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Abstract. In this paper, we prove the well-posedness for a mixed nonho-
mogeneous problem for a semilinear wave equation associated with a linear
integral equation at the boundary.
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1. Introduction

We investigate the following problem: find a pair (u, Q) of functions
satisfying

utt − µ(t)uxx + F (u, ut) = f(x, t), 0 < x < 1, 0 < t < T, (1.1)

u(0, t) = 0, (1.2)

−µ(t)ux(1, t) = Q(t), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.4)

where F (u, ut) = K|u|p−2u+λ|ut|q−2ut with p, q ≥ 2, K, λ given constants,
u0, u1, f , µ are given functions satisfying conditions specified later, and the
unknown function u(x, t) and the unknown boundary value Q(t) satisfy the
following integral equation

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds (1.5)

with g, k, K1, λ1 given functions.
This problem is a mathematical model describing the shock of a rigid

body and a viscoelastic bar (see [1], [2], [8], [9], [10], [11]) considered by
several authors.

In [1], with F (u, ut) = Ku + λut, µ(t) ≡ a2, f(x, t) = 0, An and Trieu
studied the equation (1.1)1 in the domain [0, l] × [0, T ] when the initial
data are homogeneous, namely u(x, 0) = ut(x, 0) = 0 and the boundary
conditions are given by

{
Eux(0, t) = −f(t),

u(l, t) = 0,
(1.6)

where E is a constant.
In [6], Long and Dinh considered the problem (1.1)–(1.4) with λ1(t) ≡ 0,

K1(t) = h ≥ 0, µ(t) = 1, the unknown function u(x, t) and the unknown
boundary value Q(t) satisfying the following integral equation

Q(t) = hu(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds. (1.7)

We note that Eq. (1.7) is deduced from a Cauchy problem for an ordinary
differential equation at the boundary x = 1.

In [2], Bergounioux, Long and Dinh proved the unique solvability for
the problem (1.1), (1.4), where µ(t) ≡ 1, F (u, ut) is linear and the mixed
boundary conditions (1.2), (1.3) replaced by

ux(0, t) = hu(0, t) + g(t)−
t∫

0

k(t− s)u(0, s) ds, (1.8)
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ux(1, t) + K1u(1, t) + λ1ut(1, t) = 0. (1.9)

In [12], Santos studied the asymptotic behavior of the solution of the prob-
lem (1.1), (1.2), (1.4) in the case where F (u, ut) = 0 associated with a
boundary condition of memory type at x = 1 as follows

u(1, t) +

t∫

0

g(t− s)µ(s)ux(1, s)ds = 0, t > 0. (1.10)

In [8], Long, Dinh and Diem obtained the unique existence, regularity
and asymptotic expansion of the solution of the problem (1.1)–(1.4) in the
case where µ(t) = 1, Q(t) = K1u(1, t) + λ1ut(1, t), ux(0, t) = P (t), where
P (t) satisfies (1.7) instead of Q(t).

In [9]–[11], Long, Lê and Truc gave the unique existence, stability, reg-
ularity in time variable and asymptotic expansion for the solution of the
problem (1.1)–(1.5) when F (u, ut) = Ku + λut.

The present paper consists of two main parts. In Part 1, we prove a the-
orem on existence and uniqueness of a weak solution (u, Q) of the problem
(1.1)–(1.5). The proof is based on a Galerkin type approximation associated
with various energy estimates type bounds, weak convergence and compact-
ness arguments. The main difficulties encountered here are the boundary
condition at x = 1 and the presence of the nonlinear term F (u, ut). In order
to overcome these particular difficulties, stronger assumptions on the initial
conditions u0, u1 and parameters K, λ will be imposed. It is remarkable
that the linearization method from the papers [3], [7] can not be used in
[2], [5], [6]. In the second part we show the stability of the solution of the
problem (1.1)–(1.5) in suitable spaces. The results obtained here may be
considered as generalizations of those in An and Trieu [1] and in Long, Dinh,
Lê, Truc and Santos ([2], [3], [5]–[12]).

2. The Existence and Uniqueness of the Solution

First we introduce some preliminary results and notation used in this
paper. Put Ω = (0, 1), QT = Ω× (0, T ), T > 0. We omit the definitions of
usual function spaces: Cm(Ω), Lp = Lp(Ω), W m,p(Ω). We denote W m,p =
W m,p(Ω), Lp = W 0,p(Ω), Hm = W m,2(Ω), 1 ≤ p ≤ ∞, m = 0, 1, . . . .

The norm in L2 is denoted by ‖ · ‖. We also denote by 〈· , · 〉 the scalar
product in L2 or the dual scalar product of a continuous linear functional
with an element of a function space. We denote by ‖ · ‖X the norm of a
Banach space X and by X ′ the dual space to X . We denote by Lp(0, T ; X),
1 ≤ p ≤∞, the Banach space of the real measurable functions u : (0, T ) →
X such that

‖u‖Lp(0,T ;X) =

( T∫

0

‖u(t)‖p
X dt

)1/p

< ∞ if 1 ≤ p < ∞,
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and

‖u‖L∞(0,T ;X) = ess sup
0<t<T

‖u(t)‖X if p = ∞.

Let u(t), u′(t) = ut(t), u′′(t) = utt(t), ux(t), uxx(t) denote u(x, t), ∂u
∂t (x, t),

∂2u
∂t2 (x, t), ∂u

∂x (x, t), ∂2u
∂x2 (x, t), respectively.

We put

V =
{
v ∈ H1 : v(0) = 0

}
, (2.1)

a(u, v) =
〈∂u

∂x
,
∂v

∂x

〉
=

1∫

0

∂u

∂x

∂v

∂x
dx. (2.2)

Here V is a closed subspace of H1 and ‖v‖H1 and ‖v‖V =
√

a(v, v) are two
equivalent norms on V .

Then we have the following lemma.

Lemma 1. The imbedding V ↪→ C0([0, 1]) is compact and

‖v‖C0([0,1]) ≤ ‖v‖V (2.3)

for all v ∈ V .

We omit the detailed proof because of its obviousness.
The process is continued by making the following essential assumptions:

(H1) K, λ ≥ 0;

(H2) u0 ∈ V ∩H2, and u1 ∈ H1;

(H3) g, K1, λ1 ∈ H1(0, T ), λ1(t) ≥ λ0 > 0, K1(t) ≥ 0;

(H4) k ∈ H1(0, T );

(H5) µ ∈ H2(0, T ), µ(t) ≥ µ0 > 0;

(H6) f, ft ∈ L2(QT ).

Then we have the following theorem.

Theorem 1. Let (H1)–(H6) hold. Then for every T > 0 there exists a

unique weak solution (u, Q) of the problem (1.1)–(1.5) such that




u ∈ L∞
(
0, T ; V ∩H2

)
∩ Lp(QT ),

ut ∈ L∞
(
0, T ; V

)
∩ Lq(QT ), utt ∈ L∞

(
0, T ; L2

)
,

u(1, · ) ∈ H2(0, T ), Q ∈ H1(0, T ).

(2.4)

Remark 1. By L∞(0, T ; V ) ⊂ Lp(QT ) ∀p, 1 ≤ p < ∞, it follows from
(2.4) that the component u in the weak solution (u, Q) of the problem (1.1)–
(1.5) satisfies

{
u ∈ C0

(
0, T ; V

)
∩ C1

(
0, T ; L2

)
∩ L∞

(
0, T ; V ∩H2

)
,

ut ∈ L∞(0, T ; V ).
(2.5)
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Proof. The proof consists of Steps 1–4.
Step 1. The Galerkin approximation. Let {ωj} be a denumerable base

of V ∩H2. Look for the approximate solution of the problem (1.1)–(1.5) in
the form

um(t) =

m∑

j=1

cmj(t)ωj , (2.6)

where the coefficient functions cmj satisfy the following system of ordinary
differential equations

〈u′′m(t), ωj〉+ µ(t)〈umx(t), ωjx〉+ Qm(t)ωj(1) +
〈
F

(
um(t), u′m(t)

)
, ωj

〉
=

= 〈f(t), ωj〉, 1 ≤ j ≤ m, (2.7)

Qm(t)=K1(t)um(1, t)+λ1(t)u
′

m(1, t)−g(t)−
t∫

0

k(t−s)um(1, s) ds, (2.8)





um(0) = u0m =

m∑

j=1

αmjωj → u0 strongly in V ∩H2,

u′m(0) = u1m =

m∑

j=1

βmjωj → u1 strongly in H1.

(2.9)

From the assumptions of Theorem 1, the system (2.7)–(2.9) has a solution
(um, Qm) on some interval [0, Tm]. The following estimates allow one to take
Tm = T for all m.

Step 2. A priori estimates. A priori estimates I. Substituting (2.8) into
(2.7), then multiplying the jth equation of (2.7) by c′mj(t) and summing up
with respect to j, we get

1

2

d

dt
‖u′m(t)‖2 +

1

2
µ(t)

d

dt
‖umx(t)‖2+

+

[
K1(t)um(1, t)+λ1(t)u

′

m(1, t)−g(t)−
t∫

0

k(t−s)um(1, s) ds

]
u′m(1, t)+

+
〈
F

(
um, u′m

)
, u′m(t)

〉
= 〈f(t), u′m(t)〉. (2.10)

Integrating (2.10) with respect to t, we get after some rearrangements

Sm(t) = Sm(0) +

t∫

0

µ′(s)‖umx(s)‖2 ds +

t∫

0

K ′

1(s)u
2
m(1, s) ds+

+ 2

t∫

0

g(s)u′m(1, s) ds + 2

t∫

0

〈f(s), u′m(s)〉 ds+

+ 2

t∫

0

u′m(1, s)

( s∫

0

k(s− τ)um(1, τ) dτ

)
ds, (2.11)
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where

Sm(t) = ‖u′m(t)‖2 + µ(t)‖umx(t)‖2 + K1(t)u
2
m(1, t) +

2K

p
‖um(t)‖p

Lp+

+ 2λ

t∫

0

‖u′m(s)‖q
Lq ds + 2

t∫

0

λ1(s)|u′m(1, s)|2 ds. (2.12)

Using the inequality

2ab ≤ βa2 +
1

β
b2, ∀ a, b ∈ R, β > 0, (2.13)

and the inequalities

Sm(t) ≥ ‖u′m(t)‖2 + µ0‖umx(t)‖2 + 2λ0

t∫

0

|u′m(1, s)|2 ds, (2.14)

|um(1, t)| ≤ ‖um(t)‖C0(Ω) ≤ ‖umx(t)‖ ≤
√

Sm(t)

µ0
, (2.15)

we will estimate respectively the terms on the right-hand side of (2.11) as
follows

t∫

0

µ′(s)‖umx(s)‖2 ds ≤ 1

µ0

t∫

0

|µ′(s)|Sm(s) ds, (2.16)

t∫

0

K ′

1(s)u
2
m(1, s) ds ≤ 1

µ0

t∫

0

|K ′

1(s)|Sm(s) ds, (2.17)

2

t∫

0

g(s)u′m(1, s) ds ≤ 1

β
‖g‖2

L2(0,T ) +
β

2λ0
Sm(t), (2.18)

2

t∫

0

u′m(1, s)

( s∫

0

k(s− τ)um(1, τ) dτ

)
ds ≤

≤ β

2λ0
Sm(t) +

1

βµ0
T‖k‖2

L2(0,T )

t∫

0

Sm(s) ds, (2.19)

2

t∫

0

〈f(s), u′m(s)〉 ds ≤ ‖f‖2
L2(QT ) +

t∫

0

Sm(s) ds. (2.20)

In addition, from the assumptions (H1), (H2), (H5) and the imbedding H1

↪→ Lp(0, 1), p ≥ 1, there exists a positive constant C1 such that

Sm(0) = ‖u1m‖2 + µ(0)‖u0mx‖2+
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+K1(0)u2
0m(1) +

2K

p
‖u0m‖p

Lp ≤ C1 for all m. (2.21)

Combining (2.11), (2.12), (2.16)–(2.21), we obtain

Sm(t) ≤ C1 +
1

β
‖g‖2

L2(0,T ) + ‖f‖2
L2(QT ) +

β

λ0
Sm(t)+

+

t∫

0

[
1+

1

βµ0
T‖k‖2

L2(0,T )+
1

µ0

(
|µ′(s)|+|K ′

1(s)|
)]

Sm(s) ds. (2.22)

By choosing β = λ0

2 , we deduce from (2.22) that

Sm(t) ≤ M
(1)
T +

t∫

0

N
(1)
T (s)Sm(s) ds, (2.23)

where



M
(1)
T = 2C1 +

4

λ0
‖g‖2

L2(0,T ) + 2‖f‖2
L2(QT ),

N
(1)
T (s) = 2

[
1 +

2

λ0µ0
T‖k‖2

L2(0,T ) +
1

µ0

(
|µ′(s)|+ |K ′

1(s)|
)]

,

N
(1)
T ∈ L1(0, T ).

(2.24)

By Gronwall’s lemma, we deduce from (2.23), (2.24) that

Sm(t) ≤ M
(1)
T exp

( t∫

0

N
(1)
T (s)ds

)
≤ CT , for all t ∈ [0, T ]. (2.25)

A priori estimate II. Now differentiating (2.7) with respect to t, we have

〈u′′′m(t), ωj〉+ µ(t)〈u′mx(t), ωjx〉+ µ′(t)〈umx(t), ωjx〉+ Q′

m(t)ωj(1)+

+
〈
K(p− 1)|um|p−2u′m + λ(q − 1)|u′m|q−2u′′m, ωj

〉
= 〈f ′(t), ωj〉 (2.26)

for all 1 ≤ j ≤ m.
Multiplying the jth equation of (2.28) by c′′mj(t), summing up with respect

to j and then integrating with respect to the time variable from 0 to t, we
have after some persistent rearrangements

Xm(t) = Xm(0) + 2µ′(0)〈u0mx, u1mx〉 − 2µ′(t)〈umx(t), u′mx(t)〉+

+ 3

t∫

0

µ′(s)‖u′mx(s)‖2 ds+2

t∫

0

µ′′(s)〈umx(s), u′mx(s)〉 ds−

− 2

t∫

0

[
K ′

1(s)− k(0)
]
um(1, s)u′′m(1, s) ds−

− 2

t∫

0

[
K1(s) + λ′1(s)

]
u′m(1, s)u′′m(1, s) ds+
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+ 2

t∫

0

u′′m(1, s)

(
g′(s) +

s∫

0

k′(s− τ)um(1, τ) dτ

)
ds−

− 2

t∫

0

〈
K(p− 1)|um(s)|p−2u′m(s), u′′m(s)

〉
ds+

+ 2

t∫

0

〈f ′(s), u′′m(s)〉 ds, (2.27)

where

Xm(t) = ‖u′′m(t)‖2 + µ(t)‖u′mx(t)‖2 + 2

t∫

0

λ1(s)|u′′m(1, s)|2 ds+

+
8

q2
(q − 1)λ

t∫

0

∥∥∥ ∂

∂t

(
|u′m(s)| q−2

2 u′m(s)
)∥∥∥

2

ds. (2.28)

From the assumptions (H1), (H2), (H5), (H6) and the imbedding H1(0, 1) ↪→
Lp(0, 1), p ≥ 1, there exist positive constants D1, D2 depending on µ(0),
u0, u1, K, λ, f such that





Xm(0) = ‖u′′m(0)‖2 + µ(0)‖u1mx‖2 ≤
≤ µ(0)‖u0mxx‖+ K‖u0m‖p−1

L2p−2 + λ‖u1m‖q−1
L2q−2+

+‖f(0)‖+ µ(0)‖u1mx‖2 ≤ D1,

2µ′(0)〈u0mx, u1mx〉 ≤ 2|µ′(0)‖u0mx‖‖u1mx‖ ≤ D2

(2.29)

for all m.
Taking into account the inequality (2.13) with β replaced by β1 and the

following inequalities

Xm(t) ≥ ‖u′′m(t)‖2 + µ0‖u′mx(t)‖2 + 2λ0

t∫

0

|u′′m(1, s)|2 ds, (2.30)

|um(1, t)| ≤ ‖um(t)‖C0(Ω) ≤ ‖umx(t)‖ ≤
√

Sm(t)

µ0
≤

√
CT

µ0
, (2.31)

|u′m(1, t)| ≤ ‖u′m(t)‖C0(Ω) ≤ ‖u′mx(t)‖ ≤
√

Xm(t)

µ0
, (2.32)

we estimate, without any difficulties, the terms in the right-hand side of
(2.27) as follows

−2µ′(t)〈umx(t), u′mx(t)〉 ≤ β1Xm(t) +
1

β1µ2
0

CT |µ′(t)|2, (2.33)
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2

t∫

0

µ′′(s)〈umx(s), u′mx(s)〉 ds≤ CT

β1µ2
0

‖µ′′‖2
L2(0,T )+β1

t∫

0

Xm(s) ds, (2.34)

3

t∫

0

µ′(s)‖u′mx(s)‖2 ds ≤ 3

µ0

t∫

0

|µ′(s)|Xm(s) ds, (2.35)

−2

t∫

0

[
K ′

1(s)− k(0)
]
um(1, s)u′′m(1, s) ds ≤

≤ CT

µ0β1
‖K ′

1 − k(0)‖2
L2(0,T ) +

β1

2λ0
Xm(t), (2.36)

−2

t∫

0

[
K1(s) + λ′1(s)

]
u′m(1, s)u′′m(1, s) ds ≤

≤ 2

µ0β1

t∫

0

[
K2

1 (s) + |λ′1(s)|2
]
Xm(s) ds +

β1

2λ0
Xm(t), (2.37)

2

t∫

0

u′′m(1, s)

(
g′(s) +

s∫

0

k′(s− τ)um(1, τ) dτ

)
ds ≤

≤ β1

2λ0
Xm(t) +

2

β1

[
‖g′‖2

L2(0,T ) +
CT

µ0
T‖k′‖2

L1(0,T )

]
, (2.38)

−2K(p− 1)

t∫

0

〈
|um(s)|p−2u′m(s), u′′m(s)

〉
ds ≤

≤ 2
p− 1√

µ0
K

(
CT

µ0

) p−2

2

t∫

0

Xm(s) ds, (2.39)

2

t∫

0

〈f ′(s), u′′m(s)〉ds ≤ β1

t∫

0

Xm(s) ds +
1

β1
‖f ′‖2

L2(QT ). (2.40)

In terms of (2.27), (2.29), (2.33)–(2.40) we obtain that

Xm(t) ≤ D1 + D2 +
CT

β1µ2
0

|µ′(t)|2 +
CT

β1µ2
0

‖µ′′‖2
L2(0,T )+

+
CT

β1µ0
‖K ′

1 − k(0)‖2
L2(0,T ) +

1

β1
‖f ′‖2

L2(QT )

+ β1

(
1 +

1

2λ0

)
Xm(t) +

2

β1

[
‖g′‖2

L2(0,T ) +
CT

µ0
T‖k′‖2

L1(0,T )

]
+
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+ 2

t∫

0

[
β1 +

3

2µ0
|µ′(s)|+ 1

β1µ0

(
K2

1 (s) + |λ′1(s)|2
)
+

+
p− 1√

µ0
K

(CT

µ0

) p−2

2

] t∫

0

Xm(s) ds. (2.41)

By the choice of β1 > 0 such that

β1

(
1 +

3

2λ0

)
≤ 1

2
, (2.42)

we obtain

Xm(t) ≤ M̃
(2)
T (t) +

t∫

0

N
(2)
T (s)Xm(s) ds, (2.43)

where




M̃
(2)
T (t) = 2D1 + 2D2 +

2CT

β1µ2
0

|µ′(t)|2 +
2CT

β1µ2
0

‖µ′′‖2
L2(0,T )+

+
2CT

β1µ0
‖K ′

1 − k(0)‖2
L2(0,T ) +

2

β1
‖f ′‖2

L2(QT )+

+
4

β1

[
‖g′‖2

L2(0,T ) +
CT

µ0
T‖k′‖2

L1(0,T )

]
,

N
(2)
T (s) = 4

[
β1 +

3

2µ0
|µ′(s)|+ 1

β1µ0

(
K2

1(s) + |λ′1(s)|2
)
+

+
p− 1√

µ0
K

(
CT

µ0

) p−2

2 ]
,

N
(2)
T ∈ L1(0, T ).

(2.44)

From the assumptions (H3)–(H6) and the embedding H1(0, T ) ↪→C0([0, T ])
we deduce that

M̃
(2)
T (t) ≤ M

(2)
T for all t ∈ [0, T ], (2.45)

where M
(2)
T is a positive constant depending on T , D1, D2, CT , µ, β1, g, f ,

K1, λ1. From (2.43)–(2.45) and Gronwall’s inequality we derive that

Xm(t) ≤ M
(2)
T exp

( t∫

0

N
(2)
T (s) ds

)
< DT for all t ∈ [0, T ]. (2.46)

On the other hand, we deduce from (2.8), (2.12), (2.25), (2.28), (2.46) that

‖Q′

m‖2
L2(0,T ) ≤

5DT

2λ0
‖λ1‖2

∞
+

5T 2CT

µ0
‖k′‖2

L2(0,T ) + 5‖g′‖2
L2(0,T )+

+
5DT

µ0

(
‖K1 + λ′1‖2

L2(0,T )‖K ′

1 − k(0)‖2
L2(0,T )

)
, (2.47)

where ‖λ1‖∞ = ‖λ1‖L∞(0,T ).
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Taking into account the assumptions (H3), (H4), we deduce from (2.47)
that

‖Qm‖H1(0,T ) ≤ CT for all m, (2.48)

where CT is a positive constant depending only on T.
Step 3. Limiting process. In view of (2.12), (2.25), (2.28), (2.46) and

(2.48), we conclude the existence of a subsequence of (um, Qm), also denoted
by (um, Qm), such that





um → u in L∞(0, T ; V ) weakly?,

um → u in L∞(0, T ; Lp) weakly?,

u′m → u′ in L∞(0, T ; V ) weakly?,

u′m → u′ in L∞(0, T ; Lq) weakly?,

u′′m → u′′ in L∞(0, T ; L2) weakly?,

um(1, ·) → u(1, ·) in H2(0, T ) weakly,

|um|p−2um → χ1 in L∞(0, T ; Lp/p−1) weakly?,

|u′m|q−2u′m → χ2 in L∞(0, T ; Lq/q−1) weakly?,

Qm → Q̃ in H1(0, T ) weakly.

(2.49)

With the help of the compactness lemma of J.L. Lions ([4, p. 57]) and the
embeddings H2(0, T ) ↪→ H1(0, T ), H1(0, T ) ↪→ C0([0, T ]), we can deduce
from (2.49)1,3,6,7 the existence of a subsequence, still denoted by (um, Qm),
such that





um → u strongly in L2(QT ),

u′m → u′ strongly in L2(QT ),

um(1, ·) → u(1, ·) strongly in H1(0, T ),

u′m(1, ·) → u′(1, ·) strongly in C0[0, T ],

Qm → Q̃ strongly in C0[0, T ].

(2.50)

The remarkable results of (2.8) and (2.50)3−4 help us to affirm that

Qm(t) → K1(t)u(1, t) + λ1(t)u
′(1, t)− g(t)−

t∫

0

k(t− s)u(1, s) ds ≡

≡ Q(t) strongly in C0[0, T ]. (2.51)

On account of (2.50)5 and (2.51), we conclude that

Q(t) = Q̃(t). (2.52)

By means of the inequality
∣∣|x|αx− |y|αy

∣∣ ≤ (α + 1)Rα|x− y|,
∀x, y ∈ [−R, R] for all R > 0, α ≥ 0, (2.53)
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it follows from (2.31) that

∣∣|um|p−2um − |u|p−2u
∣∣ ≤ (p− 1)Rp−2|um − u|, R =

√
CT

µ0
. (2.54)

Hence, it follows from (2.54), (2.50)1 that

|um|p−2um → |u|p−2u strongly in L2(QT ). (2.55)

By the same way, we are able to get from (2.53) with R =
√

DT

µ0

, (2.49)3

and (2.50)2 that

|u′m|p−2u′m → |ut|p−2ut strongly in L2(QT ). (2.56)

As a result, we deduce from (2.55), (2.56) that

F (um, u′m) → F (u, ut) strongly in L2(QT ). (2.57)

Passing to limit in (2.7)–(2.9), by (2.49)1,5, (2.51)–(2.52) and (2.57) we have
(u, Q) satisfying the problem

〈u′′(t), v〉+ µ(t)〈ux(t), vx〉+ Q(t)v(1)+

+〈K|u(t)|p−2u(t) + λ|ut(t)|q−2ut(t), v〉 = 〈f(t), v〉, ∀ v ∈ V, (2.58)

u(0) = u0, u′(0) = u1, (2.59)

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
t∫

0

k(t− s)u(1, s) ds, (2.60)

in L2(0, T ) weakly. Nevertheless, we obtain from (2.42)5, (2.57) and the
assumptions (H5)–(H6), that

uxx =
1

µ(t)

[
u′′ + F (u, ut)− f

]
∈ L∞

(
0, T ; L2

)
. (2.61)

Thus u ∈ L∞
(
0, T ; V ∩H2

)
and the existence result of the theorem is proved

completely.
Step 4. Uniqueness of the solution. We start this part by letting (u1, Q1)

and (u2, Q2) be two weak solutions of the problem (1.1)–(1.5) such that




ui ∈ L∞
(
0, T ; V ∩H2

)
∩ Lp(QT ),

u′i ∈ L∞
(
0, T ; V

)
∩ Lq(QT ), u′′i ∈ L∞

(
0, T ; L2

)
,

ui(1, · ) ∈ H2(0, T ), Qi ∈ H1(0, T ), i = 1, 2.

(2.62)

As a result, (u, Q) with u = u1−u2 and Q = Q1−Q2 satisfies the following
variational problem




〈u′′(t), v〉+ µ(t)〈ux(t), vx〉+ Q(t)v(1)+

+ K
〈
|u1(t)|p−2u1(t)− |u2(t)|p−2u2(t), v

〉
+

+ λ
〈
|u′1(t)|q−2u′1(t)− |u′2(t)|q−2u′2(t), v

〉
=0 ∀ v∈V,

u(0) = u′(0) = 0,

(2.63)
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and

Q(t) = K1(t)u(1, t) + λ1(t)u
′(1, t)−

t∫

0

k(t− s)u(1, s) ds. (2.64)

Choosing v = u′ in (2.63)1 and integrating with respect to t, we arrive at

S(t) ≤
t∫

0

µ′(s)‖ux(s)‖2 ds +

t∫

0

K ′

1(s)u
2(1, s) ds

+ 2

t∫

0

u′(1, s)

( s∫

0

k(s− τ)u(1, τ)dτ

)
ds

− 2K

t∫

0

〈
|u1(s)|p−2u1(s)− |u2(s)|p−2u2(s), u

′(s)
〉
ds, (2.65)

where

S(t) = ‖u′(t)‖2 + µ(t)‖ux(t)‖2 + K1(t)u
2(1, t)+

+ 2

t∫

0

λ1(s)|u′(1, s)|2 ds. (2.66)

Note that

S(t) ≥ ‖u′(t)‖2 + µ0‖ux(t)‖2 + 2λ0

t∫

0

|u′(1, s)|2 ds, (2.67)

|u(1, t)| ≤ ‖u(t)‖C0(Ω) ≤ ‖ux(t)‖ ≤
√

S(t)

µ(t)
≤

√
S(t)

µ0
. (2.68)

We again use the inequalities (2.13) and (2.53) with α = p−2, R = maxi=1,2

‖ui‖L∞(0,T ;V ). Then it follows from (2.65)–(2.68) that

S(t) ≤ 1

µ0

t∫

0

(
‖µ′‖∞ + |K ′

1(s)|
)
S(s) ds +

β

2λ0
S(t)+

+
T

βµ0
‖k‖2

L2(0,T )

t∫

0

S(τ) dτ +
1√
µ0

(p− 1)KRp−2

t∫

0

S(s) ds. (2.69)

Choosing β > 0 such that β 1
2λ0

≤ 1
2 , we obtain from (2.69) that

S(t) ≤
t∫

0

q1(s)S(s)ds, (2.70)
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where




q1(s) =
1

µ0

(
‖µ′‖∞ + |K ′

1(s)|
)

+
2T

βµ0
‖k‖2

L2(0,T )+

+
2√
µ0

(p−1)KRp−2,

q1 ∈ L2(0, T ).

(2.71)

By Gronwall’s lemma, we deduce that S ≡ 0 and Theorem 1 is proved
completely. �

Remark 2. In the case where p, q > 2 and K, λ < 0, the question about
the existence of a solution of the problem (1.1)–(1.5) is still open. However,
we have received the answer when p = q = 2 and K, λ ∈ R published in [11].

3. The Stability of the Solution

In this section we assume that the functions u0, u1 satisfy (H2). By The-
orem 1, the problem (1.1)–(1.5) has a unique weak solution (u, Q) depending
on µ, K, λ, f , K1, λ1, g, k. So we have

u = u(µ, K, λ, f, K1, λ1, g, k), Q = Q(µ, K, λ, f, K1, λ1, g, k), (3.1)

where (µ, K, λ, f, K1, λ1, g, k) satisfy the assumptions (H1), (H3)–(H6) and
u0, u1 are fixed functions satisfying (H2).

We put

=(µ0, λ0) =
{
(µ, K, λ, f, K1, λ1, g, k) : (µ, K, λ, f, K1, λ1, g, k)

satisfy the assumptions (H1), (H3)–(H6)
}
,

where µ0 > 0, λ0 > 0 are given constants.
Then the following theorem is valid.

Theorem 2. For every T > 0, let (H1)–(H6) hold. Then the solutions of

the problem (1.1)–(1.5) are stable with respect to the data (µ, K, λ, f, K1, λ1,
g, k), i.e., if

(µ, K, λ, f, K1, λ1, g, k), (µj , Kj , λj , f j , Kj
1 , λ

j
1, g

j , kj) ∈ =(µ0, λ0),

are such that




‖µj − µ‖H2(0,T ) → 0, |Kj −K|+ |λj − λ| → 0,

‖f j − f‖L2(QT ) + ‖f j
t − ft‖L2(QT ) → 0,

‖Kj
1 −K1‖H1(0,T ) → 0, ‖λj

1 − λ1‖H1(0,T ) → 0,

‖gj − g‖H1(0,T ) → 0, ‖kj − k‖H1(0,T ) → 0

(3.2)

as j → +∞, then
(
uj , u

′

j , uj(1, ·), Qj

)
→

(
u, u′, u(1, ·), Q

)
(3.3)
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in L∞(0, T ; V ) × L∞(0, T ; L2) ×H1(0, T )× L2(0, T ) strongly as j → +∞,

where

uj = u
(
µj , Kj , λj , f j , Kj

1 , λ
j
1, g

j , kj
)
,

Qj = Q
(
µj , Kj , λj , f j , Kj

1 , λ
j
1, g

j , kj
)
.

Proof. First of all, we have that the data
(
µ, K, λ, f, K1, λ1, g, k

)
satisfy





‖µ‖H2(0,T ) ≤ µ?, 0 ≤ K ≤ K?, 0 ≤ λ ≤ λ?,

‖f‖L2(QT ) + ‖ft‖L2(QT ) ≤ f?,

‖K1‖H1(0,T ) ≤ K?
1 , ‖λ1‖H1(0,T ) ≤ λ?

1,

‖g‖H1(0,T ) ≤ g?, ‖k‖H1(0,T ) ≤ k?,

(3.4)

where µ?, K?, λ?, f?, K?
1 , λ?

1, g?, k? are fixed positive constants. Therefore,
the a priori estimates of the sequences {um} and {Qm} in the proof of
Theorem 1 satisfy

‖u′m(t)‖2 + µ0‖umx(t)‖2 + 2λ0

t∫

0

|u′m(1, s)|2 ds ≤ MT , ∀ t ∈ [0, T ], (3.5)

‖u′′m(t)‖2 + µ0‖u′mx(t)‖2 + 2λ0

t∫

0

|u′′m(1, s)|2 ds ≤ MT , ∀ t ∈ [0, T ], (3.6)

‖Qm‖H1(0,T ) ≤ MT , (3.7)

where MT is a positive constant depending on T , u0, u1, µ0, λ0, µ?, K?,
λ?, f? (independent of µ, K, λ, f , K1, λ1, g, k).

Hence the limit (u, Q) of the sequence {(um, Qm)} defined by (2.6)–(2.8)
in suitable spaces is a weak solution of the problem (1.1)–(1.5) satisfying
the estimates (3.5)–(3.7).

Now by (3.2) we can assume that there exist positive constants µ?, K?,

λ?, f?, K?
1 , λ?

1, g?, k? such that the data
(
µj , Kj , λj , f j , Kj

1 , λ
j
1, g

j , kj
)

satisfy (3.4) with
(
µ, K, λ, f, K1, λ1, g, k

)
=

(
µj , Kj , λj , f j , Kj

1 , λ
j
1, g

j , kj
)
.

Then, by the above remark, we have that the solution (uj , Qj) of the prob-
lem (1.1)–(1.5) corresponding to

(
µ, K, λ, f, K1, λ1, g, k

)
=

(
µj , Kj , λj , f j , Kj

1 , λ
j
1, g

j , kj
)

satisfies

‖u′j(t)‖2 + µ0‖ujx(t)‖2 + 2λ0

t∫

0

|u′j(1, s)|2 ds ≤ MT , ∀ t ∈ [0, T ], (3.8)

‖u′′j (t)‖2 + µ0‖u′jx(t)‖2 + 2λ0

t∫

0

|u′′j (1, s)|2 ds ≤ MT , ∀ t ∈ [0, T ], (3.9)

‖Qj‖H1(0,T ) ≤ MT . (3.10)
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Put 



µ̃j = µj − µ, K̃j = Kj −K, λ̃j = λj − λ,

f̃j = f j − f, K̃1j = Kj
1 −K1, λ̃j

1 = λj
1 − λ1,

g̃j = gj − g, k̃j = kj − k.

(3.11)

Consequently, vj = uj − u, Pj = Qj − Q satisfy the following variational
problem





〈v′′j (t), v〉+ µ(t)〈vjx(t), vx〉+ Pj(t)v(1)+

+ Kj

〈
|uj |p−2uj − |u|p−2u, v

〉
+

+ λj

〈
|u′j |q−2u′j − |u′|q−2u′, v〉

= 〈f̃j , v〉 − µ̃j(t)〈ujx(t), vx〉−
− K̃j〈|u|p−2u, v〉 − λ̃j〈|u′|q−2u′, v〉 ∀ v ∈ V,

vj(0) = v′j(0) = 0,

(3.12)

where

Pj(t) = Qj(t)−Q(t) =

= K1(t)vj(1, t)+λ1(t)vjt(1, t)−
t∫

0

k(t−s)vj(1, s) ds−ĝj(t), (3.13)

ĝj(t) = g̃j(t)− K̃1j(t)uj(1, t)− λ̃1j(t)ujt(1, t)+

+

t∫

0

k̃j(t− s)uj(1, s) ds. (3.14)

Substituting Pj(t) into (3.12), then taking v = v′j in (3.12)1 and integrating
in t, we obtain

Sj(t) ≤
t∫

0

µ′j(s)‖vjx(x)‖2 ds +

t∫

0

K ′

1(s)v
2
j (1, s) ds+

+ 2

t∫

0

v′j(1, τ) dτ

τ∫

0

k(τ − s)vj(1, s) ds + 2

t∫

0

〈
f̃j , v

′

j(s)
〉
ds−

− 2K̃j

t∫

0

〈
|u|p−2u, v′j(s)

〉
ds− 2λ̃j

t∫

0

〈
|u′|q−2u′, v′j(s)

〉
ds+

+ 2

t∫

0

ĝj(s)v
′

j(1, s) ds− 2

t∫

0

µ̃j(s)
〈
ujx(s), v′jx(s)

〉
ds−

− 2Kj

t∫

0

〈
|uj |p−2uj − |u|p−2u, v′j(s)

〉
ds, (3.15)
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where

Sj(t) = ‖v′j(t)‖2 + µ(t)‖vjx(t)‖2 + K1(t)|vj(1, t)|2+

+ 2

t∫

0

λ1(s)|v′j(1, s)|2 ds. (3.16)

Using the inequalities (2.12), (3.8), (3.9) and

Sj(t) ≥ ‖v′j(t)‖2 + µ0‖vjx(t)‖2 + 2λ0

t∫

0

|v′j(1, s)|2 ds, (3.17)

we can prove the following inequality in a similar manner

Sj(t) ≤
β

λ0
Sj(t) +

1

β
‖ĝj‖2

L2(0,T ) + ‖f̃j‖2
L2(QT ) +

1

µ0
TMT‖µ̃j‖2

∞
+

+ T
(MT

µ0

)p−1∣∣K̃j

∣∣2 + T
(MT

µ0

)q−1∣∣λ̃j

∣∣2+

+

t∫

0

[
4 + ‖µ′‖2

∞
+

1

βµ0
T‖k‖2

L2(0,T )+

+
2K?

√
µ0

(p− 1)Rp−2 + |K ′

1(s)|
]
Sj(s) ds (3.18)

for all β > 0 and t ∈ [0, T ].

Choose β > 0 such that β
λ0

≤ 1/2 and denote

R̃j =
2

β
‖ĝj‖2

L2(0,T ) + 2
∥∥f̃j

∥∥2

L2(QT )
+

2

µ0
TMT‖µ̃j‖2

∞
+

+ 2T
(MT

µ0

)p−1

|K̃j |2 + 2T
(MT

µ0

)q−1

|λ̃j |2, (3.19)

φ(s) =2

[
4+‖µ′‖2

∞
+

1

βµ0
T‖k‖2

L2(0,T )+
2K?

√
µ0

(p−1)Rp−2+|K ′

1(s)|
]
. (3.20)

Then from (3.18)–(3.20) we have

Sj(t) ≤ R̃j +

t∫

0

φ(s)Sj(s) ds. (3.21)

By Gronwall’s lemma, we obtain from (3.21) that

Sj(t) ≤ R̃j exp

( t∫

0

φ(s) ds

)
≤ D

(1)
T R̃j , ∀ t ∈ [0, T ], (3.22)

where D
(1)
T is a positive constant.
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On the other hand, using the imbedding H1(0, T ) ↪→ C0
(
[0, T ]

)
, it follows

from (3.13), (3.14), (3.17), (3.19) and (3.22) that

‖Pj‖L2(0,T ) ≤

≤
(√

T

µ0
‖K1‖∞ +

1√
2λ0

‖λ1‖∞ +

√
T

µ0
‖k‖L2(0,T )

)√
D

(1)
T R̃j+

+‖ĝj‖L2(0,T ), (3.23)

R̃j ≤
2

β

∥∥ĝj

∥∥2

L2(0,T )
+ 2

∥∥f̃j

∥∥2

L2(QT )
+

2

µ0
TMT

∥∥µ̃j

∥∥2

H1(0,T )
+

+2T
(MT

µ0

)p−1∣∣K̃j

∣∣2 + 2T
(MT

µ0

)q−1∣∣λ̃j

∣∣2 ≤

≤ D
(2)
T

(∥∥ĝj

∥∥2

L2(0,T )
+

∥∥f̃j

∥∥2

L2(QT )
+

∥∥µ̃j

∥∥2

H1(0,T )
+

∣∣K̃j

∣∣2 +
∣∣λ̃j

∣∣2
)
, (3.24)

‖ĝj‖L2(0,T ) ≤
∥∥g̃j

∥∥
H1(0,T )

+

√
TMT

µ0

∥∥K̃1j

∥∥
H1(0,T )

+

+

√
MT

2λ0

∥∥λ̃1j

∥∥
H1(0,T )

+

√
TMT

µ0

∥∥k̃j

∥∥
H1(0,T )

≤

≤D
(3)
T

(
‖g̃j‖H1(0,T )+

∥∥K̃1j

∥∥
H1(0,T )

+
∥∥λ̃1j

∥∥
H1(0,T )

+‖k̃j‖H1(0,T )

)
. (3.25)

Finally, by (3.2), (3.11) and the estimates (3.22)–(3.25), we deduce that
(3.3) holds. Hence, Theorem 2 is proved completely. �
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