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Abstract. Quadratic variational problems are considered in the space of
functions on the segment [a, b]. They are transformed to extremal problems
in the space L2 by the W -substitution x = Wz + Xα, where W is Green’s
operator of some boundary value problem for differential equation of the
n-th order, and (Xα)(t) = α1x1(t)+ · · ·+αnxn(t), xi(t) being suitable fun-
damental system of solutions of the corresponding homogeneous equation.
This substitution allows one to satisfy n constraints.

If the number of linear constraints exceeds the order n, the transformed
extremal problem in L2 contains constraints not satisfied by the substitu-
tion. For such a case, two ways are considered to satisfy all constraints and,
hence, to deal with a problem without constraints at all. Those are the
modified W -substitution, and the so called double W -substitution.

We show that they both give a quadratic extremal problems in subspaces
of L2, which are easy to study and solve. The paper, mainly, is devoted
to the comparison of techniques based on these substitutions and relation
between them.
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1. Introduction

Variational problems were the last devotion of N. V. Azbelev. The general
idea of W -substitution turned out a very effective tool for studying varia-
tional problems with quadratic functionals. In the last years, the study in
this direction was carried out more intensively. As a result, the book [2]
was published.

This paper may be considered as a continuation of the research presented
in [2]. In order that our presentation be somewhat independent of the book,
we describe here shortly the application of W -substitution to quadratic
variational problems.

1. Let D be a space of functions [a, b] → R that is naturally isomorphic to
the product L2×R

n (L2 is the Hilbert space of square summable functions

[a, b] → R with the inner product 〈y, z〉 =
b∫

a

y(t)z(t) dt). For example, D

may be the Sobolev space Hn of the functions x represented as

x(t) =

t∫

a

(t− s)n−1

(n− 1)!
z(s) ds +

n−1∑

k=0

βk+1 (t− a)k

k!
,

where z ∈ L2 and βk ∈ R.
We consider the quadratic variational problem

I(x)
def
=

b∫

a

1

2

m∑

i=1

(T1ix)(t)(T2ix)(t) + (T0x)(t) dt → inf , x ∈ D,

`ix = αi, i = 1, 2, . . . , N, N ≥ n,

(1)

where Tji : D → L2 and T0 : D → L1 are continuous linear operators,
`i : D → R are linearly independent continuous linear functionals.

Define the vector functional ` : D → R
N as `x = [`1x, . . . , `Nx] and the

vector α = (α1, . . . , αN ). Then the constraints of the problem (1) may be
written in the form

`x = α.

To solve such problems, a new approach based on the W -substitution
was suggested in [5], [1], [4].

2. Define the vector functional `[n] : D → R
n and the vector α[n] ∈ R

n by
the equalities `[n]x = (`1x, . . . , `nx) and α[n] = (α1, . . . , αn).

Let δ : D → L2 be a linear continuous operator such that the abstract

boundary value problem (abstract BVP) [5], [4]

δx = z, `[n]x = α[n], (2)

has, for every couple (z, α[n]) ∈ L2 × R
n, a unique solution continuously

dependent on (z, α[n]). Then the solution is representable in the form

x = Wz + Xα[n], (3)
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where W : L2 → D and X : R
n → D are continuous linear operators.

The operator W is known as Green’s operator for the BVP (2) (see [5]).
Besides,

Xα[n] =

n∑

i=1

αixi, (4)

where x1, . . . , xn ∈ D is a fundamental system of solutions of the
homogeneous equation δx = 0, normal with respect to the vector fun-

ctional `[n].
We define Dα = {x ∈ D : `x = α} and D

[n]
α = {x ∈ D : `[n]x = α[n]}.

So we have the isomorphisms {W, X} : L2 × R
n → D and W : L2 → D

[n]
0

with the inverse operators [δ, `[n]] : D → L2 × R
n and δ : D

[n]
0 → L2.

3. In the case N = n, the variational problem for x ∈ D

I(x) → inf ,

`x = α

is converted by the W -substitution (3) into the extremal problem

J (z)
def
= I(Wz + Xα)− I(Xα) → inf (5)

in the space L2. This problem without constraints is equivalent to (1) in
the sense that

there exists a one-to-one correspondence between the admissible set
Dα of the problem (1) and the space L2;
the values of the functionals at the corresponding points differ by a
constant;
so, minimum points, if any, ẑ ∈ L2 and x̂ = Wẑ + Xα ∈ Dα also
correspond to each other.

Note that if a minimum point ẑ of the problem (5) is found, then all the
constraints of the variational problem (1) for the solution x̂ = Wẑ + Xα

are satisfied by the properties of Green’s operator W.
We refer to the problem with N = n as well-determined problem.

4. Nevertheless, problems with N > n, so called overdetermined prob-

lems, are widely met. For example, the simplest problems of the classic
calculus of variations, such as the brachistochrone problem, or the prob-
lem (18) below, are overdetermined – the highest order of derivatives is
n = 1, but we have N = 2 boundary conditions.

In such a case, after the substitution (3) we have several constraints not
satisfied. The book [2] provides two ways to solve the problem:

a modified W -substitution, proposed by S. Yu. Kultyshev; and
solving the constrained extremal problem in the space L2 by the
Lagrange multipliers rule.

The examples of applied problems solved by these methods may be found
in the papers [3], [6]–[8].
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It was encountered that the modified W -substitution has some short-
comings described below. In particular, we have not a one-to-one corre-
spondence between Dα and L2.

The aesthetic idea of N. V. Azbelev for the overdetermined situation was,
avoiding these shortcomings, to find an abstract BVP generating the W -
substitution that converts the problem (1) to an extremal problem without
constraints. In [9] we have achieved this goal: the BVP (12) below gives a
desired one-to-one correspondence between Dα and some subspace of the
space L2 with codimension N−n. The corresponding substitution is referred
to as double W -substitution.

We also discuss the nature of the shortcomings of the modified W -subst-
itution. In this case, we restore the one-to-one correspondence by restricting
the range of definition of the converted extremal problem to some subspace
of L2, also with codimension N − n.

Then we study the connections between the mentioned two methods. A
special construction of the modified W -substitution is found which involves
the reduced extremal problem coinciding with the problem obtained by the
double W -substitution.

2. Modified W -Substitution

This idea is due to S. Yu. Kultyshev [6], [2, § 2.3].
Let the family of functions v1, . . . , vN ∈ D be biorthogonal to the system

of functionals `1, . . . , `N , that is,

`ivk = δi
k

def
=

{
1, if i = k,

0, if i 6= k.

Define the operator Λ : L2 → D
[n]
0 as follows:

Λy = Wy −

N∑

k=n+1

(`kWy) · vk.

1. For

x = Λy +

N∑

i=1

αivi, (6)

all the boundary conditions `ix = αi, i = 1, . . . , N , are satisfied.

Since `i
N∑

j=1

αjvj = αi, for i ≤ n we have `iΛy = `iWy = 0. If i > n,

then `iΛy = `iWy −
N∑

k=n+1

(`kWy)δi
k = 0. �

2. We denote li = W∗`i, that is, `iWz = 〈li, z〉, for i = n + 1, . . . , N .
Note that

〈li, δvk〉 = `iWδvk = `ivk = δi
k for k > n. (7)
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Now we construct an operator in the space L2 which plays an important
role in all the considerations below. The operator V : L2 → L2 is defined
by the equality

Vy = y −

N∑

k=n+1

〈lk, y〉 · δvk;

so the adjoint operator is

V∗y = y −

N∑

k=n+1

〈y, δvk〉 · l
k,

and Λ = WV.
Let Y0 be the linear hull of the system of the vectors {δvn+1, . . . , δvN},

and Y1 be its orthogonal complement. Let Z0 be the linear hull of the
system of vectors {ln+1, . . . , lN}, and Z1 be its orthogonal complement.

Due to (7), we have the following properties:

a) the kernel KerV = Y0;
b) KerV∗ = Z0.

Besides,

c) V is a projector to the subspace Z1;
d) V∗ is a projector to the subspace Y1.

To prove the property c), we first obtain the equality 〈Vy, li〉 = 0 by
direct calculation. Hence, the image ImV ⊂ Z1.

On the other hand, if z ∈ Z1, then 〈lk, z〉 = 0 for k > n; therefore
Vz = z.

The property d) is shown analogously. �

3. The equality

Dα = ΛL2 +

N∑

i=1

αivi

holds.
It is sufficient to show that ImΛ = D0. We have got above that ImΛ ⊂

D0.
To prove the inverse inclusion D0 ⊂ ImΛ = ImWV, let x ∈ D0. Then

Wδx = x. Therefore, it suffices to show that δx ∈ ImV.
For i = n + 1, . . . , N we have 〈li, δx〉 = `iWδx = `ix = 0. So, according

to the property c), δx ∈ Z1 = ImV. �

4. Define the operators

Aji = TjiΛ : L2 → L2, A0 = T0Λ : L2 → L1

(then A∗ji : L2 → L2 and A∗0 : L∞ → L2). Also define the operators
G : L2 → L2 and L : D → L2 by the equalities

G =
1

2

m∑

i=1

(A∗1iA2i + A∗2iA1i) and L =
1

2

m∑

i=1

(A∗1iT2i + A∗2iT1i).
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Then LΛ = G.
The modified W -substitution (6) converts the variational problem (1)

into the extremal problem

I1(y) =
1

2
〈Gy, y〉 − 〈θ, y〉 → min, (8)

where θ = −L
( N∑

j=1

αjvj

)
−A∗01, and 1(t) ≡ 1.

Differentiating the functional I1, we get the equation in L2:

Gy = θ. (9)

If ŷ ∈ L2 is a solution of this equation, then x̂ = Λŷ +
N∑

i=1

αivi satisfies

the following BVP in the space D:

Lx = −A∗01,

`x = α.
(10)

We ought to name it Euler boundary value problem.

Theorem 1 ([5], [6]). The following conditions are equivalent:

a) the problem (8) has a minimum point ŷ ∈ L2;

b) the problem (1) has a minimum point x̂ = Λŷ +
N∑

j=1

αjvj ∈ D;

c) ŷ satisfies the equation (9) and the operator G is positive definite;

d) x̂ is a solution of the problem (10) and the operator G is positive

definite.

Remark 1. We can say nothing on the uniqueness of the minimum points,
because there is no one-to-one correspondence between the admissible set
Dα and the space L2.

How to construct the biorthogonal system of functions v1, . . . , vN ∈ D?
This question has yet no answer.

At last, this biorthogonal system may be chosen with some uncertainty.
So the operator G is defined ambiguously.

3. Double W -Substitution

The W -substitution (3) provides a one-to-one correspondence between

D
[n]
α and L2. Using this, we convert the variational problem (1) into the

equivalent extremal problem in L2:

J (z) =
1

2
〈Hz, z〉 − 〈ρ, z〉 → min,

〈li, z〉 = βi def
= αi − `iXα[n], i = n + 1, . . . , N,

(11)
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with N −n constraints (first n constraints are satisfied by the properties of
Green’s operator W). Here

H =
1

2

m∑

i=1

(B∗1iB2i + B∗2iB1i) and ρ = −MXα[n] − B∗01,

where

Bji = TjiW : L2 → L2, M =
1

2

m∑

i=1

(B∗1iT2i + B∗2iT1i),

B0 = T0W : L2 → L1, 1(t) ≡ 1.

Note that MW = H .
Due to (7), the system {ln+1, . . . , lN} is linearly independent.
To solve the problem (11), instead of the Lagrange multipliers rule we

apply the trick of W -substitution repeatedly [9].
Denote by P the orthogonal projector to Z0. Then I−P is the orthogonal

projector to Z1. The projector P is an integral operator,

(Pz)(t) =

b∫

a

P (t, s)z(s) ds,

with the symmetric kernel P (t, s) =
N∑

i=n+1

N∑
j=n+1

γij l
i(t)lj(s), where the ma-

trix (γij)
N
i,j=n+1 of coefficients is inverse to the Gramian matrix

(〈li, lj〉)N
i,j=n+1.

The “boundary value problem”

(I −P)z = z1 (where z1 ∈ Z1),

〈li, z〉 = βi, i = n + 1, . . . , N,

is uniquely solvable. Its solution may be represented as

z = z1 + z0, z0
def
=

N∑

i=n+1

N∑

j=n+1

γijβ
j li.

So the BVP
(I −P)δx = z1, z1 ∈ Z1,

`x = α
(12)

has the unique solution

x = W
(
z1 +

N∑

i=n+1

N∑

j=n+1

γij

(
αj − `jXα[n]

)
li
)

+ Xα[n] (13)

and generates a one-to-one correspondence between the admissible set Dα

and the Hilbert space Z1.
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Since H is a self-adjoint operator, this substitution converts the prob-
lem (11) into the following equivalent problem in the Hilbert space Z1:

F(z1) =
1

2

〈
(I −P)Hz1, z1

〉
−

〈
(I −P)ρ− (I −P)Hz0, z1

〉
→ min . (14)

Thus we have the equation

(I −P)Hz1 = (I −P)ρ− (I −P)Hz0 (15)

for z1 ∈ Z1.
Substituting z0 = Pδx, z1 = (I −P)δx, we get the equivalent condition

Hδx− ρ ∈ Ker(I −P) = Z0.

Since Hδx = MWδx = M(x−Xα[n]) and ρ = −MXα[n] −B∗01, the last
condition is equivalent to the inclusion

Mx + B∗01 ∈ Z0. (16)

Thus, there exist scalars, the so called Lagrange multipliers, λn+1, . . . , λN ,
such that

Mx = −B∗01 +

N∑

i=n+1

λil
i,

`x = α.

(17)

This problem will be referred to as Euler–Lagrange boundary value

problem.

Theorem 2. The following conditions are equivalent:

a) the problem (14) has a minimum point ẑ1 ∈ Z1;

b) the problem (1) has a minimum point

x̂ = W
(
ẑ1 +

N∑

i=n+1

N∑

j=n+1

γij

(
αj − `jXα[n]

)
li
)

+ Xα[n] ∈ Dα;

c) ẑ1 satisfies the equation (15) and the operator (I −P)H is positive

definite on the space Z1;

d) for some λn+1, . . . , λN , the function x̂ satisfies the system (17) and

the operator (I −P)H is positive definite on the space Z1.

Remark 2. The condition

the operator (I −P)H is positive definite on the space Z1

may be replaced by the equivalent condition

the operator (I −P)H(I −P) is positive definite on L2.

Theorem 3 ([2], [9]). Suppose that the conditions of Theorem 2 are

fulfilled. The following conditions are equivalent:

e) the problem (1) has a unique minimum point;

f) the problem (14) has a unique minimum point ẑ1 ∈ Z1;

g) the equation (15) has a unique solution ẑ1 ∈ Z1;



146 AV. Z. Tsalyuk

h) the system (17) has a unique solution x̂; λn+1, . . . , λN ;

i) the operator (I −P)H is strictly positive definite on the space Z1.

4. Discussion

We have some freedom in choosing the functions vi. So, even if the
solution of the problem (1) is unique, the operator G depends on this choice.

Besides, the correspondence between x ∈ Dα and y ∈ L2 given by the
equation (6) is not one-to-one.

Therefore, we ought to study the nature of these uncertainties. Of course,
we are also interested in the connections between the operators G and H ,
the problems (8) and (14), etc.

The facts fundamental for the comparison are that

Λ = WV

and, therefore,

Aji = BjiV, A∗ji = V∗B∗ji, A0 = B0V, A∗0 = V∗B∗0 .

So

G = V∗HV and L = V∗M.

1. The solutions of the problem (10) are independent of the choice of func-

tions vi, i = 1, . . . , N .

Indeed, the first equation of (10) is equivalent to the inclusion

Mx + B∗01 ∈ KerV∗ = Z0.

The subspace Z0 is defined independently of the functions vi. �

Remark 3. This inclusion coincides with (16), the one obtained by the
double W -substitution.

2. Since KerV = Y0, we have

I1(y + u) = I1(y)

for every u ∈ Y0; the subspace KerΛ = Y0. So we conclude that the prob-

lem (8) is solvable disregarding the subspace Y0.
To prove this, note that 〈G(y + u), y + u〉 = 〈HV(y + u),V(y + u)〉 =

〈HVy,Vy〉 = 〈Gy, y〉, because Vu = 0. Besides, if Wz = 0, then z =
δWz = 0. So KerΛ = Ker(WV) = KerV = Y0. �

3. To obtain the uniqueness of the minimum point for the problem (8) and
the one-to-one correspondence in the equation (6), we should restrict the
domain of the operator Λ and, accordingly, of the operator G. Note that

θ = −V∗M
( N∑

j=1

αjvj

)
−V∗B∗01 ∈ ImV∗ = Y1 and Gy = V∗HVy ∈ Y1.

So the restriction is done to the subspace Y1.
The equation (6) defines the homeomorphism Y1 → Dα.
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Theorem 4. Suppose that the conditions of Theorem 1 are fulfilled. The

following conditions are equivalent:

e) the problem (1) has a unique minimum point;

f) the problem (8), considered on Y1, has a unique minimum point ŷ1;

g) the equation (9) has a unique solution ŷ1 ∈ Y1;

h) the operator G is strictly positive definite on the space Y1.

4. Due to the equality

〈Gy, y〉 = 〈HVy,Vy〉,

the operator G is positive definite if and only if H is positive definite on the

subspace ImV = Z1.
Since

〈Gy, y〉 = 〈HVy,Vy〉 = 〈(I −P)HVy,Vy〉

for y ∈ Y1, the operator G is strictly positive definite on the subspace Y1 if

and only if (I −P)H is strictly positive definite on the subspace Z1.

5. So the conjecture arises that F(Vy) = I1(y) for y ∈ Y1 and, therefore,
the equation (15) is converted into the equation (9) by the substitution
z1 = Vy.

The following example shows that this conjecture is not substantiated in
the general case.

Example 1. For the problem

I(x) =
1

2

1∫

0

ẋ2(t) dt → min,

x(0) = 0, x(1) = 1

(18)

we have δx = ẋ, (Wz)(t) =
t∫
0

z(s) ds, Xα[1] = 0. Besides, l2 = 1, so Z0

is the subspace of constants and Pz = 〈1, z〉1 (that is, P (t, s) = 1). The
function z0 = 1, and (I −P)z0 = 0. So, the problem (14) takes the form

F(z1) =
1

2
〈z1, z1〉 → min .

To obtain the solution, we get z1 = 0, z = z1 + z0 = 1, and x(t) = t.
This is a minimum point, because the operator H = I is strictly positive
definite.

Let v1(t) = 1−t, v2(t) = t2 (we do not choose v2(t) = t, such a choice will
be considered later). So Vy = y−〈1, y〉δv2, δv2(t) = 2t, and 〈δv2, δv2〉 = 4

3 .
Since 〈δv2, y〉 = 0 for y ∈ Y1, we have

F(Vy) =
1

2
〈Vy,Vy〉 =

1

2
〈y, y〉+

2

3
〈1, y〉2.
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If we use the modified W -substitution ẋ = y − 〈1, y〉δv2 + δv2, we get

I1(y) =
1

2
〈y, y〉+

2

3
〈1, y〉2 −

4

3
〈1, y〉.

Thus, F(Vy) 6= I1(y) for y being an orthogonal projection of 1 to Y1, i.e.,
for y(t) = 1− 3

2 t.

6. Given the fundamental system x1, . . . , xn of solutions of the equation
δx = 0, normal with respect to `[n], and the functions ln+1, . . . , lN , we
may construct a biorthogonal family v1, . . . , vN ∈ D in the following special
way. Recall that the matrix (γij)

N
i,j=n+1 is inverse to the Gramian matrix

(
〈li, lj〉

)N

i,j=n+1
. For i = n + 1, . . . , N , put

vi = W
( N∑

j=n+1

γij l
j
)
. (19)

If k ≤ n, then `kvi = 0 directly by the definition of the operator W. For

k > n we have `kvi =
N∑

j=n+1

γij`
kWlj =

N∑
j=n+1

γij〈l
k, lj〉 = δk

i .

The functions v1, . . . , vn ∈ D are chosen as follows:

vi = xi −

N∑

j=n+1

`jxi · vj . (20)

In the case α = 0, or when studying the solvability of problems without
calculation of solutions, we do not need them at all.

Remark 4. Following this way, we take for the example (18) v1(t) = 1− t

and v2(t) = t.

For such a choice of vi, we have δvi =
N∑

j=n+1

γij l
j for i = n+1, . . . , N , so

Y0 = Z0 and Y1 = Z1.
Hence, by direct calculation we get that V = I−P. This is an orthogonal

projector, so V∗ = V = I −P.
Apply (4) to (13), (20) and (19) to (6), and take into account that

〈lk, y〉 = 0 for y ∈ Y1. So we get that

the substitutions (6) and (13) coincide;
hence, the functionals I1 and F coincide on Z1;
and the equations (9) and (15) coincide as well.

7. Looking through the examples (in particular, [2, examples 2.3, 2.4, 3.2]),
the author concludes that the double W -substitution is more convenient
than the modified W -substitution for its briefness.
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