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EXPLICIT SOLUTION OF THE FIRST BVP
OF THE ELASTIC MIXTURE FOR HALF-SPACE



Abstract. We consider the first BVP of elastic mixture theory for a
transversally-isotropic half-space. The solution of the first BVP for the
transversally-isotropic half-space is given in [1]. The present paper is an
attempt to use this result for the BVP of elastic mixture theory for a
transversally-isotropic elastic body. Using the potential method and the
theory of integral equations, the uniqueness theorem is proved for a half-
space and the first BVP previously is solved effectively (in quadratures),
which has not been solved.
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On the Explicit Solution of the First BVP 7

The first BVP and the uniqueness theorem for a half-space. Let
the plane oxixs be the boundary of a half-space x3 > 0. Let the upper
half-space be denoted by D and the boundary of D by S. Let the axis oxg
be directed vertically upwards and the normal be n(0,0,1).

A basic homogeneous equation of statics of transversally-isotropic elastic
mixture theory can be written in the form [2]

CW(9x) CB®(dx)
where the components of the matrix C)(9z) = ||C’,§f? (0x)||3z3 are given in
the form

CO =CW, j=1,2.3 pq=123
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cg;) are the constants characterizing physical properties of the mixture and
satisfying certain inequalities obtained due to positive definiteness of the
potential energy. U = UT(x) = (uv/,u”) is a six-dimensional displacement
vector-function, u'(z) = (u},ub,us) and u’(z) = (uf,uy,u) are partial
displacement vectors. Throughout this paper “T"” denotes transposition.

Definition. A vector-function U(z) defined in the domain D is called
regular if it has integrable continuous second derivatives in D and U(x)
itself and its first derivatives are continuously extendable at every point of
the boundary of D , i.e. U(z) € C*(D) N CY(D) and satisfies the following
conditions at infinity

ou

U) = O0(al ™). 5

=0(lz|7?), |zl =27 +23+23, k=1,2,3

For the equation (1) we pose the following BVP. Find a regular function
U (z) satisfying the equation (1) in D if on the boundary S the displacement
vector U is given in the form

Ut =f(z), z€8. (2)
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where ()T denotes the limiting value from D and f is a given vector.
|fel <AR, R=\/2f+25 <1, |fi] <AR™, 3)
a>0, R>1, k=1,...,6, A=const>0.

The Uniqueness Theorem. Let us prove that the first homogeneous BVP
has only a trivial solution. Note that if U is a regular solution of the equation
(1) and satisfies the following conditions at infinity

Ux) = O(lz|~*), P(dz,n)U =O(|z['*), a>0,
then we have the formula

:iﬂ/ /[(P(a%n)F)*u*—F(y—z)(P(ay,n)u)+] dy1 dys, z€D, (4)

—00 —Oo0

where P(dy,n)U is the generalized stress vector

_wouy | ) 0up | q)Ous | 5 0us
(P(5y7n) )k 044 6 +c 44 a +(S axk +6 8(Ek7 k 1,27
ou)  Oul ou’  oul
p _ 3 i 3) (U1, Jug
(P, m)U)s = ( 0 T g (S 2
(1 8u 3 8’[1,
+c 33)8 —S+c g’3)8x3
o, ou!!
3 2 _
(P(@y, Ui = e 5 =2 + ) 2=
IO AL S TG ML S (5)

Ozp—3 Ozp—3’
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(P(ay’n)U)G ﬁ (8561 8172) ﬁ (8:61 +8CC2) +
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B 460 =alf), j=1,23 D +6@ =aly,
o+ =
I'(y—=x) is the symmetric matrix of the fundamental solution of the equation

(1)

r@ e
) (©)

Nz —y)= ( T 1@

where

16 (2 — Z ||I‘ Nse3, j=1,2,3, F%gk) = Féék)’
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A 92d
Fl( ) = 5pq ,',,1]{;1 Ag’;)a 8 y P= ]‘327 q= 1a27

(Spq:1 p=gq, 5pq—0ap7é%
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A(k) =1.2 T 2( ) 766 .
46 0x,0x3’ p T 33 L

The coefficients Al(jq are defined as follows

k 2 2 k 3 3
Agl) = (_1)k(cz(1 - Céﬁ)ak)rm A§4) = _(_1)k(04(14) - Céﬁ)ak)rm
k k k
A0 AT o AR e A
12 — ar 24 — ’ 45 ’
k k ak

A(k) = (‘Uk(cz(;l) - Cée)ak)rm k=1,2, 7’6 = [ro(a1 — 112)]71,
Ok
Agg) = ak[ QBCEM) + agti2 — akfll + cgl)q4ak]

1)
A = a: lascty) + antrs — a2tas — ¢ quad),

& Ok 1 1
A = a[—%cfm) + atas — adtss + ¢ qad),

ALY = 5, [q40§23) — atas + aftas — o maj),

Ag;) = Ok[—q 033 — atez + ajtes + 05;4)Q1ak]

Ag;) = Ok [Q4C33 — axtsy + ajtss — 0514)‘11@2]

Aﬁ? = 6i[v1z — virak + vigail, AYZ = 6 (w13 — wizak + wirai],
Aé’i’ = O [vas — v21ak + v2oai], AEJZ) = O (w34 — wisak + waaai],
Ok = dip(ar — ag)(az —ap)by ', k=3,....6,

where ay are the positive roots of the characteristic equations
(roa® — coa + q1)(boa* — bia® + baa® — bga + bs) = 0,

2) 3)2 1) (2 1) (2 3) (3)
T = c(ﬁ)céG CéG »  Co= CéG 04(14) + 04(14 Céﬁ) - 20556 04(14 .

79

The coefficients dj, bg, vij, wij, t;; are given in [3]. The singular matrix

6
[P(Oy,n)T]* = > (M,S’;))Gmﬁ, which is obtained from P(dz,n)T'(z — y) by

k=1
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transposition of the columns and rows and the variables = and y, has the
form

6 Mk pr(3k)
PO - =3 hm i ) ®
k=1
where the elements of the matrix M*) = ||Mpq llsz3,5 = 1,2,3,4, are

written as

MOD = 5, R0 9 1+R<k> Py,

1 g 12 Wv
Oopj =1, p=1J, 5pj—07 p#j, pJj=12,
MG = B M~ RS
M = R G MG = b G R R
M3 Rg'?aip M- i s MEY=RE
N R A
M;? R e M = R
ME =5, yza%% R 5o M =) L
M = R MY RS pe L2
The coefficients R,(gq) satisfy the following conditions
P Y == L e
2 pk) 6
> = > =0
(k) 6 pk 6 6 pk) 2
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and, after elementary calculations the coefficients Rgg), e ,Rgz) take the
form
R = a0 ALY + 60V AL + ) ALY + ) AL
RYY = a0 ALY + 657 AL + 41)A(k) o ASE),
R( —akﬁ(l A(k) akﬁ 42 + (1)A§3)+ 3)A§2)7
k 1) 4(k 3 1 (3) 4(k
R~ _a <A<>_ 9 400 L o) 4B L 3 40 o
R = a0 ALY + 67 AL + §D ALY + 7 A%
R = oV ALY + 67 AL + SV AR + 7 AL
R = a8 4B _ g 5P AW | o8 40 L 2 g

HO) o 0 480 g ) o0 L)y
We can easily prove that every column of the matrix [P(dz,n)I']* is a solu-
tion of the system (1) with respect to the point z if  # y and all elements
M,gl,;) have a singularity of type |z|~2.

We choose 56”, ((Jj), j=1,...,4, so that

prr VLT v SV T 3\/a_k LS Vae (10)
=g VI = k= \/_ ; =3 VI ’

After some simplification, we find from (10) that

6 6 6 2
k k
A= E A§2)vak E Az(m)vak - (E A42)v ) =
k=3 k=3

k=3

A(k)
Vasasasag Z Z Jar <Z 36 =
_ Bo —1
) [[(511522 + bomims)qs + q1ba + d22boma](\/azasasae)” +

+ q1(611622 + bomams — k1) + bod11ma],

where
2 3)2 3)2
q1 = C(1)C§1) - 651) y 4= C( )04(14) - 04(14) , bo = q1q4,
my = Z\/ak, mo = Zﬂ/apaq,
k=3 p#q

ms = Z \/apaqaj7 paqaj:37~..,67
PFaF#]
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511 = Cgl)Qﬁ) + C(?Cg) (3) (3) > 0
b= e+ e 240 > 0
Fat bz =2(a (13)0453) (3)2) O‘gl)vll - a(%)wu - Oég )(W12 + va1),
1 2)2 (3 2) (3) (3 3)2 (2 2
ki = @2 {04(14) ng) 20514)0514)053) 514) ng) +c( )} n
Cyq
204 [ (2 G (2)2
t e el - e + s
Caq Cia
o' =1+ vag), p.a=3,....6.
P#q

Taking into account the inequalities obtained from the positive definiteness

the energy F(u,u), we conclude that A # 0. When 50 , (()J ) are solutions
of the system (10), we denote the vector P(dy,n)U, by N(dy,n)U. Then
from (4), when U™ = 0, we have

// N(9y,n)Udy: dysa.

— 00 —O0

Hence for the vector NU as z(x1,x2,23) — 2(21, 22,0) we find

[N(0z,n)U]T + % / / NT(y — 2)(NU) " dy, dya = 0.

Note that NT'(z —y) = 0, z € S. ATherefore (NU)* = 0, and from (4)
we have U = 0,z € D. Therefore the homogeneous equation has only the
trivial solution. Thus we formulate the following

Theorem. The first BVP has at most one reqular solution.

The first BVP. A solution of the first BVP will be sought in the domain
D in terms of the double layer potential

:%/ /[N(‘?%”)F(y—x]*g(y)dyl dysa, (11)

— 00 —O0

where ¢ is an unknown real vector. Taking into account the properties of
the double layer potential and the boundary condition for determining g,
we obtain the following Fredholm integral equation of second kind:

o [ [ N @unrt — ) gy dye = ).

— 00 —O0
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Taking into account the fact that [NT]* = 0, 5 = 0, from the latter equa-
tion we have g(z) = f(z) and (11) takes the form

1 oo oo .
U@ =5 [ [ N@unrw - o) fw)dndye. (12)
Thus we have obtained the Poisson formula for the solution of the first BVP
for the half-space. Note that (12) is valid if and only if f € C1*(S) and
satisfies the condition f = O(W‘iﬁ-) at infinity, where A is a constant vector
and 0 > 0.
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