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Abstract. Both the domains D+ and D− are considered, where the
third and the fourth problems are formulated. Green’s formulas are written
and by means them uniqueness theorems are proved for the third and fourth
problems.

For the third and fourth problems, in the domains D+ and D− Fredholm
integral equations are derived and existence theorem are proved.
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1. The Basic Equations. Boundary Value Problems

The system of basic (homogeneous) equations of statics of an elastic
mixture for two dimensions is of the form ([1])

a1∆u
′ + b1 graddiv u′ + c∆u′′ + d graddiv u′′ = 0,

c∆u′ + d graddiv u′ + a2∆u
′′ + b2 graddiv u′′ = 0,

(1.1)

where

a1 = µ1 − λ5, b1 = µ1 + λ1 − λ5 − ρ−1α2ρ2,

a2 = µ2 − λ5, c = µ3 + λ5, b2 = µ2 + λ1 + λ5 + ρ−1α2ρ2,

d = µ3 + λ3 − λ5 − ρ−1α2ρ1 ≡ µ3 + λ4 − λ5 + ρ−1α2ρ2,

ρ = ρ1 + ρ2, α2 = λ3 − λ4.

(1.2)

ρ1 and ρ2 appearing in (1.2) are the partial densities and µ1, µ2, µ3,
λ1, λ2, λ3, λ4, λ5 are real constants characterizing physical properties of
an elastic mixture and satisfying certain inequalities. u′ = (u1, u2) and
u′′ = (u3, u4) are partial displacements.

Introducing the variables

z = x1 + ix2, z = x1 − ix2,

that is

x1 =
z + z

2
, x2 =

z − z

2i
,

the system (1.1) can be rewritten in the form ([2])

∂2U

∂z∂z
+K

∂2U

∂z 2 = 0, (1.3)

where

U =

(

u1 + iu2

u3 + iu4

)

= mϕ(z)−Kmzϕ′(z) + ψ(z), (1.4)

M =

[

m1 m2

m2 m3

]

, m1 = l1 +
l4

2
, m2 = l2 +

l5

2
, m3 = l3 +

l6

2
,

l1 =
a2

d2
, l2 = −

c

d2
, l3 =

a1

d2
,

l1 + l4 =
a2 + b2

d1
, l2 + l5 = −

c+ d

d1
, l3 + l6 =

a1 + b1

d1
,

K =

[

k1 k3

k2 k4

]

, km = −
l

2
, (1.5)

l =

[

l4 l5
l5 l6

]

, m−1 =
1

∆0

[

m3 −m2

−m2 m1

]

, ∆0 = m1m3 −m2
2 > 0,

δ0k1 = 2(a2b1 − cd) + b1b2 − d2, δ0k2 = 2(da1 − cb1),

δ0k3 = 2(da2 − cb2), δ0k4 = 2(a1b2 − cd) + b1b2 − d2,

δ0 = (2a1 + b1)(2a2 + b2)− (2c+ d)2 ≡ 4d1d2∆0,
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d1 = (a1 + b1)(a2 + b2)− (c+ d)2 > 0, d2 = a1a2 − c2 > 0,

ϕ(z) and ψ(z) are analytic vectors.
The vector of forces has the form

T U =

(

(TU)2 − i(TU)1
(TU)4 − i(TU)3

)

=
∂

∂s

(

− 2ϕ(z) + 2µU
)

, (1.6)

where
∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
, (1.7)

n1 and n2 are the projections of the unit vector on the axes x1 and x2.
Obviously, the unit vector of the tangent is s(x) = (−n2, n1); (TU)k is the
projection of the force vector on the axes xk (k = 1, 4),

µ =

[

µ1 µ3

µ3 µ2

]

, detµ = µ1µ2 − µ2
3 > 0. (1.8)

Here we give the definition of a regular solution in the domain D+.
The vector U is a regular solution in the domain D+ for the equation

(1.3) if this vector and its first order derivatives are continuous up to the
boundary, while the second order derivatives lie in the domain D+ and
satisfy the equation (1.3).

We can now formulate the third boundary value problem.
Find a regular solution in the finite domain D+ which on the boundary

(i.e. on S) satisfies the boundary conditions

(nU)+ = f(t), (sTU)+ = F (t), (1.9)

where f and F are given continuous functions on S. The sign “+” refers

to interior limiting values. If instead of D+ we take D− = E2 \D
+
, where

D
+

= D+∪S and E2 is the two-dimensional infinite plane, then the bound-
ary conditions take the form

(nU)− = f(t), (sTU)− = F (t), (1.10)

where the sign “−” refers to exterior limiting values. For the domain D−,
to the conditions of regularity we add the following conditions at infinity:

U = O(1),
∂U

∂uk

= O(ρ−2), k = 1, 2, ρ =
√

x2
1 + x2

2 . (1.11)

If the point is on the boundary, then t is the affix of the point z.
The fourth boundary value problem in the domainsD+ andD− is defined

analogously. The boundary conditions now are the following:

(sU)+ = f(t), (nTU)+ = F (t), (1.12)

or

(sU)− = f(t), (nTU)− = F (t), (1.13)

where f and F are given continuous functions.
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Below we will need the following Green’s formulas ([2]):
∫

D+

E(u, u) dy1 dy2 =

∫

S

uTu ds ≡ Im

∫

S

UTU ds, (1.14)

∫

D−

E(u, u) dy1 dy2 = −

∫

S

uTu ds ≡ − Im

∫

S

UTU ds, (1.15)

where

ImUTU = n(TU)n + s(TU)s, (1.16)

(TU)n and (TU)s are, respectively, the normal and the tangential compo-
nents of the force vector, and E(u, u) is the doubled potential energy of the
form

E(u, u) =

= (b1 − λ5)
(∂u1

∂x1
+
∂u2

∂x2

)2

+ 2(d+ λ5)
(∂u1

∂x1
+
∂u2

∂x2

)(∂u3

∂x1
+
∂u4

∂x2

)2

+

+(b2 − λ5)
(∂u3

∂x1
+
∂u4

∂x2

)2

+

+µ1

[

(∂u1

∂x1
−
∂u2

∂x2

)2

+
(∂u2

∂x1
+
∂u1

∂x2

)2
]

+

+2µ3

[

(∂u1

∂x1
−
∂u2

∂x2

)(∂u3

∂x1
−
∂u4

∂x2

)

+
(∂u2

∂x1
+
∂u1

∂x2

)(∂u4

∂x1
+
∂u3

∂x2

)

]

+

+µ2

[

(∂u3

∂x1
−
∂u4

∂x2

)2

+
(∂u4

∂x1
+
∂u3

∂x2

)2
]

−

−λ5

[

(∂u2

∂x1
−
∂u1

∂x2

)2

−
(∂u4

∂x1
−
∂u3

∂x2

)2
]

. (1.17)

Let us prove the theorem allowing us to solve the third boundary value
problem: a regular solution in the domain D+ satisfying the homogeneous
conditions of the third boundary value problem is identical zero, if S is not
a parabolic type line without center.

Proof. The use is made of the formula (1.14). In (1.9), if f = F = 0, then
it follows from (1.14) that

u1 = c1 − εx2, u2 = c2 + εx1, u3 = c3 − εx2, u4 = c4 + εx1, (1.18)

where ck (k = 1, 4) and ε are arbitrary constants.
We write

nU = (n1(u1 + cu2) + n2(u3 + cu4)), n1 =
dx2

ds
, n2 = −

dx2

ds
.

Then

0 = (nU)+ = (u1 + cu2)
dx2

ds
− (u3 + iu4)

dx1

ds
.
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Thus we easily get

(c1 − εx2)
dx2

ds
− (c3 − εx2)

dx1

ds
= 0,

(c2 + εx1)
dx2

ds
− (c4 + εx1)

dx1

ds
= 0,

that is,

d

ds

[

(c1 + c2)x2 − (c3 + c4)x1 −
ε

2
(x2

1 + x2
2 − 2x1x2)

]

= 0. (1.19)

(1.19) results in

ε

2
(x1 − x2)

2 − (c1 + c2)x2 + (c3 + c4)x1 = c,

where c is a real constant. On the basis of (1.19) we can write the so-called
discriminant D1 and the higher terms discriminant D2. In our case, using
the well-known formulas from the analytic geometry, we obtain

D1 = −ε

∣

∣

∣

∣

1 −1
−1 1

∣

∣

∣

∣

= 0, D2 =

∣

∣

∣

∣

∣

∣

∣

1 −1 A

−1 1 B

A B −
2

ε
C

∣

∣

∣

∣

∣

∣

∣

,

where

A =
c3 + c4

ε
, B =

c1 + c2

ε
.

Since D1 = 0, this implies that the line S is without center, of parabolic
type. The condition D2 = A(−A−B)−B(A+B) = −(A+B)2 = 0 implies
that A+B = 0 or c1+c2+c3+c4 = 0, and in this case the line is represented
by conjugate lines. Thus we have proved that the uniqueness of a solution
of the third boundary value problem takes place if s is not a parabolic type
line without center, or conjugate lines.

Just in the same way we can prove the uniqueness of a solution of the
third boundary value problem in the domain D−.

The fourth boundary value problem in the domains D+ and D− is con-
sidered analogously and it is proved that the uniqueness of a solution in the
domain D+ takes place if S is not a parabolic type line without center, and
in case of the domain D−, S is not a straight line.

2. Solution of the Third Boundary Value Problem of Statics

of an Elastic Mixture in the Domain D+

Consider the expression −2ϕ(z) + 2µU(z).
Taking into account the formula (1.4), we obtain

−2ϕ(z) + 2µU(z) = (A − 2E)ϕ(z)− 2µKmzϕ′(z) + 2µψ(z), (2.1)

where A = 2µm, and E is the unit matrix.
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We seek for ϕ(z) in the form

ϕ(z) =
(A− 2E)−1

2πi

∫

S

ln
(

1−
z

ζ

)

g(y) dS, (2.2)

where det(A − 2E)−1 > 0, g is a vector, complex in general, which will be
defined below.

Inserting (2.2) into (2.1), we find that

−2ϕ(z) + 2µU =

=
1

2πi

∫

S

ln
(

1−
z

ζ

)

g dS +
2µKm(A− 2E)−1

2πi

∫

S

zg

σ
dS + 2µψ(z). (2.3)

We choose ψ(z) in the form

2µψ(z) =
1

2πi

∫

S

[

ln
(

1−
z

ζ

)

− ln
(

1−
z

ζ

)]

g dS+

+
2µKm(A− 2E)−1

2πi

∫

S

ζg

σ
dS (2.4)

and insert (2.4) into (2.3). Thus we obtain

−2ϕ(z) + 2µU =
1

2πi

∫

S

ln
1− z

ζ

1− z

ζ

g dS +
µKm(A − 2E)−1

πi

∫

S

σ

σ
g dS, (2.5)

where σ = z − ζ, σ = z − ζ.
Inserting (2.5) into (2.1) and then into (1.6), we get

T U =
∂

∂s(x)

{
∫

S

ln
σ

σ

ζ

ζ
g dS +

µKm(A− 2E)−1

πi

∫

S

σ

σ
g dS

}

. (2.6)

Taking into account (2.2) and (2.4), the expression (1.4) takes the form

U=
m(A−2E)−1

2πi

∫

S

ln
(

1−
z

ζ

)

g dS+
Km(A−2E)−1

2πi

∫

S

z

σ
g dS+ϕ(z).

Substitutibg here the value ψ(z) from (2.4), we obtain

U =
m(A− 2E)−1

2πi

∫

S

ln
(

1−
z

ζ

)

g dS−

−
(2µ)−1

2πi

∫

S

ln
(

1−
z

ζ

)

g dS +
Km(A− 2E)−1

2πi

∫

S

σ

σ
g dS. (2.7)

The vector U is continuous up to the boundary.
Taking into account (2.6) and (2.7), in case of the third boundary value

problem to find g we obtain the integral equation of the form

(nU)+ = f(z), (sTU)+ = F (z). (2.8)
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The use is now made of the system (2.8) which we rewrite as follows:

(nU)+ = f,

sg+
s

2πi

{
∫

S

∂θ

∂s
g dS+

sµKm(A−2E)−1

πi

∫

S

e2iθ ∂θ

∂s
g dS

}

=F (t), t∈S,
(2.9)

where

θ = arctg
y2 − x2

y1 − x1
, x = (x1, x2) ∈ S. (2.10)

To investigate the equation (2.9), besides the vector U we will need the
vector V ([2]):

V = i
[

−mϕ(z) +
l

2
zϕ′(z) + ψ(z)

]

.

Relying on [2], we have U + iV = 2mϕ(z) and

TU =
∂

∂s(x)

[

(A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)
]

,

TV = i
∂

∂s(x)

[

− (A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)
]

,

(2.11)

where B = µl.
Using the vectors U and V , we can show that

NU = −im−1 ∂V

∂s(x)
, NV = im−1 ∂U

∂s(x)
, (2.12)

where N is the pseudostress operator ([2]).
The operatorN is of great importance for investigation of boundary value

problems of statics of elastic mixtures.
For the solvability of the problem we have to investigate the system

(2.9). Towards this end, we consider the homogeneous equation obtained
from (2.9), when f = F = 0. Let it have a nontrivial solution which we
denote by g0. Introduce the notation:

U(x, g0) = U (0)(x), V (x, g0) = V (0)(x). (2.13)

From the uniqueness theorem we find that U (0)(x) = 0, x ∈ D+. Then
LU (0) = 0 ([2], p. 434) and TV (0)(x) = 0. But as is known, (TV (0))+ =
(TV (0))−. Using in this case Green’s formula in the domain D−, we have
V (0)(x) = 0, x ∈ D−. Thus we obtain TU (0)(x) = 0, x ∈ D−. Obviously,
for the vector g0 we have TU (0)(x) = 0, x ∈ D+, and TU (0)(x) = 0, x ∈ D−.
Consequently, (TU (0)(t))+ = 0, t ∈ S, and (TU (0)(t))− = 0, t ∈ S. But
since there takes place the formula 2g0 = (TU (0)(t))+ − (TU (0)(t))− = 0,
we find that the homogeneous equation corresponding to (2.9) has a trivial
solution. In this case, the inhomogeneous equation (2.9) has always a unique
solution for an arbitrary right-hand side f and F .

Thus we have proved that the third boundary value problem of statics of
an elastic mixture has always a unique solution if s is not a parabolic type
line without center.
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3. Solution of the Third Boundary Value Problem of Statics

of an Elastic Mixture in the Domain D−

The third boundary value problem has the following boundary conditions
of the form:

(nU)− = f, (sTU)− = F, (3.1)

where the sign “−” refers to the exterior boundary values of the domain

D− = E2 \D
+
, and f and F are known continuous functions.

From [2] we write out the well-known formulas

U = mϕ(z) +
l

2
zϕ′(z) + ψ(z), V = i

[

−mϕ(z) +
l

2
zϕ′(z) + ψ(z)

]

(3.2)

and

TU =
∂

∂s(x)

[

(A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)
]

,

TV = i
∂

∂s(x)

[

− (A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)
]

,

(3.3)

where ϕ(z) and ψ(z) are analytic vectors and A−2E is a nonsingular matrix,
i.e., det(A− 2E) > 0, B = µl.

In the domain D− we seek for ϕ(z) in the form

ϕ(z) =
(A− 2E)−1

2πi

∫

S

(ln σ − ln z)g dS, (3.4)

where g is an unknown vector, σ = z − ζ. Hence we have

ϕ′(z) = −
(A− 2E)−1

2πi

∫

S

( 1

σ
−

1

z

)

g dS.

Substituting ϕ(z) and ϕ′(z) into (3.3), we obtain

TU =
∂

∂s(x)

[

1

2πi

∫

S

(lnσ − ln z)g dS−

−
B(A− 2E)−1

2πi

∫

S

( z

σ
−
z

z

)

g dS + 2µψ(z)

]

,

TV =
∂

∂s(x)

[

−
1

2πi

∫

S

(ln σ − ln z)g dS−

−
B(A− 2E)−1

2πi

∫

S

( z

σ
−
z

z

)

g dS + 2µψ(z)

]

.

(3.5)

Choosing ψ(z) in the form

2µψ(z) = −
1

2πi

∫

S

(lnσ− ln z)g dS −
B(A− 2E)−1

2πi

∫

S

( ζ

σ
−
ζ

z

)

g dS, (3.6)
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we get

TU =
∂

∂s(x)

[

1

πi

∫

S

(θ − ϑ)g dS −
B(A− 2E)−1

πi

∫

S

σ

σ
g dS

]

,

TV =
∂

∂s(x)

[

1

πi

∫

S

ln rg dS −
B(A− 2E)−1

πi

∫

S

σ

σ
g dS

]

,

(3.7)

where

θ = arctg
y2 − x2

y1 − x1
, ϑ = arctg

x2

x1
. (3.8)

It is obvious from (3.7) that TV is defined in both domains D+ and D−.
Moreover, the equality

(TV )+ = (TV )− (3.9)

holds.
We consider that ϕ() and ψ(z) appearing in (3.2) are defined by means

of (3.4) and (3.6). Then U and V are single-valued vectors, continuous up
to the boundary S.

Taking into account the boundary conditions of the third boundary value
problem, we can write

(nU)− = f(t),

−sg +
1

π

∫

S

(θ − ϑ)g dS −
B(A− 2E)−1

πi

∫

S

e2iθg dS = F (t), t ∈ S,
(3.10)

where

U =
m(A− 2E)−1

2πi

∫

S

(lnσ − ln z)g dS−

−
e(A− 2E)−1

2πi

∫

S

( z

σ
−
z

z

)

g dS −
(2µ)−1

2πi

∫

S

(ln σ − ln z)g dS+

+
(2µ)−1B(A− 2E)−1

2πi

∫

S

( ζ

σ
−
z

z

)

g dS. (3.11)

Obviously U is a single-valued vector, continuous up to the boundary S. In
this case, (3.10) is a system of Fredholm integral equations of second kind.

Let us now investigate (3.10). To this end, let us consider the homoge-
neous equation obtained from (3.10), when f = F = 0. Assume that it has
a nontrivial solution which we denote by g0. Introduce the notation

U(x, g0) ≡ U (0)(x), V (x, g0) ≡ V (0)(x). (3.12)

From the uniqueness theorem we obtain U (0)(x) = 0, x ∈ D−. Then
LU (·)(x) = 0, x ∈ D−, and TV (0)(x) = 0. Taking into account the property
(TV (0))− = (TV (0))+ and using Green’s formula in the domain D−, we will
have V (0)(x) = 0, x ∈ D−. Then LV (0)(x) = 0 and TU (0)(x) = 0. Finally,
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using the formula 0 = (TU)+ − (TU)− = 2g0, we find that g0 = 0. Hence
our assumption that the homogeneous equation obtained by means of (3.10)
for f = F = 0 has a nontrivial solution is invalid.

Thus we have proved that the system (3.10) has always a unique solution,
when f and F are continuous functions and S is a parabolic type line without
center.

4. Solution of the Fourth Boundary Value Problem in the

Domain D+

The method of solution of the third boundary value problem in the do-
mains D+ and D− described above fits for the solution of the fourth bound-
ary value problem in the domains D+ and D−.

The boundary conditions for the fourth boundary value problem in the
domain D+ are

(sU)+ = f(t), (nTU)+ = F (t), t ∈ S, (4.1)

where sU and nTU are the tangential components of the displacement vec-
tor and the normal components of the stress vector, respectively.

The conjugate vectors U and V have the form of (3.2). Moreover, the
formulas (3.3) hold. In (3.3) we take

ϕ(z) =
(A− 2E)−1

2πi

∫

S

ln
ζ − t

ζ
g(y) dS, (4.2)

where ζ = (y1, y2) ∈ S, and g is an unknown vector. (4.2) yields

ϕ′(z) = −
(A− 2E)−1

2πi

∫

S

1

σ
g dS. (4.3)

Substituting (4.2) and (4.3) into (2.12), we obtain

TU =
∂

∂s(x)

[

1

2πi

∫

S

ln
ζ−z

ζ
g dS−

B(A−2E)−1

2πi

∫

S

z

σ
g dS+2µψ(z)

]

,

TV =
∂

∂s(x)

[

−
1

2πi

∫

S

ln
ζ − z

ζ
g dS−

−
B(A− 2E)−1

2πi

∫

S

z

σ
g dS + 2µψ(z)

]

.

(4.4)

In (4.4) we take ψ(z) as follows:

2µψ(z) =−
1

2πi

∫

S

ln
ζ − z

ζ
g dS+

+
B(A− 2E)−1

2πi

∫

S

z

σ
g dS −

1

2πi

∫

S

ln ζg dS. (4.5)
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Then (4.4) takes the form

TU =
∂

∂s(x)

[

1

π

∫

S

θg dS −
B(A − 2E)−1

πi

∫

S

σ

σ
g dS

]

,

TV =
∂

∂s(x)

[

1

π

∫

S

ln rg dS −
B(A− 2E)−1

πi

∫

S

σ

σ
g dS

]

.

(4.6)

It follows from (4.6) that

(TU)+ = −g(t) +
∂

∂s(t)

[

1

π

∫

S

θg dS −
B(A− 2E)−1

πi

∫

S

e2iθg dS

]

,

(TV )+ =
∂

∂s(t)

[

1

π

∫

S

ln rg dS −
B(A − 2E)−1

2πi

∫

S

e2iθg dS

]

,

(4.7)

where θ is defined by (3.8), and r =
√

(x1 − y1)2 + (x2 − y2)2.
It is obvious from (4.6) that the vector TV is defined on the whole plane

and is continuous, i.e., we have

(TV )+ = (TV )−. (4.8)

Calculating from (3.2) the generalized stress vector, we find that

κ

TU =

(

(
κ

TU)2 − i(
κ

TU)1

(
κ

TU)4 − i(
κ

TU)3

)

,
κ

TV =

(

(
κ

TV )2 − i(
κ

TV )1

(
κ

TV )4 − i(
κ

TV )3

)

, (4.9)

where κ is a constant and

κ

TU =
∂

∂s(x)

[

− 2ϕ(z) + (2µ− κ)U
]

,

κ

TV =
∂

∂s(x)

[

− 2ϕ(z) + (2µ− κ)V
]

.

(4.10)

In (4.9), let κ = 2µ− 2(A−E)−1µ. Then

LU =
∂

∂s(x)

[

− 2ϕ(z) + 2(A−E)µU
]

,

LV =
∂

∂s(x)

[

− 2ϕ(z) + 2(A−E)−1µV
]

.

Bearing in mind the arguments given in [2], we have

TU = −i(A−E)LV, TV = i(A−E)LU, (4.11)

where TU and TV are obtained from (4.9), when κ = 0.
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We can now rewrite (3.2) and (3.5) in the form

(sU)+ = f,

(nTU)+ = −ng(t) + n
∂

∂s(t)

[

1

π

∫

S

θg dS−

−
B(A− 2E)−1

πi

∫

S

e2iθg dS

]

= F (t),

(4.12)

where under U we mean that ϕ, ϕ′(z) and ψ(z) are defined from (4.2) and
(4.3).

Thus for finding an unknown vector g we have obtained a system of Fred-
holm integral equations of second kind. Assume that (4.11) has a nontrivial
solution when f = F = 0, which we denote by g0. Let

U(x, g0) = U (0)(x), V (x, g0) = V (0)(x). (4.13)

By the uniqueness theorem, when S is not a parabolic type line without
center, we obtain

U (0)(x) = 0, x ∈ D+.

Then (4.11) yields LU (0)(x) = 0 and

TV (0)(x) = 0, x ∈ D+.

But the vector TV (0)(x) crosses continuously the boundary S. In this case
we have

(TV (0)(t))+ = (TV (0)(t))− = 0.

Using now the uniqueness theorem, in the domain D− for the vector V (0)

we find that

V (0)(x) = c, x ∈ D−,

where c is a constant vector.
Thus we have obtained that

LV (0)(x) = 0, x ∈ D−,

and using (4.11), we get

TU (0)(x) = 0, x ∈ D−.

Since

(TU (0)(t))− − (TU (0)(t))+ = 2g0(t)

and

(TU (0)(t))− = (TU (0)(t))+ = 0,

we obtain g0(t) = 0. Thus the homogeneous equation obtained from (4.12)
for f = F = 0 has only the trivial solution. Hence the equation (4.12) has
a unique solution, when f and F are arbitrary continuous functions.

Thus our investigation of the fourth boundary value problem in the do-
main D+ is complete.
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5. Solution of the Fourth Boundary Value Problem

in the Domain D−

The fourth boundary value problem in the domain D− is written as
follows:

(sU)− = f(t), (nTU)− = F (t), t ∈ S, (5.1)

where f and F are the known functions.
The vector ϕ(z) is sought in the form

ϕ(z) =
(A− 2E)−1

2πi

∫

S

ln
ζ − z

ζ
g(y) dS, (5.2)

where ζ = y1 + iy2 ∈ S, and g is an unknown vector. It follows from (5.2)
that

ϕ′(z) = −
(A− 2E)−1

2πi

∫

S

g

σ
dS. (5.3)

Substituting (5.2) and (5.3) into (3.3), we obtain

TU =
∂

∂s(x)

[

1

2πi

∫

S

ln
ζ−z

ζ
g dS−

B(A−2E)−1

2πi

∫

S

z

σ
g dS+2µψ(z)

]

,

TV =
∂

∂s(x)

[

−
1

2πi

∫

S

ln
ζ − z

ζ
g dS−

−
B(A− 2E)−1

2πi

∫

S

z

σ
g dS + 2µψ(z)

]

.

(5.4)

In (5.4) we take ψ(z) such that

2µψ(z) =−
1

2πi

∫

S

ln
ζ − z

ζ
g dS+

+
B(A− 2E)−1

2πi

∫

S

ζ

σ
g dS −

1

2πi

∫

S

ln ζg dS. (5.5)

Then (5.4) takes the form

TU =
∂

∂s(x)

[

1

π

∫

S

θg dS −
B(A − 2E)−1

πi

∫

S

σ

σ
g dS

]

,

TV =
∂

∂s(x)

[

1

π

∫

S

ln rg dS −
B(A− 2E)−1

πi

∫

S

σ

σ
g dS

]

.

(5.6)

where

θ = arctg
y2 − x2

y1 − x1
. (5.7)
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From (5.6) it follows

(TU)− = g(t) +
∂

∂s(t)

[

1

π

∫

S

θg dS −
B(A− 2E)−1

πi

∫

S

e2iθg dS

]

,

(TV )− =
∂

∂s(t)

[

1

π

∫

S

ln rg dS −
B(A− 2E)−1

2πi

∫

S

e2iθg dS

]

.

(5.8)

It is evident from (5.6) that (TV )− is defined on the whole plane and is
continuous, i.e., we have

(TV )− = (TV )+. (5.9)

We now write U and (5.6) in the form

(sU)− = f,

(nTU)− = ng(t) + n
∂

∂s(t)

[

1

π

∫

S

θg dS−

−
B(A− 2E)−1

πi

∫

S

e2iθg dS

]

= F (t),

(5.10)

where under U we mean that ϕ, ϕ′(z) and ψ(z) are defined from (5.2), (5.3)
and (5.5).

(5.10) is a system of Fredholm integral equations of second kind. Let us
investigate the system (5.10). Towards this end, we assume that (5.10) has
a nontrivial solution, when f = fF = 0, which we denote by g0. Let

U(x, g0) = U (0)(x), V (x, g0) = V (0)(x). (5.11)

By the uniqueness theorem , when S is not a straight line, we obtain

U (0)(x) = c, x ∈ D−,

where c is a constant. Then we find from (4.11) that LU (0)(x) = 0 and

TV (0)(x) = 0, x ∈ D−.

The vector TV (0)(x) crosses continuously the boundary S, and we have

(TV (0)(t))− = (TV (0)(t))+ = 0.

Using now the uniqueness theorem in the domain D− and assuming that
S is not a parabolic type line without center, we have

V (0)(x) = 0, x ∈ D+.

Hence we obtain LV (0)(x) = 0, x ∈ D+, and from (4.11) it follows that

TU (0)(x) = 0, x ∈ D+.

Taking into account the formula

(TU (0)(t))− − (TU (0)(t))+ = 2g0
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and the fact that (TU (0)(t))− = (TU (0)(t))+ = 0, we find that

g0 = 0.

Thus we have proved that a solution of the fourth boundary value prob-
lem in the domain D− always exists if f and F are continuous functions.
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