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INTERACTION PROBLEMS OF METALLIC AND
PIEZOELECTRIC MATERIALS WITH REGARD
TO THERMAL STRESSES



Abstract. We investigate linear three-dimensional boundary transmis-
sion problems related to the interaction of metallic and piezoelectric ceramic
media with regard to thermal stresses. Such type of physical problems
arise, e.g., in the theory of piezoelectric stack actuators. We use the Voigt’s
model and give a mathematical formulation of the physical problem when
the metallic electrodes and the piezoelectric ceramic matrix are bonded
along some proper parts of their boundaries. The mathematical model
involves different dimensional physical fields in different sub-domains, occu-
pied by the metallic and piezoceramic parts of the composite. These fields
are coupled by systems of partial differential equations and appropriate
mixed boundary transmission conditions. We investigate the corresponding
mixed boundary transmission problems by variational and potential meth-
ods. Existence and uniqueness results in appropriate Sobolev spaces are
proved. We present also some numerical results showing the influence of
thermal stresses.
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LisT OF NOTATION

R* — k-dimensional space of real numbers;
CF — k-dimensional space of complex numbers;

k _
a-b = > ajb; — the scalar product of two vectors a = (aq,...,ax),
j=1

b= (by,...,b) € CF,

Q0 — domain occupied by a piezoceramic material;

Q,, — domain occupied by a metallic material;

') = 09, NQ — contact interface surface between metallic and piezoce-
ramic parts;

II:=QuUQ,UQU- - -UQyx — domain occupied by a composite structure;

n = (n1,n2,n3) — unit normal vector to 9N and 9Q,,;

0 = 0y = (01,02,03), 9; = 0/0z;, Oy = 0/0t — partial derivatives with
respect to the spatial and time variables;

0, 0™ — mass densities;

Cijkl, CE;Z — elastic constants;

X))~ Lamé constants;

ekij — piezoelectric constants;

Ekj, € — dielectric (permittivity) constants;

Vijs *y,(CT), 4(™) — thermal strain constants;
(m)

Hijs Hpj s 2(™) — thermal conductivity constants;

¢, ¢™)— specific heat per unit mass;

To, To(m) — initial (reference) temperature (temperature in the natural
state, i.e., in the absence of deformation and electromagnetic fields);

a = o¢, '™ := p(MEM) _ thermal material constants;

gi (i =1,2,3) — constants characterizing the relation between thermody-
namic processes and piezoelectric effect (pyroelectric constants);

X = (X1, X2, X3)", X(m) = (Xl(m), XQ(m), Xg(,m))T —mass force densities;

X4, X4m) — heat source densities;

X5 — charge density;

u = (ur,ug,usz)’, ul™ = (ugm),ugm), ugm))T — displacement vectors;

@ — electric potential;

FE := —grad ¢ — electric field vector;

D — electric displacement vector;

9 =T — Ty, 9" =T _ To(m) — relative temperature (temperature
increment);

q=(q1,42.q3), ¢"™ = (Q§m)a qém), q;(;m)) — heat flux vector;

sky = sij() = 5 (Opuy+05u), s = s (W) == L (@™ +0u™)
— strain tensors;

O'I(CT) = O'I(CT) (u™) 9(™)) — mechanical stress tensor in the theory of ther-
moelasticity;
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okj = ok;j(u, VY, p) — mechanical stress tensor in the theory of thermoelec-
troelasticity;

S, 8™ — entropy densities;

um .= (ugm), uém), uém),uflm))T with uflm) = 9(m);

U := (uy,ug,u3, ug, us) " with uy =9 and us = ¢;

U:=WUWm,.. . . UuCN U);

Ly, Wy, and Hy (r >0, s € R, 1 < p < o0) — the Lebesgue, Sobolev-
Slobodetski, and Bessel potential spaces;

Wy = W3 (Q0)]* x - W3 (Qan)]* x W ()]

r,, — restriction operator on a set M;
{ Yoo { }aiﬂm — trace operators on 9 and 0Qy;

HY(Q,M) = {w € HI(Q): ry{w}iy =0 MC 39};

Vi = [HYILZ)* x HI(Q,S~ U ST), B3 C oIl S~ U St CaQ;

Hy(M) = {r:fe H3(Mo), supp f C M} for M C My;

HS(M) :={r, f: fe€H;(Myo)} — space of restrictions on M C Mo;

Il ||z — norm in a Banach space B;

B* — dual Banach space to B;

(+,-) — duality pairing between the Banach spaces B and B*;

T — complex wave number;

A9, 1) — 4 x 4 matrix differential operator of thermoelasticity (see
Appendix A);

A(0,T) — 5 x 5 matrix differential operator of thermopiezoelasticity (see
Appendix A);

T(™)(9,n) — 4 x 4 matrix stress operator of thermoelasticity (see Appen-
dix A);

T(9,n) — 5 x b matrix stress operator of thermopiezoelasticity (see Ap-
pendix A).

1. INTRODUCTION

The interaction of electrical and mechanical fields yields the well known
piezo-effects in piezoelastic materials. Due to this properties, they are
widely used in electro-mechanical devices and many technical equipments,
in particular, in sensors and actuators.

The corresponding mathematical problems for homogeneous media, based
on W. Voigt’s model [41], were considered by many authors.

In their works R. Toupin and R. Mindlin suggested new, more refined
models of an elastic medium, where a polarization vector occurs [38], [39],
[23], [24]. Furthermore, effects caused by thermal field and hysteresis effects
are considered in [22], [34], [16] (see also [31], [32], [35]). We refer also to the
book [36] (see also the references therein), where the distribution of stresses
near crack tips in the ceramics are studied in the two-dimensional case.

To our knowledge, only few results are known for composed complex

structures consisting of piezoelectric and metallic parts (see [37], [7] and
[42]).
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In [12], [12], and [5] two- and three-dimensional models for composites are
derived and analysed for the static case without the influence of temperature
fields.

In the present paper we study a linear mathematical model for piezoelas-
tic and metallic composites (in particular, stack actuators) and, in addition,
we take into consideration the influence of thermal effects. In this case, driv-
ing forces are given by electrical charges at electrodes which are embedded
as metallic plates in the ceramic matrix. Note that here we have different
dimensional unknown fields in the metallic and ceramic sub-domains. This
leads to an additional complexity of the model.

Thus, it was challenging to formulate the mathematical model by a cou-
pled system of linear partial differential equations which are completed by
appropriate boundary and transmission conditions.

The paper presented now can be considered as a continuation and exten-
sion of [12] and [5].

The main goals of this paper are:

e Mathematical formulation of the boundary-transmission problem
for a metallic-piezoceramic composite structure (see Figure 1) in an
efficient way.

e Derivation of existence and uniqueness results by variational and
potential methods.

e Numerical algorithms for computations of the electric and thermo-
mechanical fields, visualization of the influence of temperature.

The paper is organized as follows:

In Section 2 we give the mathematical formulation of the mixed bound-
ary transmission problem (MBTP) describing the interaction of metallic
and piezoelectric materials with regard to thermal stresses and prove the
corresponding uniqueness theorem.

In Sections 3 we introduce the sesquilinear form related to the weak
formulation of our mixed boundary transmission problem and show its co-
ercivity in an appropriate function space. Further, we prove the unique
solvability of the weak formulated MBTP.

In Section 4 by the potential method we reduce the MBTP to the equiva-
lent system of boundary integral equations. We show that the corresponding
boundary integral operator has Fredholm properties and prove its invert-
ibility. As a consequence of these results, we obtain an existence theorem
for the MBTP on the one hand and representation formulas of the corre-
sponding solutions by the layer potentials on the other hand.

In Section 5 we establish the standard finite element approximation of
solutions to the boundary transmission problem.

For the reader’s convenience, in the beginning of the paper we exhibit the
list of notation used in the text. In Appendix A we collect the field equations
of the linear theory of thermoelasticity and thermopiezoelasticity. Here we
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introduce also the corresponding matrix partial differential operators gen-
erated by the field equations and the generalized matrix boundary stress
operators. Various versions of Green’s formulas needed in the main text are
gathered in Appendix B. In Appendix C we construct explicitly the funda-
mental matrices of equations of thermoelasticity and thermopiezoelasticity.

2. MATHEMATICAL FORMULATION OF THE BOUNDARY-TRANSMISSION
PROBLEM AND UNIQUENESS THEOREM

We will consider a composed piecewise homogeneous multi-structure which
models a multi-layer stack actuator (for detailed description of multi-layer
actuators see, e.g., [12] and the references therein).

p T3
s B
1 | : ”””” d
B L E;
Ly
Cr—
3 T
2bs Ty - Ty k
S5
Dy o ot /-
clamped support
| 2by - |

FI1GURE 1. The parallelepiped IT occupied by the composed
body (T, - interface submanifold between metallic and
piezoelastic media)

By II we denote a rectangular parallelepiped in R? which is occupied by a
composed multi-structure consisting of metallic electrodes and a piezoelastic
ceramic matrix (see Figure 1):

H::{—b1<1‘1<b1, —b2<$2<b2, —b3<$3<b3},
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whose faces are
El_ = {Jil = —by, —by < a3 < by, —bz <3< b3},

if = {Jil =by, —by < x5 < by, —bz <13 < b3},

Yy = {xo = —by, —by <x1 < by, —b3 < a3 < b3},
N7 o= {2 = by, —b1 < a1 < b1, —bz < w3 < b3},
S5 o= {x3 = —bs, —b1 <x1 <bi, —by < w2 < bo},
S = {x3 = bz, —by < @1 <bi, —by < a2 < bo}.
Let Q,, (m = m) be an even number of rectangular parallelepipeds

occupied by some metallic medium (electrodes) where alternating negative
(for m = 1, N) and positive (for m = N + 1,2N) charges are applied:

Q,, = { — b1 <z <bq, —b2<$2<b21m, b/37m<$3<bg7m}, m=1,N,
Q= { — by <x1<by, b27m<1‘2 < b, b;1m<$3<bg7m}, m=N+1,2N;

here —by < by, < b2, m =1,2N, and

—bg <bgy <bgy <bgniy <bgny <bgg <bgy <bgnyo<bgnis<
< <by v <bg y <bgon <bgan < bs.

Note that the polarization direction is alternating too.
Further, by €2 we denote the connected sub-domain of IT occupied by a
ceramic medium

o=\ [Un]

For the boundaries of the above domains we introduce the following decom-
position:

3 3 2N
O =S UT, 00:= [ U5 [u|UST|u[UTa]. @
k=1 k=1 m=1
where I'y,, is an interface submanifold between metallic (£2,,,) and the piezoe-
lastic (2) subdomains,

Ty =00 NI, Sy, i= 00, \ T,

~ 2N -~ 2N
Sr= S\ [ U 0], =S U 0.

m=1 m=1

Note that 35 = f]g and ¥ = f]gr, and they represent the lower and upper
basis of the parallelepiped II.

It is evident that the metallic and ceramic bodies interact with each other
along the surfaces I';,. Moreover, in the “metallic” domain £2,,, we consider
a usual four-dimensional thermoelastic field described by the displacement

™ ) )

vector u(™) = ( JUy ,Us )—r and the temperature 9™, while in the
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piezoelectric domain 2 we have a five-dimensional physical field described
by the displacement vector u = (uy,us,u3) ', the temperature ¥, and the
electric potential ¢. Here and in what follows the superscript T denotes
transposition.

Throughout the paper we employ the Einstein summation convention
(with summation from 1 to 3) over repeated indices, unless stated otherwise.
Also, to avoid some misunderstanding related to the directions of normal
vectors on the contact surfaces I'y,, throughout the paper we assume that
the normal vector to 9, is directed outward, while on 0N it is directed
inward. Further, the symbol {-}* denotes the interior one-sided limit on
08 (respectively 0€)y,) from Q (respectively €,,). Similarly, {- }~ denotes
the exterior one-sided limit on 99 (respectively 9€,,) from the exterior of
Q (respectively Q,,). We will use also the notation {-}, and {- }gﬂm for
the trace operators on 02 and 0,,.

2.1. Formulation of the boundary transmission problem. By L,,
Wy, and H, (with 7 > 0, s € R, 1 < p < o0) we denote the well-known
Lebesgue, Sobolev—Slobodetski, and Bessel potential function spaces, re-
spectively (see, e.g., [40], [20], [21]). We recall that Hy = W3 and Hj = W}
for any r > 0 and for any non-negative integer k.

Let Mo be a surface without boundary. For a submanifold M C Mo,
by HS(M) we denote the subspace of Hj(Mo): H5(M) = {g : g €
Hy(My), supp g C M }, while Hj(M) denotes the space of restrictions
on M of the functions from H3(Mo): Hi(M) = {r, f: f € H3(Mo)},
where r,, stands for the restriction operator on M.

We will use the notation introduced in Appendix A and consider the
following model mixed boundary-transmission problem:

Find the vector-functions

U(m) _ (ugm)vugm), uém)vuim))T L Q,, — 4

with w(™ .= (ugm) uém),ugm)), uflm) = glm)

)
and

T 5 . o o -
U=(uy,uz,us,ug,u5) :Q—C> with u:=(uy,us,uz), ug:=19, us:=¢,

belonging to the spaces [W3 (€,,)]* and [W3 (22)]°, respectively, and satisfy-
ing

(i) the systems of partial differential equations:

[A<m>(a7T)U<m>]j =0 in Qn, j=1,4, m=1,2N, (2.2)
[A(0,7)U], =0 in Q, k=15, (2.3)
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that is (see Appendiz A),
0D — o2 — 9 = 0, j=1,2,3,

—TTém)*yilm)aluz(-m) + %571)81-8119(’”) — ramym) = q, 24)
m Ly, m=1,2
and
Cijik0iOyur, — 0T —vi;0i9+€13010i0=0, j=1,2,3,
—1TovaOyu; + 20;009 — T + 7THg;0;0 = 0, in Q, (2.5)

—ei10i0uy, — g:0;0 + €10;01p = 0,

(ii) the boundary conditions:

{[T(m)U(m)]j}-i- =0 on Sy, j=1,4, m=1,2N, (2.6)

(ITU;} =0 on SfUSFUSY, j=T,4, (2.7)
B{[TUL} + Bo{us}™ =0 on BF USF, (2.8)
N
{us}t = —®¢ on X, U [ U l"m}, (2.9)
m=1
2N
{us}t = +®¢ on XF U [ U I‘m], (2.10)
m=N+1
{u;}t =0 on ¥3, j=1,4, (2.11)
(iii) the transmission conditions (m =1,2N):

{u m)} ~{u;} =0 on Ty, j=1,4, (2.12)
{ITmum )t —{ [TULY =0 on Ty, 1=T,3, (2.13)

1
= g m)y(m) _ -
{T(m) [T U ]4} { } =0 on Ty, (2.14)
0
where the differential operators A (9, 7), A(d,7), T™(d,n), and T (9, n)
are defined in Appendix A,

T(m)U(m) = (Uz(ln)nla Uz(;n)nl 1(3 )nlv _qz(m)ni)Tv

T(0,n)U = (oi1n;, 0iomi, 0330, —qing, —Dimy) T,
®y is a constant, 1 and (B, are sufficiently smooth real functions, and from
now on throughout the paper we assume that

161 > Bo >0, B102<0 (2.15)

with some positive constant .
The boundary conditions (2.6)—(2.11) can be interpreted as follows. The
lower basis X3 of the composed parallelepiped II is mechanically fixed
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(clamped) along a dielectric basement, and the remaining part of its bound-
ary is mechanically traction free. Moreover, the temperature distribution
is given on the lower basis, and on the remaining part of the boundary the
heat flux influence is neglected. On the mutually opposite lateral faces 35
and X3, which are assumed to be covered with a vaporized thin metallic film
having no mechanical influence, electric voltage is applied. Mathematically
this is described by the nonhomogeneous boundary conditions (2.9) and
(2.10) for the electric potential function us = . The boundary conditions
(2.8) for the electric field given on the faces ¥F U XF show a relationship
between the electric potential function and the electric displacement vector.
An alternative formulation of this relationship by more complicated analyt-
ical functions, however, can be found in the corresponding literature (see,
e.g., [18], [12], [13]).

Finally, the transmission conditions (2.12)—(2.14) show the usual conti-
nuity of the mechanical displacement vector, mechanical stress vector, tem-
perature distribution and heat flux along the interface surfaces I';,,.

A vector function

U:=UW,...  UCN) UYeW) =[WH(Q)]* x- - x [Wi (Qan)]* x [WH(Q))

will be referred to as a weak solution to the boundary-transmission problem
(2.2)—(2.14). Here and in what follows the symbol x denotes the direct
product of spaces, unless stated otherwise.

The pseudo-oscillation differential equations (2.2) and (2.3) in Q,, and €2,
respectively, are understood in the distributional sense, in general. However,
we remark that in the case of homogeneous equations actually we have
U™ € [Wa(Qn)]* N[C=(2)]* and U € [W4(Q)]° N [C=(2)]° due to the
ellipticity of the corresponding differential operators. In fact, U™ and U
are analytic vectors of the real spatial variables =1, z2, x3 in €, and €2,
respectively.

The above boundary and transmission conditions involving boundary
limiting values of the vectors U™ and U are understood in the usual trace
sense, while the conditions involving boundary limiting values of the vectors
T U and TU are understood in the functional sense defined by the
relations (related to Green’s formulae, see (B.2), (B.6))

<{T<W>U<m>}+,{v<m>}+>m ;:/A(m)(&T)U(m)-V(m) dz +

Qm
+ / [E(m) (u™) (M) 4 o(m) 72, (m) . ) (m) 4 %l(;l)ajuflm)ﬁlvim) +
Qm
+Ta(m)u§lm) . vflm)—i—vj(.?l) (TTO(m)Bjul(m)vim)—uflm)ajvlm) )} dz, (2.16)

<{TU}+,{V}+>BQ::—/A(&T)U-de—/ [E(uﬁ) +oru- v+
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+51 (TToajulﬁ— U4ajvl )—|—%jlajU4alv4—|—€lij (81’&58in —81-uj81v5 ) +
+Taugvy — g1 (TToal’UJ5m + ’LL481’U5 ) + 5j18ju581v5 :| dI, (217)

where V(™) € [W}(Q,,)]* and V € [W3(Q)]® are arbitrary vector-functions.
Here (-, Yaq,, (respectively (-, )aq) denotes the duality between the spaces

[Hy Y2(00,)]* and  [Ha ?(0Q)]*  (respectively [H, “/*(0Q)]° and
[H21/2(GQ)]5) which extends the usual La-scalar product:

(. g) /ijgj dM for f, g€ [LaM)M, M € {00, 00},
M=t
By standard arguments it can easily be shown that the functionals
{T(9,n) UM™Y € [Hy '/?(00,,)]* and {T(8,n)U} € [Hy /*(0Q)]° are
correctly determined by the above relations, provided that A(™ (9, 7)U(™ e
[Lao()] " and A(0, 7)U € [La(2)]°.

2.2. Uniqueness theorem. There holds the following uniqueness

Theorem 2.1. Let 7 = 0 +iw, and either 0 > 0 or 7 = 0.
The homogeneous version of the boundary-transmission problem (2.2)-
(2.14) (®o = 0) has then only the trivial solution in the space W} .

Proof. Let U € W), be a solution to the homogeneous boundary-transmis-
sion problem (2.2)—(2.13).

Green’s formulae (B.4) and (B.8) with V(™) = U(™) and V = U along
with the homogeneous boundary and transmission conditions then imply

2N

S / [E(m)(u(m)7u_(m) )+ ol 72y m 2
mlem

+ T( m)alu(m)a (m) + | (m)|2} da+
v 2Tl Tim

+/ [E(u u) + Q7—2|u|2 + —|U4| + EjlalU58 Us + —— | |2T %j181u48ju4_
Q
a 62 + 2 .
—oR{grusdyus }} dz — E|{u5} *ds = 0. (2.18)
sfust

Note that due to the relations (A.7), (A.39), and (A.40) and the positive
definiteness of the matrix g;; we have

B (u(m),u(m)) = cgﬂzaiu;m)akul(m) >0,
E(u ﬂ) e Cijkla'uj'akul >0, (219)

%l_] )8lu4m)8 u4m) >0, %Jlal’lL48 ug >0, Ejlal’UJ58 us > 0
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with the equality only for complex rigid displacement vectors, constant tem-
perature distributions and a constant potential field:

w™ =q (") % g4 (™) uflm)zaim), u=axx+b, ug=aq, us=as, (2.20)

where o™, 5™ a, b e C3, af[”’, a4, as € C, and x denotes the usual cross
product of two vectors.

Take into account the above inequalities and separate the real and imag-
inary parts of (2.18) to obtain

2N L )
Z / [E(m)(u(m)au(m) )4 0™ (0% — w?)|ul™|? 4 _a( ) |u£(lm)|2 +

— T m
m_lQm 0

? %l(;n)aluim)ajuim) ] dxr +

_i_i
275"

E(u, 2 _ o2l + Eual? T O UsD i —
+/{ (u, @) + o(c® — w?)|ul|® + T ug|® + |T|2TO%J1 g0y
Q

—2R{ giu4aOyus }+5jlalU58jU5} dx— / %HU5}+’2 ds =0, (2.21)

sfuss
2N
S [ [ oulu sl ool o+
771:19m 0
-I—/ [2gaw|u|2 + m%%%jlaluzﬁjud dx = 0. (2.22)

First, let us assume that ¢ > 0 and w # 0. With the help of the homo-
geneous boundary and transmission conditions we easily derive from (2.22)
that ug-m) =0{=1,4)in Q and u; =0 (j = 1,4) in Q. From (2.21) we
then conclude that

/EjlalU58j_U5dCC = 0,

Q
whence us = 0 in Q follows due to (2.19) and the homogeneous boundary
condition on I',.

Thus U™ =0 in Q,, and U = 0 in Q.

The proof for the case 0 > 0 and w = 0 is quite similar. The only
difference is that now, in addition to the above relations, we have to apply
the inequality in (A.41) as well.

For 7 = 0, by adding the relations (B.9) and (B.10) with c/TO(m) and
¢/Tp for ¢; and ¢, respectively, we arrive at the equality

2N

C m m m m m m
5 B Ty A o
m=lq 0
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C —_— _ _—
+ /{E(u,ﬂ)—k? %jlalU4ajU4—’ijU4aluJ'—glu_4811L5+EjlalU5aju5} dr—
0
Q

- / %‘{U5}+’2d820, (2.23)

+ +
XuUXg

where c is an arbitrary constant parameter.

Dividing the equality by ¢ and sending ¢ to infinity we conclude that
uim) =0in Q,, and ugy = 0 in  due to the homogeneous boundary and
transmission conditions for the temperature distributions. This easily yields
in view of (2.23) that U(™ =0 in Q,, and U = 0 in Q due to the homoge-
neous boundary conditions on ¥5. Thus U = 0. ]

Note that for 7 = iw (i.e., for 0 = 0 and w # 0) the homogeneous
problem may possess a nontrivial solution, in general.

3. WEAK FORMULATION OF THE BOUNDARY-TRANSMISSION PROBLEM
AND EXISTENCE RESULTS

In this section we give a weak formulation of the transmission problem
(2.2)—(2.14). To this end, it is convenient to reduce the nonhomogeneous
Dirichlet type boundary conditions (2.9) and (2.10) to the homogeneous
ones preserving at the same time the continuity property (2.12).

Below we will consider only the case R7 > 0. However, we remark that
the case 7 = 0 can be treated quite similarly (and is even a simpler case).

Denote by S~ and ST the subsurfaces where the electric potential func-
tion ¢ is prescribed and takes on constant values —®¢ and +®, respectively:

N 2N
S__::E_QU [ U fm], F:ZE_JU [ U fm], SE=SF\9S*. (3.1)
m=1 m=N+1

Further, let B, and BZ; be the following spatial disjoint neighbourhoods
of S~ and S™*:
By = |J B(z,20), Bfy== ] B(,20), BynBfi=2, (32
z€8~ z€5"
where B(x,20) is a ball centered at 2 and of radius 24 with sufficiently small
§>0.

Choose a real function ui € C*(R3) (v > 3) with a compact support
such that

ro_ 'LL:—; = _(bOa TB+ ’U,; == +(b05 T ’U,; - O (33)

Bys 25 R3\[BfUB 5]
We set
U* :=(0,0,0,0,u%)". (3.4)
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In view of (A.36), (A.45), and (A.46) we get

T
A(a, T)U* = ([elijalaiu;]jzl y TTOgiZ)iu;, Eilaial’u;) S [CV_Q(Rg)P,

. (3.5)
*\ + * 3 * +
{TU } = {([elijnﬁl%]j:l,o,sunial%) } on Of).
Due to the property (3.3) of the function uf, we see that
P s AU I =0 (3.6)

and, moreover, the set supp{7U*}* is a proper part of Zf U Egi, ie.,
supp {7U*}*t n G[Z_li UE_gi] =g.

Now, assuming U := (UM ...  UCN) T7) € W} to be a solution to the
transmission problem (2.2)—(2.14), we can reformulate the problem for the
vectors U™ and U := U — U* as follows: Find the vector—functions

U(m) _ (ugm)7uém), uz())m)7u§lm))7 L Q,, — A

with u(™ = (ugm),uém),ugm)),uim) =9 m=T,2N,

and

~ o~~~ o~ T 5
U = (uy,ug, us, ug,us) Q2 —C
with u := (51762,53), ﬁl = uy, = 172,37
~ ~ * *
Ugi=ug =V, Us:i=us— U =P — U,

belonging to the spaces (W3 (Qy,)]* and (W4 (Q)]5, respectively, and satisfy-
mg

the differential equations:
[A<m>(a,r)U<m>}j =0 in Qn, j=1,4, m=T1,2N, (3.7)
[A(0,7)U], = X; in Q, k=1,5, (3.8)

2N

the boundary conditions:
{(IT™U™)A T =0 on S, j=T1,4, m=1,2N, (3.9)
{[TU))} =FF and {{TU}} =0 on SfUSF UST, 1=T,3, (3.10)
Bi{[TULs} " + B{is} " = Fr on ST UST, (3.11)

{is}" =0 on 35 U LNJ T, (3.12)

2N
{as}"=0onsfu[ U Tl ©13)
m=N+1
{i;})" =0 on %3, j=T174, (3.14)
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the transmission conditions (m =1,2N):
{ugm)} —{a } =0 on Iy, =14, (3.15)
{IT™UNT {70, =0 on T, 1=1,3, (3.16)

{ﬁmm)y(m)h}* _ {Tiommf =0 on Ty, (3.17)
0

where L
X = —[A(a, T)U*}k in Q, k=15,
Fr= {10} on fusfus), j=13, (3.18)
F= = {[TU s} = B {ug} " on DF UST.

In accordance with (3.5) and (3.6), we have
Xj = V2@, k=T5,
* * + 7—1/2 _ + . (3'19)
Ff=—{[TU";} € H2(0Q\ [S”USY)), j=1,2,3,5.

Remark 3.1. It is evident that if U := UM, . UCN), 17) € W) solves
the boundary transmission problem (3.7)—(3.17), then

U:= WD, U U+U") e W)
solves the original transmission problem (2.2)—(2.14).

In what follows, we give a weak formulation of the problem (3.7)—(3.17)
and show its solvability by the standard Hilbert space method.
First, let us introduce the sesquilinear forms:

gom uim ymy . / [Em)( (m) G0 4 ol 72q,(m) . m)

Qm
(m) ) 1
+ a(m) uf o™ 4 —(m) % M u m)a v+
Ty Ty
n %m) (@u™uf™ — uimajvl(m))} dz, (3.20)

1
EU,V) = / [E(u 0) 4 oT?u v+ — T 310514004 + TOU4U4—|—
Q

+ EjlajU5alU5 + ’le(ajulﬁ — u;lﬁ)—f—
+ eyij (5”15(9in - (9iujalv5) — gl(alu5v_4 + U451U5)} dx. (3.21)

These forms coincide with the volume integrals in the right-hand side of

Green’s formulae (B.2) and (B.6) if we put there the functions vflm)

and v4
multiplied by [FT\™]~! and [FTy]~!, respectively. Note that we have the

same type factors in the transmission conditions (3.17) (see also (2.14)).
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We put
A(U, V) Z gm(utm ymy 4+ g, v). (3.22)
m=1

We apply Green’s formulae (B.2), (B.6), and the above introduced forms
to write:

2N 3 L
A(U, V) _—Z/{ Z A(m (m) ](m) L[A(m)U(m)hvz(lm)} do—
m: J:l

T

/ { i AUJ;v5 + [AU]4U4 + [AU]5’U5} dz+

o> {Z{ TG T

=150,

1 m)rr(m “(m)
o LTV R s

STy e vy e (o) e as 62
aq J=1
where we assume that
U:=UW,... . UM U), v.=vL . . vEV V) U Vvewy,
and AT (9, 1) U™ € [Ly(Qn)]*, A0, 7)U €[La()]°.
Taking into consideration the Dirichlet type homogeneous boundary and

transmission conditions of the problem (3.7)—(3.17), we define the following
closed subspace of W};:

(3.24)

Vi = {VGW}V:{% T=0onS", {vs}T =00n ST, (3.25)

{fo}=00on %y, {o™}—{v;}*=00nT,, j=T4, m:l,QN},

where S~ and ST are as in (3.1), and X3 and I',, are defined in the begin-
ning of Section 2 (see Figure 1).

Further, for any Lipschitz domain D C R3 and any sub-manifold M C
0D with Lipschitz boundary M we set

HY(D, M) := {w e HYD): r wlf, =0, MC aD} -
={we H}(D): {w}f, € B*(0D\ M)}.
If for arbitrary V € Vi we define V := (Vq, V5, V3, V,, V5) T with

v, v ?n Qm,'mfl,2 . j=1,4,
‘/j ln Q? .]2177

V5 ::‘/5 in Q,
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then actually we have V € [H3 (I, $3)]* x H3(Q, 5T US™).
Therefore, we can write (in the sense just described)

Vi = [H3(I,53)] " x HY(Q, 57 UST). (3.26)

Clearly, any solution to the problem (3.7)—(3.17) belongs to the space V.
It is evident that W}, and V), are Hilbert spaces with the standard scalar
product and the corresponding norm associated with the Sobolev spaces W3

2N
(U’V)W}V = Z (U(m), V(m))[wg Q)] + (U7 V)[W%(Q)]f’a

m=1
i (3.27)

U1, == > 10 ™ v + 10wz

m=1
For V € V}, we have the evident equality

2N
VIS, = 1VIEvy, = D2 V™ s + 1V Iz e =

m=1
4
=> Vil 2y + Vsl () -
j=1

Now, having in hand the relation (3.23), we are in the position to formu-
late the weak setting of the above transmission problem (3.7)—(3.17):
Find a vector U € V), such that

AU, V) + B(U,V) = F(V) forall V €V}, (3.28)
where A is defined by (3.22),
BOV) = [ 2 @) (s, (3.20)
1
sfust
> 1
FVi=-Y [ mmras- [ g Emas
1=1 b
“xfust sfust
> 1
_ / { ; X5+ T X1+ X;E} dz. (3.30)
5 Uiz

All the integrals in the right-hand side of (3.29) and (3.30) are well defined
and, moreover, the anti-linear functional F : lev — C is continuous, since
the functions involved belong to appropriate spaces.

With the help of the equality (3.23) by standard arguments it can easily
be shown that the transmission problem (3.7)—(3.17) is equivalent to the
variational equation (3.28).
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Moreover, due to the relations (A.7), (A.39), (A.40), (A.41), and Korn’s
inequality ([30], [17]) from (3.20)-(3.22), (3.25), and (2.15) it follows that

R[A(U,U) + B(U,U)] > C1|[U|[; — Col|Ul[3 for all U e Vy. (3.31)

It is also evident that the sesquilinear form A+ B : V), x Vi, — C is
continuous.

Theorem 3.2. Let 7 = 0 +iw with o > 0. Then the variational problem
(3.28) possesses a unique solution.

Proof. On the one hand, since for the sesquilinear form A+ B there holds the
coerciveness property (3.31), due to the well known results from the theory
of variational equations in Hilbert spaces we conclude that the operator

PV — (Vi) (3.32)

corresponding to the variational problem (3.28) is Fredholm with zero index
(see, e.g., [21]). Therefore, the uniqueness implies the existence of a solution.

On the other hand, by the word for word arguments as in the proof
of Theorem 2.1 we can show that the homogeneous variational equation
possesses only the trivial solution for arbitrary 7 = o +iw with ¢ > 0. Thus
the nonhomogeneous equation (3.28) is uniquely solvable. O

Due to Theorem 3.2 and the above mentioned equivalence, we con-
clude that the modified problem (3.7)-(3.17), and, consequently, the original
transmission problem (2.2)—(2.14) are uniquely solvable. The relation be-
tween these solutions is described in Remark 3.1.

Remark 3.3. As it can be seen from (3.20), (3.21), (3.22), and (3.29), if
c>0 and o> |w|, (3.33)

then we can take Cy = 0 in (3.31) and the real part of the sesquilinear
form A(-,-) 4+ B(-,-) becomes strictly positive definite, i.e., it satisfies the
conditions of the Lax-Milgram theorem. However, Theorem 3.1 gives a
wider range for the parameter 7 yielding the unique solvability of the equa-
tion (3.28).

Remark 3.4. As we have mentioned above, the electric boundary con-
ditions are still debated (see, e.g. [36]) and in the literature one can find
different versions. For example, instead of the above considered Robin type
linear boundary operator relating the normal component of electric displace-
ment vector and the corresponding electric potential function on Zli U Egt,
in [12] and [13], the following nonlinear boundary operator is considered

RU) = {[TU)s}" + A2 ({uis} ), (3.34)
where
By Hy (S UsE) — Hy A(5f usy)

is a well defined monotone operator.
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4. BOUNDARY INTEGRAL EQUATIONS METHOD

Here we investigate the boundary transmission problem formulated in
Section 2 (see (2.2)-(2.14)) by the potential method. To this end, first
we present basic mapping and jump properties of potential type operators,
and reduce the transmission problem under consideration to an equivalent
system of integral equations. Next we show the invertibility of the corre-
sponding matrix integral operators and prove the existence results for the
original boundary transmission problem. At the same time, we obtain that
the solutions can be represented by surface potentials.

4.1. Properties of potentials of thermoelasticity. Here we collect the
well-known properties of the single layer, double layer, and volume poten-
tials of the theory of thermoelasticity and the corresponding boundary in-
tegral operators (for details see [14] and [15]; see also [9], [8], [26], [21], [27],
], [2]).
Denote by W™ (. 1) := [\Ilk?)(-, T)]ana @ fundamental matrix of the dif-
ferential operator A™ (9, 1):
A (9, ) 0™ (2, 1) = L,§(x), (4.1)
where (-) is Dirac’s distribution. The explicit expressions of ¥(™) (-, 7) and
their properties for the general anisotropic and isotropic cases are given in

Appendix C.
Let us introduce the following surface and volume potentials

VIE) @)= [ W g7 ) S, (42)
O,
~ T
W (W) )i [{T (@, m0), 700 (0,1} 1 0 S, (4.3
0,
NI @) )= [ 8o~y )0 ) dS, (4.4)
Qp
where

0= (6™ YT pm = pm RS T
dm) — (q)gm) q)(m))T

3

yoeey Py

are density vectors. The matrix differential operator T(m) (0,n),T) is given
by (A.21)-(A.22).

With the help of Green’s identity (B.1), by standard arguments we obtain
the following integral representation formula for x € Q,, (see, for example,
141, [21])

U(m)(I) _ WT(m)([U(m)]+)(z)—
— VM ([TT ) (@) + NI AT ) (@), (4.5)
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where n is the exterior normal to 99,,
We assume here that €1, is a Lipschitz domain with piecewise smooth
compact boundary and U™ € [W(€,,)]* with A(™) (9, 7) U™ € [La(Q,)]*.
Further we introduce the boundary operators on 0f2,, generated by the
above potentials

R @)= [ W =y ) ds,,
OQm

Rm y(m) () = / {T<m>(a n(y), )[\Iﬂ’”)(:c—yr)]T}Th(m)(y)dSy,
O,

1 g(m) (5 / {70 (00, () W™ (2 — y, 7) 14O (y) dS,,

where z € S = 0Q,,

In contrast to the classical elasticity theory, the operator Hsm) is not
self-adjoint, and neither K™ nor K™ are mutually adjoint.

The basic mapping and jump properties of the potentials are give by the
following

Theorem 4.1. Let 09, be a Lipschitz surface and n be its exterior
normal. Then

(i) the single and double layer potentials have the following mapping prop-
erties

V) [Hy 2 (09,)]" = | :

1
2

W : [Hf (09,)]" — |

Hy (Qn)
Hy ()

)

]
1%

)
1
2

(0Q)]* and any '™ € [H3 (0Q,,)]* there hold

_1
2

(i) for any €™ € [H,

the jump relations
[V ()] = [V ()] = i,
[ >(h(m>)}i [£27 10, + K0* ] ptm),
(70 (0, )V, (005 = [ F 2711 + K] elm),
[T @)W ()] = [T @)W ()] ™ = £

(iii) the above introduced boundary operators have the following mapping
properties
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for Rt = o > 0 all these operators are isomorphisms;
(iv) for arbitrary @™ € [Ly(Qn)]* the volume potential NY™ (@(™)
belongs to the space [W2(Q,)]* and

A (@, )N () = &™) in Q,;
(v) the following operator equalities hold in the corresponding function
spaces:
£ = [ a7 (G0, ML = [~ 4 (R
(vi) for the corresponding Steklov—Poincaré type operator
Ag_m) — [ _ 27114 + ’Cs_m)} [H-(,—m)] -1 _ [Hg_m)} —1 [ . 2—1[4 + IE.(,_m)*]
and for arbitrary h(™ € [HQ% (0Q,)]* we have the following inequality
RCAORT, B > R R

0 4
(62 (96m)]4 (2 (08m)]
with some positive constants ¢’ and ¢’ independent of h(™.

We only note here that the injectivity of the operators in item (iii) of
Theorem 4.1 and their adjoint ones follows from the uniqueness results for
the corresponding homogeneous Dirichlet and Neumann boundary value
problems for the domains Qf = Q,, and Q, = R3\ Q,,. Fredholm
properties with index equal to zero then follow since the ranges of these
operators in the corresponding function spaces are closed (for details see,
e.g., [14], [21]).

4.2. Properties of potentials of thermopiezoelasticity. In this sub-
section we collect the well-known properties of the single layer, double layer
and volume potentials of the theory of thermopiezoelasticity and the corre-
sponding boundary integral operators (for details see [3]; see also [21], [1],
[2])-

Denote by U(-,7) = [Us;(-,7)] ... & fundamental matrix of the differ-
ential operator A(0,7): A(9,7)¥(x,7) = Isd(x). The explicit expressions
of W(.,7) for the general anisotropic and transversally isotropic cases and
their properties are given in Appendix C.

Let us introduce the corresponding surface and volume potentials

%@@%:/W@—%ﬂﬂw%@ (4.6)
o0

Won)@) = [ {70,070 - 3]} hw)as, @1
on

No(@)(w) i= [ Wl - . 1)B(0) dS,, (48)
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where ¢ = (fl, “ee ,65)T, h = (hl, ey h5)T, and ¢ = (‘bl, ey ‘1)5)T are
density vectors.
Recall that due to our agreement, on 0f2 the normal vector n is directed

inward.
With the help of Green’s identity (B.5), by standard arguments we obtain
the following integral representation formula

U(x) = =W ([U]")(z)+
+ V- ([T (0,n)U]")(z) + N-(A(0,7)U) (z), =€, (4.9)

We assume here that §2 is a Lipschitz domain with a piecewise smooth
compact boundary and U € [H'(Q]® with A(9,7)U € [L2(Q)]°.

Further we introduce the boundary operators on 0f2 generated by the
above potentials

HL(z) = /‘I’(DC —y,7)l(y) dSy,
o

K:h(z) := / {ﬂ%m(y)ﬁ) [z —y,7)]

") b ds,,

o0
K-(x) = / {T(@m,n(z))\ll(z - y,T)}é(y)dSy,
o0

where x € S = 0€.
The basic mapping and jump properties of the potentials are given by
the following

Theorem 4.2. Let 0 be a Lipschitz surface and n be its interior nor-
mal. Then

(i) the single and double layer potentials have the following mapping prop-
erties

Ve [Hy 2(09)]° — [HEQ)], W [Hy (09)]° — [HE Q)"

1
2

(0Q)]° and any € € [HF (0)]° there hold the jump

(ii) for any h € [H;%
relations
Ve (O = V(O] = Hol, [T@,n)Vo(0)] = [£27 15 + K. 4,
(W (b)) F= [F 27 I+ Kb, [T(0, )Wy (h)] "= [T(8,m)Wy(h)] = L.h;
(iii) the above introduced boundary operators have the following mapping
properties
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. [H (00)° — [H ?(09)]
the operator H, is an isomorphism for R = o > 0;
(iv) for arbitrary ® € [La2(2)]® the volume potential N, (®) belongs to the
space [W3(Q))° and
A0, T)N-(®) =D in Q;
(v) the following operator equalities hold in the corresponding function
spaces:

KiH, = H,K,, K. Lr =LK,
LoHy = [ =47 5+ (K)?), MLy =[—47 5+ (K5)?];
(vi) for the corresponding Steklov—Poincaré type operator

A= —[27 5 + I H = —H 27 s + K

and for arbitrary h € [HQ% (09)]> we have the following inequality
R(Ah, h) > 0| —"|[n]?

0 5
(HF (02))5 H2 ()
with some positive constants ¢’ and ¢’ independent of h.

We only note here that the injectivity of the operator H, and its adjoint
one follows from the uniqueness results for the corresponding homogeneous
Dirichlet boundary value problems for the domains Q7 := Q and Q~ :=
R3 \ Q. Fredholm properties with index equal to zero then follow since
the range of the operator in the corresponding function space is closed (for
details see, e.g., [3], [21]).

4.3. Representation formulas for solutions. Throughout this subsec-
tion we assume that o7 = o > 0. Here we consider two auziliary problems
needed for our further purposes.

4.3.1. Auziliary problem 1. Find a vector function
Um — (ugm), uém), uém),uflm))T : Q) — C*
which belongs to the space [W3 (£2,,)]* and satisfies the following differential
equation and boundary conditions:
A (@, 1) U™ =0 in Q, (4.10)
{TMUmYT = 6" on 90, (4.11)

where £0m) = (¢ g™ ™) pmNT ¢ (75 (90),,)]*. With the help of
Green’s formulae it can easily be shown that the homogeneous version of
this auxiliary BVP I possesses only the trivial solution.

Recall that on 0%),,, the normal vector n is directed outward.

From Theorem 4.1 and the above mentioned uniqueness result for the

BVP (4.10)-(4.11) immediately follows
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Corollary 4.3. Let Rr=0>0. An arbitrary solution U™ € [W3 (Q,)]*
to the homogeneous equation (4.10) can be uniquely represented by the single
layer potential

U™ (z) = V. ([ — 27, + K] ’1£<m>)(x), z € Q.
where the density vector (™) satisfies the relation £ = [TMUT ] on
00y, .

4.3.2. Auziliary problem I1. Find a vector function U = (u1, uz, us, 4, us) "
) — C® which belongs to the space [W4(2)]° and satisfies the following
conditions:

AQ,7)U =0 in Q, (4.12)
{(lTU]} =45 on 99, =114, (4.13)
{Us}T =5 on 09, (4.14)

where £; € Hy ?(8Q) for j = 1,4, and 5 € Hy (D).
_1
Denote ¢ := (£1,€2,€3,€4>T € [H2 2 (8(2)]4
By the same arguments as in the proof of Theorem 2.1, we can easily show
that the homogeneous version of this boundary value problem possesses only
the trivial solution.
We look for a solution to the auxiliary BVP II as a single layer potential,
_1
U(x) = Vo(f)(z), where f = (f1, f2, f3, f1, f5) | € [Hy 2(09)]° is a sought
density.
The boundary conditions (4.13) and (4.14) lead then to the system of
equations:
[(271[5 + ICT)f]? Ej on 897 ] = 1,_4,
[HTf]5 = /{5 on 0N

Denote the operator generated by the left hand side expressions of these
equations by P, and rewrite the system as

PTf =4,

(4.15)

where

. [(27115+/C7-)jk} «
P "l (AN ]

(OQ)]* x H3 ().

1
2

and £ = (¢, ¢5)" € [Hy
Lemma 4.4. Let RT = o > 0. The operator
_1 5 _1 4 1
Pr: [H2 2(89)] — [H2 2(89)} x HZ(082)

is an isomorphism.
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Proof. The injectivity of the operator P, follows from the uniqueness result
of the auxiliary BVP II.

To show that P, is surjective, we proceed as follows.

Due to Theorem 4.2(iii) the operator H, : [HQ_%(GQ)P — [HQ%((?Q)]5
is invertible and we can introduce a new unknown vector function h =
(hi1, ha, hg, ha, hs) T by the relation h := H, f € [H (09)]°. From the equa-
tions (4.15) we then have:

(2715 —l—ICT)H;lh]? ¢; on 99, j=14,

hs =05 on 0N (4.16)
Recall that for the SteklovPoincaré operator
Ar = [(Ar)jlsxs == —[27 s + K, | H (4.17)
there holds the following inequality (see Theorem 4.2, item (v))
R ] L T & (4.18)

0 57
[H22 (55 [H5 (09)]

1
for all h* € [H3 (09Q)]° with positive constants ¢/ and ¢”.
Set h' := (hy, ha,hs, hs)". Take into consideration that hs = ¢5 and
rewrite the first four equations in (4.16) as follows:

Ah = 1%, (4.19)

_1
where ¢* = (03,05, 05,05) ", and where 0= —l; — [(Ar)jsls] € Hy 2 (09),
j = 1,4, are known functions. Here A, = [(A;)jk]axa, where (A;);i are
the entries of the Steklov—Poincaré operator (4.17).

The equation (4.19) can be written componentwise as

4
> (A)jwhe =165, j=T1,4
k=1
If in (4.18) we substitute h* = (h’,0)" with arbitrary b’ € [HQ% (09Q)]4, then
we get
§R<A7h’, n') > d||n|)? N — c”|\h’|\2H0 it (4.20)
12 (oay4 (HY(09)]
Therefore, the operator
~ 1 1
A [HE (09)]" — [H,y *(09)]" (4.21)

is a Fredholm operator with index zero (see, e.g., [21], Ch. 2).
Clearly, to show the invertibility it suffices to prove that the equation

0, j=1,4 (4.22)

A =0, ie., [A]

J

with & := (h’,0)T has only the trivial solution.
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1
2

Assume that h'e [H;
is a vector such that

(09)]* solves the equation (4.22) and fe [H;% (0Q))®
H,f =h, ie., f=H"'h (4.23)
From (4.22) and (4.23) we have

(@7 s+ Ko)f], =0, j=T14, [H,f]5=0,

ie, Prf=0.

Since P, is injective, we conclude that f = 0 and, consequently, b/ =
in accordance to (4.23).

Thus we have shown that the operator (4.21) is invertible, which in its
turn implies that the operator

-3 5 -1 4 1
P [H2 (GQ)] — [H2 (BQ)} x Hz (09) (4.24)
is invertible as well. O

Corollary 4.5. Let RT = o > 0. An arbitrary solution U € [W3(Q)]° to
the homogeneous equation (4.12) can be uniquely represented by the single
layer potential for x € Q: U(z) = V(P Y)(z), where

T
¢ = (1T} [TV [TU) L [TU) U1E) - on 002

4.4. Existence results. Here we again assume that 7 = o + iw with 7 =
o>0.

Let us look for a solution of the transmission problem (2.2)—(2.14) in the
form of single layer potentials:

U™ (z) =V (27 L+ K]~ (2), 2€Qy,, m=T1,2N, (4.25)

U(z)=V.(P;'0)(z), =€, (4.26)

where the unknown densities /(™) and ¢ have the following properties (due
to Corollaries 4.3 and 4.5)

pm) — {T(m)U(m)}+ on 9Q,,, m=1,2N, (4.27)
(@ = (@, M5, )T € [Hy (0], m =T,0N,  (4.28)
0= ({TUN ATUY ATUY ATUN {UK) on 09, (4.29)

C=(C0s)T, 0= (1,0, 05,0,) € [Hy ?(55 UD)]Y,  (4.30)

2N
=] (4.31)
m=1

Note that the unknown function ¢5 can be represented in the form
U5 = s + @5 with ¢ € Hy (SEUSE) and 5 € Hy (0),  (4.32)

where @5 is a fixed extension onto the whole boundary 9€) of the constant
functions +®¢ (on S*) and —®g (on S7), ie., r_, P5 = £Do.
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It is evident that

{UTF =R on 9Q,, m=1,2N, (4.33)
(T = ™ on 9Q,,, m=T1,2N, (4.34)
T
(U} =R 4= ([Rféh, [R+€)2, [R-L]3, [7%44765) on 09, (4.35)
(TUY =Bl = (01,65, 3,04, [B,4]5) on 99, (4.36)
where
RO = 1M [~ 270+ K] = AT
R =M. Pyt By = [27 5 + K, P
Note that

Br = [(Br)jkls,sn (Br)jn=0, j#k j=T4, k=175,
(Br)jj =1, j=1,4, (By)sk = [27'Is + K], (P 1), k=T1,5.

Clearly, the operators

RO [Hy 7 (00,)]* = [HE (09,)] ",

T

5o)]* x HE (00) — [HE (00))°,

R,: [H2

are invertible due to Theorems 4.1, 4.2, and Lemma 4.4, while the operator

—1 _1
2 2

B, : [Hy ?(00)]* x Hy (09) — [Hy * (09)]°

is bounded.
We assume that the restrictions of the unknown densities £(™) and ¢ on
the interface I';,, satisfy the following conditions

o, O =1 £y, j=1,2,3, m=T1,2N, (4.37)
[T 6™ = [To)] . fa, m=T,2N. (4.38)

Let us introduce new unknown vectors
P = (™ gl N T e [Hy2(1,)]%, m =T1,2N, (4.39)
T rm-tiao4
w = (¢1a¢27¢37¢4) € [HQ 2(23 )] s (440)

where (™) is defined on 99, U 99, while 9 is defined on 8, and

Trmi/)](ln) = Trméém) = rrmﬁj, j=1,2,3, m=1,2N, (4.41)
re, W8 = [T Y = [T Ty, fa, m=T,2N,  (4.42)

T Vi= 7‘23,33‘7 Jj=14 (4.43)
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The original unknown vectors then can be written as

m m m m)y\ T m m
V= (™ ™l T =z (T m=T,2N,

X T (4.44)
(=0, 05)T = (L TalT)™ 445, 05 )
m=1
Here Zy(a) := diag|[1,1 ,1,a]
The potentials (4.25) and (4.26) can be rewritten as follows
U () = VI ([ =27 0+ K0 ) T T (1™t ) (@), (4.45)

z €y, m=1,2N,
2N T
Ulx) =V: (P;l [ > T (To) ™+, ¢5+<1>5] )(:v), zef. (4.46)
m=1

They have to satisfy the conditions of the boundary-transmission problem
(2.2)-(2.14).

It can easily be shown that the conditions (2.2)—(2.7) are satisfied auto-
matically.

The boundary condition (2.8) leads to the equation

BUTUY + Bo{u}i =
2N

=8, <[2115 + K, Pt [ 3" Lu(To)™ + b, s + %} T) +
m=1

5
+ Ba(ths + ®5) =0 on DFUXE. (4.47)
The conditions (2.9) and (2.10) are also satisfied automatically. The condi-
tion (2.11) implies

2N
{u}) = <HT7JT1 { S T (To)e™ + 1, s + <I>5} T) =0 (4.48)
m=1 7

on ¥, j=1,4
The condition (2.12) gives
{u™ = fuy = (MO [ =27 0+ K] T T (T ) —

J
2N T
—(H§”>7>;1[ZI4(T0)¢<” +w7w5+q>5} ) =0 (449)
=1 J
on I'y,, m=12N, j=1,4.

Finally, the conditions (2.13) and (2.14) are also automatically satisfied.
Thus we have to find the unknown vector functions 1), () pEN) 4.
and the scalar function 15 satisfying the equations (4.47), (4.48), (4.4). We
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can rewrite these equations as the following system

2N .
e, (Rgm)Ll(Tém))i/’(m))j ~Trp <RT [214(T0)1/1(l) + 9, ?/15} > =
=1

J

=F"™ on Iy, m=12N, j=11, (4.50)

2N
T (RT [214(T0)¢(l) + ¢7¢5}T> =F; on X3, j=1,4, (4.51)
: 1=1 j

2N
- {<Bq- [ZL;(T()W)(I) +1, 1/)5} ! —|—51/J5} =F; on X7 UYTE, (4.52)
1 3 1—1 5

where (for j = 1,4, m = 1,2N)
PO = e (R, F) — (B, 5,5 F) € [ D)

J
Fj o= —r [Riﬂj,

I3
F5 = _Tz:liu23i { [(271,[5 + K:T),P;la)}5 + 5(1)5}7 ﬁ = ﬁ?ﬁl_lu

F = (F, By Fs, Fy)e [H7 (57", ©:=(0,0,0,0,05)T € [Hy (02)]°.

Denote by N, the linear operator generated by the left-hand side ex-
pressions in the system (4.4)—(4.52) and rewrite the latter in matrix form
as

N:¥ =F, (4.53)
where .
W= (pM, @ BN g, gs) (4.54)
is an 8 N + 5 dimensional sought vector function and
F:= (FO PO FeY F )’ (4.55)

is an 8 N + 5 dimensional known vector function.
Let us introduce the following 8 N + 5 dimensional function space X and
its dual space X*,

~_ 1 4 ~_ 1 ~ 1
X :=[H, ?*(I'1)]" x---x [H, 2(F2N)] x [Hy % (25 )] X
. 1 4 _
X o= [H (00)] ' ox [H7 (Tan)] < [H3 (55)] ' Hy * (5F U S5,
Note that X is a reflexive Hilbert space: (X*)* = X.
Due to the properties of the surface potentials and its inverses involved
in the left hand side expressions of the system (4.4)—(4.52), the operator N,

has the mapping property N, : X — X*.
Now we investigate the solvability of the system (4.53) (i.e., (4.4)—(4.52)).

Hf (sEush),

Theorem 4.6. The operator
Ny : X = X* (4.56)

s invertible.
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Proof. From the uniqueness result (see Theorem 2.1) and the invertibility of
the operators Hq(-m), (=271, + ICq(-m)), H-, and P, it immediately follows
that the linear bounded operator (4.56) is injective for arbitrary 7 with
Rr=0>0.

Further we show that it is surjective, N (X) = X*.

First we show the invertibility of the operator (4.56) when o2 — w? is a
positive number and afterwards we consider the general case.

We prove this in several steps.

Step 1. Let us apply Green’s formulae (B.3) and (B.7) to the potentials
(4.25) and (4.26), where /(™) and ¢ are related to the vectors-functions (™)
1, and 95 by the equations (4.32) and (4.44) with ®5 = 0. We get

/[Z{ﬂ UL} s (T ) as

0

[Z{TU}+{UJ}++— {TU}4 {U4}+{TU}5 {’LL5}+:| dsS = Ql"”LQQ,

aq J=1

where

Q1 +1iQ2 —Z/{ E™ (0™ y(m)) 4 o) 2], ()2 4 m)|u<m>| n
O

m= 1Q
4 | |2;< ™. u4m>a o™ 4 7<m> (9; ul(m)uflm) B uff")ajul(m))] dot
TI"1Lo
+ / [E(u, 7) + o7 |ul® + v (0wTg — uadjuy)+
Q
+ L 210, Ua0jUs + ol |u4|2 + epq ((91U58iU' — O;u -aIU5)—
|T|2T0 i} TO J J J

— ¥ (8lu5m + u_4(91u5) + EjlajU5alU5] dzx.

The left-hand side expression involving the surface integrals can be rep-

resented in terms of the operators R(Tm), R, and B, and the vectors ¢(™)
and £ (see (4.25)—(4.36)):

2N 3 1 -
Z [Z€§m) (Rgm)g(m))j n o ) (Rgm)ﬁ(m))él} ds—
m=lpg =1 )

_/[Z&(Rre)ﬁ}a(mehﬂ ),65] 45 = Q1 +iGs.
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Apply (4.44) and take the complex conjugate of this equation to obtain
Q1 —iQ2 =

2N 3 2N T
= { {RE L)) = (Re [>T (L) O+, 5] )j}¢§m>+
=1

¥
1 2N oy
Tz {(Rgm)f‘*(Tém)W(m)h - (RT[EIMOW + 9, 0s] )4} i’")} -

3 2N

_/ {Z CADIFACHTR +w,w5r)j¢_j+
j=1 =1

by -

1 2N T
g (Re [ o TTop® 4+ 0,05 )ﬁ} as~
=1

2N T —
-/ [(&[ZA(TOW”W,%] );ﬂ%}%dsw [ wsas

=1
sfust sfust

This equality can be rewritten in the form

N0, 0) + 3 / s PdS = Q1 — Qo (4.57)
sfust
where the operator /T/T is generated by the expressions in the left-hand

side of the system (4.4)—(4.52) if we multiply the fourth equations in (4.4)
and (4.51) by the numbers % and FLTO respectively. That is, the equation

./\N/T\I/ = ﬁ, where ¥ € X and F' € X*, corresponds to the system (cf.
(4.4)-(4.52))

e, [Rim)Ll(Tém))w(m)L ~ 7, [m(%a(%)&” + 4, ¢5)TL _ Fm
=1
on I'y,, m=1,2N, j=1,2,3,
1 1 2N T -
Fe |ZREVTUTT 0 | v, | SR (YL@ s ) | =F
=1

on I'y,, m=1,2N,

2N, T -
- [RT(;IATOW“W,%) | =F onsy, =123

1 2N T -
ro |z R (LT +u0s) | = Fioon g,
=1



38 T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sdndig

Eiuzi{[ (ZL; (To) >+w7¢5)T]5+ﬁw5}=ﬁ5 on SFUSE.

Therefore, the mapping and Fredholm properties of the operators N and
./\N/'T are absolutely the same. In particular, the invertibility of ./\N/'T yields the
same property for the operator A.

Step 2. Here we give the estimate from below for Q1. Let us note that
for the function uz the H3(£2) norm is equivalent to the semi-norm [30]

3
Z ”aju5HL2(Q)
j=1

since the support of us is contained in le[UEgt which is a proper submanifold
of 09.
Note also that the vector

N {u<m> in Q,, m=1,2N
u =

u in Q

belongs to the space [H3 (II)] ® due to the transmission conditions (2.12) on
I';, and vanishes on X5 .
Therefore, due to the inequalities (A.7), (A.39), (A.40), (A.41), and the

well known Korn’s inequality we derive
2N

= R{Q1 +iQa2} =Y / B @™, ulm) + 0 (0 — ) jul™ 24
771:1Qm
alm
7 0o + |u<’">| | da+
72Ty "

Q
—2%{6181’&5@} + 5jl%alu5} dr >

2N
> ()| 30 0 sy + 101y |+
m=1
+0™ (g% — w? Z/|u(m)|2dm—l—g(a —w )/|u|2dm
m=lq,, Q

Here and in what follows ¢ (7) are some positive constants independent of
U™ and U.
Provided that 02 — w2 > 0 we arrive at the relation
2N
Q12 ()| 3 W™ iy, + 101y

m=1
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Whence by the trace theorem

Qi >l [zu{kumm +lwy)

From this inequality, with the help of the representations (4.45) and (4.46)
with @5 = 0 and the invertibility properties of the operators Hsm), Hr, Pr,
and — 314 + Kim (see Theorems 4.1, 4.2 and Lemma 4.4), we conclude

Q1 > c3(7)| 7. (4.58)

Step 3. Taking into account that § < 0, from the relations (4.57) and
(4.58) we finally get

H7(8£2) }

RN, W, U) > Qy > e3(7)||¥]|% for all ¥ e X. (4.59)
From this inequality it follows that the operator
N, X - X* (4.60)

is invertible.

Thus, the operator (4.56) is also invertible for 02 — w? > 0 due to the
above mentioned equivalence of the operators ./\N/'T and N;.

Step 4. Now let 7 be an arbitrary complex number with 7 = o > 0.
It can easily be seen that the entries of the differences of the fundamental
matrices U™ (z — y,7) — ¥ (2 — y,79) and ¥(z — y,7) — U(z — y,70)
either have a logarithmic singularity or are bounded for arbitrary 7y with
R79 = 00 > 0 (see Appendix C). Therefore, the operators

HOD —H : [Hy F (0Q0)]" — [HE (0%)]",
) — K s [Hy  020]* — [H * (02.]"
e — Hey < [Hy 2(09)])° — [Hy (09)]°,
Kr —Kny : [Hy 5(00)])° — [H, * (00)]”,
Pr = Pry : [Hy 5(09)]° — [H; 2 (09)]" x Hj (09)

are compact.
Clearly the differences of the corresponding inverse operators (when they
exist) are also compact. Indeed, if the operators A,B : By — By are

invertible and A — B : By — Bg is compact, then the compactness of the
operator A7 — Bl = A71(B - A)B~! : B2 — Bj follows immediately.
From these results it immediately follows that the operators

RO — RO [Hy 2 (00,)]* — [H (09,)]%,
R — Ry [Hy 2(0Q)]" x H (09) — [HI (09)],
B, — By, : [Hy *(00)]* x H (09) — [Hy *(09)]°

are compact.
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Having these results in hand, we can easily conclude that the operator
N; = N, : X — X* is compact. Now let us choose 79 = o + iwg such
that 03 — w2 > 0. The operator N, : X — X* is then invertible and the
operator N = N, + (N; — N-,) represents a compact perturbation of the
invertible operator. Therefore, its index equals to zero and the injectivity
implies the surjectivity. This shows that N.(X) = X* and, consequently,
(4.56) is invertible. The proof is complete. O

Now from Theorem 4.6 the existence result for the original mixed bound-
ary transmission problem follows directly.

Theorem 4.7. The MBTP (2.2)~(2.14) has a unique solution
(U(l), R, ... yeNn, U)

which can be represented in the form of single layer potentials (4.45)—(4.46),
where the unknown densities (w(l),w@), .. .,¢(2N),z/1,¢5) solve the system
(4.4)-(4.52).

5. NUMERICAL ALGORITHMS

In this section we describe the standard finite element approximation of
solutions to the boundary transmission problem (2.2)—(2.14). Our consid-
eration relies on the weak formulation of the problem given in Section 3.

5.1. Finite element approximation. Let us recall the weak setting of
the mixed boundary transmission problem given by the equation (3.28).
Under the notation introduced in Section 3, it reads as follows:

Find a vector U € Vi such that

AU, V) + B(U,V) = F(V) forall VeV, (5.1)

where A, B, and F are defined by (3.22), (3.29) and (3.30), respectively.

If 7 =04 iw and o > 0, then this problem possesses a unique solution
due to Theorem 3.2.

Now we describe the discrete counterpart of the problem.

Let us divide the parallelepiped II into the small parallelepipeds (ele-
ments) I1, of dimension lo, X loy, X las, @ = (@1, a2, a3). We assume that
for some p > 0

p71 < lai/la]‘ <p, ,j=123.
Denote h := maxsupl,,.
K3 g

Let Vllv,h C C(II) be the subspace of V3 consisting of the continuous
functions whose restrictions on each element II, represent a linear combi-
nation of first order polynomials. It can be easily proved that UV}V h 1S

h

dense in V).
Consider the equation (3.28) in the finite-dimensional space Vy :

AUy, Vi) + B(Up, Vi) = F(Vy,) for all Vi, € Vi, (5.2)
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Theorem 5.1. The equation (5.1) has the unique solution U, € VN
for all h > 0. This solution converges in Vy, to the solution U of (5.1) as
h — 0.

Proof. Let us replace the fifth equation of (2.3) by its complex conjugate
in the mixed boundary-transmission problem formulation (2.2)—(2.14) and
repeat word for word the considerations adduced in Section 3. Instead of
(3.28) (that is, (5.1)) we arrive then at the relation:

A(U,, V) + B.(U,, V) = Fo(V) forall VeV, (5.3)
Here A., B., and F. are properly modified expressions A, B, and F, respec-
tively.
The equations (5.1) and (5.3) are equivalent in the following sense:
U=, o, ol U Uy Uy, Us, U, Us)
is a solution of the equation (5.1) if and only if
Uo:= (U, U, UGN USY) U, Uss, Ues, Ues, Ues)

is a solution of the equation (5.3).

Note that the equation (5.2) is not linear due to the complex conjugation
operation involved.

For each 7 with ®7 > 0 we can choose a positive number ¢ (7) such that

[Tl < AU, U,) + Bo(U, Ue) for all U, € Vi, (5.4)

This inequality can be proved in the same way as the inequality (3.31).
Let Uy, be the solution of the homogeneous equation (5.2):

AUy, Vi) + B(Up, V) = 0 for all Vj, € Vi,

Then due to (5.4) ||I~Jcth}\, =0 and Uy, = 0. Therefore the equation (5.2)
has a unique solution which due to (5.4), (5.3) satisfies the inequality

MOl = e Uenl3y, < Ac(Uen, Uen) + Be(Uen, Uen) =
= Fo(Uen) < c2[Uenllyy, = e2|Unllyy,
for some positive co independent of h.

Hence the sequence {”fjh”V}\, } is bounded and we can extract a subse-

quence {INJhk} which weakly converges to some W € V.
Let us take arbitrary V € V}, and for each h > 0 choose Vy, € V}V’ 5, such

that Vi, — V in V§. From (5.2) we then have
AW, V) +B(W,V) =F(V).
Hence W solves (5.1). Note that since each subsequence converges weakly
to the same solution W, the whole sequence {U},} also converges weakly to

W = U. Now let us prove that it converges in the space V}.
Denote A (U, V) := A (U, V)+B,(U, V). Due to (5.1)~(5.4), we have:
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Cl_lejh - ﬁ||$}11\1 = CI_IHfICh - fjc”?ﬂ S }Agl)(fjch - fjm fj-ch - fj—c)} =

- }Agl)(fjchv fj-ch) - A(l) (Uch7 U ) A((;l) (ﬁc; ﬁch - ﬁc)

—

= ‘fc(ﬂch) - Aél)(ﬂcha fj-c) - fc(ﬁch - fj-c)
— |F(T,) — AT, U,)| =0,

which completes the proof. O

6. APPENDIX A: FIELD EQUATIONS

6.1. Thermoelastic field equations in 2,,. Here we collect the field
equations of the linear theory of thermoelasticity and introduce the corre-
sponding matrix partial differential operators (cf. [33], [19]).

6.1.1. General anisotropy. The basic governing equations of the classical
thermoelasticity read as follows (see the list of notation and take into con-
sideration the symmetry condition (A.6) below):

Constitutive relations:

o™ — gm) _ CZ(;Tll)s(m) %(Jm)ﬁ(m) — Cgﬁgalu; ,yz(] )g(m ™) (A1)

ij ]z
Sm) — 71{;7%)51(;71) + M Ty, (A.2)
Fourier Law:
q](m) = —%J(»;n)(?lT( ), (A.3)
Equations of motion:
&'Ugn) + X](m) = Q(m)ﬁfugm); (A.4)
Equation of the entropy balance:
TM9S™ = —9;4™ + x{™. (A.5)

Constants involved in the above equations satisfy the symmetry condi-
tions:

T m) ) m) ) m) o m) e 1 =1,2,3. (AL6)

zgkl - C_]zkl - Cklzy’ Yig o = Vo *ji
Moreover, we assume that there are positive constants ¢y and ¢; such that
Cgﬁzfiﬁkz = co&ij&ij %§}”)§i§j > c1§i&i (A7)
for all gij = gji; gj eR, 7,7=1,2,3.
In particular, the first inequality implies that the density of potential
energy corresponding to the displacement vector u("™),

E™) (u(fn)7 u(m)) (m) (m) (m) (A.8)

= CiikSij  Sik

is positive definite with respect to the symmetric components of the strain
tensor

sl(;n) _1(81u,(€m) + 3kul(m)).
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Substitution of (A.1) into (A.4) leads to the equation:
cgﬁgaiﬁlu;m) — 7§f)aiﬂ<m> + X§m) = g(m)ﬁfugm), ji=1,23. (A.9)

Taking into account the Fourier law (A.3) and the relation (A.2) from the
equation of the entropy balance (A.5), we obtain the heat transfer equation

;09 + X[ =
=T (v 055 + o™ [T o ™), j=1,2,3. (A.10)

Assuming that |9(™) /T, O(m)| < 1 and taking into consideration the equality
T = To(m)(l + ﬁ(m)/To(m)), we can linearize the equation (A.10):

M 90 — a9 — T g5 4 x ™ = 0. (A1)

The simultaneous equations (A.9) and (A.11) represent the basic system of
dynamics of the theory of thermoelasticity. If all the functions involved in
these equations are harmonic time dependent with the multiplier exp{rt},
where 7 = ¢ + iw is a complex parameter, we have the pseudo-oscillation
equations of the theory of thermoelasticity. If 7 = iw is a pure imaginary
number, with the so called oscillation parameter w € R, we obtain the steady
state oscillation equations. Finally, if 7 = 0, we get the equations of statics.
Combining all these cases, we arrive at the equations (cf. (A.9) and (A.11))

o™ o2ul™,
e 00" = 09+ X = 8 plmip2y ) =193, (A12)
0,

3

almg,9(m) 4 Tém)%(ﬁ)ataluﬁ)

%z(lm)aialﬁ(m) + XM = ralmgm) 4 TTém)%({”)aluf.m), (A.13)
0.
We will consider the system of pseudo-oscillations
cgg’;;aialu;m) — oM™ Mgt L XM =0, j=1,2,3, )

—TTO(m)”yi(fl)ﬁlul(-m) + %glm)aialﬁ(’”) — ramym) 4 Xim) =0,
which in matrix form can be rewritten as
A (@, U™ (2) + X (2) =0 in Qp, (A.15)
where U(™) := (u(™) 9(™))T is the sought vector,
RO = (xf, X, X4, X7, X0 = (), ), )T
is a given mass force density, X im) is a given heat source density, A(™)(9,, )
is the matrix differential operator generated by the equations (A.14)

A05,7) = [A7 O D] s AR (00:7) = €lin0i0 = o705,
A 0,,7) = —1TM M, A (0., m) = -, (A.16)
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m m)
AEM )(895, T) = %gl 0;0; — oz(m)r,

where j,k =1,2,3, and §,;;, is the Kronecker delta.

By [A(™) (9, 7)]* we denote the 4 x 4 matrix differential operator formally
adjoint to A™(8,7): [A™(9,7)]* = [A(m)(-0,7)]T, where the over-bar
denotes the complex conjugation.

With the help of the inequalities (A.7) it can easily be shown that
A™)(9, 1) is an elliptic operator with a positive definite principal homo-
geneous symbol matrix.

Components of the mechanical thermostress vector acting on a surface
element with a normal n = (n1,n2,n3) read as follows

Ugn)ni = cl(.;?,znialul(cm) — 'yf?)niﬁ(m), ji=1,2,3, (A.17)
while the normal component of the heat flux vector (with opposite sign) has

the form
—q(m)ni = %glm)niam(m). (A.18)

K2

We introduce the following generalized thermostress operator

T (9,n) = [T (0,n)],, ., (A.19)
where (for j,k =1,2,3)
T (0,n) = cpnidy, TV (0,n) = =70 n,
721(]:1) (0,n) =0, 7:1(4m) (O,n) = %zglm)nial'
For the four-vector U™ = (u(™) 9(™))T we have
Tmylm) — (aﬁn)ni,agﬂni,og;ﬂ)ni, —qu)ni)—r. (A.20)

Clearly, the components of the vector 7™ U (™) given by (A.20) have the
physical sense: the first three components correspond to the mechanical
stress vector in the theory of thermoelasticity, while the forth one is the
normal component of the heat flux vector (with opposite sign).

We introduce also the boundary operator associated with the adjoint
operator [A(™) (9, 7)]* which appears in Green’s formulae:

T (@,n,7) = [T7(0,1,7)],,41 (A.21)
where (for j,k =1,2,3)
7 (m) _ m) 7 (m) _ =p(m)_(m)
7}k (@,n,7) = Cijlkn16l7 7}4 (0,n,7) =71, Yij M (A.22)

ﬁ(gl) (9,n,7) =0, ﬁ(zlm)(& n,T) = %Elm)ni@z-
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6.1.2. Isotropic bodies. For an isotropic medium the thermomechanical co-
efficients are

02712 = )‘(m)éij(Slk + ,u(m) (6il5jk + 51’1@6]’[), (4.23)
%‘(;n) = ™§,;, %Z(;n) = ™6,

and the basic equations (A.14) of the theory of thermoelasticity are written
in the form (see, e.g., [33], [19]):

1 A™ 4 (AT 4 ™)y grad div ™ —
—yMgrad 9™ — 72p(mMy(m) 4 X (m) = 0, (A.24)
AP — 7o My — T dive™ + X ™ =0

)

where A = 97 + 93 + 03 is the Laplace operator.
The matrix differential operator generated by these equations is (cf. (6.1.1))

AT(@,7) = [AS (0. 7)] 400
AT (0,7) = (™ A — g™72) 4 (A 4 u)0;0,
AE'T) (9, 7) = —y'™0;,
A (0,7) = =Ty ™oy, AT (0,7) = ™A — ral™),

(A.25)

for j,k =1,2,3, while the corresponding thermostress operator reads as

T (0,n) = [T (9,n)] (A.26)

4x4
with
’Tj(km) (0.1) = AN 0k + p ™ ngd; + ™850, T (0,m) =0,

70 (0,n) = =™y, T{V(00n) = ™8, jk=1,23. (A27)

Here 0,, = n;0; denotes the usual normal derivative.

Clearly, in this case we have 7™ (9, n,7) = [’]}(km)((?, n,T)]ax4, Where
(cf. (A.21)(A.22))

i(km)(av n,T) = )‘(m)njak + /L(m)nkaj + U(m)5jkanv IJNZL(;) (9,n,7) =0,
i}im)(& n,T) :?To(m)v(m)nj, ﬁgm) (8,n,7) = ™8, jk=1,23.

6.2. Thermopiezoelastic field equations in (). In this subsection we
collect the field equations of the linear theory of thermopiezoelasticity and
introduce the corresponding matrix partial differential operators (cf. [31],
[36]).
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6.2.1. General anisotropy. In the thermopiezoelasticity we have the follow-
ing governing equations (see the list of notation):
Constitutive relations:

Oij = 0ji = Cijk1Ski — €lijEp — 7i;0 =

= CijiOtuk + €1ijOrp — vi0, 0,7 =1,2,3, (A.28)
S =ijsi; + g B + a[Ty] ™, (A.29)
Dj = ejusi + ek + g0 =
= e 0ur — 01 + g9, j=1,2,3. (A.30)
Fourier Law:
q = —»y0T, i=1,2,3. (A.31)
Equations of motion:
dioji + X; = 00%uj, j=1,2,3. (A.32)
Equation of the entropy balance:
T0,S = —0;q; + Xa4. (A.33)
Equation of static electric field:
0;D; — X5 =0. (A.34)

From the relations (A.28)—(A.34) we derive the linear system of dynamics
of the theory of thermopiezoelasticity:

CijikOiOiug, — vi; 010 + €13;010;0 + X = g@fuj, ji=1,2,3,
—Tovi10:Oui + #10;0,9 — adyd) + TogiOr0ip + X4 = 0, (A.35)
—eik10;O0ur, — 9i0;0 + €41 0;0p + X5 = 0.
In particular, the corresponding pseudo-oscillation equations read as
cijik0iOuy — ot u; — 7100 + €000 + X; =0, j=1,2,3,
—1ToviOu; + 240;019 — Tad + 71 9:0;0 + X4 = 0, (A.36)
—eik10;0ur, — 9i0;0 + £410;01p + X5 = 0,
or in matrix form

A, U(z) + X(z) =0 in €, (A.37)

where U = (U,ﬂ,(p)T, X = (Xl,XQ,X37X4,X5)T7 X = (Xl,XQ,Xg)T is
a given mass force density, X, is a given heat source density, X5 is a given
charge density, A(0, ) is the matrix differential operator generated by the
equations (A.36)

A0, 7) = [Ajk(0,T)]sx5, Ajx(0,T) = cijindi0, — o>,
Aju(0,7) = =70, Ajs(0,7) = €1ijd0;,  Aak(0,7) = —TTovkiOl,
Aga(0,7) = 20,0, — at, Ay5(0,7) = 7109:0;, Ask(0,7) = —€i10:01,
Ass(0,7) = —9:0;, As5(0,7) = €40:0;, j,k=1,2,3. (A.38)
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Clearly, from (A.36)—(6.2.1) we obtain the equations and operators of statics
if =0.

The constants involved in these equations satisfy the symmetry condi-
tions:

Cijkl = Cjikl = Cklij, Cijk = €ikj, Eij = Eji,
Yij = Viis i = Hji, 45,k 1=1,2,3.
Moreover, from the physical considerations it follows that (see, e.g., [31]):
Cijki&iiSkl = coéiz&ij for all & =Ej; € R, (A.39)
eimng = elnl?, sgming > caln|? for all n=(n1,n2,13) R, (A.40)

where ¢, ¢1, and ¢y are positive constants. In addition, we require that (cf.,
e.g., [31])

[0
Eijniﬁj+ﬁ|<|2_2%(gglﬁl)263(|<|2+|77|2) for all (€C and neC® (A.41)

with a positive constant cs. A sufficient condition for (A.41) to be satisfied

reads as follows
acq

370
where g = max {|g1], |g2|, 193]} and c1 is the constant involved in (A.40).

By A*(9, 7) we denote the operator formally adjoint to A(9, 7): A*(9,7) =
[A(-0,7)]T.

With the help of the inequalities (A.39) and (A.40), it can easily be shown
that the principal part of the operator A(9,7) is strongly elliptic, but not
self-adjoint.

In the theory of thermopiezoelasticity the components of the three-dimen-
sional mechanical stress vector acting on a surface element with a normal
n = (n1,n2,n3) have the form

—g*>0, (A.42)

O = Cijlknialuk + elijnﬁlgp — v for j=1,2,3, (A.43)

while the normal components of the electric displacement vector and the
heat flux vector (with opposite sign) read as

—Din; = —einiOyuy + eaniOip — ging¥, —qin; = syn;00.  (A.44)
Let us introduce the following matrix differential operator

7(0,n) = [Tjx(9,n)]

where (for j,k =1,2,3)

Tjk(0,n) = cijunid, Tja(0,n) = —vijni, Tj5(0,n) = eyjnidl,
Ta(0,m) =0, T34(0,n) = s¢yn;0;, Ta5(0,n) =0,
Tsi(0,n)=—e€in;01, Tsa(0,n)=—gin;, Ts5(0,n)=cyn;0;. (A.46)
For a vector U = (u,p,9)" we have

T(0,n)U = (Uilnia 02N, 033N, — ;N —Dmi) T. (A.47)

s (A.45)
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Clearly, the components of the vector 7U given by (A.47) have the physical
sense: the first three components correspond to the mechanical stress vector
in the theory of thermoelectroelasticity, the forth and fifth ones are the
normal components of the heat flux vector and the electric displacement
vector (with opposite sign), respectively.

In Green’s formulas there appear also the following boundary operator
associated with the differential operator A*(9, 7):

T(0,n,7) = [Tir(0,n, 7)), (A.48)
where (for j,k =1,2,3)
’j}k(a,n,T):Cijlknial, 7~3-4(8,TL,T):?T0%J‘TL1-,
;f' a,n,T :—ei-nia,
55(0.m,7) = =eumidh (A.49)

ik(a, n,7) =0, ’i4(8, n,T) = 0y, ’i5(8, n,7) =0,
Toi (O,n,7)=eirn;0y, Tsa (On, 7)=—=TTogini, Tss (O,n,7)=eyn;0.
6.2.2. Special classes of anisotropy (transversally isotropic case). Consider
a thermopiezoelectric medium with crystal symmetry of the class
Cs,=6mm. In particular, piezoceramic materials belong to this class [10].
To simplify the notation, we introduce the standard two-index symbols:
Cr(ig) f(kl) ‘= Cijkl, €if(kl) *= €ikly Vf(ij) ‘= Vij»
where
fa =1, f(22) =2, f(33)=3,
f(23)=f(32) =4, f(13)=f(31) =5, f(12)=f(21)=6.
For crystals of the class 6mm the following relations then hold:
C11 = €22, C13 = €23, C44 = C55,
c11 — ce6 = Ce6 + C12, ¢ij =0 for i # j and 4,5 =4,5,6;
€24 = €15, €31 =e€32, €1, =6z =e3, =0 for ¢ #5, j#4, k> 3;
€11 = €22, €12 = €13 = €23 =0
11 = a2, 12 = 13 = 93 = 0;
=72 =7 =%=0; g1=g2=0.
In this case the equations (A.36) have the form:
(c1107 + 6603 + 4403 )uq + (c11 — co6)0102u2+
+(c13 + €44)0103u3 — 71019+
+(e31 + €15)0193p — o7°us + X1 =0,
(c11 — c66)0201u1 + (ce607 + c1103 + c448§)uQ—|—
+(c13 + €44)0203uz — 71029+
+(e31 + €15)02050 — 07Uy + X5 = 0, (A.50)
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(c13 + €44)0301u1 + (C13 + €44)0302ua+
+(c1a0? + 2405 + c3303 )uz — Y3059+
+(e1507 + €150 + 3303 )¢ — 0T%uz + X3 =0,
—7To(v101u1 + Y102us + Y303us) + (501107 + 301105 + 23303 )9—
—1a + 7Tog303p + X4 = 0,
—(e31 + e15)0103u1 — (31 + e15)0203uz—
—(e1507 + 1505 + €3303 )uz — gads+
+(€110? + 1102 + 533832,)90 + X5 =0.

The matrix operators 7 and 7 defined by the relations (A.45)—(A.46)
and (A.48)—(A.49) in this particular case read as follows

T(0,n) = [Tr(0,n)], ., T(0,n,7)=[Tir(0.n, 7)), (A51)

where

T11(0,n) = T11(9,n,7) = c11m101 + cen2ds + caan3ds,

Ti2(0,n) = T12(9,n,7) = (c11 — 2c66)n102 + Cogna2di,

Ti3(0,n) = T13(9,n,7) = c13m13 + caanzd,

T14(9,n) = —[FTo) 114 (9, n, 7) = —y1ma,

Ti5(0,n) = —T15(9,n,7) = e15n301 + 311103,

T51(9,n) = T31(9,n,7) = co6n10a + (c11 — 2¢66)n201

T22(0,n) = %2(3, n,T) = ceen101 + c111202 + c44m303,

T33(0.n) = Ta3(9,n, 7) = c13nads + caansd,

T34(9,n) = —[FTy) ' T34(,n, ) = —y1n2,

T55(0,n) = —Tz5(9,n,7) = e15n302 + 311205,

T51(0,n) = T31(9,n,7) = caam1 3 + c13n301,

T52(0,n) = T32(0,n,7) = caanads + c13n302, (A.52)

T33(0,n) = T33(9,n,7) = caam1 1 + caanads + c33n305,

T34(0,n) = —[FTp] " T34(0,m, 7) = —73ns,

T35(0,n) = —%5(3, n,7) = e15(n101 + n202) + e33n303,

T1j(9.n) = T;(9,n,7) = 0 for j=1,2,3,

Taa(9,n) = T44(9,1,7) = 3011 (110 + n20a) + se33m305,

Ti5(9.n) = Ta5(9,n, 7) = 0,

T51(0,n) = —T51(9,n,7) = —e15m195 — ez1nsdi,
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T52(0,n) = —T52(d,n,7) = —e15m205 — ez1n302,
T53(0,n) = —753(3, n,7) = —e15(n101 + n202) — e33n30s,
T54(0,m) = [FTo] " T54(9,m, 7) = —gsna,

Ti5(0,n) = To5(0,1,7) = €11 (1101 + n2dy) + 331305

7. APPENDIX B: GREEN’S FORMULAE

As it has been mentioned in the introduction of Section 2, to avoid some
misunderstanding related to the directions of normal vectors on the contact
surfaces I';,, we assume that the normal vector to 9%, is directed outward,
while on ON) it is directed inward.

Here we recall Green’s formulae for the differential operators A(™) (9, 7)
and A(9,7) in Q,, and §, respectively (see, e.g., , [14], [15], [6], [3]).

Let ,,, and Q be smooth domains and

U = @™, ug™ ™, uf™) T [0 (@), ul™ = @™ ™ w7,
ym) — (Uim)7 Uém) vém)7 Uim))T c [CQ(Qm)]4, (M) — (U;m), vém)7 Ugm))T'

Then we have the following integral identities (Green’s formulae) related to
the differential equations and the boundary operators of the thermoelasticity
theory:

/[Am) (0, 1)U Ly m) _grm) . glm)= (g, r)v<m>} do —

Q’VVL
_ / [(TUmy vy Uy (Feye+as, (Ba)
OQm
/A<m>(57 AU Y gy — / (T UMy (V) g —
Qm OQm
—/[E(m) (u™), p(m)) 4 (M) 72, (m) -u<m>+%§§”>aju§m>alv§m) +
Qi

+Ta(m)u(m)v(m) + ,yj(_lm) (TrTém)ajulm)Uim) . Uim)ajvlm))} dz, (B.2)

3 -
/{Z A (8, 7) m)} ‘vj(» 1( 5 [A(m)((?,T)U(m)hvim)} dx =
G =1 J TTOm

3

= [T oy s oy 7y as
A, I=1

_ / {Ew)(u(m),—?}(m))w(m) 2,,(m) . (m)
Qi

(m) ™y, u4 )6 vé(lm
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(m)

+a uflm)vflm) + v(m) ((9] l(m)vflm) — uflm)ajvlm))} dz, (B.3)
3 — T ————

/ DA @)U ] ™ s A @)U 0] ™| de=

alm
- ‘/ [E“”’(u(m),um+g<m>72|u<m>|2 R+
T

Qrm 0

T (m) (m)
+W%lj Oruy (9 dx

+/[i{7(m)U(m)}f{@}+ W{T MUy {u{™} ] ds, (B.4)

O, =1
where E(™) (u(™), U(m)) =c; l)(? u m)(?lv,(cm) and the operators A(™), A(m)*,

T and T(™ are defined in Appendix A.
For arbitrary vector-functions

U = (u1,u2, us, ug,us) ' € [CPQ)]°, u= (ur,u2,u3)’,
V = (v1,02,03,04,05) " € [CP(Q))°, v=(v1,v2,03)",
we have the similar Green formulae related to the differential equations and
boundary operators of the thermoelectroelasticity theory:
/ {A(a,r)U VU - A8, T)V} dz =
Q

- [ [vy -y -y @y as, (B.5)

o0
/A(a, AU -V da = — /{TU}* VY ds—
Q o0

— / {E(u,i) + or?u v+ ;1 (TTo0jwva — uaOjur)+
Q
+%j18ju46lv4 + Taugvg + ey (6[U5aivj — (9in(91’1}5)—

—g1(TToOyusT1 + usOpus) + sjlﬁj%%} dz, (B.6)

3
/ [Z[A(a, U7 + T—;O [A(8, 7)U)4T7 + [A(9, )5 v5} do =
Q

3
- [[SATUY @ + o {TU) o) + {TTY; (wa) ] as

aq I=l
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_ 1 _
—/ [E(u,§)+g7'2u-v—l—’yjl(ajulﬁ—wﬁjvl)—k—%jlajU481v4+gmﬁ—!—
TTQ TQ
Q
+e1i; (Orus0iv; — 0;u;01vs) — gi(Orusvs + walyvs) + EjlajUBalv5} dz, (B.7)

3

[ [ 140,015 + — (A0 + (A 10 sus | de
! IT1°To
. 212, @ 2 T 3
— —/ [E(u,u) + ot¢ul” + TO|U4| + |7-|TTO 210140 us—
Q

—2%{91’&4%} + sj181u58ju5} dr—

—/[Z{TU};{u_j}Jr |2T {TU}] (ua) +{TT}] fus} ] ds, (B.)
an J=1

where E(u,v) = cijlkaiujm and the operators A, A*, 7, and T are defined
in Appendix A.

Note that in front of the surface integrals in the formulas (B.5)—(B.8) the
minus sign appeared due to the inward direction of the normal vector on
o09.

For 7 = 0, Green’s formulae (B.1), (B.2), (B.6), and (B.5) remain valid
and, in addition, there hold the following identities

3
/{Z A ()T ™) (m)+c [AM) (9)U ™)) u CON I -

Qm
/ (m) m))+61%lm)alu(m)aju§lm)_,yj(;?l)uflm)ajul(m) de +
Qm
3 -
+ [ [T @m0 0,mu W ds, 9
8Qm I=1

—
Mc.o

[A(0)U),T; + c|AB)U) 47 + [A(a)Ukug,} dz =

=— /[E(mU)+c%jlalU48jU4—vjlu4aluj—glu_48W5+5jl(9lu56jU5} dr —
Q

[Z{TU}j{u—j}+ +c{TUN {ua}" + {W};{%}*} ds, (B.10)
o =1

where A™)(9) := A(™)(9,0) and A(9) := A(9,0), and ¢; and c are arbitrary
constants.
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Remark that the above Green’s formulae (B.2), (B.4), (B.6), and (B.8)
by standard limiting procedure can be generalized to the Lipschitz domains
and to the vector—functions

m 1 4 m 1 4 1 5 1 5
U( ) € [Wp (Qm)] ’ V( ) € [Wp’(Qm)] ) Ue [Wp (Q)] ) Ve [Wp/(Q)]
with
A (O, 1U™ € [Ly(Qun)]*, A0, 1)U € [Ly(Q)]°, 1/p+1/p =1.

Moreover, in addition, if A™)*(9, )V ¢ (L, ()], A0, T)V €
(L, (2)]°, then the formulae (B.1) and (B.5) hold true as well (for details
see [30], [26], [11]).

8. APPENDIX C: FUNDAMENTAL MATRICES

Here we present the explicit expressions of the fundamental matrices of
the differential operators A (9, 7) and A(d, ) for the general anisotropic
case as well as for the isotropic and transversally isotropic cases.

8.1. Fundamental matrix of thermoelasticity: general anisotropy.
Denote by (™) (. 1) := [\Ilg]n)( 2 T)])axs a fundamental matrix of the differ-
ential operator A (9, 1),

A (9, O™ (2, 7) = 1,6(x), (C.1)

where (- ) is Dirac’s distribution.
Denote by A9 (9) the principal homogeneous part of the operator
A (9, )

[Cz(‘;‘?lllzaial}gxs [0]3%1 (C.2)

A0 (9,) = :
[0]1x3 s 00, At

Clearly, A(™9)(9) is a strongly elliptic formally self-adjoint operator. We
the corresponding symbol matrices denote by A(™) (—i&, 7) and A9 (—i€)
= —Am0)(£), respectively. Note that A(™0)(¢) is a positive definite ma-
trix for arbitrary ¢ € R?\ {0} due to the relations (A.7). The following
assertions can easily be checked with the help of (6.1.1) (for details see [14],
Lemma 1.1).

Lemma 8.1. Let 1 =0 +iw, 0 >0, and w € R. Then
(i) for arbitrary £ € R3

det A™)(—ig, ) #0; (C.3)
(ii) for sufficiently large || there holds the asymptotic relation
det A™ (g, 7) = a(©)[¢]° + O(l¢]°), (C.4)

where & = &/I€] and 0 < a1 < a(g) < ag for arbitrary & # 0 with positive
constants a1 and as depending only on the material constants;
(iii) for arbitrary & € R3\ {0} there holds the equality

det A™O)(—ig) = a(€)|€[®
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with the same a(€) as in (C.A4); the entries of the matriz [A™9) (&)1 are
C>(R3\ {0})-regular homogeneous functions of order —2;

(iv) the entries of the inverse matriz [A") (-, 7)]~" are rational, C>° (R?)-
reqular functions and belong to the space Lo(R3).

By Fy—¢ and ]—'gix we denote the generalized Fourier and inverse Fourier
transforms which for summable functions on R™ are defined as follows

Femld] :/ [y de, Fla) = (2m)7" / g()e S d.
Rn R’Vl
Due to the equation (C.1) we can represent ‘I/(m)(:zr,r) by the Fourier
integral
VO 7) = F L ([A (ig )] ) =

E—x

= (2m)® lim [AC™ (—ig, 7)] e de. (C.5)
[§l<R
From Lemma 8.1 and properties of the Fourier transform it follows that
the entries of the matrix W™ (x, 1) together with all derivatives decrease
more rapidly than any negative power of |z| as |z| — +o0.
In a neighbourhood of the origin (say |z| < 1/2) the matrix ¥("™) (z, 7) has
a singularity of the type O(|z|~") and its principal singular part ¥(™0)(z),
which is independent of 7, can be written explicitly (for details see [29], [14],
Lemma 2.1)

1

8m2|x|

2m
\IJ(m’O)(l'):]:g_il([A(m’o) (5)] —1) __ /[A(m,O) (a(m)n)] -1 d¢, (C.6)
0

where z € R3\ {0}, a(z) = [ak;(z)]3x3 is an orthogonal matrix with
property a' (z)z" = (0,0,]z))T, n = (cosp,sin¢,0)". Clearly, W(m0)(.)
is the fundamental matrix of the operator A(™0)(9) whose entries are ho-
mogeneous functions of order —1 (note that by this homogeneity property
Wm0 (.} is defined uniquely). Moreover, ¥(z) = ¥(—z) = [¥(z)] .

There is a positive constant ¢y > 0 (depending on the material constants
and on the parameter 7) such that in a neighbourhood of the origin (say
|z| < 1/2) there hold the estimates

W5 ) = WO (@)] < cologla]
|0* [\I!,(c?)(x,T) - \III(CTO)(x)H < colz| 71 for o] = 1,2 and k,j =1,4,

where a = (a1, a2, a3) is a multi-index and |a| = ag + as + as.

Note that if by W™*(. 1) we denote the fundamental matrix of the
adjoint operator A<m>*(a7 7), represented by the Fourier integral similar to
(C.5), then we have the evident equalities:

T (1) =[O (@, 7)] T, OO (—z,7) = WO (2, 7),
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(m) (m)* T
U (1) = [\I! (—:E,T)} .

8.2. Fundamental matrix of thermoelasticity: isotropic case. The
entries of the fundamental matrix W™ (z,7) := [\I/,(;Jn) (x,7)],., for the
isotropic case (see the Appendix A, Subsection 6.1.2) read as follows (see

[19], Ch. II)

3
m 1 m)\ — m
v (1) = -5 3 {(1 — 8ra) (1 — 850) [(2mp ™) 815813 — 0™ 0,0

=1

(m)__ (m)

m T, m m
_bl( )[T5k40%(731)(1—5j4)3j —l—v( )5]‘4(1—(51@4)34 — j45k4cl( )} X
(o)

[a]
o™ — (—1)! (™) [dl(m)]z +7) (01 + 1) N 5s;
2m(N0) - 200 )5 [0 2([ 0™ )2 — [a™]2) 2w
pm) _ (=1)' (0w + )
L 2r(Am o 2uem) (g™ - [@M)2)
o _ DA™~ ™)) (Gu + 8)
l - m m
2 ([dy™)2 — [di™]?)
Sta™ =0, Y o™ =0, Y ™ =1,
=1 =1 =1
(m) 2 (m) -2
(m)12 _ T (m)2 (myg2 . ©'T
T = =X g+ e = AT =
(m)12  (m)
(™ Py =
(m) (m) (. (m)\2
S 4 famp = T o 0

) S (A 240

Here we assume that [dém)]2 # [dgm)]2. The case [dgm)]2 = [dgm)]2 can
be obtained from the above formulas by the limiting procedure ([dS™]? —
[d{™12),

Remark that by the limiting procedure as 7 — 0 we obtain the funda-
mental matrix ¥ (z,0) := [\I/,(;Jn) (x,0)]axa of the operator of thermoelas-
tostatics A("™)(9,0):

NG Mgy

\I/](Jjn)(:c, 0) = (1 — 6k4)(1 - 5j4) |£L'| + |;[:|3 _

V(L= Gha) @ b 1
- I T ] = 1;4;
8r(Am) 4 24(m)) |z| ir |z
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A 3y, (m)
T Sap(m (A 2p(m))
Am) . m)

T S m (Am) ¢ 2p(m)

A(m)x —

plmx —

8.3. Fundamental matrix of thermopiezoelasticity: general aniso-
tropic case. We denote by ¥(-,7) := [Py, (- ,T)]5X5 the fundamental ma-
trix of the differential operator A(9, 1), i.e., A(Q, 7)¥(x,7) = 0(x)I5. Apply-
ing here the Fourier transform we get A(—i&, 7)U(¢,7) = I5, where U(E, 7)
is the Fourier transform of ¥(z,7) and A(—i, 7) = [Ak; (—i, 7)]5x5 is the
symbol matrix of the operator A(9, 7):

A(—i&, 7)==
[ — Cijin€ilt — pT%0jk) 4rs  [173161) 50y | — €1ki€i€R] 5
1= [iTTovmE) | o5 —m&e&t — ot —itTogrék . (€7
lejriéi&l) 1x3 191k —er1€ké

5X5

Denote by A©)(9) the principal homogeneous part of the operator A(9, 7).
Then the symbol matrix A(O)(—if) is the principal homogeneous symbol
matrix of the operator A(0, ),

[ —cijn€i€l]sys  Olsxr [~ emi€ibe] sy,

A (—i€) = [0]1x3 =&kl 0 . (C8)
[ejklgjgl}lxg 0 —ek1€kél 55
Note that
det A (—ig) = —5;,€;€ det A(—i€) £ 0 for [¢] =1, (C.9)
where

A(i) = [ —cijin€ibi] sy [~ €zkj§l§k]3“]
Ax4

[ejkl§j§Z]1X3 —er1ékl

is the symbol matrix of the strongly elliptic operator Z(a) generated by the
equations of statics of piezoelectricity.

It can be shown that the fundamental matrix of the operator A(?)(9) is
representable in the form (cf. [29])

1

8m2|x|

VO () i= F, (AO=ig) ) = -

E—x

/ A (a(z)p)] " dé (C.10)
0

with the same a(z) and 7 as in (C.6). The entries of this matrix are homo-
geneous functions of order —1.

We start the study of the near and far field properties of the fundamental
matrix ¥(-,7) by the following auxiliary lemma.
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Lemma 8.2. Let 7 =0 +iw with o > 0 and w € R. Then
det A(—i&,7) #0 (C.11)
for arbitrary € € R3, £ # 0.

Proof. Let { = ((1,-..,(5) be a solution of the homogeneous system of
linear equations

ZA]k —i&,7)C =0, j=1,5. (C.12)

Consider the expression
E:= Z(ZAJk ~i€, 7)) T,
j=1 k=1

5
ZA4k —ig, T Ck<4+ZA5k —i€,7)Cp (s =
k:

k=1
3
== > coinbn&iGel; —Zm%c -
n,j,l,k=1 j=1
3 (6%
_— iy 2 _ = 2
= j)l:1%]l€]§l|<4| TO|C4| +
3 _ _ 3
+iY 0 95&(CaCs — CaGs) = Y en&ilGsl, (C.13)
j=1 =1

which in view of (C.12) equals to zero. Taking into account (A.39)—(A.40),
from (C.13) we get

3
w
SE = _zpwz% T 2 ndalal® =o. (C.14)
j,l=1

Ifw#0and o> O7 ¢ # 0, from (C.14) it follows (; =0, j = 1,...,4.
Then from (C.13) we easily get (5 = 0.
If w = 0, then from (C.13), (A.39) (A.40), and (A.41) we obtain

3
—RE = po® Y ¢+ T Z #1&i&|Cal* + BE1 + B2 =0, (C.15)
=1

7,l=1
where
3
Ei= Y cuubabili; >0,
n,j,l k=1

3

3
By, = %|<4|2 =i g6(6Cs = Cals) + D £a&i&lGs)* > 0
j=1

jl=1
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If o > 0 and £ # 0, then we conclude that (; = 0, j = 1,5. Hence the
system (C.12) has only the trivial solution and (C.11) holds. O

Lemma 8.2 enables us to represent the matrix ¥(x, 7) in the form

V(w,7) = F L, ([A(=ig, 7)) 7!) =

(2m) 3 hm / (—i&, 1) te 8 de. (C.16)
|§|<R
Note that the matrix U*(z,7) := [¥U(z,7)] T represents the fundamental

matrix of the adjoint operator A*(9,7), and ¥(z,7) = [¥*(—z,7)] ", since
U(—z,7)=U(z,7).

Theorem 8.3. Let 7 = 0 + iw, with 0 > 0 and w € R. Then the
fundamental matriz U(-,T) in a neighbourhood of the origin (say |z < 1/2)
can be represented as

U(z,7) = 0O (z) + 0 (z,7), (C.17)

where WO () is the fundamental matriz of the operator A (9) given by
(C.10), and the following estimates hold

W) (@, 7)] < colog(lz| 1), [0 (2, 7)| < cola| 1, Jal = 1,2 (C.18)
with some constant cy > 0.

Proof. Note, that det A(—i&,7) can be written as the sum of the homoge-
neous functions with respect to &,

5
A(&,7) o= det A(—ig, 7) = Y AP, 7), (C.19)

n=1
where
A(Q")(tf,T) — tznA(zn)(g,T), teR, k=1,...,5.

In particular,
3
AP(E,m) = =pP7T D (aej — Tog; 908, (C.20)
Jil=1

AT (&, 7) = A(£,0) = det A(—i€,0) = det AV (—ig),  (C.21)
and there is a positive constant ¢ such that
|A®) (,7)] > elr"[el? (C.22)
A0 (&, )| > cl¢]™. (C.23)
The equalities (C.19)-(C.21) can be checked directly. To derive (C.22), it

suffices to insert
Ty &
m==&, ¢= EZgz&
=1

into (A.41). The relation (C.23) follows from the equality (C.9).
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Expansions similar to (C.19) hold also for the co-factors Ag;(§, 7) of the
matrix A(—i&, 7):
8
Agj(€,7) ZM &7), kji=1,...,5, (C.24)

where the functions Akj (&, 7) are homogeneous with respect to £ of order
n, and

A (E,7)=0, n=0,1, k,j=1,5, k+j#10, A(E,7)=A)(€); (C.25)

here /NXEE) (&) are the co-factors of the corresponding entries of the matrix
A (—j¢).

Now we derive some asymptotic expansions of the matrix A= (—i€, ) at
infinity. To this end, note that if P = Q + R, then

1 1 s (_1)lQl a1 Qerl
ﬁ - ﬁ + Z RH‘l + (—1) PRS+1 . (026)

If we insert here s = 1, P = A(,,7), Q = QW) = an AP (€ T), R =
A1O(¢, 1), and multiply both sides by Ay;(£,7), we get
Akj(é-,T) Akj(f,T)Q(l)(f,T) Akj(gaT)[Q(l)(§7T)]2

AT =0 T T RGORE T AGDAGOR

7 A
_ [A0(ig) 43 A 6T A€ DRWIE )
w2 A 0) A0
L Aw(EDIQ(E D
A&, T)[A(E, 0)]2
By the homogeneity property of the functions A" (¢, 7) and A;ﬂ?) (€,7),

and the relations (C.19), (C.21), (C.24) and (C.25), we can rewrite the last
equality as follows

A;kl (_i£7 ) [A(O) Z a + fj(lzﬁ) (57 T)a (027)
n=—3
where f;,?) (&,7) for n = —3,...,—5, are homogeneous functions of order n
with respect to £ and
£ €< e, € e R\ {0}, (C.28)

Let v(-) be some cut-off function: v € C*(R3), v(¢) =1 for |¢| < 1 and
v(€) =0 for |¢] > 2. Multiply both sides of (C.27) by (—i&)® and apply the
inverse Fourier transform to obtain

8;‘\I/jk (:17, 7’) =
= 020 () + 72, (O (=i6) ([Azw (€. )

-1

~ [A(& 0] 7) ) @)+
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s Ft (= v =i 17 € m) (0)+

n=-—3
+F L (=@ i) £ 7€) (@), (C:29)

where ¥(z,7) and ¥(®)(z) are the fundamental matrices of the operators
A(0,7) and A©)(9), respectively (see (C.16), (C.10)).

Note that the expression V({)(—iﬁ)o‘(A;kl &) —Aj_k1 (£,0)) has a compact
support and therefore its inverse Fourier transform belongs to C>°(R?).

The summand .7-'5_)1 ((1 - y(ﬁ))(—iﬁ)o‘f;,?) (€, T)) (x) can be rewritten as

F (= @M@ 1) @) + FP @), (C30)
where x (&) is the indicator function of the set |£| < 2 and

F (2, 7) = (2m)~° / e (—ig) 1 (€, 7) de.
[¢1>2

The first summand in (C.30) belongs to C*°(R?) as the inverse Fourier
transform of a distribution with compact support. For the second summand
the following estimates hold (see, e.g., [28]:

[ (@, 7)] < e(m)[a~0H1D, it fa] > —n -3,
B ()| < e(r)log(fe] ™), if o] = —n —3, (C:31)
IS (@,7)| < e(r), if o] < —n—3.

Provided that |a| < 2, the last summand in (8.3) is continuous since it is the

inverse Fourier transform of the summable function (1-v(€))(—i&)* f;; (~6) (&,7).
This completes the proof.

Theorem 8.4. For arbitrary multi-index « the fundamental matrix
U(z,T) admits the following estimates at infinity (as |x| — o)

|0°W i (z,7)| < ez 371 K j=1,...,5, k+j#10, (C.32)
10%Ws5 (2, 7)| < ¢q]z| 711 (C.33)

with some constant ¢y > 0 depending on the material constants, the multi-
index o and the parameter 7.

Proof. To prove the theorem we need the following representation of
[A(—i&,7)]7! in a neighbourhood of the origin:

[Aji(—i€, T) Zgj &7)+ 95 (€7, (C.34)

where gj(.z) (&,7) for n = —2,—1,0, are homogeneous functions of order n
with respect to & and gJ(»Z)(f,T) =0 forn = —-2-1,and k+j # 10.
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Moreover, the estimates
]aggj(.}j(g,T)] <c(r)|g1el for |¢] <1 and
08953 (€. 7)] < e(mleN I for g > 1

hold for some N.
The representation (C.34) can be obtained from (C.26) with

5
=AET), Q=QW:=> A7), R=ADET).
n=2

Applying the inverse Fourier transform to both sides of (C.34), we get

i (z, 7) Z Fol o (g€ 7)) (@) + Ft, (€ (€,7)) (@) +

n=—2

+F (= r€)gl € 7) (@), (C.35)
where v(-) is the cut-off function introduced in the proof of Theorem 8.3.
It is evident that the expressions F; ! (ng (&,7))(z) are inverse Fourier
transforms of homogeneous functions of order n and hence are homogeneous
of order —3 — n; note that fgﬂx(gj(z)({ﬁ))(z) =0 for n = —1,—2, and
k+j #10.
If (8] < |a| + 3, then (—i€)*df (v(€)g}) (€, 7)) belongs to Li(R?) and
2PoeF

E—x

(v (f)gj(-llc) (&, 7)) vanishes at infinity, i.e.,

2 F2, (MO (€ 7))| < clal 2l

For the last summand in (C.35) we have

|8§‘fgim((1 - V(f))gj(llc) (5,7’)) ()] < C/|$|7N, ¢ =const >0, (C.36)

for sufficiently large |z| and for arbitrary aw and N. To prove this, note that
if [B] > N + 4+ |a], then (=i&)*d; (1 — v(&))g%y (¢, 7)) € L1(R?). Hence

804]_-5—_)1 ((1 - V(f))gjk (&, ))‘ < CN|I|7W|, " = const > 0.

This completes the proof. O

8.4. Fundamental matrices of statics of thermopiezoelectricity:
transversally isotropic case. The equation of thermopiezoelectricity in
matrix form for a transversally isotropic medium can be rewritten as

A(0)U = F, where A(9Q) = A(0,0) = [A;x(0)]5x5 with
A11(0) = 1107 + 6605 + 4403, A12(9) = A21(9) = (c11 — co6)0102,
A13(0) = A31(0) = (c13 + €44)0103, A14(0) = —m1 01,
A15(0) = —A51(0) = (e15 + €31)0105, A2(0) = ce605 + 1103 + 4403,
Ap3(0) = A32(0) = (c13 + €44)0203, A24(0) = —7102,
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A25(8) = —A52(8) = (615 + 631)8283, A33(8) = C44((912 + 622) + 633832,
A34(0) = —y305, Ass5(0) = —As53(0) = e15(97 + 03) + e3303,
A4k(a) = 07 k= 1a 273a A44(8) = %11(812 + 8%) + %338§a
A45((9) = 07 A54(6) = —9363, A55(6) = 811(6% + (922) +€33632,.

Denote by A(—i€) the symbol matrix of the operator A(9). We get
det A(—if) = — [066(512 + &)+ 644532] [%11(512 + &)+ %33532] X
3
X {011(6152 + caenn) + (67 + &%) + [en1(2e1ses3 + eszen1) — cis®ern—

2
— 2c13(e1s(e1s+es1)+caerr) +eaa(esi > +eniess)] (67 +&7) &+
+ [633 (cr1es3 — 2casest — 2c13(ers + es1)) — c13(ci3 + 2caa)e33+

+ ca3((ews + es1)” + caacrr + C11633)} (&° + &2)&

+C44(€332+033633)§36}- (C.37)
Let ax (k= 1,2,3) be the roots of the equation with respect to ¢
crrlers® + caaenn) (P — { — c13%e11 + c11(2e1sess + c33e11)—
—2¢13 [615(615 +e31) + 044511] + 044(6312 + 011633)}C2+
+ {633 [ — 2case31 — 2c13(e15 + €31) + crress|—

— c13(c13 + 2caa)es3 + caz[(e1s + es1)” + caaen + cr1€33) }C—
- 044(3332 + c33e33) =0, (C.38)

and let ay = cqa/ces, a5 = 333/3c11. We can then rewrite (C.37) in the
form:

det A(—i&) =

= —a(p® + 183)(p* + a283) (p* + as&3) (p* + aa&3)(p* + as&3),  (C.39)
where a = c11c665¢11 (€152 + caac11), /i: 512 + 522. In what follows, we
assume that a; # a for k # j, k,j = 1,5.

Note that A(9) is an elliptic operator: det A(¢) # 0 for all £ € R*\{0}.
Therefore, a; € C\ (—00,0], j =1,5.

We have to find a fundamental matrix ¥ = [Uy;]sx5 of the operator
A(9): A(0)¥(-) = 6(-)I5, where ¢ is Dirac’s distribution.

To this end, let us find a solution ¢ of the scalar equation

det A(a)(p( ) = a(AQ + a18§)(A2 + 042(932)><

X (Ag + a3832)(A2 + a4832)(A2 + a5632,)<p(-) = (5() (C.40)
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Applying the Fourier transform to both sides of (C.40), we get
—a(p® + ai1€3)(p* + a263) (P + as€3) (P + aa&l) (p® + as€3)p =1, (CAL)
where ¢ is the Fourier transform of ¢.

Let bj,j = 1,n, be different complex numbers (b; # b; for i # j) and
show that

&Y = de P2+ b1E3) (0% + ba€2) -+ (p° + ba3)
k=1

. (C.42
p? + bré3 ( )

where
di = [(01 = bi) (b2 — bi) - (s — bi) b — i) (b — )]+ (C.43)

We can prove (C.42) as follows. Let C(r) be a circle in the complex A plane
with the radius 7 which encloses the points by = —p?/£3 and by, k = 1,n.
Due to the Cauchy theorem, we have

2(n—1) S 2 2\ 2 2\ (2 2 1 _
& ;dmp TGP+ b28) - (0 bn) oy =

[P (P b))
= '/<p2+A§§><b1—A)---(bn—M‘M‘O'

r—oo 271
C(r)

Consider the identity (C.42) for n =5 and by = ax, where aj, are the above
introduced roots of the equation (C.38). By multiplying the both sides by
© and taking into account (C.41), we derive

5
~_ 1 di
6= Z < p? +aréy’
whence by the inverse Fourier transform

1

ot = S o

+ akgg} - 4ﬂ'a Z 2|k’ (C44)

where |z|r = \/ag(z? + 23) + 23, If ai, is complex, then we choose that
branch of \/z for which v/1 = 1 (=7 < argz < 7). This implies that
R|z|p > 0 for all z € R3.

One of the solutions of the equation (C.44) has the form

5
1
= — d C.45
=1 kEZI kP> (C.45)

where

1

Pk = 9822400

{ [256a2(x% +22)% — 517502 (22 + 22)2x2+

+8132a (22 + 22)zd — 1452353} Eips
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+35 [ — 35a3 (23 + 23)° + 210a; (z1% + x22)2x§—

— 168ay, (2% + x3)x; + 1625 | z3 log(|z|x + (Eg)} =

= |z|xP(2, ax) + Q(z, ax) log(|z|x + x3) (C.46)
with
1
Plr,a) = 5o [256a§(m§ +22)3 — 517502 (22 + 22)2a2+
+ 81320, (a2 + 23)2d — 1452352}, (C.47)
35
Qs ar) = 5e55100 3 { — 350} (a7} + 23)° + 210} (212 + 32%) 23 -

— 168ak(a? + 22)2d + 16zg} . (C.48)

Here we choose the branch of log z in accordance with —7 < argz < 7
and log1 = 0.

It is clear, that the functions ¢y, k = 1,5, as well as ¢ are infinitely
differentiable functions in the set D = {x € R3 : 23 ¢ (—00,0]}. Now
we prove that the function ¢ can be extended to an infinitely differentiable
function in R3 \ {0}. From (C.46) then it follows that ¢ is a homogeneous
function of degree 7 in R3\ {0}.

If 22 + 2% # 0, then

2, 2
ap(ry +x
log(|z|x + x3) = log (ﬁ) =

= log ay, + log(x? + 23) — log(|z|) — x3) + 2nmi
with some integer n. Recalling that ar # (—00,0], we can conclude that
actually n =0, i.e.,
ay (7 +23)

P ) =log ay+log(z3 +3) —log(|z|x —x3).

log(|x|k+x3) =log (

Using this equality, © can be represented as
5

o(x) = Tra I;dk|w|kp T, ak) kg (z,a1)logay —

47”12de x, ax) log(|z|x —x3) —l——deQ x,ay) log(x?+13).

All the terms in the right hand side of this equality except the fourth
summand are infinitely differentiable functions in a neighborhood of an ar-
bitrary point of the set {a: ER3: —0<23< O}. As for the last sum, we
can prove that

5
> dkQ(w,ax) = 0. (C.49)

k=1
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Indeed, assume that b;,j = 1,...,n, are different complex numbers, dj,
are given by (C.43) and the degree of the polynomial Q is less then n — 1.
Then by Cauchy’s theorem

- 1 QW) _
;de(bk) =l o / T 0 (0

C(r)

whence (C.49) follows due to (C.48).
So we have

5 5
1 1
p(r) = Tra ;dk|x|kp(zaak) + Ira ;de(Ivak)logak -

5
LZde(ac,a;g)log(|ac|;C — z3). (C.51)
k=1

4ra

The function ¢ given by (C.51) can be extended onto the half-space x5 < 0
as an infinitely differentiable function. Moreover, (C.51) implies that the
extended function (denote it again by ¢) is a homogeneous function of
degree 7.

It can easily be checked that for 23 ¢ (—00,0)

(0 + 05 + a.03) or(z) =
1

= 560 4T3 [ — 5az (3 + 23)% + 20ay (w7 + x3)z5 — 873|. (C.52)

Therefore, ¢ is well defined in R? \ {0} and solves the equation

det A(8)<p = a(AQ + 0,1(932)(A2 + 0,2(932)(A2 + agag)x
X (Az + a48§)(A2 + a58§)<p =0 (C.53)

in R\ {0}. Taking into account that ¢ is a homogeneous function of degree

7 and that the support of the distribution det A(9)y is an isolated point

(the origin), we can conclude that det A(9)p = ¢d(-) with some ¢ # 0.
From (C.40)—(C.44) it can be deduced that

5 5
1 1 c 1
Bp=—Y dpF " [—} =—— dp—— C.54
= e e g g e T T M (O
which together with (C.44) yields ¢ = 1. Thus det A(9)p = ().
Let us set U := M(9)(pl5), where M(—i€) is the matrix of co-factors
corresponding to the matrix A(—i&). This means that M () is the matrix

operator constructed by the formal co-factors of the matrix operator A(9),
ie, A(O)M(0) = M(9)A(9) = det A(9)I5. Clearly we have

AO)V = A(O)M(0)(pl5) = (det A(D)p)I5 = 6(-) I,
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i.e., ¥ is a fundamental matrix of the operator A(9) and it can be written
in the form

5
=[S ann@] = @l (C.55)
et 5x5

4ma

Here

M11(9) = (a1 A + %3353%){ - {(615 + e31)(c13e15 — caaez1)A +
+ [033(615 +es1) — (13 + 044)633} ayﬂ 3223§ +
+(en A + ea308) | — (c1s + c20)2 0305 + (e +
+¢3303) (ce607 + 1105 + 04439?)} +
+(e15A + e3303) { — (€13 + caa) (€15 + €31)0305 +

—|—(666812 + 611822 + C44832)(615A + 63383%)] },

Mi2(0) = M21(5)=—(%11A+%33532,){ — (e15+es1) {(013615—044631)A -
—[ess(ers + ea1) — (c13 + 644)633]832} 05 +
+(e11A + £3303) { — (c13 + €44)?05 + (11 — co6)(caa A + 03353%)} +
+(e15A + e3303) { — (c13 + caa)(e15 + €31)03 +

+(c11 — co6)(e15A + 633332,)} }3132,

My3(0) = M31(9)=—(ceeA+ca403) {[615(615+€31)+(013+C44)€11}A +

+[(e15 + e31)ess + (c13 + 044)533]832,} (511 + 323303)0103,

M14(0) = (ces A + 0448§){ [(013615 — cage31)A —
—[ess(ers +es1) — (13 + C44)633]3§} 9303 +
+(e1sA + 63333) {61571A + [63371 —(e15 + 631)73]39?} +

+|caa1 A+ 03371 (c13 + 044)73]53%} (enA+ 53339%)}517

Mi5(9) = —M351(0) = —(ce6 A + c14053) [(—013615 + casez1) A +

+[ess(ers + es1) — (c13 + caa)ess] agﬂ (511 A + 523303) 0103,
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M32(0) = (en1 A + %3353%){ - {(615 + e31)(c13e15 — caaesz1)A +
+[cas(e1s + es1) — (c13 + cas)ess) a?ﬂ 0705 +
Hen A + eag08) | — (c1s + c14)20%03 +
(e + ¢5308) (0103 + 660 + c1a03)] +
+(e15A + e3303) { — (€13 + caa) (€15 + €31)0705 +

(11071045 05 + €4205) (€154 + 6333%)} },

M23(0) = M32(9) = —(066A+C443§){ le15(e15+e31)+ (cr3+caa)ers | A +

+[(e15 + €31)ess + (c13 + 044)533]83?}(%11A + 503303) D205,

M24(0) = (ces A + 044832,){ [(013615 — caae31)A —
—[esslers +es1) — (c13 + 044)633]53?}9353 +
+(e15A + e3303) [61571A + [ess11 — (e1s + 631)73]53%} +

+ [C4471A + [essm — (c13 + 644)’73]393} (e11A + 5333§)}82,

M>5(9) = —M352(0) = —(ce6A + c1403) {(—613615 + casez1)A +

+[es3(e1s + €31) — (c1s + 644)633]39?} (511 A + 523303) 0205,

M33(8) = (CﬁﬁA =+ C44832)(%11A + %33832) {611611A2 +

+[(e15 + €31)® + caaer1 + c11€33] ADZ + 04463353,‘} ;

Ms4(0) = —(co6A + 04433%){’71 [e15(e1s + es1) + (13 + caa)enn | A% +
+ {(615 +e31)[ — essy1 + (e1s + e31)s) +
+c13[(e15+€31)gs — 1€33) +caa(esrgs + 73511—’71633)} A3 —
—caa(essgs — y3€33)05 — c1 [(e1s9s — vse11) A +
+(e3393 — 73533)3§]A}33,
M35(0) = —M53(0) = —(co6A + 2403) (311 A + 3¢3303) [011615A2 -

—[casest + ciz(ers + e31) — criess] Ad; + 044633394,1} ;

67
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M1 (0) = My2(0) = Myz(9) = My5(0) = 0,
My4(0) = (ce6 A + 044832,) 011(6%5 + c44511)A3 +
+ [ — clse11 + c1(2e1se3s + e3ze11) —
—2c13]e1s(e1s + €31) + caaer1] + caa(ed; + 011833)} A%93 +
+[€33 [— 2case31—2c13(e15+€31) +C11€33] — cr3(cr3+2caa)E33 +

+es3[(e15+es1)’ +caen +011633H A3 +cas(e3s +C33€33)3§}7

M54(0) = (066A+C44832,){ [(—613615+C44€31)’71 +C11(C4493+615”YS)]A2 -
- [03393 — [eas(ers + e31) — casess] i + caseziys +
+c13[2c4493 + €3371 + (€15 + e31)73] — c11(cszgs + 63373)] AD3 +

+caa(czsgs + 63373)5'§4,}33,

M35(9) = (ce6 A + ca103) (11 A + 523303) ¥

2 2 2 4
X {011044A — (¢f5 — c11¢33 + 2¢13¢44) A5 + 03304433]

To calculate explicitly the entries of the matrix M (9)(pI5), we note that
(07 + 03)pr(z) =

1
= —ap0301(x) + 960 k% [ —5ai(2] + 23)° + 20ax (2] + 23)23 — 85
for x3 & (—00,0]. This shows that the sixth order derivatives of Aspyr =
(0?2 + 03)¢y and —ar03¢y () coincide.
We need also to simplify the first and the second order derivatives of the
functions

Yr = 0S¢y = x3log(ws + ar (12 + 222) + x3%)—
—Var(x12 + 202) + 232, k=1,5.

It can easily be shown that

2,2
ak . 2 ak L1
al¢k:_ 9 221327 0 djk:_ + )
(|zk+zs3) ! (Jzlk+zs)  [z|k(|zlk+23)?
2,2 2
ag apxs aR~T1X2
2y, = — + k , WOy = ——" |
: (el +23)  Jale(ols +a3)2” 7 |2k (|2|k + 23)?
aRx aRx
O3t = S a0y = 22

|k (J]k + 23) |zlk (2] + 23)
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Moreover, taking into account that if the degree of a polynomial Q(z) is less
than 4, then by virtue of (C.49) we can derive

deakQ ax) Zd Qla lek Izl5_zde(ak>(ak ‘a5), (C.56)

2]k + 23 xi + 23 = zlk+lals
5
Z drarQ(a) _
Jz]k(z[k + 23)
4

_5 @) (lele s _Jels—r) de@ wlon—as)ts - 57)

Pt 23 +a3 7|k |z|5 |$|k|$|5 |$|k+|$|5)

5
Z dkakQ ak
Jelk (2l + 23)2

Z drQ(ax) i (|:1;|5(|:1:|k — I3)2 — |@|x(|z]5 — I3)2) =

|z |z|5 (2% + 2

k=1
_ Z drQ(ar)(ar — as)(agas(z? + 23) + (ak + as)z3) (C.58)
||k |2l (|2l + |2]s) (J2]k]2]5 + 23)
Note that the element ®34 can be written in the form
5
> diQ(ax) log(|zlk + x3), j =1,2,3, (C.59)

k=1
where Q(z) is some polynomial of degree less than 4. This kind of summands
need a special consideration. Namely, from (C.49) it follows that

5 4
S dkQ(ar) log(Jalk +23) = 3 diQ(ax) log (M). (C.60)
k=1

1 |zl5 + =3
Further, the following identity
j2le tas _ ) (e —as)(als —23)
|z]5 + a3 as(|z]k + |z[5) S

shows that the expressions under the logarithmic function in the right hand
side of (C.60) are bounded and do not vanish for = # 0.
Taking into account (C.55)-(C.60), we obtain the explicit expressions for
the entries of the fundamental matrix
1

V=—-—— (I)z .
47Ta[ J]5X5

4

P11 —Z{ B ! j {(a5—ak)(615+631)[033(615+€31)+

2\ alZ (el lals +43

+ ag(cizers — caaesr) — (c13 + 044)633} X

x (asap|ols|olkz? (03 +23) + [1+ (as+an)od] [e]slalnad +o3 ) |+
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(areis — es3)
2]k (|2 |k] 2|5 4 23

x {asanlalsloliad (z? +a3) +|lslal [L+ (a5 +ar)ad] ad +ad f+

) (a5 — ax)(c13 + caa)(e15 + €31) ¥

(a5 — ag)
2]k (|]k |2]5 4 23

X [611(1 + apx?) + cos(1 + apard)r3 + (c11 + o) x5+

) {(633 — ageis + agerl — €33) %

+ aslals ol (1103 + cosa) [an(@d + a3) + 23] }|x|5|x|k},

4
Z r122(ar — as)laras (23 + 23) + (ag + as)x3] "

(lzls + |2ls) (Jlk|l5 + 23)

Dy =Dy
k=1
X{(€15+€31 013+C44)€33+ak(C44C31—013€15)—033(615—1—631)}+
+ (are1s —ess) [ (c13+caa)(e15+€31)+(c11—co6) (€33~ ak615)] -

[[ (c13 + caa)® + (33 — apeas)+

+ (c33 — agcaa)(c11 — ces)] (€33 — akfll)} },

T1x3
=03 = Z (ar — as)(arces — caa)x
|zl |2l5 (2] + |2[5)

X{(€15+€31)€33— ag [615(615+€31)+ (013-1—044)511] + (013+C44)€33},

4
Z |56|k + |x|5 - ak)(c44 - ak066)><

k=
X { —c33(e1s+esn) — ak(013615+644€31)+(013+C44)€33]93+
are1s — es3)[(arers — esz)y1 + (e1s + es1)y3)+

+(
+ [(cas — arcas) 1 — (c13 + caa)vs) (ess — aksu)},

S

13
P55 =—9 :Z ap — as)(Cqa — agceg) X
15 51 £ |$|k|$|5(|$|k + |(E|5) ( 5)( 4. 66)

X [ —cs3(e1s + es1) + ar(casers — cizers) + (c13 + caa)ess),

Doy = i { (a5 — ar)(e1s + es1) y

2\ alFalilals + 23)

X {033(615 + e31) + ar(cizers — caaesr) — (c13 + C44)633} X

X (a5ak|x|5|x|kx§(x§—|—x§)+ [1+(as+ar)23] |x|5|x|kx§+x§) +
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(arers — es3)(as — ax)(c13 + caa)(€15 + €31)
2|k (|2|k|x]5 + 23)

x{asanlalslolad(z? +a3)+|zlslal [+ (as+ar)ad] ad +ad )+

(a5 — ay)
2]k (|2]x|2]5 + 23)

X [611(1 + apx3) + cos(1 + aprd)r3 + (c11 + o) 5+

{(633 — ageis + agerl — €33) %

+ aslals ol (c1103 + cosa?) [an(@F + a3) + 23] }|x|5|x|k},

4
T2X3
Dos =P _E: _ _ {
23 =030 |x|k|x| T2l T T2s) (ar—as)(axces —caa)q (€15+€31)e33—

— ak [615(615 +e31) + (c13 + 044)611] + (c13 + 044)533}7

L wo(as — ar)(cas — agcos)
P = 2 T
X {[ c3z(e1s+esn) — ak(013615—044631)+(013+C44)€33:| g3+
+ (axe1s — e33) {(%615 —e33)71 + (e1s + 631)73] +

+ | (33 — agcaa)y1 — (c13 + caa)y3| (€33 — ak€11)},

4
xT2T3
Do5 Z (ar — as)(caa — agces) X
< |olk|zls(lz|k + |2ls)

=
X { csz(ers + es1) + ar(caaers — cizers) + (i3 + 644)633}

5
Z C44 - ak066
X

|k

k=1
2 2
X {ak011€11 + cqa€33 — ay, [(615 +e31) +caa+ 011533] },
Z (|56|k + :63)(044 — ances) X
— Nzl + =
X { — [ak vi(es(eis +es1) + (c13 + 044)511)] +
+ apci1 {63393 + ar(—e1593 +y3€11) — 73833} +

+ca4(—e3393+73€33) —an {(6154—631) [—63371 + (615+€31)73] +

+ci3 [(615 +e31)g3 — 71533} + caa(e3193 +y3e11 — 71533)} },
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5
1
Dg5 = —Ds53 = — »_ ——(Caa — akces) X

Dy = Pyp = y3 = Py5 =0,

by = ——,

5
1
Os5 = E W arCa4(Caa — akCGG)(C%Q, — c11 + 2aic13 + ¢33).
k=1

Notice that the entries of the matrix ¥ are complex functions, in general
(the equation (C.38) may have complex, mutually conjugate roots a;). It is
evident that in this case the real part £¥(z) is also a fundamental matrix
of the operator A(0) since its coefficients are real.

Remark also that if the parameters a; are not distinct (that is, at list
two of them are equal to each other, a, = a,) then we can apply the
usual limiting procedure (a, — a,) in the above expression to construct the
corresponding fundamental matrix.
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