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Abstract. Effective (in terms of the parameters of the problem under
consideration) conditions are presented for positiveness of the Cauchy func-
tion of a certain class of functional differential equations with distributed
delay. From this result new conditions for exponential stability of solutions
are obtained.
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1. Definitions and Notation

Let R = (−∞, +∞), R+ = [0, +∞), ∆ = {(t, s) ∈ R
2 : t ≥ s}. Denote

by L∞ the space of measurable and essentially bounded on R functions with
the natural norm.

Consider the functional differential equation

(Lx)(t) ≡ ẋ(t) + a

t
∫

t−r(t)

x(s) ds = f(t), t ∈ R+ (1)

(

x(ξ) = 0 for ξ < 0
)

.

We assume that the delay r : R+ → R+ is measurable and bounded on R+,
the coefficient a is a real constant, and the function f : R+ → R is locally
integrable.

By a solution of the equation (1) we mean a function x : R+ → R that is
absolutely continuous on any segment and satisfies (1) almost everywhere.

As is known ([1], p. 35), under the assumptions described above the
equation (1) with the initial condition x(0) = c is uniquely solvable for any
c and f . Moreover, there exists a function C : ∆ → R such that any solution
of (1) can be represented by the formula

x(t) = C(t, 0)x(0) +

t
∫

0

C(t, s)f(s) ds. (2)

The function C is called the Cauchy function of the equation (1). It is
the central object in studies of properties of solutions to (1), as the first and
the second terms of the right-hand side of (2) describe the x(0)-dependence
and the f -dependence respectively of solutions to (1). Clearly, any property
of the Cauchy function determines a certain property of all solutions of (1).

2. Positiveness of the Cauchy Function

The problem on conditions for the Cauchy function to preserve a sign
is worth taking into detailed consideration, in so far as it follows from the
formula (2) that if the Cauchy function is positive, then the first term
preserves its sign, and the second one is a nonnegative integral operator.

This problem for various classes of functional differential equations in
terms of parameters of the equation was studied in the works [2], [3], [4].
In particular, the lemma on differential inequality was proved and usefully
employed. We will also use that lemma.

Assume that a ≥ 0 and r is bounded. Set r = sup
t∈R+

r(t).

The case a = 0 in (1) is trivial as here we have C(t, s) = 1 > 0.
Let us next assume a 6= 0. State the lemma on differential inequality in

the convenient form.
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Figure 1

Lemma 1 ([4], p. 65). Suppose a > 0 in the equation (1), and there

exists an absolutely continuous function ν such that ν(t) > 0 for all t ∈ R+

and (Lν)(t) ≤ 0 for almost all t ∈ R+. Then C(t, s) ≥ ν(t)/ν(s) for all

t ≥ s ≥ 0.

Let ν(t) = e−αt > 0 for α > 0. Applying Lemma 1 to (1), we obtain

(Lν)(t) = −αe−αt − a

α

(

e−αt − e−αt+αr(t)
)

=

= −e−αt
(

α +
a

α
(1− eαr(t))

)

≤ −e−αt
(

α +
a

α
(1− eαr)

)

.

It is obvious that if there exists α > 0 such that α + a
α

(1− eαr) ≥ 0, then
(Lν)(t) ≤ 0.

Let τ = αr and let us define the function ϕ(τ) = τ 2 + ar2(1− eτ ) on the
set τ > 0.

As a result, our problem is reduced to the following one: what conditions

must the parameter ar2 satisfy in order that there would exist at least one

point τ such that ϕ(τ) ≥ 0?
Let k = 2

ar2 > 0. Find the derivatives of ϕ with respect to τ :

ϕ′(τ) = ar2(kτ − eτ ), ϕ′′(τ) = ar2(k − eτ ).

At the point τ0 = ln k the function ϕ′′(τ) changes its sign plus (for τ < τ0)
to minus (for τ > τ0), that is, τ0 is a point of maximum of ϕ′; we have
ϕ′(τ0) = ar2k(ln k − 1). Now consider three cases, which are accompanied,
for the sake of clearness, by graphic illustrations (see Figure 1).
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1. Suppose ln k < 1, that is, k < e. Then ϕ′(τ) < 0 for all τ > 0 (we
see the graph of the function y = kτ lying lower than that of the
function y = eτ ), and the function ϕ monotonically decreases for all
τ > 0. Since limτ→+0 ϕ(τ) = 0, we see that ϕ(τ) < 0 for all τ > 0.
Hence, for k < e, there exists no point τ such that ϕ(τ) ≥ 0.

2. Suppose ln k = 1, that is k = e and τ0 = 1. Then ϕ′(τ) < 0 for all
τ 6= 1, and ϕ′(1) = 0 (the graph of the function y = eτ is a tangent
to that of the function y = eτ ). So the function ϕ monotonically
decreases for all τ > 0, and the point τ0 = 1 is the point of inflection
for the graph of ϕ. Since limτ→+0 ϕ(τ) = 0, we have ϕ(τ) < 0 for
all τ > 0. Hence, for k = e, there exists also no point τ such that
ϕ(τ) ≥ 0.

3. Suppose ln k > 1, that is k > e. Then the graphs of the functions
y = kτ and y = eτ have exactly two points of intersection. Denote
by τ1 and τ2 the τ -coordinates of those points. It is obvious that
τ1 < 1 < τ2. So we have ϕ′(τ1) = ϕ′(τ2) = 0, ϕ′(τ) < 0 for τ < τ1

or τ > τ2, and ϕ′(τ) > 0 for τ1 < τ < τ2. Hence τ = τ1 is a point of
minimum for the function ϕ, and τ = τ2 is its point of maximum.
On the interval (τ1, τ2) the function ϕ monotonically increases, and
its graph may go into the upper half-plane. It is clear that this

situation is possible if and only if ϕ(τ2) ≥ 0.

Thus, our problem is reduced to the following one: for what values of

the parameter k > e there exists a point ξ such that both of the following

relations hold:

kξ = eξ, (3)

ξ2 +
2

k
(1− eξ) ≥ 0. (4)

Consider the function ω(ξ) = ξe−ξ for ξ ≥ 0. For 0 ≤ ξ < 1 the function
ω increases monotonically from 0 to 1/e, reaching at ξ = 1 its maximum
which equals 1/e, for ξ > 1 it decreases monotonically and tends to zero
asymptotically. Hence, for ξ ≥ 1, there exists the inverse function ω−1

that is defined on half-interval (0, 1/e] and decreases monotonically, with
ω−1(0, 1/e] = [1,∞).

There is ξ > 1 and k > e in the equality (3). Therefore 1/k ∈ (0, 1/e], and
so (3) can be represented in the equivalent form ξ = ω−1(1/k). Considering
(3), rewrite the left-hand side of (4) in the following way:

ξ2 + 2/k(1− eξ) = ξ2 + 2/k(1− kξ) = ξ2 − 2ξ + 2/k =

=
(

ξ −
(

1 +
√

1− 2/k
))(

ξ −
(

1−
√

1− 2/k
))

. (5)

Our concern is only with solutions of the inequality (4) such that ξ > 1.

It follows from (5) that ξ ≥ 1 +
√

1− 2/k. This implies that ξ is a solution
of the system (3)–(4) if and only if

ξ = ω−1(1/k) and ξ ≥ 1 +
√

1− 2/k.
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Figure 2

It is obvious that the graphs of the functions which are the right-hand
sides of the latter two relations intersect each other at a single point (see
Figure 2). Denote by 1/k0 the abscissa of this point. Then the solution of
the system (3)–(4) is the set 0 < 1/k ≤ 1/k0.

It remains to find k0. By construction, k0 is the unique root of the
equation

ω−1(1/k) = 1 +
√

1− 2/k. (6)

Let µ = 1 +
√

1− 2/k0 and use the designation for the function ω. Then
we obtain from (6) that µ is the positive root of the equation

e−µ = 1− µ/2. (7)

We have the approximation 1,59 < µ < 1,6.

Theorem 1. Suppose

√
a sup

t∈R+

r(t) ≤
√

µ(2− µ), (8)
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where µ is the positive root of (7). Then the Cauchy function of the equation

(1) is positive.

Remark 1. Approximate calculations give us the following estimate of
the constant in the right-hand side of (8): 0,8 <

√

µ(2− µ) < 0,81.

3. Stability

Let us demonstrate the way to apply the obtained conditions of the posi-
tiveness of the Cauchy function to investigation of stability of the equations
(1). Note that it is suitable to formulate conditions for stability in terms of
the Cauchy function.

The equation (1) is said to be exponentially stable if there exist positive
constants N and α such that for all (t, s) ∈ ∆ the following estimate holds:

|C(t, s)| ≤ Ne−α(t−s). (9)

Consider (1) for r(t) ≡ r ≥ 0 and f(t) ≡ 0:

ẋ(t) + a

t
∫

t−r

x(s) ds = 0, t ∈ R+ (10)

(

x(ξ) = 0 for ξ < 0
)

.

Denote by x0 the solution of (10) satisfying the initial condition x0(0) =
1. Since the equation (10) is autonomous, the function x0(t − s) is the
Cauchy function. For the equation (10), a criterion of asymptotical (which
is here exponential) stability is known.

Lemma 2 ([5]). The equation (10) is exponentially stable if and only if

0 < r
√

a < π/
√

2.

Lemma 3. Suppose the equation (10) is exponentially stable. Then
∞
∫

0

x0(s) ds = 1/ar.

Proof. Substitute the function x0(t) into the equality (10) and integrate
along the segment [0, t]:

x0(t)− 1 = −a

t
∫

0

s
∫

s−r

x(τ) dτ ds.

Change the integration order and pass to the limit as t →∞:

1− lim
t→∞

x0(t) = lim
t→∞

(

a

t−r
∫

0

x0(τ)

τ+r
∫

τ

ds dτ + a

t
∫

t−r

x0(τ)

t
∫

τ

ds dτ

)

.



94 V. V. Malygina

Since x0(t) has an exponential estimate, using the latter equality we obtain

1 = ar

∞
∫

0

x0(s) ds,

as was required. �

In the proof of the next theorem we use a method suggested by S. A. Gu-
sarenko in the paper [6].

Theorem 2. Suppose in the equation (1)

0 <
√

a inf
t∈R+

r(t) ≤
√

a sup
t∈R+

r(t) < 2
√

µ(2− µ),

where µ is the positive root of the equation (7). Then the equation (1) is

exponentially stable.

Proof. Let r =

√
µ(2−µ)
√

a
and let us rewrite (1) in the form

ẋ(t) + a

t
∫

t−r

x(s) ds = a

t−r(t)
∫

t−r

x(s) ds + f(t), t ∈ R+.

Applying the formula (2), we can represent the latter equality in the
following integral form

x(t) = (Kx)(t) + g(t), (11)

where

(Kx)(t) = a

t
∫

0

x0(t− s)

s−r(s)
∫

s−r

x(τ) dτ ds,

g(t) =

t
∫

0

x0(t− s)f(s) ds + x0(t)x(0),

and x0(t− s) is the Cauchy function of the equation (10).
By virtue of the choise of r and according to the remark after Theorem 1,

we have r
√

a < 0,81 < π/
√

2, that is, by Lemma 2 the function x0(t − s)
admits the exponential estimate (9).
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Suppose f ∈ L∞. Then g ∈ L∞, and the operator K maps L∞ into L∞.
Let us estimate the norm of K:

‖Kx‖ = sup
t∈R+

a

∣

∣

∣

∣

t
∫

0

x0(t− s)

s−r(s)
∫

s−r

x(τ) dτ ds

∣

∣

∣

∣

≤

≤
(

sup
t∈R+

a

t
∫

0

|x0(t− s)| sup
s∈R+

|r(s) − r| ds

)

‖x‖ =

=

(

sup
t∈R+

a|r(t) − r|
∞
∫

0

|x0(s)| ds

)

‖x‖.

From Theorem 1 and by virtue of the choice of r it follows that x0(t) > 0,

hence |x0(t)| = x0(t). Now by Lemma 3,
∞
∫

0

x0(s) ds = 1/ar.

Taking into account the assumptions of the theorem, we obtain ‖K‖ < 1.
Applying the contraction mapping principle, we conclude that the equation
(1) has a solution that is bounded in R+. According to the Bohl–Perron the-
orem ([4], p. 103, th. 3.3.1), it follows that the equation (1) is exponentially
stable. �

Corollary 1. Suppose in the equation (1)

0 <
√

a lim
t→∞

r(t) ≤
√

a lim
t→∞

r(t) < 2
√

µ(1− µ),

where µ is the positive root of the equation (7). Then the equation (1) is

exponentially stable.

Proof follows from the fact that the Cauchy function of the equation (1) is
bounded on any strip of finite width t− s ≤ T . �
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