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Abstract. The three-dimensional mixed (parabolic-hyperbolic) nonlin-
ear magnetohydrodynamic system is investigated in the whole space R3.
Uniqueness is proved in the anisotropic Sobolev space H 0.2 Existence and
uniqueness are proved in the anisotropic mixed Besov—Sobolev space BOz.
Asymptotic behavior is investigated as the Rossby number goes to zero.
Energy methods, Freidrichs scheme, compactness arguments, anisotropic
Littlewood—Paley theory, dispersive methods and Strichartz inequality are
used.
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1. INTRODUCTION

This paper deals with an incompressible mixed magnetohydrodynamic
system with anisotropic diffusion with the small in the limit Rossby number.
Namely, we consider the following system denoted by (M HD;, ):

1 1
ou —vpApu+u-Vu—>5b-Vb+ g33b+gu><e3:—Vp in Rt x R3
1
Ob—vpApb+u-Vb—b-Vu+ —03u=0 in RT x R3
€
diveu=0 in Rt x R3
divb=0 in Rt xR3
(uvb)|t:O = (UOabO) in Rgv

where the velocity field u, the induced magnetic perturbation b and p are
unknown functions of time ¢ and the space variable x = (z1,x2,23) =
(xn,x3), e3 is the third vector of the Cartesian coordinate system and v, is
a positive constant which represents both the cinematic viscosity and the
magnetic diffusivity. Aj denotes the horizontal Laplace operator defined by
Aj, = 0? 4+ 02 and ¢ is a small positive parameter destined to go to zero. It
is clear that the system is hyperbolic with respect to the direction x3 called
the vertical direction. About the physical motivations, we refer the reader
to [3] and references therein.

If we denote by U = (u,b), then U is a solution of the following abstract
system:

8U + azp(D)U + Q(U,U) + L5(U) = (—Vp,0) in RT x R3
divu=0 in Rt x R?

divb=0 in Rt x R3

Upeo = Up in RS,

(5°)

where the quadratic term, the linear perturbation and the viscous term are
respectively defined by

u-Vu—5b-Vb
QU.U) = (u-Vb—b~Vu>’

. 1 1 (Osb+uxe
rw)= a0y =1 (M)

ag)h(D)U = —VhAhU.
In the isotropic case, that is, when the global Laplace operator is taken
instead of the horizontal one, some isotropic magnetohydrodynamic systems
were studied by several authors ([1], [2], [11]). However, according to our
knowledge, the first paper dealing with the anisotropic case is due to the
authors in [3]. It deals with existence, uniqueness in H%* for s > 1 and
asymptotic behavior of the solution as ¢ — 0 for the same (MHD, ).
Nevertheless, in [10], the author studied the case of anisotropic pure fluid

and
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and proved the uniqueness in the critical Sobolev space and both existence
and uniqueness in the anisotropic Besov—Sobolev space.

In this paper, we extend those results to the rotating (M H D,‘ih) system,
which presents the difficulty to be coupled in a nonlinear way. In addition,
as the considered system is a perturbed one, it is quite natural to ask about
the asymptotic behavior of the solution as the Rossby number ¢ tends to
zero. We note that this perturbation presents the difficulty of being singu-
lar. Precisely, we establish uniqueness results in H%2 (R3) and B%z (R3),
uniform local existence for arbitrary initial data and global existence for
small initial data in B2 (R?). Moreover, we establish a convergence result
ase — 0.

Let us first say that H%Z(R3) is the space of regularity L2(R?) in zy,
and Hz (R) in z3, and B%z (R3) is also L2(R2) in 2 but B2§1,1(R) in z3. As
in [7], for H=(R?) in the case of Navier-Stokes equation, we say here that
H®32 and B2 are critical spaces for the system (S¢). This means that they
are invariant by the following scaling of (S¢): if U(¢, x) is a solution of (§¢)
with the data Up(z), then Uy(t, z) = AU (N\%t, Ax) is also a solution of (S¢)
with the data AUp(Az).

The main idea is to use the structure of the convection operator together
with the incompressibility condition to compensate the lack of information
due to the incomplete diffusion operator that describes the anisotropy ef-
fect. This very fine analysis is performed with the help of Littlewood—Paley
decomposition in order to deal with scale invariant spaces such as H 0.3
and B2

The uniqueness result in the anisotropic homogenous Sobolev space H 0.3
is dealt with by the following theorem:

Theorem 1. The system (M HD;, ) has at most one solution U® such
that U¢ € L2 (H®2 (R3)) and V,U< € L3.(H®z (R3)).

The proof of this theorem is partially based on a technical lemma inspired
from [10] and adapted here for the case of (M HDj, ). By this lemma, we
establish a doubly logarithmic estimate for the H 0.~3 porm of We, the
difference of two solutions, and we use Osgood lemma to finish the proof.
Though W¢ belongs to H% 2, it will be estimated in H%~2. This is due to
the fact that the equation satisfied by W€ is hyperbolic in the variable x3.

As in [10], we are not able to establish existence in H 0. but only unique-
ness. This is due to the noninclusion of H%2 in L3 (L?). Such inclusion
holds for B%z (R?) and plays an essential role in proving the existence result.
In order to state such result, we introduce Besov type spaces that take into
account Lebesgue regularity in time on the dyadic blocs. These spaces are

denoted for p > 1 by L¥.(8%3) and defined as in [6] by

||u||Lﬂ§(BU,%) = Z 2z ||AZU||LT’([O,T];L2(R3))'
qEZ
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In the case of critical anisotropic Besov—Sobolev space 30,%7 existence and
uniqueness results are given by the following theorem:

Theorem 2. Let Uy = (ug,bo) € B2 (R?) be a divergence free vector
fields. There exists a positive time T such that/fgr all € > 0 there exists a
unique solution U¢ of (MHDy, ), where U € L5°(B%3 (R3)) with V,U® €

Z%(BO’%(R%) and satisfies the following energy estimate:

VIR <VAUOll oy ()

I EHLOO(BO 2 (R3)) L2.(B%3 (R3)) =

Moreover, if the mazimal time of existence T is finite, then

UM = +o0, (2)

L3 (B” 3 (R3))

and if there exists a constant ¢ such that ||Upl| < cvy, then the

B3 (R3)
solution is global.

We use Friedrichs’s scheme to prove global in time existence result in
L2(R3). To establish global in time existence result in B%2 (R?), we use
again Friedrichs’s scheme and Littlewood-Paley theory. A suitable re-
arrangement of the nonlinear term allows to apply a technical lemma due
o [10]. Then, absorption techniques yield an estimate of the approximate
solution. Using standard compactness argumen‘u7 we finish the proof. To
prove local in time existence result in B%2 (R3), we decompose the initial
data into low and high frequency parts. The low frequency part will be the
initial data of a linear problem and the high one will be the initial data of
the remainder which is nonlinear. For the former, classical arguments give
explicitly the result. For the latter, Littelwood—Paley theory, and especially
Bony decomposition, plays a crucial role for estimation of the nonlinear
part. The target is to establish an estimate where the norm of the solution
will be bounded by an expression that depends on the life span T of the
solution and the high frequency part of the initial data. Thus, since we are
looking for a local in time result, we can choose, in the appropriate order,
the cut-off integer IV as big as needed and T as small as needed. This is the
idea behind the frequency decomposition of the initial data. We note that
the uniform life span of the solution will not depend, as usual, on the norm
of the initial data but only on its frequency repartition.

Concerning the asymptotic behavior of the solution as the Rossby number
€ tends to zero, we prove the following convergence result:

Theorem 3. Let Uy = (ug, by) € B2 (R3) N L%(R?) be a divergence-free
vector field and (U®) the family of solutions given by Theorem 2. If we set
for x € D(R) Uj, = X(J%I)UE and (7]% =U*® - Uj, then

1.Va€]0,4[, € >0 and R > 0 there exists No(e, R) € N such that

No(e,R) =5 + o0
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and

sup  [|AQURI s (1) = 0(e®), € = 0.
|PI<Na(e,R)
2.Vn>0,
0.

lirglj(ljlpH|Vh|17"[7§HL2T(B°v%) R=to0

The proof uses a Strichartz inequality and Fourier analysis. In fact,
dispersive effects are of great importance in the study of nonlinear partial
differential equations, since they yield decay estimates on waves in R3.

The structure of this paper is as follows. The next section is devoted
to introduction of anisotropic Lebesgue spaces and anisotropic Littlewood—
Paley theory. In the third section, we prove Theorem 1. The fourth section
deals with the proof of Theorem 2. In the last section, we prove Theorem 3.

2. NOTATION AND TECHNICAL LEMMAS

2.1. Anisotropic Lebesgue spaces. Let us define anisotropic Lebesgue
spaces and recall some of their properties which are useful in the sequel.

Definition 1. We define L} (L7) to be the space LP(R,, X Ry,; L™ (Ry, )
endowed with the norm

12z = NF @R M)l o, sy

Similarly, L}(LY) is the space L"(Ry,; LP(Ry, X Ry,)) endowed with the
norm

I lzyeny = TIFC )l Lr @, x| 1o e, )
In the frame of anisotropic Lebesgue spaces, the Holder inequality reads
Hfg”L;(Li) < ”f”Lg’(Lf;/)Hg”Lg”(Lf;N)’
1

where L =L + Loand 1 =1 + L.
T T T P P P
Young’s convolution inequality takes the following form:

Hf*g”Lg(Lg) < ||f||L1T,/(L£,)Hg”LZ//(Lﬁ”)’

wherel—i—%:%—i—%andl-&-%:%_kz%'
The following lemma will be useful in the sequel

Lemma 1. Let 1 <p <gq and f: X1 x Xo — R be a function belonging
to LP(X1; L9(X32)), where (X1;du1) and (Xz2;duz) are measurable spaces.
Then f € LY(Xy; LP(X1)) and

[ fllLa(xa:e(x0)) < N flle(xiina(x,))-
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2.2. Anisotropic Littlewood—Paley theory. The basic idea of Little-
wood—-Paley theory consists in a localization procedure in the frequency
space. The powerful point of this theory is that the derivatives and, more
generally, the Fourier multipliers act on distributions whose Fourier trans-
form is supported in a ball or a ring in a very special way that we will re-
turn on. Such theory in its anisotropic form allows to introduce anisotropic
Sobolev and Besov spaces. To do so, we use an anisotropic dyadic decom-
position of the frequency space. We begin by defining for any function a
the following operators of localization:

Ala=F N (e(277|6])F(a)) for j€Z,
Aja = FL9(279¢&))F(a)) for q €N,
AY a = FH(I(|&) F(a)

and

Aja=0 for ¢ <-2.
The functions ¢ and ¥ represent a dyadic partition of unity in R; they are
regular non-negative functions and satisfy supp (9) C B(0, 3), supp (p) C
C(0,3,8). Moreover, for all t € R,

' 403
I(t) + Y p279) = 1.
q>0
Furthermore, we define the operators S; and S;-l by
Stu= Y Abu
q'<g—1

and

In this way, we are considering a homogeneous decomposition in the hor-
izontal variable and an inhomogeneous one in the vertical one. We define
respectively the corresponding Sobolev space and the mixed Besov—Sobolev
space by the following definitions:

Definition 2. Let s and s’ be two real numbers such that s < 1, u be a
tempered distribution and

1
[l oo = (Z 92(js+as’) ||A;?A:1’u||%2) ’
J»q
The space H5* (R3) is the closure of D(R?) in the above semi-norm.

Definition 3. The anisotropic Besov space B%2 is the closure of D(R3)
in the following norm

llullgon( I/ |53||fu<5>|2d5)%.

9€7 "¢, 2a-1<gq)<20
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The above norm is equivalent to the one defined by

HUHBO,% = Z 2q/2||AZU||L2(R3)-
qEZ
The interest of this decomposition resides in the fact that any vertical de-
rivative of a function localized in vertical frequencies of size 27 acts as a
multiplication by 29.
The following lemma is an anisotropic Bernstein type inequality (see [10]).

Lemma 2. Let u be a function such that supp (F'u) C R} x 2C, where
C is a dyadic Ting. Letp > 1 and r > 1’ > 1 be real numbers. The following
holds:

295 CM|ull Ly Lry < 05 ullzery < 27 CFllull ez, 3)
200 M full g ey < 105, ullgey) < 2% Cllullyg), (4)
lellzgagy < €25l gy (5)

and
lullzgg) < €27 ully g, (6)

It is well known that the dyadic decomposition is useful to define the
product of two distributions. That is,

uy = Z Aju - Agv = Tyu+ Tyv + R(u,v),

q€EL,q' €L
where
— u v _ v v
T,u= g Ajv - Aju = g Sg_1v - Agu,
q'<q—2 q
— VoAV, v AU
T,v= g Aju-Agy = g Sg_qu-Agv
7' <q—2 q
and

R(u,v) = Z Z Aju- Ay v.
q ie{0,£1}
The two first sums are said to be the paraproducts and the third sum is the
remainder. This is known to be the Bony’s decomposition in the vertical
variable (see [4], [5], [9]). In this framework, we have the following properties

AY(Sy qu-Apw) =0 if |[¢g—q'|>5
and
AV(Syqu-Apv) =0 if ¢ <q—4.
For the sake of simplification, we will denote by (a,), (bqy) and (c¢,) generic
positive sequences (depending possibly on ¢) such that > \/a; <1, > b, <1
qEZ qEZ
and ) ¢ < 1.
qEL



Anisotropic Rotating MHD System in Critical Anisotropic Spaces 31

Notice that u belongs to H%*(R?) if and only if
[AYullL> < C27%cqllul| go, (7)

1

and that u belongs to B%2 (R3) if and only if
1A ull 2 < C2792bgJull 0.4 (8)

In the sequel, it will be useful to introduce mixed Besov—Sobolev type spaces
that take into account Lebesgue regularity in time on the dyadic blocs.
Those spaces will be denoted, for p > 1, by L%(BO*%) and defined as in [6]
by
el 2 o8y = D272 AGull oo,y 12 (s < oo
qEZ
Remark that we have

el g3, <l g

where
t
p — p
I, gz, = | Tl
0

3. UNIQUENESS

Following the ideas in [10], we establish Lemma 3 to prove uniqueness
in HOz.
Lemma 3. Let U = (u,b) and V = (v,¢) be two divergence free vector

fields, which belong to L3 (H®?), such that Vi,U and Y,V in L2.(H® 7).
Let W = (w, ) € L (H®?) with V,W € L3(H®?%) be a solution of

1
OW 4+ vp AW + Q(W, W +2U) + gL(W) = (=Vp,0)
divw = div3 =0
w|,_, = (0,0).

For all0 <t <T, if |W] <1 then

_1
H" 2

d
W,y SCOIWIE .y (1= W2, ) (1= W2, ),

1
2
where f is a time-locally integrable function defined by

FO) = (42001203 +20VIEo3) 1+ 20VAUIZ 3 +2VaVI0 )
Proof. We begin by noting that Q(W, W + 2U) is explicitly given by

u-Vw+w-Vv—b~Vﬂ—6~Vc)

QW,W +2U) = (u.vﬁ+w~Vc—ﬁ~VU—C'vw
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If we take the scalar product in H%~ 2 we obtain

W2

HO"%

q v v
2(h| HRl VAW, oy < >Z 279(ALQ(W, W +2U)|AYW) 12

where

(ALQ(W, W + 2U)|AYW) .,
= (AY(u-Vw)|A )L2 + (AY(w - Vo |A”w) L2
— (AN(b- VB)ATW) ,, — (AL(B- Vo)|ALw) .+
+ (AY(u-VB)|ALB) . + (Al(w - Ve) | B)L2—
= (Ag(B - Vu)lAGB) Lo = (Af(e- V)l AgB) s

AY
q
v
q

We mention that the above nonlinearities are of two types: those where two
variables are the same, for example (Ay(u - Vw)|Afw) 2, and those where
the three variables are different like (A7 (8- Vc)|[Apw)zz. The former are
estimated in [10], for the latter it suffices to note, after applying Cauchy—
Schwarz or Holder inequality, that |Jw|[, ||8]] < ||W]| and ||[Vrw], VRG] <
[[VrW||. The same holds for U and V compared to their components (u, v)
and (b, c). O

We return to the proof of the uniqueness result and suppose that U¢ and

V¢ are two solutions of (8¢) with the same initial data, such that U® and
Ve belong to Lo, (H%?) with V,U® and V, V¢ belonging to LZOC(HO’L)
We will prove that W¢ = U¢ — V¢ is such that W¢ = 0 in L3 (H% %) with
ViWe =0in L3(H"?).

W¢ satisfies the following equation

1
OWE + v AWE + Q5 (W, WE +2U°) + gLE(WE) = (—Vp~,0).
Lemma 3 implies that for all 0 <¢ <Tif [We o3 < 1 then

d
Iz, <

< CF@IWE2, (1= WP, ) in (1 =D W92, ).
where f is a locally time-integrable function defined by
1) = (U 20012 0y + 2077120 ) (L4 20900712 0 +2090VF,, ).
By the Osgood lemma, one infers the uniqueness in H 0.3

To investigate uniqueness in BO’%, note that W¢ will be estimated in the
norm

ISSWEDI sz + D 27 | ATWE(D) 3o+
q=0
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t
+ VpSup,, / HS’SV}LW6(7, ,wg)Hii dr+
0

t
s 32 [ |Vasywe )|, dr
0

q=0
The exact estimations are easy to obtain, since we use functions localized
in low vertical frequencies.

4. PROOF OF EXISTENCE RESULTS
4.1. Proof of the existence result in B%%.

4.1.1. Global existence for small initial data. For a strictly positive integer
n, we define Friedrichs’s operators by

In(u) = F (10,0 Fu(f)),
Tn(u) = F 7 (L e <ny Fulf))
and
Tn(u) = (Jn = J7)) (w).

Let us consider the following approximate magnetohydrodynamic system
denoted (M HDy, )

~ ~ ~ ~ ~ ~ ~ 1 ~
O — vp ApJpu + Jp (Jpu - VIou) — Jp(Jpb - VJ,b) + E(Jnu X e3)+
1 -~ ~ ~ -~ ~ o~
+E%Jﬂn:VE:A_%M%LALmﬂhwﬁnthmﬂ+

i,
1 ~ ~
+gVZ:A1&thb—mee9“
O — v T+ Ty (o V) = T(Tob - ) + 20T =0,
divu =0,
divb =0,
Ul,_y = JuU".
The above system is an ODE that can be rewritten in the following abstract
form:

oU = F,(U),
where U = (u, b) and the expression of F}, is given by the system (M H Dy, ).
Note that since U° € B%%, U(0) = J,U° belongs to L2 Moreover, F, is
a continuous function from L2 into L? and the Cauchy-Lipschitz theorem
implies that (M H D}, ) has a unique local solution U; in C*([0, T,,(¢)[, L?).
On the other hand, the fact that jn is a projector implies that jnUf; is also
a solution of (M H Dy, ). By uniqueness, it follows that

J U = U
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and Uy, is a solution of the following system also denoted (M H D7, ):
- - 1
Ol — v Apus + Jp (uS - Vus) — Jp (b5 - VIE) + —83()2—!—
1 1
+=(up, X e3) = VZJA 8;0; (u ,us,, + b5 b5 )+

i,
1 _
+ngA 10,(05b%, — uS X e3);,

(MHD},) | | 1
ObS, — v ARDE + Jp(uS, - VE) — J, (bE - Vus) + g@gufl =
divu§, =0,

div b5, =0,
el = Tl

The L? energy estimate implies that
L e Ol + VRO =0,

So, one deduces the global existence in L2.

To prove the existence result in BO*%, we introduce the following lemma
due to [10].

Lemma 4. Let v and v be two vector fields defined on R3 such that
u(t) is divergence-free for all t € [0,T). There exists a real sequence (ag)
satisfying aq = aq(u,v,T) >0 and }_ \/ag <1 such that

qEZ
T
/| (Af(u- Vu)[Ajv)p2|dt <
0
< Cag2 (19l 5 g 1, 10l o 8, 10 o3
I o IVl o T o 1901 ).

We apply the operator Ay and use the L? energy estimate to obtain

L A+ a1 <
< (AU(us, - Vug)[Avus) ]+ | (AY (ug, - VBE)|AVEE) o |+
+ (A5 - VB)IAGuz,) o + (AZ(bE up, )| AGD) o] (9)
We note the following rearrangement:
(Ay (b5, - Vb3 Abus,) o + (AL (b5, - Vug )| ALEE) |

= (A5 V(us +2) A (us +55)) -
— (AU, - Vug)|ALuS) ., — (AL - VOE)|AYE) .. (10)
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Then lemma 4 leads to
v v 2
||AqU§||2Lg9(L2) + 2VhHVhA UEHL2 (L2) <
< [AURNZ2 + 27 agCrnll Uzl = 0.3 ||VhU5||2 53
Since a? + b2 is equivalent to (a + b)?, we deduce that
22| AVUS || e (12) + V202 |V ALUS | 2. 12) <
/2 vr70 3 1 3 N
<2922 AU ||L2+a3\/502||U;=;||%§O(BO%)||vhU,§||L2T(BO,%).
We take the sum over q. Then, we reapply the same equivalence property
to infer that
Us £112
<
VSI2 gog, + 2 VRUSNS oy, <

< 4G4 + CIURN 2 0.3, IVRUZ I, (11)

138" %)’
Let Uy € B%2 be such that ||Uy|| g4 < h, where ¢ < 5. Let U7 be the
regular solution of (MHDy, ). If we set

T —sup{T>() U~ <2cyh},

L (B" 3)
then the estimate (11) implies that for all T' such that 0 < T < T},

U] S 20|l 0,1 < 2cuy,.
B

L°°(B°

Since the function T — || US|~ is continuous, we obtain that Tf =

L(B™ %)
400 and the sequence of global solutlons (Ua)neN is such that U,, belongs to
L®(R*,B%%) and V,UZ belongs to L2(R*, B%%). In particular, the facts
that SYUZ belongs to L3°L? and (I — SY)UZ belongs to L? allow to deduce
that (U )neN is bounded in L>°(R*, L} ). By the system (MHD}, ), one

has that (9;US)nen is bounded in L& (RT, HlOC ), where N is a sufficiently

loc
large integer. By Arzela—Ascoli theorem, there exists a subsequence denoted

also by (Ug),, such that
Uré;, —U® in LlOC(RJ’_ Hloc )
Since (US), is bounded in L°°(RT, L? ), an interpolation inequality implies
that
U:—U® in L3S, (RY,H,7) Yo > 0.
Since Vp < 3, (US)n is bounded in L7 (RT, H
Sobolev spaces imply that for o < p

Q(U:;U:';)—)Q(UE,UE) in L%OC(R-f- Hro- 3/2)

loc

), classical product laws in

In particular,
QU;,Uy) — Q(UF,U®) in D"
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Taking the limit in (M H D}, ), we obtain the global solution for small initial
data.

4.1.2. Continuity in time of the solution. The equation verified by AJU is
AU = v ApAYUS — AJQn (U5, U°) — AjQ3(US,U*) — (A7 Vp©,0).
The divergence-free condition implies that
divp (uf @ uf) — divy, (b° ® b°)
€ gy __
Qh(U ;U ) - <divh(u5 Q ba) _ dth(bE ® ua)
and
O5(uf @ u®) — 95(b° ® b°)
€ [
Qa(U%,U7) = <63(u8 2 b°) — Os(b° ®u) )
Note that v, ARA U — APQp(U®, U?) belongs to L2([0,T), L2(H, ")) and
ALU* belongs to L*([0, T], L2(H})) to deduce that

(I ARALUS = ALQW(UF, UF)AIU®) gy € LHO,T]). (12)

Moreover, by the fact that U¢ belongs to L?([0,T], L}L2) we have that

AYQ3(U¢,U?) belongs to L'([0,T], L; L}). Furthermore, the fact that U®
belongs to L>([0,T], L3 (L)) leads to

(A5Qa(U%, UF)|ATU?) 2 sy € L0, T)). (13)

By (12) and (13), one obtains that 9;||A3U<||7. belongs to L} and, in
particular for fixed ¢, |AyU¢||7. € C([0,T]). On the other hand, note that
t — ApUS(t) is weakly continuous. Finally, we obtain that ¢ — ApU#(t) is
strongly continuous on [0, 7] with values in LZ.

Since U*® belongs to i}’g(Bo’% ), for ¢ > 0 there exists N such that

Z 2q/2HAZU€HL§S’(L2) <.
lg|>N

Since AY belongs to Cr(L?), there exists § > 0 such that for [t —#'| < § one
has

> 22| ALUE() - US(E))]] 1 < €.

l[q|<N

Thus, for |t —¢'| < 6 one obtains that
[AGU= (1) = U ()| o3 <¢-
Proposition 1. Let U € f%g(BO’%) be a solution of (MHD;, ). Then

1. U® € Gy([0,T), B®2).
2. The set {U%(t),t € [0,T]} is relatively compact in B®3 .
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4.1.3. Local existence result for arbitrary initial data. To prove the local
existence result for arbitrary initial data, we decompose the initial data
into low and high frequency. Then we look for a local solution in the form

U=Uin+Usn,
where Uy is the solution of the linear problem below:
OV — ALY + 2 L(V) = (~Vp,0),
divV =0,
V|,_, = SnUo.
It follows that for all ¢

t
TN ()2 —|—2Vh/HVhU17N(T)H2L2 dr = || Sy Uo|2s. (14)
0

In this way, U will be a solution of (M H Dy, ) if U3 y is a solution of the
system below:
1
OW —vp AW + Q(W, W) + - LW)+ QUi N W)+ QW, U5 i) =
= (_VP7 O) - Q(Ula,Nv UiN)v

divIW =0,

W|,_, = I - Sx)Uo.
We use the Freidrichs scheme. Thus, the L? energy estimate leads to

1d ., v
3 dq 1AGUS N ()72 + valViAGUS N ()72 <

[(AGQUS v, Us WIAGUS n) o] + [(AQUT v, Us M)IAGUS v ) 2|+
+[(AQWUS v, UL N)IAJUS ) 1o |+
+[(A5QUUT N US WIAJUS ) o] (15)

By Lemma 4, we can estimate directly the sums

’ (AZQ(U;Nu UQE,N)|AZU§,N)L2 ’ dr

o

and

[(AYQUS v, Us \IALUS ) 1| dr.

o—_

About the other terms, we note that

t
/ |(AQUS v, UT MIAGUS i) 12| <
0
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< ||AZ(U§,N : VU?,N)HUT(Lz)||AZU§,N||L;°(L2)+
+ ([ A5 E5, 8 - VLM o 18565 | g (22)+
+ [|Ag (s y - VbiN)||L1T(Lz)||AZb§,N||L;9(L2)+
+ ||A2(b;,N ) VU?,N)HUT(Lz)||AZb§,N||L;°(L2)-

Then it follows that

t
/ |(AYQUS v, US w)IALUS ) 12| <
0

< 2792y OT || AG (5 - Vi )| e 12 105 vl -

L (5"3)
+ 2712, OT | A7 (05,x - 95 )| e ) 15,0l o 04
+ 2*Q/2quTHAZ (u;N . vbi,N)HLgf’(Lz) ||b§,N||Z§_<3(BU~% )+

+ 2iq/2quT||AZ(b§,N ! vui,N)HLIo?(LZ) ”b;’N”I/E?(BO’%)

Using the vertical Bony decomposition, one can write that

Ay Vuin) = A3 Y0 Sy_jusy Ay ) +

lg'—q|<4

+AZ( E S};/_;'_lvui’N * AZ(U%)N).
q¢'>q—No

This leads to

HAZ(UEN . VuiN)HL;o(H) =

< Z 1Sy —1u3 N llLge 2y | Ay VUi nllnge o)+

la’—q|<4
+ Z [Sg+1Vui nllLse (poo) | Agus nllLee(r2) <

q'2q—No
§25N/2||U§,N||L?(Bo,g) Z ||AZ'U§,N||L§9(L2)+

la’—q|<4
2V e 020 g
where IZZ = Y 2(‘1_‘1/)/21),1/. IZZ belongs to I since b, does. Then,

q'2q—No

applying the inequality ab < %a‘l + %b%, we deduce that

165 1 e gy < ol -
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The same holds for Ay (b5 x-Vb§ v), Ag(us n- V] ) and Ay (b5 x-Vui y).
So, it follows that

HAZQ(US,Nv Uls,N)HL%o(Lz) S 27(1/21)11025]\7/2||U25,N||L%O(Bo,%)-
Thus,

(16)

/| AUQ U2 N> UL N)’AUU2 N)L2| <27% O25N/2T||U2 NHLOO(BO 4y

To estimate f (A QUT n» U N)|AYUS n) 12| dt, we proceed as follows:
0

¢
/‘ AQ(UT v, Ut N)|AUU2N) 2| <
0

< C2NTHAU (Ui n>UTN)) HLoo L2) ||AZU28,N||L;9(L2) <

< C2NT279%b|UF yllzge o) 1UF w Il I1AGUs nllLge(r2) <

L (B” 3)
< C27Y2p 22N AVUS yll e r2)-

This leads to

t
/ [(AQUUS x US )| AUS ) .| dt <

a, 95N/2
< 02727V T|Us i ||L°°(B° by (17)
Finally, we integrate (15) and take the sum over ¢ to obtain
UE NI g, + I TAUENIE, oy <
< AU 5 O)12,. + CIVAUENIZ, o 3 105l e ot +
+CT(+ 2 + 202 [Vl 05 w12 oy, (19

Let N be a sufficiently big integer such that
Vh
105 5 (Ol oy < 2,
where c is sufficiently small. We consider 7" such that
1
CT22|| U] .4 < <3
and
||U§,N||f%5(80 1) S
to obtain by (18)
CUp,

I3 _
||U2,N||f§o(80,%) < 5
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Then there exists T = T(N, Up) such that Us € L3 (B%%) for all & > 0.

To prove (2), we proceed by contraposition. To do so, we begin by noting
that Proposition 1 allows to deduce that U¢(¢,) has only one limit in Bz
as t, tends to T*. One solves locally in time the (MHD,, ), where the
initial data is chosen to be U¢(T™*) = lim;_, 7~ U%(t). By this way, the life
span of the solution can be extended and will be defined on [0,7™* 4 ¢) and
so on. This contradicts the fact that 7™ is finite.

Remark 1. The life span of the local solution depends only on the fre-
quency repartition of the initial data and is not a function, as in classical
cases, of its norm ||U0HBO,%'

5. PROOF OF CONVERGENCE RESULTS

The “linearized” equation associated to the system (S¢) is

1
8tU8—l/hAhU€+gL(U8) =0 in Rt XR%,

(LSE) divu® =0 in Rt XR%,
dives =0 in Ry x R,
Uf—o = Uo(2) in R3.

In Fourier variables £ € R? we obtain
OF (W) + mlen PF(US) + TAEFU?) =0.
Hence, we are led to study the following family of operators
G fr— / f(y)e*t(wl\Eh\ﬂiﬂ?)ﬂ(fﬂ*y)-& dé dy,
R3 xRY

where the phase function a is such that

a8) € { + %(1 Iy 4|§|2),j:|€§—3|(1 /1T 4|§|2)}.

So it is almost stationary when &3 is almost equal to 0 as well as when [¢]
goes to +oo.
For some 0 < r < min(R, R"), we define the domain C, g g by

Crompr = {€ €R% R 2 |6o| 2 v and [&4] < R}. (19)

We consider a cut-off function ¢ which is radial with respect to £, and whose
value is 1 near C, g r/. First, to study the case where F(f) is supported in
Cr.r,r’, We write

G f(t,x) = (K(t/e,vt, ") * f)(x),
where the kernel K is defined by

K(t,7,2) = /Wé‘)eim(@ﬂzf_ﬂ&ﬁd§-
R3
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As in [5], we recall the following property of K.

Lemma 5. For all v, R and R’ satisfying 0 < r < min(R, R’), there
exists a constant C(r,R, R"), such that

| K (t, 7, )| sy < C(r, R, R") min {1,t‘%}.

Proof. The proof follows the lines of the stationary phase method. Using
the rotation invariance in &, we restrict ourself to the case zo = 0. If we
denote a(§) = —0¢,a(§), then

(§)] = C(r, R, R')|&|,

where C' is a strictly positive constant depending only on r, R and R'.
Next, for all £ that belongs to C, g rs, we introduce the differential operator
L defined by

1

L= 1+ta2(§)(

This operator acts on the & variables and satisfies £(e®) = e, Integrat-
ing by parts, we obtain

K(t,T’ Z) = /tﬁ(w(g)e—ﬂghF)eitll(f)-‘,-iz,f dg

1 + ia({)a&).

R3
Direct computation yields
2 1 1—t¢ 2 )
L) = (g 00 g WO
_ L —T\&h\2
1 +ta2(§) 652 ('@[1(5)6 )

Finally, we use the fact that £ is in a fixed annulus of R? and v € D(R3) to
infer that
déo

. 0
1+ &3

K7l < O R) [
R
Let us denote by w® the solution of the free linear system (PLF*) asso-
ciated with (S¢)
1
€ __ € - > — . 3
(PLFE) 81511) VhAh’LU + EL(UJ ) f in Ry x sz
w(0) = wo in R3.

Lemma 5 yields, in a standard way, the following Strichartz estimate (see [8]).

Corollary 1. For all constants r, R and R’ such that 0<r <min(R, R'),
let Cr.r.rr be the domain defined by (19). A constant C' (r, R, R') exists such
that if

supp (F(wo)) Usupp (F(f)) C Cr.r,rr,
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then the solution w® of (PLF*®) with the forcing term f and initial data wq
satisfies
1
[wfllLa, ey < C'(r, R, RN)e™ ([wollre + [1fll Lz 22))-
Notice that the constant C’ (r,R, R") does not depend on .

Proof of Theorem 3. The first equation of the system (S¢) can be rewritten
in the form

1
U — v ALUS + g L(U®) = F° in Ry x R3,

Vi
R

Applying, consecutively, the operators x(
R >0 and g € Z that

) and Ay, we obtain for all

1
KAJUR — v AR AGUR + - L(AGUR) = A FR.
By Corollary 1, we infer that
v L v v
IATUR N ey < C'(277, R,29) ¥ (| AGUo gl 22 + IAYFR Ly 1)
To estimate the right hand side of the above inequality, notice that
AU rllz2 < C(q, R). (20)

If we denote by p3(Cos g 2¢+1) the Lebesgue measure of the set Coa g oat1,
then the Plancherel formula and classical analysis imply that

T 1
v e v e 2 2
185l n = [ ([ 1F@imeof @) ar <

0 R3

1

< (27! + R) /T( / (U8®U€)(T,§)‘2d§>7d7§

2‘1 R,29+1

< (29" + R)T (u3(Coa, g 2a+1)) : [FUE @ U)o (e <
1

< (29 + R)T (u3(Coa pooa+1)) 2| U @ US| ooy <
1

< (27 + R)T (13(Caa,p201)) 21U |7 o0 (12

Since the energy estimate
t

1T (t, )12 + 20 / VLU (7, )| Z2d7 < |UollZ- (21)

holds, it follows that
1
IAGFRN L1 2y < QT+ R)T (13(Can, p 201)) * [ Uo] 2. (22)
By the inequalities (20) and (22), we infer that
v 1
HAqUIE%”L%(L“’) < (1 + T)C((L R)E4 .
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For o €]0, 2[, R > 0 and € > 0, we set

It

Nanle) = sup {p € Z; ¥lg| < p, (1+T)Clg, Rt~ < 1.
is clear that Ny g(e) —2 + oo and

e—0

sup  [|AGUR| L (1) <% (23)
|41 <Na.(e)

Let n > 0 and R > 1. By the energy estimate (21) we have

Va1 "0 (g0 1,

T
< R / VRT3, )| oy dt <
0

T
< R*Z”?/thﬁs(t, Mige.s dt < R7>73/2/um|Usl%, 4.
0

Consequently, it follows that

. 1-n77e
lim sup |[[Vu]"“"UR|| p (0.4 7 O (24)
The equations (23) and (24) finish the proof of Theorem 3. O
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