1

0 are the
same. Note that the operators with subscript 0 are generated by the poten-
tials with the kernel matrix Γ0(·), which is the fundamental matrix of the
operator L0(∂) constructed in Subsection 3.3 (see (2.12)) and represents a
principal singular part of the matrix Γ(·, σ) (see (3.64)).

We write Green’s formula in Ω+ for real-valued vector functions U =

U ′ = V0(H−1
0 g) with arbitrary g ∈ [H

1
2
2 (S)]7 to obtain (cf. (5.38))

〈{
P0(∂, n)V0(H−1

0 g)
}+
,
{
V0(H−1

0 g)
}+

〉
S

=

=

∫

Ω+

E0

(
V0(H−1

0 g), V0(H−1
0 g)

)
dx ≥ 0,

where E0(·, ·) is defined by (5) and n is the outward unit normal vector to
S. Whence 〈

[−2−1I7 +K0]H−1
0 g, g

〉
S
≥ 0, (6.50)

where we have a strict inequality if g is not a constant vector (see the
arguments concerning the formula (5.42) in the proof of Theorem 5.3). Since
the principal homogeneous symbol matrices of the operators −2−1I7 + K0

and H−1
0 are nondegenerate (see Theorem 5.3) and g is an arbitrary vector

function of the space [H
1
2
2 (S)]7, it follows from (6.50) that the principal

homogeneous symbol matrix of the composition of these operators (i.e., of
the operator A) is positive definite. �

Now we are in a position to prove the following main lemma.

Lemma 6.17. The operators

r
SN
A : [H̃s

p(SN )]7 → [Hs−1
p (SN )]7, (6.51)
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: [B̃s
p,q(SN )]7 → [Bs−1

p,q (SN )]7, (6.52)

are invertible if

1/p− 1/2 < s < 1/p+ 1/2. (6.53)

Proof. The mapping properties (6.51) and (6.52) follow from Theorem 5.4,
since A is a pseudodifferential operator of order 1.

To prove the invertibility of the operators (6.51) and (6.52), we first
consider the case p = 2, s = 1/2, and q = 2, and show that the null space
of the operator

r
SN
A : [H̃

1
2
2 (SN )]7 → [H

− 1
2

2 (SN )]7

is trivial, i.e., the equation

r
SN
Aϕ = 0 on SN (6.54)

admits only the trivial solution in the space [H̃
1
2
2 (SN )]7. Recall that

H̃s
2(SN ) = B̃s

2,2(SN ) and Hs
2(SN ) = Bs

2,2(SN ) for s ∈ R.

Let ϕ ∈ [H̃
1
2 (SN )]7 be a solution of the homogeneous equation (6.54). It

is clear that the vector

U = V (H−1ϕ)

belongs to the space [H1
2 (Ω+)]7 = [W 1

2 (Ω+)]7 and solves the homogeneous
mixed Problem (III(σ))+. Therefore, U(x) = V (H−1ϕ)(x) = 0 for x ∈ Ω+,
due to Theorem 2.2 and, consequently, {U}+ = ϕ = 0 on S. Since the
principal singular part of the operator A is self-adjoint (due to the positive
definiteness of the principal homogeneous symbol matrix of A), we conclude
that the index of A equals to zero and thus, by Theorem C.1 (see the
Appendix C) the operator

r
SN
A : [H̃

1
2
2 (SN )]7 → [H

− 1
2

2 (SN )]7

is invertible.
Since the principal homogeneous symbol matrix of the operator A is

positive definite, Theorem C.1 with ν = 1 completes the proof. �

With the help of this lemma we can prove the following main existence
result.

Theorem 6.18. Let 4/3 < p < 4 and the conditions (6.41) be fulfilled.

Then Problem (III(σ))+ has a unique solution U ∈ [W 1
p (Ω+)]7 which is

representable in the form of single layer potential (6.44),

U = V
(
H−1(f (e) + ϕ)

)
, (6.55)

where f (e) ∈ [B
1−1/p
p,p (S)]7 is a fixed extension of the vector function f (D) ∈

[B
1−1/p
p,p (SD)]7 from SD onto S preserving the functional space and ϕ ∈

[B̃
1−1/p
p,p (SN )]7 is defined by the uniquely solvable pseudodifferential equation

r
SN
Aϕ = F (0) on SN (6.56)
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with

F (0) := F (N) − r
SN
Af (e) ∈ [B−1/p

p,p (SN )]7.

Proof. First we note that in accordance with Lemma 6.17, equation
(6.56) is uniquely solvable for s = 1− 1/p and 4/3 < p < 4, where the last
inequality follows from the inequality (6.53). This implies the solvability of
Problem (III(σ))+ in the space [W 1

p (Ω+)]7 with p ∈ (4/3, 4).

Next, we show the uniqueness of solution in the space [W 1
p (Ω+)]7 for

arbitrary p ∈ (4/3, 4) (for p = 2 it has been proved in Theorem 2.2). Let U ∈
[W 1

p (Ω+)]7 be some solution of the homogeneous mixed Problem (III (σ))+.
Clearly, then

{U}+ ∈ [B̃1−1/p
p,p (SN )]7. (6.57)

By Theorem 6.13, we have the representation

U(x) = V
(
H−1{U}+

)
(x), x ∈ Ω+.

Since U satisfies the homogeneous Neumann condition (6.40) on SN , we
arrive at the equation

r
SN
A{U}+ = 0 on SN ,

whence {U}+ = 0 on S follows due to the inclusion (6.57), Lemma 6.17,
and the inequality 4/3 < p < 4. Therefore, U = 0 in Ω+. �

Further, we prove almost the best regularity results for solutions to the
mixed type boundary value problem (III (σ))+.

Theorem 6.19. Let the conditions (6.41) and the inequalities

4/3 < p < 4, 1 < t <∞, 1 ≤ q ≤ ∞, 1/t− 1/2 < s < 1/t+ 1/2, (6.58)

be fulfilled, and let U ∈ [W 1
p (Ω+)]7 be the unique solution to the mixed

problem (III(σ))+.

In addition,

(i) if

f (D) ∈ [Bs
t,t(SD)]7, F (N) ∈ [Bs−1

t,t (SN )]7, (6.59)

then

U ∈ [H
s+1/t
t (Ω+)]7; (6.60)

(ii) if

f (D) ∈ [Bs
t,q(SD)]7, F (N) ∈ [Bs−1

t,q (SN )]7, (6.61)

then

U ∈ [B
s+1/t
t,q (Ω+)]7; (6.62)

(iii) if

f (D) ∈ [Cα0(SD)]7, F (N) ∈ [Bα0−1
∞,∞ (SN )]7, α0 > 0, (6.63)

then

U ∈ [Cβ0(Ω+)]7 with any β0 ∈ (0, α1), α1 := min{α0, 1/2}. (6.64)
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Proof. Applying Lemma 6.17, Theorem 6.18, the inclusions (6.41) and (6.59)
(resp. (6.61)) along with the inequalities (6.58), we conclude that the

solution vector U is represented by (6.55) with ϕ ∈ [B̃s
t,t(SN )]7 (resp.

ϕ ∈ [B̃s
t,q(SN )]7) in view of (6.56) and F (0) ∈ [Bs−1

t,t (SN )]7 (resp. F (0) ∈
[Bs−1

t,q (SN )]7).

Note that f (e) ∈ [Bs
t,t(S)]7 (resp. f (e) ∈ [Bs

t,q(S)]7) is some extension of

the vector f (D) onto the whole of S. Therefore, by Theorem 6.18 and the
representation formula (6.55) the inclusion (6.60) (resp. (6.62)) follows.

To prove (iii) we use the following embeddings (see, e.g., [56], [57])

Cα0(S) = Bα0
∞,∞(S) ⊂ Bα0−ε0

∞,1 (S) ⊂
⊂ Bα0−ε0

∞,q (S) ⊂ Bα0−ε0
t,q (S) ⊂ Cα0−ε0−k/t(S), (6.65)

where ε0 is an arbitrary small positive number, S ⊂ R3 is a compact k-
dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 ≤ q ≤ ∞,
1 < t < ∞, α0 − ε0 − k/t > 0, α0 and α0 − ε0 − k/t are not integers.
From (6.63) and the embeddings (6.65) the condition (6.62) follows with
any s ≤ α0 − ε0.

Bearing in mind (6.58) and taking t sufficiently large and ε0 sufficiently
small, we may put s = α0 − ε0 if

1/t− 1/2 < α0 − ε0 < 1/t+ 1/2, (6.66)

and s ∈ (1/t− 1/2, 1/t+ 1/2) if

1/t+ 1/2 < α0 − ε0. (6.67)

By (6.62) the solution U belongs then to [B
s+1/t
t,q (Ω+)]7 with s + 1/t =

α0−ε0+1/t if (6.66) holds, and with s+1/t ∈ (2/t−1/2, 2/t+1/2) if (6.67)
holds. In the last case we can take s+1/t = 2/t+1/2−ε0. Therefore, we have

either U ∈ [B
α0−ε0+1/t
t,q (Ω+)]7, or U ∈ [B

1/2+2/t−ε0

t,q (Ω+)]7 in accordance
with the inequalities (6.66) and (6.67). The last embedding in (6.65) (with

k = 3) yields that either U ∈ [Cα0−ε0−2/t(Ω+)]7, or U ∈ [C1/2−ε0−1/t(Ω+)]7

which lead to the inclusion

U ∈ [Cα1−ε0−2/t(Ω+)]7, (6.68)

where α1 := min{α0, 1/2}. Since t is sufficiently large and ε0 is sufficiently
small, the embedding (6.68) completes the proof. �

Remark 6.20. By the same arguments, it can be shown that the unique-
ness, existence and regularity results, similar to the above ones, hold also
true for the exterior boundary value problem (III (σ))−. We note only that
the solution is representable again in the form of the single layer potential
(6.55), where f (e) is the same as above, and ϕ is the unique solution of the
pseudodifferential equation

r
SN
Ãϕ = F̃ (0) on SN , (6.69)



Mathematical Problems of Thermoelasticity for Hemitropic Solids 165

where

Ã := [2−1I7 +K]H−1, (6.70)

F̃ (0) := F (N) − r
SN
Ãf (e). (6.71)

The operator Ã has the same properties as A described above in Lemmas
6.16 and 6.17.

Remark 6.21. Lemma 6.17 and Theorems 6.18 with p = 2 remain valid
for Lipschitz domains due to Theorems 5.2, 5.3.(iv) and the uniqueness
Theorem 2.2.

7. Appendix A: Properties of the Characteristic Roots and

Wave Numbers

Here we investigate the properties of roots of the equation (3.32) with
respect to r. In particular we prove the following assertion.

Lemma A.1. Let σ = σ1 + iσ2 be a complex parameter with σ1 ∈ R and

σ2 > 0. Then

Ξ(r) := detL(−iξ, σ) ≡ (a2 − c2r2)Λ1(ξ) 6= 0

for arbitrary ξ ∈ R3; here Λ1 and a2 − c2r2 are given by formulas (3.23)
and (3.24).

Proof. We prove the lemma by contradiction. To this end, let σ be as in
the lemma and assume that Ξ(r) := detL(−iξ, σ) = 0 for some r = |ξ| with
ξ ∈ R3 (cf. (3.32)). Then the system of linear equations L(−iξ, σ)X = 0
has a nontrivial solution X∈C7 \ {0}. Denote X=(X(1), X(2), X(3))> with

X(j) = (X
(j)
1 , X

(j)
2 , X

(j)
3 )> ∈ C3, j = 1, 2, and X(3) ∈ C. In view of (2.5)

and (2.6), the linear system in question can be written as

L(1)(−iξ, σ)X(1) + L(2)(−iξ, σ)X(2) + L(5)(−iξ, σ)X(3) = 0,

L(3)(−iξ, σ)X(1) + L(4)(−iξ, σ)X(2) + L(6)(−iξ, σ)X(3) = 0,

L(7)(−iξ, σ)X(1) + L(8)(−iξ, σ)X(2) + L(9)(−iξ, σ)X(3) = 0,

i.e., {[
− (µ+ α)|ξ|2 + %σ2

]
I3 − (λ+ µ− α)Q(ξ)

}
X(1)+

+
{
− (κ + ν)|ξ|2I3 − (δ + κ − ν)Q(ξ)− i2αR(ξ)

}
X(2)+

+iηξ>X(3) = 0, (A.1)
{
− (κ + ν)|ξ|2I3 − (δ + κ − ν)Q(ξ)− i2αR(ξ)

}
X(1)+

+
{[
− (γ + ε)|ξ|2 + Iσ2 − 4α

]
I3 − (β + γ − ε)Q(ξ)− i4νR(ξ)

}
X(2)+

+iζξ>X(3) = 0, (A.2)

ησ(ξ ·X(1)) + ζσ(ξ ·X(2)) + (−κ′|ξ|2 + iσκ′′)X(3) = 0. (A.3)



166 D. Natroshvili, L. Giorgashvili, and Sh. Zazashvili

From (3.23) and (3.24) it follows that Ξ(0) 6= 0. Therefore in what follows
we assume |ξ| 6= 0.

We recall that the central dot denotes the real scalar product, a · b =
3∑

j=1

ajbj for a, b ∈ C3, and c × d denotes the vector product of two vectors

c, d ∈ C3. Note that

(a× b) · c = −(a× c) · b, a× (b× c) = (a · c)b− (a · b)c,
Q(ξ)X(j) = ξ>(ξ ·X(j)), R(ξ)X(j) = ξ ×X(j), j = 1, 2.

Multiply equation (A.1) by X (1), equation (A.2) by X(2) and the complex
conjugate of equation (A.3) by C0X

(3) with

C0 = − i

σ
(A.4)

and sum the results to obtain
[
− (µ+ α)|ξ|2 + %σ2

]
|X(1)|2 − (λ+ µ− α)|ξ ·X(1)|2−

− (κ + ν)|ξ|2(X(2) ·X(1))− (δ + κ − ν)(ξ ·X(2))(ξ ·X(1))−
− i2α(ξ ×X(2)) ·X(1) − (κ + ν)|ξ|2(X(1) ·X(2))−

− (δ + κ − ν)(ξ ·X(1))(ξ ·X(2))− i2α(ξ ×X(1)) ·X(2)+

+
[
− (γ + ε)|ξ|2 + Iσ2 − 4α

]
|X(2)|2 − (β + γ − ε)|ξ ·X(2)|2−

− i4ν(ξ ×X(2)) ·X(2) +
i

σ

(
κ′|ξ|2 + iσκ′′

)
|X(3)|2 = 0. (A.5)

Keep in mind that the real parts of the expressions (ξ ×X (2)) ·X(1) + (ξ ×
X(1)) ·X(2) and (ξ×X(2)) ·X(2) vanish and separate the imaginary part of
equation (A.5)

σ1

[
2%σ2|X(1)|2 + 2Iσ2|X(2)|2 +

κ′|ξ|2
|σ|2 |X(3)|2

]
= 0.

Whence X(1) = 0, X(2) = 0, X(3) = 0 follow for σ1 6= 0 since σ2 > 0 and
|ξ| 6= 0.

Further, let σ1 = 0 and σ = iσ2. Then by multiplication of (A.1) and
(A.2) by ξ, and (A.3) by −|ξ|2σ−1

2 we get
[
(λ+2µ)|ξ|2+%σ2

2

]
(ξ ·X(1))+(δ+2κ)|ξ|2(ξ ·X(2))−iη|ξ|2X(3) =0,(A.6)

(δ+2κ)|ξ|2(ξ ·X(1))+
[
(β + 2γ)|ξ|2+Iσ2

2+4α
]
(ξ ·X(2))−

−iζ|ξ|2X(3) = 0, (A.7)

−iη|ξ|2(ξ ·X(1))−iζ|ξ|2(ξ ·X(2))+
|ξ|2
σ2

(
κ′|ξ|2+σ2κ

′′
)
X(3) =0. (A.8)

Introduce the notation z1 = ξ ·X(1), z2 = ξ ·X(2) and z3 = X(3). Multiply
(A.6) by z1, (A.7) by z2, and the conjugate of (A.8) by z3 and sum to obtain
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[
(λ+ 2µ)|ξ|2 + %σ2

2

]
|z1|2 + (δ + 2κ)|ξ|2z2z1 + (δ + 2κ)|ξ|2z1z2+

+
[
(β + 2γ)|ξ|2 + Iσ2

2 + 4α
]
|z2|2 +

|ξ|2
σ2

(
κ′|ξ|2 + σ2κ

′′
)
|z3|2 = 0. (A.9)

With the help of the inequality (see (2.26)) (λ+2µ)(β+2γ)− (δ+2κ)2 > 0
we easily conclude from (A.9)

z1 = ξ ·X(1) = 0, z2 = ξ ·X(2), z3 = X(3) = 0. (A.10)

Therefore, we can rewrite (A.1)–(A.3) in the equivalent form
[
(µ+α)|ξ|2+%σ2

2

]
X(1) + (κ + ν)|ξ|2X(2)+i2α(ξ ×X(2))=0, (A.11)

(κ + ν)|ξ|2X(1) + i2α(ξ ×X(1)) +
[
(γ + ε)|ξ|2 + Iσ2

2 + 4α
]
X(2) +

+i4ν(ξ ×X(2)) = 0. (A.12)

Applying the standard formulas of vector analysis to the vectors X (j), j =
1, 2, satisfying the condition (A.10) we get:

ξ × (ξ ×X(j)) = −|ξ|2X(j),

ξ × (ξ ×X(j)) ·X(k) = −|ξ|2(X(j) ·X(k)),

(ξ ×X(j)) · (ξ ×X(k)) = |ξ|2(X(j) ·X(k)),

(A.13)

Multiply equation (A.11) by X (1), (A.12) by X(2) and sum

Ψ(X(1), X(2)) :=
[
(µ+ α)|ξ|2 + %σ2

2

]
|X(1)|2 + (κ + ν)|ξ|2(X(2) ·X(1))+

+ i2α(ξ ×X(2)) ·X(1) + (κ + ν)|ξ|2(X(1) ·X(2))+

+i2α(ξ×X(1))·X(2)+
[
(γ+ε)|ξ|2+Iσ2

2+4α
]
|X(2)|2+i4ν(ξ×X(2))·X(2) =0.

Using the relations (A.13) we can rewrite the function Ψ in the form:

Ψ(X(1), X(2)) =
αε− ν2

α
|ξ ×X(2)|2+

+
1

α

∣∣αξ ×X(1) + νξ ×X(2) − i2αX(2)
∣∣2 +

(
µ|ξ|2 + %σ2

2

)
|X(1)|2+

+
(
γ|ξ|2 + Iσ2

2

)
|X(2)|2 + κ|ξ|2

(
X(2) ·X(1) +X(1) ·X(2)

)
= 0 .

With the help of the inequalities α > 0, αε− ν2 > 0 and µγ − κ
2 > 0 (see

(2.26)) we easily derive from the last equality that X (1) = X(2) = 0.
Thus we have shown that the system L(−iξ, σ)X = 0 possesses only the

trivial solution. This contradiction proves the lemma. �

Corollary A.2. Let σ = σ1 + iσ2 be a complex parameter with σ1 ∈ R

and σ2 > 0. Consider the equation

Ξ(r) ≡ (a2 − c2r2)Λ1(ξ) = 0 (A.14)

with respect to r, where Λ1 and a2 − c2r2 are given by formulas (3.23)
and (3.24). The roots ±kj , j = 1, 7, of equation (A.14) are complex with

=kj > 0, j = 1, 7.
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8. Appendix B: Fourier Transform of Some Standard Functions

8.1. Fourier transform of standard homogeneous functions. Let F
and F−1 be the generalized direct and inverse Fourier transforms in the
space of tempered distributions defined as in (3.1). The following formulas
are true

Fx→ξ[∂pf ] = −iξpFx→ξ[f ], Fx→ξ[xpf ] = −i∂pFx→ξ[f ],

F−1
ξ→x[∂pg] = ixpF−1

ξ→x[g], F−1
ξ→x[ξpg] = i∂pF−1

ξ→x[g], p = 1, 2, 3.
(B.1)

For the regular functionals |ξ|−k with k = 1, 2, and ξpξq |ξ|−4 with p, q =
1, 2, 3, and the singular functional ξp|ξ|−4 which are understood in the Value
Principal sense, we have the following formulas (see, e.g., [18], [14])

F−1
ξ→x[|ξ|−1] =

1

2π2|x|2 , F−1
ξ→x[|ξ|−2] =

1

4π|x| , (B.2)

F−1
ξ→x[ξp|ξ|−4] = − ixp

8π|x| , p = 1, 2, 3, (B.3)

F−1
ξ→x

[
ξpξq |ξ|−4

]
=

= ∂qF−1
ξ→x[ξp|ξ|−4] =

1

8π

[δpq

|x| −
xpxq

|x|3
]
, p, q = 1, 2, 3. (B.4)

8.2. Fourier transform of functions related to the Helmholtz oper-
ator. Here we calculate the inverse Fourier transform of the regular func-
tional (|ξ|2 − τ2)−1, where τ = ω + iε with ω ∈ R and ε > 0. Since the
function under consideration is square integrable, we can write (see, e.g.,
[18])

H(x, τ) := F−1
ξ→x

[
(|ξ|2 − τ2)−1

]
= F−1

ξ→x

[(
|ξ|2 + (ε− iω)2

)−1]

=
1

(2π)3
lim

R→∞

∫

|ξ|<R

e−ix·ξ

|ξ|2 + (ε− iω)2
dξ. (B.5)

Let Λ(x̃) = [Λkj(x̃)]3×3 with x̃ = x/|x| be an orthogonal matrix with prop-
erties:

det Λ(x̃) = 1, Λ>(x̃)x = (0, 0, |x|)>.
Perform the transform of variables in (B.5): ξ = Λ(x̃)η. Evidently, x ·
Λ(x̃)η = |x|η3, |ξ| = |η| and dξ = dη. Therefore we get from (B.5)

H(x, τ) =
1

(2π)3
lim

R→∞

∫

|η|<R

e−i|x|η3

|η|2 + (ε− iω)2
dη. (B.6)

Introduce the spherical co-ordinates

η1 = % cosϕ sinϑ, η2 = % sinϕ sinϑ, η3 = % cosϑ,

% = |η|, ϕ ∈ [0, 2π], ϑ ∈ [0, π],
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and rewrite (B.6) as follows

H(x, τ) =
1

(2π)3
lim

R→∞

R∫

0

2π∫

0

π∫

0

e−i|x|% cos ϑ

%2 + (ε− iω)2
%2 sinϑ dϑ dϕ d% =

=
1

4π2
lim

R→∞

R∫

0

%2d%

%2 + (ε− iω)2

π∫

0

1

i|x|%
( ∂

∂ϑ
e−i|x|% cos ϑ

)
dϑ =

= − i

4π2|x| lim
R→∞

R∫

0

%

%2 + (ε− iω)2
[
ei|x|% − e−i|x|%

]
d% =

=
1

2π2|x| lim
R→∞

R∫

0

% sin(|x|%)
%2 + (ε− iω)2

d% =

=
1

2π2|x|

∞∫

0

% sin(|x|%)
%2 + (ε− iω)2

d%. (B.7)

With the help of the formula
∞∫

0

t sin(at)

t2 + β2
dt =

π

2
e−aβ for a > 0,<β > 0,

finally we get

H(x, τ) =
e−|x|(ε−iω)

4π|x| =
eiτ |x|

4π|x| , (B.8)

i.e.,

F−1
ξ→x

[ 1

|ξ|2 − τ2

]
= F−1

ξ→x

[ 1

|ξ|2 − (ω + iε)2

]
=
eiτ |x|

4π|x| , (B.9)

where τ = ω + iε with ε > 0 and ω ∈ R.
Quite analogously we can derive the similar formula

F−1
ξ→x

[ 1

|ξ|2 − τ2

]
= F−1

ξ→x

[ 1

|ξ|2 − (ω − iε)2

]
=
e−iτ |x|

4π|x| (B.10)

for τ = ω − iε with ε > 0 and ω ∈ R.
Passing to the limit as ε→ 0, we obtain from (B.9) and (B.10):

F−1
ξ→x

[ 1

|ξ|2 − (ω ± i0)2

]
=
e±iω|x|

4π|x| . (B.11)

By these formulas we can construct fundamental solutions for the Helmholtz
equation

(∆ + ω2)γ(±)(x, ω) = δ(x), ω ∈ R
3,

corresponding to maximally decreasing out going and incoming waves,

γ(±)(x, ω) := −F−1
ξ→x

[ 1

|ξ|2 − (ω ± i0)2

]
= −e

±iω|x|

4π|x| . (B.12)
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It is clear that these fundamental solutions satisfy the Sommerfeld radiation
conditions at infinity

∂

∂|x|γ
(±)(x, ω)∓ iωγ(±)(x, ω) = O(|x|−2).

The above described procedure is the so called limiting absorption principle.

9. Appendix C: Some Results from the Theory of

Pseudodifferential Equations on Manifolds with Boundary

Here we recall some results from the theory of strongly elliptic pseudo-
differential equations on manifolds with boundary in Bessel potential and
Besov spaces which are the main tools for proving existence theorems for
mixed boundary, boundary-transmission and crack problems by the poten-
tial methods.

They can be found in [14], [21], [54].
Let M∈ C∞ be a compact, n-dimensional, nonselfintersecting manifold

with boundary ∂M ∈ C∞ and let A be a strongly elliptic N × N matrix
pseudodifferential operator of order ν ∈ R on M. Denote by S(x, ξ;A)
the principal homogeneous symbol matrix of the operator A in some local
coordinate system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix
[
S(x, 0, . . . , 0,+1;A)

]−1[
S(x, 0, . . . , 0,−1;A))

]
, x ∈ ∂M,

and introduce the notation

δj(x) = <
[
(2πi)−1 lnλj(x)

]
, j = 1, . . . , N.

Here the branch in the logarithmic function ln ζ is chosen with regard to
the inequality −π < arg ζ ≤ π. Due to the strong ellipticity of A we have
the strong inequality −1/2 < δj(x) < 1/2 for x ∈ M, j = 1, N . Note
that the numbers δj(x) do not depend on the choice of the local coordinate
system. Remark that in the particular case, when S(x, ξ;A) is a positive
definite matrix for every x ∈ M and ξ ∈ Rn \ {0} we have δj(x) = 0 for

j = 1, . . . , N , since all the eigenvalues λj(x) (j = 1, N) are positive numbers

for any x ∈M.
The Fredholm properties of strongly elliptic pseudo-differential operators

on manifolds with boundary are characterized by the following theorem.

Theorem C.1. Let s ∈ R, 1 < p < ∞, 1 ≤ t ≤ ∞, and let A be a

strongly elliptic pseudodifferential operator of order ν ∈ R, that is, there is

a positive constant c0 such that

<S(x, ξ;A)η · η ≥ c0|η|2

for x ∈M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .

Then the operators

A :
[
H̃s

p(M)
]N →

[
Hs−ν

p (M)
]N

[ [
B̃s

p,t(M)
]N →

[
Bs−ν

p,t (M)
]N

]
, (C.1)
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are Fredholm with zero index if

1

p
− 1 + sup

x∈∂M,1≤j≤N
δj(x) < s− ν

2
<

1

p
+ inf

x∈∂M,1≤j≤N
δj(x). (C.2)

Moreover, the null-spaces and indices of the operators (C.1) are the same

(for all values of the parameter t ∈ [1,+∞]) provided p and s satisfy the

inequality (C.2).
In particular, if S(x, ξ;A) is a positive definite matrix for every x ∈ M

and ξ ∈ Rn \ {0}, the inequalities (C.2) read as

1

p
− 1 < s− ν

2
<

1

p
. (C.3)
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