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ON THE PROBLEM WITH A SLOPING

DERIVATIVE FOR A MIXED TYPE EQUATION

IN THE CASE OF A TWO-DIMENSIONAL

DEGENERATION DOMAIN



Abstract. The paper considers a mixed type equation when the par-
abolic degeneration is two-dimensional. For this equation we study the
problem with a sloping derivative and show that this problem is Noether-
ian.
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We consider the equation

K(y)uxx + uyy + p(x, y)uy + q(x, y)u = 0, (1)

where

K(y) =





1 for y > 0,

0 for − δ < y < 0,

−1 for y < −δ.

For δ > 0 equation (1) is a mixed type model equation with two indepen-
dent variables, whose domain of parabolicity, like the domains of ellipticity
and hyperbolicity, is two-dimensional.

Let Ω be a finite domain bounded by a simple arc σ ∈ C2 with ends
C1(0, 0) and C2(1, 0) that lies in a half-plane y > 0, by the segments x = 0,
x = 1 and by the characteristics C1δC : y = −x−δ and C2δC : y = x−1−δ,
δ = const > 0, of equation (1), where p and q are the given functions. These
characteristics outgo from the points C1δ(0,−δ) and C2δ(1,−δ).

Let further Ω1 = Ω ∩ {(x, y) : y > 0}, Ω2 = Ω ∩ {(x, y) : −δ < y < 0},
Ω3 = Ω ∩ {(x, y) : y < −δ}, Iδ = {(x,−δ) : δ > 0, 0 < x < 1}.

Below it is assumed that the coefficients p(x, y) and q(x, y) of equation
(1) are constant in the domain Ω2.

Let us consider the problem formulated as follows: find a function u(x, y)
with the following properties: 1) u(x, y) is a regular solution of equation (1)
in the domains Ω1, Ω2, Ω3; 2) u(x, y) is continuous in the closed domain Ω
and has continuous first derivatives in the same domain everywhere except
perhaps for the points C1(0, 0) and C2(1, 0) in whose neighborhood ux and
uy may reduce to infinity of order less than unity; 3) u(x, y) satisfies the
boundary conditions

(p1ux + q1uy + λ1u)|σ = ϕ, (2)

(p2ux + q2uy + λ2u)|C1δC = ψ, (3)

where pi, qi, λi (i = 1, 2), ϕ, ψ are the given real functions.
Below it is assumed that ∂Ω1 ∈ C2,h, ϕ, pi, qi, λi ∈ C1,h (i = 1, 2),

ψ ∈ C2,h, 0 < h < 1.
We introduce the following notation: u(x,−δ) = τδ(x), uy(x,−δ) =

−νδ(x), u(x, 0) = τ(x), uy(x, 0) = ν(x), 0 ≤ x ≤ 1, 2α = −p, 2β =√
|p2 − 4q|. Using this notation, the solution u(x, y) of problem (1), (2),

(3) is representable in the domain Ω2 for p2 − 4q = 0, p2 − 4q > 0 and
p2 − 4q < 0, respectively, in the form

u(x, y) = [(1− αy)τ(x) + yν(x)] exp(αy),

u(x, y) = [(β chβy − α shβy)τ(x) + ν(x) sh βy]β−1 exp(αy),

u(x, y) = [(β cosβy − α sinβy)τ(x) + ν(x) sin βy]β−1 exp(αy).
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Hence we easily conclude that the functions τδ(x) and ν0(x) are related to
the functions τ(x) and ν(x) as follows:

a) for p2 − 4q = 0 by

τδ(x) = [(1 + αδ)τ(x) − δν(x)] exp(−αδ),

νδ(x) =
[
α2δτ(x) + (1− αδ)ν(x)

]
exp(−αδ);

b) for p2 − 4q > 0 by

τδ(x) = [(β chβδ + α shβδ)τ(x) − ν(x) sh βδ]β−1 exp(−αδ),

νδ(x) =
[
(α2 − β2)τ(x) sh βδ + (β chβδ − α shβδ)ν(x)

]

× β−1 exp(−αδ);

(4)

c) for p2 − 4q < 0 by

τδ(x) = [(β cosβδ + α sinβδ)τ(x) − ν(x) sinβδ] β−1 exp(−αδ),

νδ(x) =
[
(α2 + β2)τ(x) sin βδ + (β cosβδ − α sinβδ)ν(x)

]

× β−1 exp(−αδ).

If we assume that conditions (3) are fulfilled on the characteristic C1δC

as in [1], then we obtain the following relation between τδ(x) and νδ(x) on
Iδ :

1

2
(p2 − q2)τδ(x)−

1

2
(p2 − q2)νδ(x) + [T (τδ, νδ)](x) = ψ̃(x), (5)

where T (τδ, νδ) is a completely defined linear integral operator, ψ̃ =
ψ

R(x,−x,x,0) , and R(x, y, ξ, η) is a Riemann function [2].

As will be seen below, assuming that p1(C1) = 0, q1(C1) 6= 0 at the
point C1 we can conclude that the derivatives ux and uy of the solution of
problem (1), (2), (3) are continuous. In addition to this, we assume that
p2(t)− q2(t) 6= 0, t ∈ C1δC.

If τδ(x) and νδ(x) are sewn continuously on Iδ from (4), (5), then we
obtain the equalities

a) δν′(x) + (1− αδ)ν(x) =
2(T̃ (τ, ν)− ψ̃)

p2 − q2
exp(αδ)

+ (1 + αδ)τ ′(x) − α2δτ(x) for p2 − 4q = 0;

b) shβδν′(x) + (β chβδ − α shβδ)ν(x) =
2β(T̃ (τ, ν)− ψ̃)

p2 − q2
exp(αδ)

+ (β chβδ + α shβδ)τ ′(x)− (α2 − β2) shβδτ(x)

for p2 − 4q > 0;

c) sinβδν′(x) + (β cosβδ − α sinβδ)ν(x) =
2β(T̃ (τ, ν) − ψ̃)

p2 − q2
exp(αδ)

+ (β cosβδ + α sinβδ)τ ′(x) − (α2 + β2) sinβδτ(x)

for p2 − 4q > 0.

(6)
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Solving (6) as a linear differential equation with respect to ν(x), the
relations between τ(x) and ν(x) after some transformations can be written
in the form

a) ν(t) exp

[
1− αδ

δ
t

]
= ν(0)

+

∫ t

0

[
2(T̃ (τ, ν)− ψ̃)

δ(p2 − q2)
exp(αδ)− α2τ(x)

]
exp

[
1− αδ

δ
x

]
dx

+
1 + αδ

δ

[
τ(t) exp

(
1− αδ

δ
t

)
− τ(0)

−
1− αδ

δ

∫ t

0

τ(x) exp

[
(1− αδ)x

δ

]
dx

]
for p2 − 4q = 0;

b) ν(t) exp

[
(β chβδ − α shβδ)

shβδ
t

]
= ν(0) +

∫ t

0

[
2(T̃ (τ, ν) − ψ̃)β

shβδ(p2 − q2)
exp(αδ)

− (α2 − β2)τ(x)

]
exp

[
β chβδ − α shβδ

shβδ
x

]
dx

+
β chβδ + α shβδ

shβδ

[
τ(t) exp

(
β chβδ − α shβδ

shβδ
t

)
− τ(0) (7)

−
β chβδ − α shβδ

shβδ

∫ t

0

τ(x) exp

[
β chβδ − α shβδ

shβδ
x

]
dx

]

for p2 − 4q > 0;

c) ν(t) exp

[
(β cosβδ − α sinβδ)

sinβδ
t

]
= ν(0)+

∫ t

0

[
2(T̃ (τ, ν)− ψ̃)β

sinβδ(p2 − q2)
exp(αδ)

− (α2 + β2)τ(x)

]
exp

[
β cosβδ − α sinβδ

sinβδ
x

]
dx

+
β cosβδ + α sinβδ

sinβδ

[
τ(t) exp

(
β cosβδ − α sinβδ

sinβδ
t

)
− τ(0)

−
β cosβδ − α sinβδ

sinβδ

∫ t

0

τ(x) exp

[
β cosβδ − α sinβδ

sinβδ
x

]
dx

]

for p2 − 4q < 0 and sinβδ 6= 0.

When p2 − 4q < 0 and sinβδ = 0, (6) immediately implies the relation

ν(t) =
2(T̃ (τ, ν) − ψ̃)

(p2 − q2) cosβδ
exp(αδ) + τ ′(t).
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Let us use a general representation of regular solutions of equation (1) in
Ω1 by analytic functions ω(z) [3]

u(x, y) = Re

{
α(z, z)ω(z) +

∫ z

p0

β(z, z, t)ω(t) dt

}
, (8)

where ω(z) is an arbitrary analytic function in Ω1 that satisfies the condition
Imω(p0) = 0, p0 ∈ Ω1; α(z, z) and β(z, z, t) are entire functions of their
arguments. I. Vekua proved that if ω(z) ∈ C1,h(Ω1) is an analytic function
in a 1-connected domain Ω1 satisfying the condition Imω(p0) = 0, then
there exists a unique real function µ(t) ∈ C0,h such that the formula

ω(z) =

∫

∂Ω1

µ(t) log e
(
1−

z

t

)
dSt (9)

holds, where dSt are elements of an arc of the boundary ∂Ω1, while under
log e

(
1− z

t

)
, z ∈ Ω1, t ∈ ∂Ω1, we understand a branch if this function that

is equal to zero for z = 0. Assuming that (8) is a boundary condition [4],
we can rewrite (2) equivalently as

α1(t)µ(t) + β1(t)

∫

∂Ω1

µ(t1) dt1
t1 − t

+

∫

∂Ω1

K(t, t1)µ(t1) dt1 = ϕ(t), t ∈ ∂Ω1 \ C1C2, (10)

where

α1(t) = Re[−πt′α(t, t)(p1(t) + iq1(t)),

β1(t) = Im[−it ′(p1(t) + iq1(t))α(t, t)],

α(z, z) = exp

[ ∫ z

0

p(z, t) dt

]
.

From (8) we find that [4]

τ ′(t) = α̃1(t)µ(t) + β̃1(t)

∫

∂Ω1

µ(t1) dt1
t1 − t

+K1(µ), (11)

ν(t) = α̃2(t)µ(t) + β̃2(t)

∫

∂Ω1

µ(t1) dt1
t1 − t

+K2(µ), (12)

α̃1(t) = Re(−πiα(t, t)t′), β̃1(t) = Im(−iα(t, t)t′),

α̃2(t) = Re(πα(t, t)t′), β̃2(t) = Im(α(t, t)t′).

Here K1(µ), K2(µ) are completely defined integral operators.
Using formulas (8), (11), (12), from the boundary condition (3) we ob-

tain a singular integral equation with Cauchy kernel which, together with
equation (10) can be rewritten in the form of a singular equation on the
whole boundary ∂Ω1

α∗i (t)µ(t) + β∗i (t)

∫

∂Ω1

µ(t1) dt1
t1 − t

+K∗

i = f∗i (t) (i = 1, 2, 3, 4), (13)
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where K∗

i (i = 1, 2, 3, 4) are completely defined compact linear integral
operators, f∗i (i = 1, 2, 3, 4) are the known functions, for p2 − 4q = 0

α∗1(t) =

{
α1(t), t ∈ ∂Ω1 \AB,

α̃2(t) exp
[

1−ασ
σ

f(t)
]
, t ∈ AB,

β∗1 (t) =

{
β1(t), t ∈ ∂Ω1 \AB,

β̃2(t) exp
[

1−ασ
σ

f(t)
]
, t ∈ AB;

for p2 − 4q > 0

α∗2(t) =

{
α1(t), t ∈ ∂Ω1 \AB,

α̃2(t) exp [(α− cthβσ)f(t)] , t ∈ AB,

β∗2 (t) =

{
β1(t), t ∈ ∂Ω1 \AB,

β̃2(t) exp
[
1−ασ
σ

f(t)
]
, t ∈ AB;

for p2 − 4q < 0, sinβσ 6= 0

α∗3(t) =

{
α1(t), t ∈ ∂Ω1 \AB,

α̃2(t) [(α− ctgβσ)f(t)] , t ∈ AB,

β∗3 (t) =

{
β1(t), t ∈ ∂Ω1 \AB,

β̃2(t) [(α − ctgβσ)f(t)] , t ∈ AB.

for p2 − 4q < 0, sinβσ = 0

α∗4(t) =

{
β1(t), t ∈ ∂Ω1 \AB,

(p2 + q2) cosσβ̃2(t)− 2(p2 − q2) cosβα̃1(t), t ∈ AB,

f(x) =

∫ x

0

p2 + q2

p2 − q2
dt.

So, in terms of solvability, problem (1), (2), (3) is equivalently reduced
to the integral equation (13).

The solution µ(t) of the obtained singular integral equations is sought
in the space H∗(∂Ω1) [5], assuming that the node of the curve ∂Ω1 is the
point C2(1, 0), while the index of (13) is calculated in the same manner as
in [1].

Thus the following theorem is valid.

Theorem. Let the conditions

1) H(t) = p1(t) + iq1(t) 6= 0, t ∈ σ,
2) p1(C1) = 0,
3) p2

2(t)− q22(t) 6= 0, t ∈ C1C2, ϕ(0) = ψ(0)

be fulfilled. Then problem (1), (2), (3) is Noetherian.

In this direction a special mention should be made of work [6].
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