Memoirs on Differential Equations and Mathematical Physics $_{\rm VOLUME}$ $45,\ 2008,\ 75\text{--}83$

Lamara Bitsadze

EXPLICIT SOLUTION OF THE FIRST BVP OF THE ELASTIC MIXTURE FOR HALF-SPACE

Abstract. We consider the first BVP of elastic mixture theory for a transversally-isotropic half-space. The solution of the first BVP for the transversally-isotropic half-space is given in [1]. The present paper is an attempt to use this result for the BVP of elastic mixture theory for a transversally-isotropic elastic body. Using the potential method and the theory of integral equations, the uniqueness theorem is proved for a half-space and the first BVP previously is solved effectively (in quadratures), which has not been solved.

2000 Mathematics Subject Classification. 74E30, 74G05.

Key words and phrases. Elastic mixture, uniqueness theorem, potential method, explicit solution.

რე № ემე. ნამრომში განიხილება ტრანხვერბალერად-იბოტრობული დრეცალი ნარევის პირველი სასაზლერო ამოტანა ნახევარბივრტი სათვის (ნახევარბივრტის საზლვარზე მოტემულია გადაადგილების ვექტორის ზღვრული მნიშვნულობა). დამტციტებულია ერთადერთობის თეორემა ნახევარბივრტის შემთხვევაში. დასმული ამოტანის ამობსნა წარმოდგენილია პუასონის ტიპის ფორმულის სასით-(კვადრატერებში). The first BVP and the uniqueness theorem for a half-space. Let the plane ox_1x_2 be the boundary of a half-space $x_3 > 0$. Let the upper half-space be denoted by D and the boundary of D by S. Let the axis ox_3 be directed vertically upwards and the normal be n(0,0,1).

A basic homogeneous equation of statics of transversally-isotropic elastic mixture theory can be written in the form [2]

$$C(\partial x)U = \begin{pmatrix} C^{(1)}(\partial x) & C^{(3)}(\partial x) \\ C^{(3)}(\partial x) & C^{(2)}(\partial x) \end{pmatrix} U = 0, \tag{1}$$

where the components of the matrix $C^{(j)}(\partial x) = ||C^{(j)}_{pq}(\partial x)||_{3x3}$ are given in the form

$$\begin{split} C_{pq}^{(j)} &= C_{qp}^{(j)}, \quad j = 1, 2, 3; \quad p, q = 1, 2, 3, \\ C_{11}^{(j)}(\partial x) &= c_{11}^{(j)} \frac{\partial^2}{\partial x_1^2} + c_{66}^{(j)} \frac{\partial^2}{\partial x_2^2} + c_{44}^{(j)} \frac{\partial^2}{\partial x_3^2}, \\ C_{12}^{(j)}(\partial x) &= (c_{11}^{(j)} - c_{66}^{(j)}) \frac{\partial^2}{\partial x_1 \partial x_2}, \\ C_{k3}^{(j)}(\partial x) &= (c_{13}^{(j)} + c_{44}^{(j)}) \frac{\partial^2}{\partial x_k \partial x_3}, \quad k = 1, 2, \\ C_{22}^{(j)}(\partial x) &= c_{66}^{(j)} \frac{\partial^2}{\partial x_1^2} + c_{11}^{(j)} \frac{\partial^2}{\partial x_2^2} + c_{44}^{(j)} \frac{\partial^2}{\partial x_3^2}, \\ C_{33}^{(j)}(\partial x) &= c_{44}^{(j)} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) + c_{33}^{(j)} \frac{\partial^2}{\partial x_3^2}, \end{split}$$

 $c_{pq}^{(k)}$ are the constants characterizing physical properties of the mixture and satisfying certain inequalities obtained due to positive definiteness of the potential energy. $U=U^T(x)=(u',u'')$ is a six-dimensional displacement vector-function, $u'(x)=(u'_1,u'_2,u'_3)$ and $u''(x)=(u''_1,u''_2,u''_3)$ are partial displacement vectors. Throughout this paper "T" denotes transposition.

Definition. A vector-function U(x) defined in the domain D is called regular if it has integrable continuous second derivatives in D and U(x) itself and its first derivatives are continuously extendable at every point of the boundary of D, i.e. $U(x) \in C^2(D) \cap C^1(D)$ and satisfies the following conditions at infinity

$$U(x) = O(|x|^{-1}), \quad \frac{\partial U}{\partial x_k} = O(|x|^{-2}), \quad |x|^2 = x_1^2 + x_2^2 + x_3^2, \quad k = 1, 2, 3.$$

For the equation (1) we pose the following BVP. Find a regular function U(x) satisfying the equation (1) in D if on the boundary S the displacement vector U is given in the form

$$U^+ = f(z), \quad z \in S. \tag{2}$$

78 L. Bitsadze

where $(.)^+$ denotes the limiting value from D and f is a given vector.

$$|f_k| < AR, \quad R = \sqrt{z_1^2 + z_2^2} \le 1, \quad |f_k| < AR^{-\alpha},$$

 $\alpha > 0, \quad R > 1, \quad k = 1, \dots, 6, \quad A = const > 0.$ (3)

The Uniqueness Theorem. Let us prove that the first homogeneous BVP has only a trivial solution. Note that if U is a regular solution of the equation (1) and satisfies the following conditions at infinity

$$U(x) = O(|x|^{-\alpha}), \quad P(\partial x, n)U = O(|x|^{-1-\alpha}), \quad \alpha > 0,$$

then we have the formula

$$U(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[(P(\partial y, n)\Gamma)^* u^+ - \Gamma(y - z)(P(\partial y, n)u)^+ \right] dy_1 dy_2, \quad x \in D, \quad (4)$$

where $P(\partial y, n)U$ is the generalized stress vector

$$(P(\partial y, n)U)_{k} = c_{44}^{(1)} \frac{\partial u_{k}'}{\partial x_{3}} + c_{44}^{(3)} \frac{\partial u_{k}''}{\partial x_{3}} + \delta^{(1)} \frac{\partial u_{3}'}{\partial x_{k}} + \delta^{(3)} \frac{\partial u_{3}''}{\partial x_{k}}, \quad k = 1, 2,$$

$$(P(\partial y, n)U)_{3} = \beta^{(1)} \left(\frac{\partial u_{1}'}{\partial x_{1}} + \frac{\partial u_{2}'}{\partial x_{2}} \right) + \beta^{(3)} \left(\frac{\partial u_{1}''}{\partial x_{1}} + \frac{\partial u_{2}''}{\partial x_{2}} \right) +$$

$$+ c_{33}^{(1)} \frac{\partial u_{3}'}{\partial x_{3}} + c_{33}^{(3)} \frac{\partial u_{3}''}{\partial x_{3}},$$

$$(P(\partial y, n)U)_{k} = c_{44}^{(3)} \frac{\partial u_{k-3}'}{\partial x_{3}} + c_{44}^{(2)} \frac{\partial u_{k-3}''}{\partial x_{3}} +$$

$$+ \delta^{(4)} \frac{\partial u_{3}'}{\partial x_{k-3}} + \delta^{(2)} \frac{\partial u_{3}''}{\partial x_{k-3}}, \quad k = 4, 5,$$

$$(P(\partial y, n)U)_{6} = \beta^{(4)} \left(\frac{\partial u_{1}'}{\partial x_{1}} + \frac{\partial u_{2}'}{\partial x_{2}} \right) + \beta^{(2)} \left(\frac{\partial u_{1}''}{\partial x_{1}} + \frac{\partial u_{2}''}{\partial x_{2}} \right) +$$

$$+ c_{33}^{(3)} \frac{\partial u_{3}'}{\partial x_{3}} + c_{33}^{(2)} \frac{\partial u_{3}''}{\partial x_{3}},$$

$$\beta^{(j)} + \delta^{(j)} = \alpha_{13}^{(j)}, \quad j = 1, 2, 3, \quad \beta^{(4)} + \delta^{(4)} = \alpha_{13}^{(3)},$$

$$c_{13}^{(j)} + c_{44}^{(j)} = \alpha_{13}^{(j)}.$$

 $\Gamma(y-x)$ is the symmetric matrix of the fundamental solution of the equation (1)

$$\Gamma(x-y) = \begin{pmatrix} \Gamma^{(1)} & \Gamma^{(3)} \\ \Gamma^{(3)T} & \Gamma^{(2)} \end{pmatrix}, \tag{6}$$

where

$$\Gamma^{(j)}(x-y) = \sum_{k=1}^{6} \|\Gamma_{pq}^{j(k)}\|_{3x3}, \quad j = 1, 2, 3, \quad \Gamma_{pq}^{j(k)} = \Gamma_{qp}^{j(k)},$$

$$\begin{split} &\Gamma_{pq}^{1(k)} = \delta_{pq} \frac{A_{11}^{(k)}}{r_k} + A_{12}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_q}, \quad p = 1, 2; \quad q = 1, 2; \\ &\delta_{pq} = 1, \quad p = q, \quad \delta_{pq} = 0, \quad p \neq q, \\ &\Gamma_{p3}^{1(k)} = A_{13}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_3}, \quad \Gamma_{33}^{1(k)} = \frac{A_{33}^{(k)}}{r_k}, \quad \Gamma_{pq}^{3(k)} = \delta_{pq} \frac{A_{14}^{(k)}}{r_k} + A_{42}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_q}, \\ &\Gamma_{p3}^{3(k)} = A_{16}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_3}, \quad p = 1, 2, \quad \Gamma_{33}^{3(k)} = \frac{A_{36}^{(k)}}{r_k}, \quad \Gamma_{3p}^{3(k)} = A_{34}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_3}, \\ &\Gamma_{pq}^{2(k)} = \delta_{pq} \frac{A_{44}^{(k)}}{r_k} + A_{45}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_p \partial x_q}, \\ &\Gamma_{p3}^{2(k)} = A_{46}^{(k)} \frac{\partial^2 \Phi_k}{\partial x_r \partial x_2}, \quad p = 1, 2, \quad \Gamma_{33}^{2(k)} = \frac{A_{66}^{(k)}}{r_k}. \end{split}$$

The coefficients $A_{pq}^{(k)}$ are defined as follows

$$A_{11}^{(k)} = (-1)^k (c_{44}^{(2)} - c_{66}^{(2)} a_k) r_0', \quad A_{14}^{(k)} = -(-1)^k (c_{44}^{(3)} - c_{66}^{(3)} a_k) r_0',$$

$$A_{12}^{(k)} = \frac{A_{11}^{(k)}}{a_k}, \quad A_{24}^{(k)} = \frac{A_{14}^{(k)}}{a_k}, \quad A_{45}^{(k)} = \frac{A_{44}^{(k)}}{a_k},$$

$$A_{44}^{(k)} = (-1)^k (c_{44}^{(1)} - c_{66}^{(1)} a_k) r_0', \quad k = 1, 2, \quad r_0' = [r_0(a_1 - a_2)]^{-1},$$

$$A_{12}^{(k)} = \frac{\delta_k}{a_k} [-q_3 c_{44}^{(2)} + a_k t_{12} - a_k^2 t_{11} + c_{11}^{(2)} q_4 a_k^3],$$

$$A_{42}^{(k)} = \frac{\delta_k}{a_k} [q_3 c_{44}^{(3)} + a_k t_{13} - a_k^2 t_{22} - c_{11}^{(3)} q_4 a_k^3],$$

$$A_{45}^{(k)} = \frac{\delta_k}{a_k} [-q_3 c_{44}^{(1)} + a_k t_{23} - a_k^2 t_{33} + c_{11}^{(1)} q_4 a_k^3],$$

$$A_{33}^{((k))} = \delta_k [q_4 c_{33}^{(2)} - a_k t_{42} + a_k^2 t_{44} - c_{44}^{(2)} q_1 a_k^3],$$

$$A_{36}^{((k))} = \delta_k [-q_4 c_{33}^{(3)} - a_k t_{42} + a_k^2 t_{55} - c_{44}^{(1)} q_1 a_k^3],$$

$$A_{66}^{(k)} = \delta_k [q_4 c_{31}^{(1)} - a_k t_{52} + a_k^2 t_{55} - c_{44}^{(1)} q_1 a_k^3],$$

$$A_{13}^{(k)} = \delta_k [v_{13} - v_{11} a_k + v_{12} a_k^2], \quad A_{16}^{(k)} = \delta_k [w_{13} - w_{12} a_k + w_{11} a_k^2],$$

$$A_{34}^{(k)} = \delta_k [v_{23} - v_{21} a_k + v_{22} a_k^2], \quad A_{46}^{(k)} = \delta_k [w_{34} - w_{14} a_k + w_{24} a_k^2],$$

$$\delta_k = d_k (a_1 - a_k) (a_2 - a_k) b_0^{-1}, \quad k = 3, \dots, 6,$$

where a_k are the positive roots of the characteristic equations

$$(r_0a^2 - c_0a + q_4)(b_0a^4 - b_1a^3 + b_2a^2 - b_3a + b_4) = 0,$$

$$r_0 = c_{66}^{(1)}c_{66}^{(2)} - c_{66}^{(3)2}, \quad c_0 = c_{66}^{(1)}c_{44}^{(2)} + c_{44}^{(1)}c_{66}^{(2)} - 2c_{66}^{(3)}c_{44}^{(3)}.$$

The coefficients d_k , b_k , v_{ij} , w_{ij} , t_{ij} are given in [3]. The singular matrix $[P(\partial y, n)\Gamma]^* = \sum_{k=1}^{6} (M_{pq}^{(k)})_{6x6}$, which is obtained from $P(\partial x, n)\Gamma(x-y)$ by

80 L. Bitsadze

transposition of the columns and rows and the variables x and y, has the form

$$[P(\partial x)\Gamma(x-y)]^* = \sum_{k=1}^{6} \begin{pmatrix} M^{(1k)} & M^{(3k)} \\ M^{(4k)} & M^{(2k)} \end{pmatrix}, \tag{8}$$

where the elements of the matrix $M^{(jk)} = ||M_{pq}^{(jk)}||_{3x3}, j = 1, 2, 3, 4$, are written as

$$\begin{split} M_{pj}^{(1k)} &= \delta_{pj} R_{11}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k} + R_{12}^{(k)} \frac{\partial^3 \Phi_k}{\partial x_p \partial x_j \partial x_3}, \\ \delta_{pj} &= 1, \quad p = j, \quad \delta_{pj} = 0, \quad p \neq j, \quad p, j = 1, 2, \\ M_{p3}^{(1k)} &= R_{31}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \quad M_{3p}^{(1k)} &= R_{13}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \\ M_{33}^{(1k)} &= R_{33}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k}, \quad M_{pj}^{(3k)} &= \delta_{pj} R_{14}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k} + R_{24}^{(k)} \frac{\partial^3 \Phi_k}{\partial x_j \partial x_p \partial x_3}, \\ M_{p3}^{(3k)} &= R_{61}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \quad M_{3p}^{(3k)} &= R_{43}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \quad M_{33}^{(3k)} &= R_{63}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k} \\ M_{pj}^{(4k)} &= \delta_{pj} R_{41}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k} + R_{42}^{(k)} \frac{\partial^3 \Phi_k}{\partial x_j \partial x_p \partial x_3}, \quad M_{p3}^{(4k)} &= R_{34}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \\ M_{3p}^{(4k)} &= R_{16}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \quad M_{33}^{(4k)} &= R_{36}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k}, \\ M_{pj}^{(2k)} &= \delta_{pj} \mu_{44}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k} + R_{44}^{(k)} \frac{\partial^3 \Phi_k}{\partial x_p \partial x_j \partial x_3}, \quad M_{p3}^{(2k)} &= R_{64}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \\ M_{2p}^{(2k)} &= R_{46}^{(k)} \frac{\partial}{\partial x_p} \frac{1}{r_k}, \quad M_{33}^{(2k)} &= R_{66}^{(k)} \frac{\partial}{\partial x_3} \frac{1}{r_k}, \quad p = 1, 2. \end{split}$$

The coefficients $R_{pq}^{(k)}$ satisfy the following conditions

$$\sum_{k=1}^{2} \frac{R_{11}^{(k)}}{a_k} = \sum_{k=3}^{6} \frac{R_{33}^{(k)}}{a_k} = \sum_{k=3}^{6} \frac{R_{66}^{(k)}}{a_k} = \sum_{k=1}^{2} \frac{\mu_{44}^{(k)}}{a_k} = 1,$$

$$\sum_{k=1}^{2} \frac{R_{14}^{(k)}}{a_k} = \sum_{k=1}^{6} R_{12}^{(k)} = 0,$$

$$\sum_{k=1}^{2} \frac{R_{41}^{(k)}}{a_k} = \sum_{k=3}^{6} \frac{R_{36}^{(k)}}{a_k} = \sum_{k=1}^{6} R_{24}^{(k)} = \sum_{k=3}^{6} \frac{R_{63}^{(k)}}{a_k} = \sum_{k=1}^{2} R_{44}^{(k)} = \sum_{k=1}^{6} R_{42}^{(k)} = 0$$

and, after elementary calculations the coefficients $R_{13}^{(k)},\dots,R_{64}^{(k)}$ take the

$$\begin{split} R_{13}^{(k)} &= \delta_0^{(1)} A_{33}^{(k)} + \delta_0^{(3)} A_{36}^{(k)} + c_{44}^{(1)} A_{13}^{(k)} + c_{44}^{(3)} A_{43}^{(k)}, \\ R_{16}^{(k)} &= \delta_0^{(1)} A_{36}^{(k)} + \delta_0^{(3)} A_{66}^{(k)} + c_{44}^{(1)} A_{16}^{(k)} + c_{44}^{(3)} A_{46}^{(k)}, \\ R_{31}^{(k)} &= -a_k \beta_0^{(1)} A_{12}^{(k)} - a_k \beta_0^{(3)} A_{42}^{(k)} + c_{33}^{(1)} A_{13}^{(k)} + c_{33}^{(3)} A_{16}^{(k)}, \\ R_{34}^{(k)} &= -a_k \beta_0^{(1)} A_{42}^{(k)} - a_k \beta_0^{(3)} A_{45}^{(k)} + c_{33}^{(1)} A_{43}^{(k)} + c_{33}^{(3)} A_{46}^{(k)}, \\ R_{43}^{(k)} &= \delta_0^{(4)} A_{33}^{(k)} + \delta_0^{(2)} A_{36}^{(k)} + c_{44}^{(3)} A_{13}^{(k)} + c_{44}^{(2)} A_{43}^{(k)}, \\ R_{46}^{(k)} &= \delta_0^{(4)} A_{36}^{(k)} + \delta_0^{(2)} A_{66}^{(k)} + c_{44}^{(3)} A_{16}^{(k)} + c_{44}^{(2)} A_{46}^{(k)}, \\ R_{61}^{(k)} &= -a_k \beta_0^{(4)} A_{12}^{(k)} - a_k \beta_0^{(2)} A_{42}^{(k)} + c_{33}^{(3)} A_{13}^{(k)} + c_{33}^{(2)} A_{16}^{(k)}, \\ R_{64}^{(k)} &= -a_k \beta_0^{(4)} A_{42}^{(k)} - a_k \beta_0^{(2)} A_{45}^{(k)} + c_{33}^{(3)} A_{43}^{(k)} + c_{33}^{(2)} A_{46}^{(k)}, \quad k = 3, \dots, 6. \end{split}$$

We can easily prove that every column of the matrix $[P(\partial x, n)\Gamma]^*$ is a solution of the system (1) with respect to the point x if $x \neq y$ and all elements $M_{pq}^{(k)}$ have a singularity of type $|x|^{-2}$. We choose $\delta_0^{(J)}, \beta_0^{(j)}, j = 1, \dots, 4$, so that

$$\sum_{k=3}^{6} \frac{R_{13}^{(k)}}{\sqrt{a_k}} = 0, \quad \sum_{k=3}^{6} \frac{R_{31}^{(k)}}{\sqrt{a_k}} = 0, \quad \sum_{k=3}^{6} \frac{R_{16}^{(k)}}{\sqrt{a_k}} = 0, \quad \sum_{k=3}^{6} \frac{R_{34}^{(k)}}{\sqrt{a_k}} = 0, \\
\sum_{k=3}^{6} \frac{R_{43}^{(k)}}{\sqrt{a_k}} = 0, \quad \sum_{k=3}^{6} \frac{R_{46}^{(k)}}{\sqrt{a_k}} = 0, \quad \sum_{k=3}^{6} \frac{R_{64}^{(k)}}{\sqrt{a_k}} = 0, \quad (10)$$

After some simplification, we find from (10) that

$$\Delta = \sum_{k=3}^{6} A_{12}^{(k)} \sqrt{a_k} \sum_{k=3}^{6} A_{45}^{(k)} \sqrt{a_k} - \left(\sum_{k=3}^{6} A_{42}^{(k)} \sqrt{a_k}\right)^2 =$$

$$= \sqrt{a_3 a_4 a_5 a_6} \left[\sum_{k=3}^{6} \frac{A_{33}^{(k)}}{\sqrt{a_k}} \sum_{k=3}^{6} \frac{A_{66}^{(k)}}{\sqrt{a_k}} - \left(\sum_{k=3}^{6} \frac{A_{36}^{(k)}}{\sqrt{a_k}}\right)^2 \right] =$$

$$= \frac{B_0}{b_0^2} \left[\left[(\delta_{11} \delta_{22} + b_0 m_1 m_3) q_4 + q_1 b_4 + \delta_{22} b_0 m_2 \right] (\sqrt{a_3 a_4 a_5 a_6})^{-1} + q_1 (\delta_{11} \delta_{22} + b_0 m_1 m_3 - k_1) + b_0 \delta_{11} m_2 \right],$$

$$q_1 = c_{11}^{(1)} c_{11}^{(2)} - c_{11}^{(3)2}, \quad q_4 = c_{44}^{(1)} c_{44}^{(2)} - c_{44}^{(3)2}, \quad b_0 = q_1 q_4,$$

$$m_1 = \sum_{k=3}^{6} \sqrt{a_k}, \quad m_2 = \sum_{p \neq q} \sqrt{a_p a_q},$$

$$m_3 = \sum_{p \neq q \neq j} \sqrt{a_p a_q a_j}, \quad p, q, j = 3, \dots, 6,$$

where

82 L. Bitsadze

$$\begin{split} \delta_{11} &= c_{11}^{(1)} c_{44}^{(2)} + c_{44}^{(1)} c_{11}^{(2)} - 2 c_{11}^{(3)} c_{44}^{(3)} > 0, \\ \delta_{22} &= c_{33}^{(1)} c_{44}^{(2)} + c_{44}^{(1)} c_{33}^{(2)} - 2 c_{33}^{(3)} c_{44}^{(3)} > 0, \\ k_1 + k_2 &= 2 (\alpha_{13}^{(1)} \alpha_{13}^{(2)} - \alpha_{13}^{(3)^2}) - \alpha_{13}^{(1)} v_{11} - \alpha_{13}^{(2)} w_{14} - \alpha_{13}^{(3)} (w_{12} + v_{21}), \\ k_1 &= \frac{1}{c_{44}^{(2)2}} \left[c_{44}^{(2)2} c_{13}^{(3)} - 2 c_{44}^{(2)} c_{44}^{(3)} c_{13}^{(3)} + c_{44}^{(3)2} c_{13}^{(2)} + c_{44}^{(2)} \right]^2 + \\ &+ \frac{2q_4}{c_{44}^{(2)2}} \left[c_{44}^{(2)} c_{13}^{(3)} - c_{44}^{(3)} c_{13}^{(2)} \right]^2 + \frac{q_4^2}{c_{44}^{(2)2}} \alpha_{13}^{(2)2}, \\ B_0^{-1} &= \prod_{n \neq a} (\sqrt{a_p} + \sqrt{a_q}), \quad p, q = 3, \dots, 6. \end{split}$$

Taking into account the inequalities obtained from the positive definiteness the energy E(u,u), we conclude that $\Delta \neq 0$. When $\delta_0^{(j)}, \beta_0^{(j)}$ are solutions of the system (10), we denote the vector $P(\partial y, n)U$, by $N(\partial y, n)U$. Then from (4), when $U^+ = 0$, we have

$$U(x) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Gamma(y-x) N(\partial y, n) U dy_1 dy_2.$$

Hence for the vector NU as $x(x_1, x_2, x_3) \longrightarrow z(z_1, z_2, 0)$ we find

$$[N(\partial z, n)U]^{+} + \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N\Gamma(y - z)(NU)^{+} dy_{1} dy_{2} = 0.$$

Note that $N\Gamma(z-y)=0$, $z\in S$. ATherefore $(NU)^+=0$, and from (4) we have $U=0, x\in D$. Therefore the homogeneous equation has only the trivial solution. Thus we formulate the following

Theorem. The first BVP has at most one regular solution.

The first BVP. A solution of the first BVP will be sought in the domain D in terms of the double layer potential

$$U(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [N(\partial y, n)\Gamma(y - x)]^* g(y) dy_1 dy_2, \qquad (11)$$

where g is an unknown real vector. Taking into account the properties of the double layer potential and the boundary condition for determining g, we obtain the following Fredholm integral equation of second kind:

$$g(z) + \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [N(\partial y, n)\Gamma(y - z)]^* g(y) dy_1 dy_2 = f(z),$$

Taking into account the fact that $[N\Gamma]^* = 0$, $x_3 = 0$, from the latter equation we have g(z) = f(z) and (11) takes the form

$$U(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [N(\partial y, n)\Gamma(y - x)]^* f(y) dy_1 dy_2.$$
 (12)

Thus we have obtained the Poisson formula for the solution of the first BVP for the half-space. Note that (12) is valid if and only if $f \in C^{1,\alpha}(S)$ and satisfies the condition $f = O(\frac{A}{|x|^{1+\beta}})$ at infinity, where A is a constant vector and $\beta > 0$.

ACKNOWLEDGEMENT

This project was fulfilled by the financial support from Georgian National Science Foundation (Grant No. GNSF/ST06/3-033).

References

- V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. Translated from the second Russian edition. Edited by V. D. Kupradze. North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland Publishing Co., Amsterdam-New York, 1979.
- YA. YA. RUSHCHITSKI, Elements of Mixture Theory. (Russian) Naukova Dumka, Kiev, 1991.
- 3. L. BITSADZE, The basic boundary value problems of statics of the theory of elastic transversally isotropic mixtures. Semin. I. Vekua Inst. Appl. Math. Rep. 26/27(2000/01), 79–87.

(Received 22.11.2007)

Author's address:

I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186

Georgia

E-mail: lbits@viam.sci.tsu.ge