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NUMERICAL QUENCHING FOR
A SEMILINEAR PARABOLIC EQUATION



Abstract. This paper concerns the study of the numerical approxima-
tion for the following boundary value problem:

ur(z,t) — Ugg (2, t) = —uP(z,t), 0<xz<l, t>0,
u(0,t) =1, w(l,t) =1, t>0,
u(z,0) = up(x), 0<z<1,

where p > 0. We obtain some conditions under which the solution of a
semidiscrete form of the above problem quenches in a finite time and es-
timate its semidiscrete quenching time. We also establish the convergence
of the semidiscrete quenching time and construct two discrete forms of the
above problem which allow us to obtain some lower bounds of the numerical
quenching time. Finally, we give some numerical experiments to illustrate
our theoretical analysis.
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1. INTRODUCTION
Consider the following boundary value problem:
u(x,t) — ugg(z,t) = —u"P(x,t), 0<z <1, t>0,
w(0,t) =1, wu(l,t)=1, t>0,
u(z,0) = up(z) >0, 0<x<1,

1)
2)
3)

where p > 0, ug € C°([0,1]), uo(0) = 1, ug(1) = 1, ug(z) < 1 for z € (0,1).

~—~ ~~

Definition 1.1. We say that the solution u of (1)—(3) quenches in a finite
time if there exists a finite time T, such that ||u(z,¢)|linr > 0 for ¢t € [0,T)
but

li t)|ling = 0
t—lg“lq Hu(w7 )Hmf )

where ||u(z,t)|inf = ming<gy<1 u(z,t). The time T is called the quenching
time of the solution u.

The theoretical study of solutions for semilinear parabolic equations
which quench in a finite time has been the subject of investigations of many
authors (see [2], [4]-[7] and the references cited therein). Under some con-
ditions, the authors have proved that the solution u of (1)—(3) quenches in
a finite time and have given some estimations of the quenching time.

In this paper, we are interested in the numerical study of the phenomenon
of quenching using a semidiscrete form of (1)—(3). We give some conditions
under which the solution of a semidiscrete form of (1)—(3) quenches in a
finite time and estimate its semidiscrete quenching time. We also prove
that the semidiscrete quenching time converges to the real one when the
mesh size goes to zero and construct two discrete forms of the problem (1)-
(3) which allow us to obtain some lower bounds of the numerical quenching
time. A similar study has been undertaken by some authors concerning
the phenomenon of blow-up (see [1]). In [3], we may also find some results
about numerical extinction.

This paper is organised as follows. In the next Section, we give some
Lemmas which will be used later. In Section 3, under some conditions, we
prove that the solution of a semidiscrete form of (1)—(3) quenches in a finite
time and estimate its semidiscrete quenching time. In Section 4, we study
the convergence of the semidiscrete quenching time. In Section 5, we study
some results of Section 3 taking two discrete forms of (1)—(3). Finally, in
the last section, we give some numerical results to illustrate our analysis.

2. THE SEMIDISCRETE PROBLEM

In this section, we give some lemmas that will be used later.

Let I be a positive integer, and define the grid z; = th, 0 < ¢ < I, where
h = 1/I. Let Un(t) = (Uo(t),Us(t),...,Usr(t))T. We approximate the
solution u of the problem (1)—(3) by the solution Up(¢) of the semidiscrete
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equations
d[i;t(t) =0U;(t) - U P(t), 1<i<I—1, te(0,TH), (4)
UO(t) =1, Uf(t) =1, te (O7T¢;L)7 (5)
U;(0)=U >0, 0<i<I, (6)

whereUiO<1for1§i§I—1,
Ui+1(t) — 2Uz(t) + Uifl(t)

h? '
Here, (0,7}") is the maximal time interval on which [|Up(t)]|ins > 0, where
[Un(t)ling = ming<i<s Us(t). If T} is finite, then we say that the solution
Un(t) of (4)~(6) quenches in a finite time and the time T is called the

semidiscrete quenching time of the solution Uy(t).
The following lemma is a semidiscrete version of the maximum principle.

82U, (t) =

Lemma 2.1. Let Qap € CO([OvT]aRIJrl) and let Vh € Cl([ovT)7RI+1) be
such that

d‘g;f)_cs?m(twai(tm(t) >0, 1<i<I—1, te(0.T), (7)
VO(t) Z Oa Vl(t) Z 07 te (O7T)7 (8)
Vi(0) >0, 0<i<I. (9)

Then Vi(t) >0,0<4¢<1I,te€(0,T).

Proof. Let Ty < T and introduce the vector Zp,(t) = eV} (t), where A is
such that a;(t) — A > 0 for t € [0,Tp], 0 <7 < I. Let
Zi(t).

St L4,USIS

For ¢ = 0,...,I, the function Z;(¢) is continuous on the compact [0, Tp].
Then there exist ig € {0,1,...,I} and t¢ € [0,Tp] such that m = Z;, (¢o).
If ig =0orig =1, then m > 0. If ip € {0,1,...,I — 1}, we observe that

dZi, (to) Zio(to) = Ziy(to —F) _

ilt)_ y Zullo)=Zualo=H) w0
Zig1(to) = 2Ziq (to) + Ziy—1(to)
P2 (to) = = 2 : > 0. (11)
Due to (7), a straightforward computation reveals that
dZ; (t
# — 0% Z;, (to) + (v (to) — N) Ziy (to) > 0. (12)

It follows from (10)—(11) that (v, (to) — A)Zs,(to) > 0, which implies that
Z;,(to) > 0 because o, (to) — A > 0. We deduce that V3, (t) > 0 for ¢ € [0, Tp]
and the proof is complete. |

The lemma below shows a property of the semidiscrete solution.
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Lemma 2.2. Let Up(t) be the solution of (4)—~(6). Then we have
Us(t) <1, 1<i<I—1, te(0,T]). (13)

Proof. Let to € (0,T)") be the first time ¢ > 0 such that U;(t) < 1 for
1<i<I-1,t€(0,ty) but Uj(to) =1 for a certain j € {1,...,1 —1}. We
have

dU;(to) Uj(to) — Uj(to — k)

= 1 >
@ e k =0
52U, (to) = Uit1(to) = 2U;(to) + Uja(to) _ g 4¢ 4 <j<I-1,

h2
which implies that

dU,(to) _
Zlit — 52Uj(t0) + Uj p(to) > 0.
But this contradicts (4) and the proof is complete. O

Another version of the maximum principle for semidiscrete equations is
the following comparison lemma.

Lemma 2.3. Let f € C°(R x R,R). If Vj,, W), € C1([0,T],RI*T1) are
such that

WO 2t + 70G0,0) <
< %—52Wi(t)+f(wi(t),t)7 1<i<I-1, te(0,T), (14)
Vo(t) < Wo(f), V](LL) < W[(f), t e (07T)7 (15)
Vi(0) < W;(0), 0<i<I, te(0,T), (16)

then V;(t) < W;(t) for 0 <i<1I,t€[0,T].

Proof. Let Zp(t) = Wi(t) — Vi (t) and let to be the first ¢ > 0 such that
Zi(t) > 0 for t € [0,¢0), 0 < i < I, but Z;,(to) = 0 for a certain iy €

{0,...,I}. If ig = 0 or 49 = I, we have a contradiction because of (15).
If ig € {1,...,I — 1}, we obtain
Zio(t0) _ 1y, Zinlto) = Zin(to = k) _
dt k—0
and
Z; to) —2Z;, (1 Zig—1(t

5274, (to) = o+1(t0) ;;2( 0) + Zipalto) o

which implies that
dZ;, (t

ol10) 527, (10) + (Wi 10),t0) — (Vi t0) 10) < 0.

This inequality contradicts (14) which ends the proof. O

The following results show some properties of the semidiscrete solution.
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Lemma 2.4. Let Uy, be the solution of (4)—(6) such that
I
Ui(0) = Up_i(0), 0<i<I, Up1(0)<U;(0), 0<i< Eb} 1. (17)

Then we have for t € (0,T})

Upr_i(t) = Us(t), 0<i<I, Uipi(t) <Ui(t), 0<i< E[é} ~1, (18)

where E[é] 1s the integer part of the number é
Proof. Let V3, be such that V;(t) = Uy_;(¢) for 0 < i < I and let Wj(t) =
Un(t) — V3, (¢). It is not hard to see that there exists 6; € (U;, W;) such that
% — 82W +pb; P W, = 0,
Wo(t) = Wi(t) =0,
W;(0) = 0.
It follows from Lemma 2.1 that
Wi(t)=0 for t e (0,T)), 0<i<I.
From Lemma 2.2, we have
Ui(t) <1, for 1<i<I—1, te(0,T)). (19)
<

Let ¢1 be the first ¢ > 0 such that U;41(t) < U;(t) for t € (0,t1), 1 < ¢
E[£] -1, but

I
Ups1(t1) = Us(ty), for a certain k = o,...,E[ﬂ ~ 1 (20)

Without loss of generality, we may suppose that &k is the smallest integer
which verifies (20).

If £ =0, then Uy(t1) = Uo(t1) = 1, which contradicts (19).

If k= L...,E[é] — 2, then we have

d . U, —Ug)(t1) — (U, —Uk)(ty — k
a (UkJrl _ Uk)(t1> _ llli% ( k+1 k)( 1) ](€ k+1 k)( 1 ) < 0’

and

82 (Up1 — Up)(t) =

~ (Ukg2 = Ug)(t1) = 2(Ugs1 = Ug)(t1) + (Ug = Ug—1)(t1) 50
= h2 b

which implies that
d(Ug+1 — Ug)(t1)
dt
But this contradicts (4).
If k= E[£] — 1, then

Urt2(t1) = Uiz () = Up_grzy - (0).

= 8* (U1 = Un) (tr) + Uy (t1) = Uy P (1) < 0.
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If I is even, then Ugyo(t1) = Upizj-1 = Uy (t1), which implies that

(U — Ug—1)(t1)

- > 0.

8 (Uk1 = Up)(t) =
If I is odd, then
Uk+2(t1) = UI_E[%}_l = UE[%]_l(t) = Uk+1(t1)a
which leads to 6%(Ug41 — Uk)(t1) = (U’“—_U}f{”ﬁ > 0. It is easy to see that

d(Ug+1 — Ug)(t1)
dt
which contradicts (4). This ends the proof. O

= 8*(Upgr — Up)(t1) + U F (1) — U, P(t) <0,

To end this section, let us give a property of the operator 62.
Lemma 2.5. Let Vj, and U, € C1([0,T],RI*T1). If
SHUNST (Vi) >0, and 6 (U;)d~(V;) >0, (21)
then
S2(UV;) > U;0% (Vi) + Vid2(Uy),
where §*(U;) = LH2Y gnd 6-(U;) = Y220,
Proof. A straightforward computation yields
h26%(U;Vi) = Uiz1Vigr — 2U;Vi + Ui Vig =
= Uig1=Us) (Vi1 = Vi) +Vi(Uiz1 = U;) +U; (Vi1 = Vi) + U V; —2U, Vi+
+ (Uic1 = Ui)(Vier = Vi) + Uiy = Ug)Vi + Ui(Viey = Vi) + UiV,
which implies that
*(UiVi) = 65 (U)a+ (Vi) + 67 (Ui)d™ (Vi) + Uid* (Vi) + V6% (Us).
Using (21), we obtain the desired result. O

3. QUENCHING IN THE SEMIDISCRETE PROBLEM

In this section, under some assumptions, we show that the solution Uy
of (4)—(6) quenches in a finite time and estimate its semidiscrete quenching
time. We need the following result.

Lemma 3.1. Let U, € R be such that U, > 0. Then we have
S2UTP > —pU; PR
Proof. Applying Taylor’s expansion, we get

_ e plp+1), _,_
52Ui P = —pU,; p 152Ui + (Ui-i-l — Ui)Q%ei p=2 +
p(p + 1) —p—2

+(Ui—1 = Uy) opz i
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where 60; is an intermediate value between U; and U;;1 and n; the one
between U;_1 and U;. Use the fact that U, > 0 to complete the rest of the
proof. O

The statement of our first result on the quenching time is the following.

Theorem 3.1. Let Uy, be the solution of (4)—(6) and assume that there
exists a constant A > 0 such that
§2U;(0) — U, P(0) < —Asin(ihm)U; *(0),
(22)

1— |UL(0) ]| > 0.

inf

4 |
Al(p+1)
If (17) holds, then Uy, quenches in a finite time th with the following esti-
mation )

2 47
T < =5 I (1= RO
¢ STz Ap+1) U (0) |15
Proof. Let (0,T)") be the maximal time interval on which ||Uy,(£)]|ins > 0.
Our aim is to show that th is finite and satisfies the above inequality. From

Lemma 2.4 we have

I
Ur_i(t) = Us(t), 0<i<I, Upi(t) <Ui(t), 0<i< E[ﬂ 1. (23)
Introduce the function Jj(t) such that

Ji(t) = %Ui(t) FCUTP(), 0<i<I,

where C;(t) = Ae *!sin(ihm) with A, = 27—220;(”—}” It is not hard to see
that
d

- Cilt) - §2Cy(t) = 0, (24)
Cr_i()=Ci(t), 0<i<I, Cpi(t)>Cit), ogigE[a 1. (25)
From (23), (25) we get
§T(U; 7)ot (Ci) >0, and 6 (U, P)5(C;) > 0. (26)
A straightforward computation gives
dJi(t) o d® _p dC(t) _ —p—1 AU;(t)
— 0 Ji(t) = el Ui(t) + U; 7 —pC;(t)U; et
du;(t) _
_ 52 7 _ 52 . -p
6252 ) = 81 (CinU; P 1),

It follows from (26), Lemma 2.5 and Lemma 3.1 that
SCi(U P (1) = 8*(Ci(t))U; () = pCa()U; P ()8 Us(t).  (27)

2

We deduce that

dJi(t) o, a
a0l sy (

dU;(t)
dt

- 52U1-(t)) -



Numerical Quenching for a Semilinear Parabolic Equation 97

e (200

From (4) and (24) we arrive at
dJ;(t)
Cdt

Obviously, Jy(t) = 0 and J;(t) = 0. From the assumption (22), we get

Jr(0) < 0. It follows from Comparison Lemma 2.1 that Jp,(¢) < 0, therefore
we have

- 52U1-(t)) FUTP() (d(’;# - 5201-@)).

— B2t < pUTPTHB)i(t), 1<i<I—1, te(0,Th).

%Ui(t) < —Ae Mt sin(ihm)U;P(t), 0<i<I,

which implies that Ug[%] (t)dUE[%] (t) < —Ae Mtsin(E[L]hm)dt. We observe

that § < A < 272, sin(E[4]hm) > L for h small enough. Therefore, we
get
UP, (1)dU g1 (1) < _A gy (28)
E[L] i\t =75 ¢ :

From Lemma 2.4, Up1(t) = UL (t)|lint- Integrating the inequality (28)
over (0,T}) and using the fact that UE[é](O) = ||Un(0)|int, We arrive at
2 472
< -1 (1—7 Un(0 PH)
¢ =7 321 Ap+1) UL O)l5ns )+
which implies that T < co because of (22). This ends the proof. O
Remark 3.1. If there exists a constant ¢g > 0 such that
oA
Alp+1)
then integrating the inequality (28) over (to,T)') we obtain
2 472
Th g < -2 1 (1——
L A S ey

The theorem below gives a lower bound of the semidiscrete quenching
time.

20| U (to) |24 > 0,

inf

inf

2
e—27r to ||Uh(t0)||p+1>-

Theorem 3.2. Let Uy be the solution of (4)—(6). Assume that Uy,
quenches at the time th. Then we have the following estimate

rh s 10O
7 p+1

Proof. Introduce the function a(t) defined by
1
o) = (IUO)I5E" = (0 +1)e) 7

inf
and let W},(t) be a vector such that W;(¢) = a(t). A straightforward com-
putation reveals that
d

7 Wi(t) — °Wi(t) + W, P(t) =0, 1<i<I—1,
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Wo(t) < Up(t), Wi(t) <Ur(t), Wi(0) <U;(0), 0<i<I.
Lemma 2.1 implies that W;(t) < U;(t). We deduce that

OO int > ([ULO)|EE = (p+ 1)) 741

inf

+1
This implies that if ¢ < ”th()%, then [|Ux(t)[lint > 0. Therefore T >

+1
%, and the proof is complete. |

4. CONVERGENCE OF THE SEMIDISCRETE QUENCHING TIME

In this section, under some assumptions, we prove that the semidiscrete
quenching time converges to the real one when the mesh size goes to zero.

Firstly, we show that for each fixed time interval [0, T] where the contin-
uous solution u obeys ||u(z,t)||ins > 0, the semidiscrete solution Uj, approx-
imates u as the mesh parameter h goes to zero.

Theorem 4.1. Assume that (1)—~(3) has a solution w € C*+1([0,1]x[0,T])
such that mingejo ) |u(z,t)|lint = p > 0 and the initial condition at (6)
satisfies

1US = un(0)]|oo = 0(1) as b — 0, (29)
where up(t) = (u(zo,t),...,u(xr,t))T. Then, for h sufficiently small, (4)-
(6) has a unique solution Uy, € C1([0,T],RITY) such that

ax [UL(t) — un(t)]|oc = O(|UR — un(0)]|so + h*) as h—0.  (30)

Proof. The problem (4)-(6) has for each h, a unique solution U, €
CH([0,T),RT*Y). Let t(h) be the greatest value of ¢ > 0 such that

1UA(t) = un(®) oo < g for ¢ € (0,t(h)). (31)

The relation (29) implies that ¢(h) > 0 for h sufficiently small. Let t*(h) =
min{¢(h),T}. From the triangle inequality we get

1O lint = lun(®)llint = [[U(t) = un(t)llo for t € (0,27 (h)),
which implies that

10l 2 p = £ = £ for te (0,¢"(h)),

Consider the error of discretization
eh(t) = Uh(t) - uh(t).
By a direct calculation, we have

d 2 _ —p—1 h2 ~
dt €4 (t) 6 €; (t) - pGZ(t) €i (t) + 12 Ugzzx (xza t);

where ©; is an intermediate value between U;(t) and wu(x;,¢). Let M > 0
be such that

TXTTX 7t o0 _p_l
W <M for te0,T], p(g) < M.
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It is not hard to see that

%ei(t) —0%ei(t) < Mle;(t)| + Mh?, t € (0,t*(h)).

Introduce the vector zj; such that
zi(t) = eMIV(UR — up(0)]| oo + ME?), 0<i<I.
A straightforward computation yields

%zi(t) —0%2;(t) > Mzi(t)| + Mbh?, 1<i<I—1, te(0,t"(h)),

20(t) > eo(t), zr(t) > er(t), te€ (0,t"(h)),
2:(0) > ¢e;(0), 0 <i<I.

It follows from Comparison Lemma 2.3 that

zi(t) > e;(t), t € (0,t*(h)), 0<i<I.
By the same way, we also prove that

zi(t) > —ei(t), t € (0,t*(h)), 0<i<I,
which implies that

1UR(8) = un()|oc < M FV(UR = un(0)]loc + MA?), t € (0, (R)).

Let us show that t*(h) = T. Suppose that T > t(h). From (31) we obtain

P
5 = 1U(t(R)) = un(t(h))]lc < eMIDT(|UR = up(0)]| oo + MA3).
It is not hard to see that

eMAIDT (1 UY — 1,(0)]| oo + Mh?) — 0 when h — 0.

We deduce that § < 0, which is impossible. Consequently, t*(h) = T" and
the proof is complete. O

Now we are in a position to prove the main result of this section.

Theorem 4.2. Suppose that the solution u of (1)—(3) quenches in a finite
time T, such that u € C**([0,1] x [0,T,)) and the initial condition at (6)
satisfies

102 = up(0)||oo = o(1) as h — 0.
Under the assumptions of Theorem 3.1, the solution Ux(t) of (4)—(6) quen-
ches in a finite time Tg and we have

lim T3 =T,
Proof. Let € > 0. There exists a constant R > 0 such that
2 472
2 (- A
w2 Alp+1)

Since tli% lu(z,t)|[int = 0, there exists Ty < T, such that |11 —Tg| < 5 and
—iq

x”“) < g for x € [0, R].

w(z, t)|lint < & for t € (T, T,). Let T = TI—;FTQ Obviously |lu(x,t)||inf <
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£ for t € [T1, T»]. It follows from Theorem 4.1 that ||Ux(t) — up(t)]eo < &
for ¢ € [Ty, T»]. Using the triangle inequality, we obtain

1UR() ling < [|U () = un()lloo + [[un(®)]|ing <
R R
<—+—=R for te [Tl,TQ].
2 2
From Theorem 3.1, Uy (t) quenches in a finite time T;I. We deduce from

Remark 3.1 that

2 471'2 2 9
Th Tyl < -2 1 (1—— —27*T2 ||, (T P+1) <
| q 2| = r2 n A(p+1) € HUh( 2)” < 9
which implies that |T)" — T,| < [TP = To| + [To — Ty| < § 4+ § =&, and we
have the desired result. O

5. FULL DISCRETIZATIONS

In this Section, we study the quenching phenomenon using full discrete
schemes (explicit and implicit) of (1)-(3). At first, we approximate the
solution u(z, t) of (1)~(3) by the solution U™ = (U, U, ...,UM)T of the
following explicit scheme

K3

Aty,

A n n n
Yi Y 62Ui( ) (Ui( ))—p—lUi( +1)7 1<i<I-1, (32
um =1, v =1, (33)
U =g, 0<i<I, (34)

where n > 0, At,, = min{%2,7'||U,(Ln)||pH} with 7 = const € (0,1).

inf

We need the following definition.

Definition 5.1. We say that the solution U,En) of (32)—(34) quenches in
a finite time if

”Ulgn)Hinf >0 for n >0,

n—1
lim 1O [l = 0, T(c0) = lim YAl < oo
j=0

The value T'(c0) is called the numerical quenching time of the solution U,g").

Theorem 5.1. If the solution U,(Ln) of (32)—(34) quenches in a finite time
T(c0), then we have
N2 U, "

>
T T A e ON (L = 1)

0 1
TIU 1L

. . . . h2
where N is an integer which satisfies % < Trwhw -
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Proof. By a routine calculation, (32) gives
gt - 22 e PO . El “EUT G cicron
1+ At, (U;™)—p-1

Let ig be such that Ui(on) = ||U,§")||inf. Then we have

S, + UM ) + (1 258)|U™ ine

1+ At, | U |

)

n+1
U™ e =

which implies that

n U(n) inf
||U}5 +1)||inf > || h |(|n)f —
1+ At | U |k

inf

().
Since At,, < 7'||UhAt”||p"’1 we deduce that ||U}§n+1)||inf > _”Uh+ lling

inf =

, and by

Om
iteration we arrive at ||U}§n)||inf > % We deduce that

o0 h2 U(O) pt+l
> otz min {2 0 R
2 @+ )

which implies that
o 0
T U |

> Nh? .
S oAt > ——+ _ L —h Tinf
— +11n
n=0 2 n=N+1 [(1 + T)p ]
Therefore, we have
0
T L 4 L

> Nh
T = Aty > + ,
(OO) 7;0 - 2 (1 + T)(N+1)(p+1) (1 _ (1+7-1)p+1)

which leads us to the desired result. O

Now, approximate the solution u of (1)—(3) by the solution U,En) =

(U, UL, ..., UMT of the following implicit scheme
U(n-i—l) _ Ul(n)

2

= 52Ut — iy r g™t 1 <i<I1—1, (35)

Aty,
um =1, t" =1, n>0 (36)
0 - I ] )
U =¢;, 0<i<I, (37)
where n > 0, At,, = T||U,§n)||ﬁ;§1, with 7 = const € (0,1).
We can write (35) in the following form
Apy ) = ), (38)
where
n n Atn n n n Atn T
W}E ) — (Ul( )+ ?,UQ( ),...,U§7)2,U;7)1+?) ;
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Vh(nJrl) _ (U1(n+1),U2(n+1), U(n+1), I(r_Hl»l))T

e Up_y ,
Aty
C1 —2W 0 ce 0
At, Aty
e 2 T 0
n Atn
A§1 ) = 0 _h—2 C3
. Aty
_z
Aty
0 s 0 —2? Cr—-1

with ¢; = 1+ 28% 4 At, (U™)=P—1,

Let us show that the problem (35)—(37) has a unique solution and, more-
over, if U]* > 0, ||U,5n)||OO > 0, then U™ > 0 and ||U,(l"+1)||oO > 0. Since
ai; = ¢; > 0 and a;; < 0if ¢ # j, we need only to prove that the spectral
radius p(Z}') < 1, where

Zy = (X;) 'Ry, Xj =diag(A}), Aj = Xj - Rj.

A direct calculation yields

Aty
0 2— 0 e 0
C2 h2
At, 0 At, 0
C1 h? C3 h?
At,
Zh (6] h2
At,
A Cr—1 h2
tn
0 e 0 2——— 0
C[,th

Using Gerschgorin’s Theorem, we can obtain the following bound on the
eigenvalues of Z}' : |y;| < %} < 1, where v; are eigenvalues of Z}', which

implies that p(Z}') < 1.

Theorem 5.2. If the solution U}(l") of (35)—(37) quenches in a finite time,
TNUE N5 Aty

inf

then its numerical quenching time T (c0) satisfies T'(c0) > E=Sma=

Proof. The equality (35) may be written in the following manner

Abn Atn(U}"))*Pfl)Uf"“) _ Bty | At

(1+25; pz it T e

Let 79 be such that Ui(on) = ||U,§")Hinf. We obtain

Atn n+1 Atn n+1 Atn n+1 n
(14255 + ) IO Plhae = SO + SO + 10
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which implies that

Aty ntl Aty (nt1 n
(1255 + 7)1 P lhine = 25500 fing + 105 o
(n) .
We deduce that ||U}(ln+l)Hinf > %, and by iteration we arrive at
o
HU,E")HM > % Therefore, we get

0 (0) jp+1
TIUp " lint
T(00) > Y (1 7)o

n=0
which leads us to
U (| (1 + 7)1+

inf
QI+rpi—1

and we have the desired result. O

T(c0) =

6. NUMERICAL EXPERIMENTS

In this section, we consider the problem (1)—(3) in the case where p =1
and ug(xz) = 1 — 0.95sin(mx). We use the explicit scheme (32)—(34) and
the implicit scheme (35)—(37). In both cases, we take as initial condition
©; = (1 —0.95  sin(wih)) and 7 = h2. In Tables 1 and 2, in the rows we
present the numerical quenching times, the values of n, CPU times and the
orders of the approximations corresponding to the meshes of 16, 32, 64, 128.

n—1
We take for the numerical quenching time T™ = > At; which is computed
§=0
at the first time when At, = |T™ — T""1| < 10716, The order (s) of the
method is computed from
_ Llog((Tun — Ton)/(Ton — Th))
log(2)

S

TABLE 1. Numerical quenching times, numbers of itera-
tions, CPU times (seconds) and orders of the approxima-
tions obtained with the explicit Euler method

I ™ n CPU time | s
16 | 0.002292 | 3454 0,8 -
32 | 0.002361 | 13535 03 -
64 | 0.002404 | 52517 20 0.68
128 | 0.002401 | 202298 687 3.85
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TABLE 2. Numerical quenching times, numbers of itera-
tions, CPU times (seconds) and orders of the approxima-
tions obtained with the implicit Euler method

I ™ n CPU time | s
16 | 0.002287 | 3458 01 -
32 | 0.002374 | 13547 07 -
64 | 0.002407 | 52529 109 1.40
128 | 0.002403 | 202309 3300 3.05
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