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Short Communications

M. Ashordia

ON THE EXISTENCE OF BOUNDED SOLUTIONS FOR
SYSTEMS OF NONLINEAR GENERALIZED ORDINARY

DIFFERENTIAL EQUATIONS

Abstract. Sufficient conditions are given for the existence of bounded so-
lutions for the systems of nonlinear generalized ordinary differential equa-
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Let amik : R → R (m = 1, 2; i, k = 1, . . . , n) be nondecreasing functions,
aik(t) ≡ a1ik(t)− a2ik(t), A = (aik)n

i,k=1, Am = (amik)n
i,k=1 (m = 1, 2); f =

(fk)n
k=1 : R×R

n → R
n be a vector-function belonging to the Carathéodory

class corresponding to the matrix-function A.
In this paper we investigate the question of existence of solutions for the

system of generalized ordinary differential equations

dx(t) = dA(t) · f(t, x(t)), (1)

where x = (xi)
n
i=1, satisfying one of the following two conditions

sup
{

n
∑

i=1

|xi(t)| : t ∈ R

}

< ∞ (2)

and

sup
{

n
∑

i=1

|xi(t)| : t ∈ R+

}

< ∞. (3)

We give sufficient conditions for the existence of solutions of the boundary
value problems (1), (2) and (1), (3). Analogous results are contained in [9]–
[14] for systems of ordinary differential and functional differential equations.
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The theory of generalized ordinary differential equations enables one to
investigate ordinary differential, impulsive and difference equations from a
common point of view (see [1]–[8], [15]).

Throughout the paper the following notation and definitions will be used.
R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] (a, b ∈ R) is a closed segment.
R

n×m is the set all real n×m-matrices X = (xij)
n,m
i,j=1.

R
n = R

n×1 is the set of all real column n-vectors x = (xi)
n
i=1.

b
∨
a
(X) is the total variation of the matrix-function X : [a, b] → R

n×m, i.e.,

the sum of total variations of the latter’s components.
X(t−) and X(t+) are the left and the right limits of the matrix-function

X : [a, b] → R
n×m at the point t (we will assume X(t) = X(a) for t ≤ a

and X(t) = X(b) for t ≥ b, if necessary);

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t).

BV([a, b], Rn×m) is the set of all matrix-functions of bounded variation

X : [a, b] → R
n×m (i.e., such that

b
∨
a
(X) < +∞).

BVloc(R, Rn×m) is the set of all matrix-functions X : R → R
n×m for

which
b
∨
a
(X) < +∞) for every a, b ∈ R (a < b).

sj : BV([a, b], R) → BV([a, b], R) (j = 0, 1, 2) are the operators defined,
respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ≤t

d1x(τ) and s2(x)(t) =
∑

a≤τ<t

d2x(τ) for a < t ≤ b

and

s0(x)(t) = x(t)− s1(x)(t) − s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <

t ≤ b, then

t
∫

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ(s0(g)) corresponding to the
function s0(g).

If a = b, then we assume

b
∫

a

x(t) dg(t) = 0.
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If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t
∫

s

x(τ) dg(τ) =

t
∫

s

x(τ) dg1(τ) −

t
∫

s

x(τ) dg2(τ) for s ≤ t.

L([a, b], R; g) is the set of all functions x : [a, b] → R measurable and
integrable with respect to the measures µ(gi) (i = 1, 2), i.e. such that

b
∫

a

|x(t)| dgi(t) < +∞ (i = 1, 2).

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If G = (gik)l,n
i,k=1 : [a, b] → R

l×n is a nondecreasing matrix-function

and D ⊂ R
n×m, then L([a, b], D; G) is the set of all matrix-functions X =

(xkj)
n,m
k,j=1 : [a, b] → D such that xkj ∈ L([a, b], R; gik) (i = 1, . . . , l; k =

1, . . . , n; j = 1, . . . , m);

t
∫

s

dG(τ) ·X(τ) =

( n
∑

k=1

t
∫

s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(

sj(gik)(t)
)l,n

i,k=1
(j = 0, 1, 2).

If D1 ⊂ R
n and D2 ⊂ R

n×m, then K([a, b]×D1, D2; G) is the Carathé-
odory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 : [a, b] ×D1 → D2

such that for each i ∈ {1, . . . , l}, j ∈ {1, . . . , m} and k ∈ {1, . . . , n}: a)
the function fkj(·, x) : [a, b] → D2 is µ(gik)-measurable for every x ∈ D1;
b) the function fkj(t, ·) : D1 → D2 is continuous for µ(gik)-almost every
t ∈ [a, b], and sup

{

|fkj(·, x)| : x ∈ D0

}

∈ L([a, b], R; gik) for every compact
D0 ⊂ D1.

If Gj : [a, b] → R
l×n (j = 1, 2) are nondecreasing matrix-functions,

G = G1 −G2 and X : [a, b] → R
n×m, then

t
∫

s

dG(τ) ·X(τ) =

t
∫

s

dG1(τ) ·X(τ)−

t
∫

s

dG2(τ) ·X(τ) for s ≤ t,

Sk(G) = Sk(G1)− Sk(G2) (k = 0, 1, 2),

L([a, b], D; G) =
2

⋂

j=1

L([a, b], D; Gj),

K([a, b]×D1, D2; G) =

2
⋂

j=1

K([a, b]×D1, D2; Gj).
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Lloc(R, D; G) is the set of all matrix-functions X = R → D such that
its restriction on [a, b] belongs to L([a, b], D; G) for every a and b from R

(a < b).
Kloc(R × D1, D2; G) is the set of all matrix-functions F = (fkj)

n,m
k,j=1 :

R×D1 → D2 such that its restriction on [a, b] belongs to K([a, b], D; G) for
every a and b from R (a < b).

The inequalities between the matrices are understood componentwise.
A vector-function x ∈ BVloc(R, Rn) is said to be a solution of the system

(1) if

x(t) = x(s) +

t
∫

s

dA(τ) · f(τ, x(τ)) for s ≤ t (s, t ∈ R).

Theorem 1. Let there exist numbers σi ∈ {−1, 1} (i = 1, . . . , n), vector-

functions αm = (αmi)
n
i=1 ∈ BVloc(R, Rn) (m = 1, 2) and matrix-functions

(βmik)n
i,k=1, βmik ∈ Lloc(R, R; ajik) (m, j = 1, 2; i, k = 1, . . . , n) such that

αmi(t) ≡ αmi(0)+

+

n
∑

k=1

(

t
∫

0

βmik(τ) da1ik(τ)−

t
∫

0

β3−mik(τ) da2ik(τ)

)

(m=1, 2; i=1, . . . , n), (4)

α1(t) ≤ α2(t) for t ∈ R, (5)

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βmik(t)
)

≤ 0

for µ(a1+|m−j|ik)-almost all t ∈ R and

α1(t) ≤ (xl)
n
l=1 ≤ α2(t) (m, j = 1, 2; i, k = 1, . . . , n),

(−1)m

(

xi−(−1)j

n
∑

k=1

fk(t, x1, . . . , xn)djaik(t)−αmi(t)−(−1)jdjαmi(t)

)

≤0

for t ∈ R, α1(t) ≤ (xl)
n
l=1 ≤ α2(t) and

(−1)jσi > 0 (m, j = 1, 2; i = 1, . . . , n) (6)

and

sup
{

|αmi(t)| : t ∈ R
}

< ∞ (m = 1, 2; i = 1, . . . , n). (7)

Then the problem (1), (2) is solvable.

Corollary 1. Let the matrix-function A(t) = (aik)n
i,k=1 be nondecrea-

sing on R and let there exist numbers σi ∈ {−1, 1} (i = 1, . . . , n), vector-

functions αm = (αmi)
n
i=1 ∈ BVloc(R, Rn) (m = 1, 2) and matrix-functions

(βmik)n
i,k=1, βmik ∈ Lloc(R, R; ajik) (m, j = 1, 2; i, k = 1, . . . , n) such that

αmi(t)≡αmi(0)+

n
∑

k=1

(

t
∫

0

βmik(τ)da1ik(τ)

)

(m=1, 2; i, k=1, . . . , n), (8)
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the conditions (5)− (7) hold, and the inequalities

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βjik(t)
)

≤ 0

(j = 1, 2; i, k = 1, . . . , n)

are fulfilled for µ(aik)-almost all t ∈ R and α1(t) ≤ (xl)
n
l=1 ≤ α2(t). Then

the problem (1), (2) is solvable.

Theorem 2. Let there exist numbers σi ∈ {−1, 1} (i = 1, . . . , n), vector-

functions αm = (αmi)
n
i=1 ∈ BVloc(R+, Rn) (m = 1, 2) and matrix-functions

(βmik)n
i,k=1, βmik ∈ Lloc(R+, R; ajik) (m, j = 1, 2; i, k = 1, . . . , n) such that

α1(t) ≤ α2(t) for t ∈ R+, (9)

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βmik(t)
)

≤ 0

for µ(a1+|m−j|ik)-almost all t ∈ R+ and

α1(t) ≤ (xl)
n
l=1 ≤ α2(t) (m, j = 1, 2; i, k = 1, . . . , n),

(−1)m

(

xi−(−1)j

n
∑

k=1

fk(t, x1, . . . , xn)djaik(t)−αmi(t)−(−1)jdjαmi(t)

)

≤0

for t ∈ R+, α1(t) ≤ (xl)
n
l=1 ≤ α2(t) and

(−1)jσi > 0 (m, j = 1, 2; i = 1, . . . , n) (10)

and

sup
{

|αmi(t)| : t ∈ R+

}

< ∞ (m = 1, 2; i = 1, . . . , n). (11)

Then the problem (1), (3) is solvable.

Corollary 2. Let the matrix-function A(t) = (aik)n
i,k=1 be nondecreasing

on R+ and let there exist numbers σi ∈ {−1, 1} (i = 1, . . . , n), vector-

functions αm = (αmi)
n
i=1 ∈ BVloc(R+, Rn) (m = 1, 2) and matrix-functions

(βmik)n
i,k=1, βmik ∈ Lloc(R+, R; ajik) (m, j = 1, 2; i, k = 1, . . . , n) such that

the conditions (8)–(11) hold, and the inequalities

(−1)mσi

(

fk(t, x1, . . . , xi−1, αji(t), xi+1, . . . , xn)− βjik(t)
)

≤ 0

(j = 1, 2; i, k = 1, . . . , n)

are fulfilled for µ(aik)-almost all t ∈ R+ and α1(t) ≤ (xl)
n
l=1 ≤ α2(t). Then

the problem (1), (3) is solvable.
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