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ON THE SOLVABILITY OF THE PERIODIC TYPE
BOUNDARY VALUE PROBLEM FOR LINEAR SYSTEMS OF
GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

Abstract. Effective necessary and sufficient conditions are given for the
solvability of periodic type boundary value problems for linear systems of
generalized ordinary differential equations.� � � � � � � � � � 	 
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Let ω be a positive number. For the linear system of generalized ordinary
differential equations

dx(t) = dA(t) · x(t) + df(t) for t ∈ R (1)

we investigate the periodic boundary value problem

x(t + ω) = x(t) for t ∈ R, (2)

where A = (aik)n
i,k=1 : R → R

n×n and f = (fi)
n
i=1 : R → R

n are, respec-
tively, matrix- and vector-functions with bounded total variation compo-
nents on the closed interval [0, ω], and

A(t + ω) = A(t) + A(ω) for t ∈ R (3)

and

f(t + ω) = f(t) + f(ω) for t ∈ R. (4)

Note that the following ω-type boundary value problem

x(t + ω) = x(t) + c for t ∈ R,
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where c ∈ R
n, is reduced to the problem (2) by the transformation

y(t) = x(t) −
t

ω
c for t ∈ R,

so that we consider only the problem (2).
Along with the system (1) we consider the corresponding homogeneous

system

dx(t) = dA(t) · x(t). (10)

In the present paper, we give effective necessary and sufficient condi-
tions for unique solvability of the problem (1), (2). Analogous results for
general linear boundary value problems for systems of ordinary differential
equations belong to T. Kiguradze [11], and for ω-periodic boundary prob-
lem for systems of ordinary differential equations and functional differential
equations they belong to I. Kiguradze [8]–[10].

Some questions of the ω-periodic boundary value problem for the system
(1) have been considered in [1], [2], [12].

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view [1]–[7].

In the paper the use will be made of the following notation and definitions.
R =]−∞, +∞[, R+ = [0, +∞[, [a, b] and ]a, b[ (a, b ∈ R) are, respectively,

closed and open intervals.
R

n×m is the space of all real n × m matrices X = (xij)
n,m
i,j=1 with the

norm

‖X‖ = max
j=1,...,m

n
∑

i=1

|xij |.

On×m (or O) is the zero n×m matrix.
If X = (xij)

n,m
i,j=1 ∈ R

n×m, then

|X | = (|xij |)
n,m

i,j=1 .

R
n×m
+ =

{

(xij)
n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . , m)

}

.

R
n = R

n×1 is the space of all real column n-vectors x = (xi)
n
i=1; R

n
+ =

R
n×1
+ .
If X ∈ R

n×n, then X−1, det X and r(X) are, respectively, the matrix
inverse to X , the determinant of X and the spectral radius of X ; In is the
identity n× n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing,

etc., if each of its component is such.

If X : R → R
n×m is a matrix-function, then

b

V
a
(X) is the sum of to-

tal variations on [a, b] of its components xij (i = 1, . . . , n; j = 1, . . . , m);
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V (X)(t) = (v(xij )(t))
n,m
i,j=1, where v(xij )(0) = 0, v(xij)(t) =

t

V
0
(xij ) for

t > 0, v(xij)(t) = −
0

V
t
(xij ) for t < 0;

X(t−) and X(t+) are, respectively, the left and the right limits of the
matrix-function X : R → R

n×m at the point t;

d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t);

‖X‖s = sup {‖X(t)‖ : t ∈ [0, ω]} , |X |s = (‖xij‖s)
n,m
i,j=1.

BV([a, b], Rn×m) is the normed space of all bounded variation matrix-

functions X : [a, b] → R
n×m (i.e., such that

b

V
a
(X) < ∞) with the norm

‖X‖s.
BVω(R, Rn×m) is the set of all matrix-functions X : R → R

n×m such
that

X(t + ω) = X(t) + X(ω) for t ∈ R

and its restriction on [0, ω] belongs to BV([0, ω], Rn×m).
sj : BVω(R, R) → BVω(R, R) (j = 0, 1, 2) are the operators defined,

respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

0<τ≤t

d1x(τ) and s2(x)(t) =
∑

0≤τ<t

d2x(τ) for t > 0,

s1(x)(t) = −
∑

t<τ≤0

d1x(τ) and s2(x)(t) = −
∑

t≤τ<0

d2x(τ) for t < 0,

and

s0(x)(t) = x(t) − s1(x)(t) − s2(x)(t) for t ∈ R.

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a ≤ s <

t ≤ b, then

t
∫

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ0(s0(g)) corresponding to the
function s0(g).

If a = b, then we assume

b
∫

a

x(t) dg(t) = 0,
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and if a > b, then we assume

b
∫

a

x(t) dg(t) = −

a
∫

b

x(t) dg(t).

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t
∫

s

x(τ) dg(τ) =

t
∫

s

x(τ) dg1(τ) −

t
∫

s

x(τ) dg2(τ) for s, t ∈ R.

If G = (gik)l,n
i,k=1 : [a, b] → R

l×n is a nondecreasing matrix-function and

X = (xkj)
n,m
k,j=1 : [a, b] → R

n×m, then

t
∫

s

dG(τ) ·X(τ) =

( n
∑

k=1

t
∫

s

xkj(τ)dgik(τ)

)l,m

i,j=1

for a ≤ s ≤ t ≤ b,

Sj(G)(t) ≡
(

sj(gik)(t)
)l,n

i,k=1
(j = 0, 1, 2).

If Gj : [a, b] → R
l×n (j = 1, 2) are nondecreasing matrix-functions,

G = G1 −G2 and X : [a, b] → R
n×m, then

t
∫

s

dG(τ) ·X(τ) =

t
∫

s

dG1(τ) ·X(τ)−

t
∫

s

dG2(τ) ·X(τ) for s, t ∈ R,

Sk(G) = Sk(G1)− Sk(G2) (k = 0, 1, 2).

A : BVω(R, Rn×n) × BVω(R, Rn×m) → BVω(R, Rn×m) is the operator
defined by

A(X, Y )(t + ω) ≡ A(X, Y )(t) +A(X, Y )(ω),

where

A(X, Y )(0) = 0,

A(X, Y )(t) = Y (t) +
∑

0<τ≤t

d1X(τ) ·
(

1− d1X(τ)
)−1

d1Y (τ)−

−
∑

0≤τ<t

d2X(τ) ·
(

1 + d2X(τ)
)−1

d2Y (τ) (0 < t ≤ ω)

for every X ∈ BVω(R, Rn×n) such that

1 + (−1)jdjX(t) 6= 0 for t ∈ [0, ω] (j = 1, 2).



137

For every matrix-function X ∈ BV([0, ω], Rn×n) such that det(In −
d1X(t)) 6= 0 for t ∈ [0, ω] we put

[X(t)]0 = (In − d1X(t))−1,

[X(t)]i = (In − d1X(t))−1

t
∫

0

dX−(τ) · [X(τ)]i−1

for t ∈ [0, ω] (i = 1, 2, . . . ), (51)

(X(t))0 = On×n, (X(t))1 = X(t)−X(0),

(X(t))i+1 =

t
∫

0

dX−(τ) · (X(τ))i for t ∈ [0, ω] (i = 1, 2, . . . ) (61)

and

V1(X)(t) = |(In − d1X(t))−1|V (X−)(t),

Vi+1(X)(t) = |(In − d1X(t))−1|

t
∫

0

dV (X−)(τ) · Vi(X)(τ)

for t ∈ [0, ω] (i = 1, 2, . . . ), (71)

where X−(t) = X(t−) for 0 < t ≤ ω (X−(0) = X(0)); and for every
X ∈ BV([0, ω], Rn×n) such that det(In + d2X(t)) 6= 0 for t ∈ [0, ω] we put

[X(t)]0 = (In + d2X(t))−1,

[X(t)]i = (In + d2X(t))−1

t
∫

ω

dX+(τ) · [X(τ)]i−1

for t ∈ [0, ω] (i = 1, 2, . . . ), (52)

(X(t))0 = On×n, (X(t))1 = X(t)−X(ω),

(X(t))i+1 =

t
∫

0

dX+(τ) · (X(τ))i for t ∈ [0, ω] (i = 1, 2, . . . ) (62)

and

V1(X)(t) = |(In + d2X(t))−1|(V (X+)(t)(ω)− V (X+)(t)|,

Vi+1(X)(t) = |(In + d2X(t))−1|

∣

∣

∣

∣

t
∫

ω

dV (X+)(τ) · Vi(X)(τ)

∣

∣

∣

∣

for t ∈ [0, ω] (i = 1, 2, . . . ), (72)

where X+(t) = X(t+) for 0 ≤ t < ω (X+(ω) = X(ω)).
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A vector-function x : R → R
n is said to be a solution of the system (1)

if x ∈ BV([s, t], Rn) and

x(t) = x(s) +

t
∫

s

dA(τ) · x(τ) + f(t)− f(s) for s ≤ t.

We assume that A(0) = On×n, f(0) = 0 and

det(In + (−1)jdjA(t)) 6= 0 for t ∈ [0, ω] (j = 1, 2). (8)

The above inequalities guarantee the unique solvability of the Cauchy
problem for the corresponding systems (see [12, Theorem III.1.4]).

Theorem 1. Let the conditions (3), (4) and (8) hold. Then the sys-

tem (1) has a unique ω-periodic solution if and only if the corresponding

homogeneous problem (10) has only the trivial ω-periodic solution, i.e.,

det(Y (0)− Y (ω)) 6= 0, (9)

where Y is a fundamental matrix of the system (10).

Corollary 1. Let the conditions (3), (4) and (8) hold. Let, in addition, the

matrix-function A be such that the matrices S0(A)(t), S1(A)(t) and S2(A)(t)
are pairwise permutable for every t ∈ [0, ω] and there exists t0 ∈ [0, ω] such

that

t
∫

t0

S0(A)(τ) dS0(A)(τ) =

t
∫

t0

dS0(A)(τ) · S0(A)(τ) for t ∈ [0, ω].

Then the system (1) has a unique ω-periodic solution if and only if

det

(

exp
(

S0(A)(ω)− S0(A)(t0)
)

∏

t0≤τ<ω

(In + d2A(τ))×

×
∏

t0<τ≤ω

(In − d1A(τ))−1 − exp
(

S0(A)(0)− S0(A)(t0)
)

×

×
∏

0≤τ<t0

(In + d2A(τ))−1
∏

0<τ≤t0

(In − d1A(τ))

)

6= 0.

Remark 1. If the homogeneous system (10) has a nontrivial ω-periodic
solution, then for every f ∈ BVω(R, Rn) there exists a vector c ∈ R

n such
that the system

dx(t) = dA(t) · x(t) + d(f(t)− ct) for t ∈ R

has no ω-periodic solution.

Definition 1. A matrix-function Gω : R× R → R
n×n is said to be the

Green matrix of the problem (10),(2) if

Gω(t+ω, τ+ω) = Gω(t, τ), Gω(t, t+ω)−Gω(t, t) = In for t and τ ∈ R,
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and the matrix-function Gω(·, τ) : R → R
n×n is a fundamental matrix of

the system (10).
If the condition (3) holds and the problem (10), (2) has only the trivial

solution, then there exists a unique Green matrix and it admits the following
representation

Gω(t, τ) = Y (t)
(

Y −1(ω)Y (0)− In

)−1
Y −1(τ) for t and τ ∈ R,

where Y is a fundamental matrix of the system (10).

Theorem 2. Let the conditions (3), (4) and (8) hold. Then the system

(1) has a unique ω-periodic solution if and only if the corresponding homo-

geneous problem (10) has only the trivial ω-periodic solution. If the latter

condition holds, then the ω-periodic solution x of the system (1) admits the

representation

x(t) =

t+ω
∫

t

Gω(t, s)dA(A, f)(s) for t ∈ R,

where Gω is the Green matrix of the problem (10), (2).

The last representation can be rewritten in the form

x(t) =

t+ω
∫

t

dsGω(t, s) · f(s)−
∑

t<s≤t+ω

d1Gω(t, s) · d1f(s)

+
∑

t≤s<t+ω

d2Gω(t, s) · d2f(s) for t ∈ R.

In general, it is quite difficult to verify the condition (9) directly even
in the case where one is able to write out the fundamental matrix of the
system (10) explicitly. Therefore it is important to seek for effective con-
ditions which would guarantee the absence of nontrivial solutions of the
homogeneous problem (10), (2).

Theorem 3. Let the conditions (3), (4) and (8) hold. Then the system (1)
has a unique ω-periodic solution if and only if there exist natural numbers

k and m such that the matrix

Mk = (−1)l

(

In −
k−1
∑

i=0

[A(cl)]i

)

is nonsingular for some l ∈ {1, 2} and

r(Mk,m) < 1, (10)

where

Mk,m = Vm(A)(cl) +

(m−1
∑

i=0

∣

∣|A(·)|i
∣

∣

s

)

· |M−1
k |Vk(A)(cl),
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cl = ω(2 − l), and [A(cl)]i and Vi(A)(cl) are defined, respectively, by (5l)
and (7l).

Theorem 4. Let the conditions (3), (4) and (8) hold. Let, moreover,

there exist natural numbers k and m such that the matrix

Mk = (−1)l

(

In −
k−1
∑

i=0

[A(cl)]i

)

is nonsingular for some l ∈ {1, 2} and the condition (10) holds, where

Mk,m =
(

V (A)(cl)
)

m
+

(

In +
m−1
∑

i=0

∣

∣|A(·)|i
∣

∣

s

)

· |M−1
k |
(

V (A)(cl)
)

k
,

cl = ω(2 − l), and
(

A(cl)
)

i
and

(

V (A)(cl)
)

i
are defined by (6l). Then the

system (1) has one and only one ω-periodic solution.

Corollary 2. Let the conditions (3), (4) and (8) hold and there exist a

natural number k such that
(

A(cl)
)

i
= 0 (i = 0, . . . , k − 1)

and

det
((

A(cl)
)

k

)

6= 0

for some l ∈ {1, 2}, where cl = ω(2 − l) and
(

A(cl)
)

i
is defined by (6l).

Then there exists ε0 > 0 such that the system

dx(t) = εdA(t) · x(t) + df(t) for t ∈ R

has one and only one ω-periodic solution for every ε ∈]0, ε0[.

Corollary 3. Let

det
(

A(ω)
)

6= 0.

Then the conclusion of Corollary 2 is true.

Theorem 5. Let a matrix-function A0 ∈ BVω(R, Rn×n) be such that

det(In + (−1)jdjA0(t)) 6= 0 for t ∈ R (j = 1, 2)

and the homogeneous system

dx(t) = dA0(t) · x(t) (11)

has only the trivial ω-periodic solution. Let, moreover, the matrix-function

A ∈ BVω(R, Rn×n) admit the estimate

t+ω
∫

t

|G0ω0(t, τ)|dV (S0(A−A0))(τ)+
∑

t<τ≤t+ω

|G0ω(t, τ−)·d1(A(τ)−A0(τ))|

+
∑

t≤τ<t+ω

|G0ω(t, τ+) · d2(A(τ) −A0(τ))| ≤ M for t ∈ R,
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where G0ω is the Green matrix of the problem (11), (2), and M ∈ R
n×n
+ is

a constant matrix such that

r(M) < 1.

Then the system (1) has one and only one ω-periodic solution.
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