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SOME BOUNDARY VALUE PROBLEMS ON INFINITE
INTERVALS FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. For nonlinear functional differential systems optimal sufficient
conditions for the solvability and well-posedness of boundary value prob-
lems on infinite intervals are established.� � � � � � � � � � � 	 � 
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In the present paper on the infinite interval I we consider the nonlinear
functional differential system

x′(t) = f1(x, y)(t), y′ = f2(x, y)(t), (1)

where f1 and f2 are the operators acting from the space Cloc(I ; Rn1+n2)
to the spaces Lloc(I ; Rn1) and Lloc(I ; Rn2). In the case I = R+, for this
system we investigate the problem

x(0) = c, sup
{

‖x(t)‖+ ‖y(t)‖ : t ∈ R+

}

< +∞, (2)

and in the case I = R the problem

sup
{

‖x(t)‖+ ‖y(t)‖ : t ∈ R
}

< +∞. (3)

Earlier, these problems were studied only in the cases, where f1 and f2

are either the Nemytski’s operators ([3], [4], [5]), or the linear operators ([1],
[2], [6]). Below, we will present new, and in a certain sense, unimprovable
conditions which guarantee, respectively, the solvability and well-posedness
of (1), (2) and (1), (3).

Throughout the paper, the following notation will be used;
R = ]−∞, +∞[ , R+ = [0, +∞[ , R− = ]−∞, 0].
R

n is the space of n-dimensional vectors x = (xi)
n
i=1 with components

xi ∈ R (i = 1, . . . , n) and the norm

‖x‖ =

n
∑

i=1

|xi|.
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x · y is the scalar product of the vectors x and y ∈ R
n.

If x = (xi)
m
i=1 ∈ R

m and y = (yi)
n
i=1 ∈ R

n, then z = (x, y) is the (m+n)-
dimensional vector with components zi = xi (i = 1, . . . , m) and zm+i = yi

(i = 1, . . . , n).
If x = (xi)

n
i=1, then sgnx = (sgnxi)

n
i=1.

X = (xik)n
i,k=1 is the n × n-matrix with components xik ∈ R (i, k =

1, . . . , n).
r(X) is the spectral radius of X .
C(I ; Rn) is the space of continuous and bounded on I vector functions

x : I → R
n with the norm

‖x‖C(I;Rn) = sup
{

‖x(t)‖ : t ∈ I
}

.

Cloc(I ; Rn) is the space of continuous vector functions x : I → R
n with

topology of uniform convergence on every compact interval contained in I .
Lloc(I ; Rn) is the space of locally Lebesgue integrable vector functions

x : I → R with topology of mean convergence on every compact interval
contained in I .

We say that the operator f : Cloc(I ; Rn) → Lloc(I ; Rm) satisfies the local
Carathéodory conditions if it is continuous and for every ρ > 0 there exists
a nonnegative function f∗ρ ∈ Lloc(I ; R), such that

‖f(x)(t)‖ ≤ f∗ρ (t) for t ∈ I, x ∈ C(I ; Rn), ‖x‖C(I;Rn) ≤ ρ.

The vector function g : I × R
n → R

m satisfies the local Carathéodory
conditions if g(·, x) : I → R

m is measurable for every x ∈ R
n, g(t, ·) : R

n →
R

m is continuous for almost all t ∈ I and for every ρ > 0 there exists a
nonnegative function g∗ρ ∈ Lloc(I ; R), such that

‖g(t, x)‖ ≤ g∗ρ(t) for t ∈ I, x ∈ R
n, ‖x‖ ≤ ρ.

A particular case (1) is the differential system with deviating arguments

x′i(t) = gi

(

t, x(t), x(τ1(t)), y(t), y(τi(t))
)

(i = 1, . . . , n). (4)

Everywhere below, when we will be concerned with the problem (1), (2)
(with the problem (1), (3)) it will be assumed that c ∈ R

n1 and the operators

fi : Cloc(I ; Rn1+n2) → Lloc(I ; Rni) (i = 1, 2),

where I = R+ (I = R) satisfy the local Carathéodory conditions.
Analogously, the problem (4), (2) (the problem (4), (3)) is considered un-

der the assumption that c ∈ R
n1 and the functions

gi : I × R
2n1+2n2 → Rni (i = 1, 2),

where I = R+ (I = R) satisfy the local Carathéodory conditions.
Under the solution of the system (1) (of the system (4)) on I is meant the

function (x, y) : I → R
n1+n2 with locally absolutely continuous components

x : I → R
n1 and y : I → R

n2 , which almost everywhere on I satisfies this
system.



137

Theorem 1. Let I = R+ (I = R) and there exist operators pi :
C(I ; Rn1+n2) → Lloc(I ; R+) (i = 1, 2), a nonnegative constant h0, and a

nonnegative constant matrix H = (hik)2i,k=1, such that

r(H) < 1 (5)

and for any (x, y) ∈ C(I ; Rn1+n2) almost everywhere on I the inequalities

f1(x, y)(t) · sgnx(t) ≤

≤ p1(x, y)(t)
(

− ‖x(t)‖+ h11‖x‖C(I;Rn1) + h12‖y‖C(I;Rn2) + h0

)

,

f2(x, y)(t) · sgn y(t) ≤

≤ p2(x, y)(t)
(

‖y(t)‖ − h11‖x‖C(I;Rn1) − h12‖y‖C(I;Rn2) − h0

)

hold. The problem (1), (2) (the problem (1), (3)) has at least one solution.

Remark 1. For the condition (5) to be fulfilled, it is necessary and suffi-
cient that

h11 + h22 < 2, h11 + h22 − h11h22 + h12h21 < 1.

Remark 2. In the above-formulated theorem the condition (5) is unim-
provable and it cannot be replaced by the condition r(H) ≤ 1.

Corollary 1. Let for I = R+ (for I = R) all the conditions of Theorem 1
be fulfilled and

+∞
∫

0

p2(x, y)(s) ds = +∞

(

0
∫

−∞

p1(x, y) ds =

+∞
∫

0

p2(x, y)(s) ds = +∞

)

(6)

for any (x, y) ∈ C(I ; Rn1+n2). Then every solution of the problem (1), (2)
(of the problem (1), (3)) admits the estimate

‖x‖C(R+;Rn1 ) + ‖y‖C(R+;Rn2 ) ≤ ρ
(

‖c‖+ h0

)

(7)
(

‖x‖C(R;Rn1) + ‖y‖C(R;Rn2) ≤ ρh0

)

,

where ρ is a positive constant depending only on H.

Remark 3. The condition (6) in Corollary 1 is essential and it cannot be
omitted.

For the system (4), Theorem 1 and Corollary 1 yield the following propo-
sitions.

Corollary 2. Let I = R+ (I = R), and there exist functions pi : I ×
R

2n1+2n2 → R+ (i = 1, 2), satisfying the local Carathéodory conditions, and

nonnegative constants hik (i, k = 1, 2), h0, h1, h2 such that the matrix

H =

(

h11 h1 + h12

h2 + h21 h22

)

(8)
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satisfies the condition (5) and on the set I × R
2n1+2n2 the inequalities

g1(t, x, x, y, y) · sgnx ≤

≤ p1(t, x, x, y, y)(−‖x‖+ h11‖x‖+ h1‖y‖+ h12‖y‖+ h0),

g2(t, x, x, y, y) · sgn y ≥

≥ p2(t, x, x, y, y)(‖y‖ − h2‖x‖ − h21‖x‖ − h22‖y‖+ h0)

hold. Then the problem (4), (2) (the problem (4), (3)) has at least one solu-

tion.

Corollary 3. Let for I = R+ ( for I = R) all the conditions of Corol-

lary 2 be fulfilled, and

+∞
∫

0

p02(s) ds = +∞

(

0
∫

−∞

p01(s) ds =

+∞
∫

0

p02(s) ds = +∞

)

, (9)

where

p0i(t) = inf
{

pi(t, x, x, y, y) : (x, x) ∈ R
2n1 , (y, y) ∈ R

2n2
}

(i = 1, 2). (10)

Then every solution of the problem (4), (2) (of the problem (4), (3)) admits

the estimate (7), where ρ is a positive constant depending only on H.

Now along with the functional differential system (1) consider the per-
turbed system

x′(t) = f1(x, y)(t) + q1(x, y)(t), y′(t) = f2(x, y)(t) + q2(x, y)(t) (1′)

with the boundary conditions

x(a) = c̃, sup
{

‖x(t)‖+ ‖y(t)‖ : t ∈ R+

}

< +∞ (2′)

and (3).
Let us introduce the following

Definition. Let I = R+ (I = R) and pi : Cloc(I ; Rn1+n2) → Lloc(I ; R+)
(i = 1, 2). The problem (1), (2) (the problem (1), (3)) is said to be well-
posed with the weight (p1, p2) if it has a unique solution (x0, y0) and there
exists a positive constant ρ such that for arbitrary c̃ ∈ R

n1 , q0 ∈ R+, and
for any operators qi : Cloc(R+; Rn1+n2) → Lloc(I ; Rni) (i = 1, 2), satisfying
the local Carathéodory conditions and the inequalities

|qi(x, y)(t)| ≤ pi(x, y)(t)q0 (i = 1, 2),

the problem (1′), (2′) (the problem (1′), (3)) is solvable and its arbitrary
solution admits the estimate

‖x− x0‖C(R+;Rn1 ) + ‖y − y0‖C(R+;Rn2 ) ≤ ρ(‖c− c̃‖+ q0)
(

‖x− x0‖C(R;Rn1) + ‖y − y0‖C(R;Rn2) ≤ ρq0

)

.
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Theorem 2. Let I = R+ (I = R), c = 0, fi(0, 0)(t) ≡ 0 (i = 1, 2), and

let there exist operators pi : Cloc(I ; Rn1+n2) → Lloc(I ; R+) (i = 1, 2) and

a nonnegative constant matrix H = (hik)2i,k=1, satisfying the conditions (5)

and (6), such that for any (x, y) ∈ C(I ; Rn1+n2) the inequalities

f1(x, y)(t) · sgn x(t) ≤

≤ p1(x, y)(t)
(

− ‖x(t)‖+ h11‖x‖C(I;Rn1) + h12‖y‖C(I;Rn2)

)

,

f2(x, y)(t) · sgn y(t) ≥

≥ p2(x, y)(t)
(

‖y(t)‖ − h21‖x‖C(I;Rn1) − h21‖y‖C(I;Rn2)

)

hold almost everywhere on I. Then the problem (1), (2) (the problem (1), (3))
is well-posed with the weight (p1, p2).

Corollary 4. Let I = R+ (I = R), c = 0, gi(t, 0, 0, 0, 0) ≡ 0 (i = 1, 2),
and on the set I × R

2n1+2n2 the inequalities

g1(t, x, x, y, y) · sgnx ≤

≤ p1(t, x, x, y, y)
(

− ‖x‖+ h11‖x‖+ h1‖y‖+ h12‖y‖
)

,

g2(t, x, x, y, y) · sgn y ≥

≥ p2(t, x, x, y, y)
(

‖y‖ − h2‖x‖ − h21‖x‖ − h22‖y‖
)

hold, where hi, hik (i, k = 1, 2) are nonnegative constants, and pi : I ×
R

2n1+2n2 → R+ (i = 1, 2) are functions, satisfying the local Carathéodory

conditions. Let, moreover, the matrix H and the functions p0i (i = 1, 2),
given by the equalities (8) and (10), satisfy the conditions (5) and (9).
Then the problem (4), (2) (the problem (4), (3)) is well-posed with the weight

(p1, p2).
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