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In the present paper, we consider nonlinear functional differential in-
equalities appearing in the theory of boundary value problems (see [1]–[6]
and the references therein) and formulate new results on a priori estimates
of their solutions satisfying the boundary conditions of periodic type.

Let n be a natural number, ω > 0, Cn−1([0, ω]) be the space of (n − 1)
times continuously differentiable functions with the norm

‖u‖Cn−1 = max
{

n
∑

i=1

|u(i−1)(t)| : 0 ≤ t ≤ ω
}

,

and L([0, ω]) be the space of Lebesgue integrable functions v : [0, ω] → R

with the norm

‖v‖L =

b
∫

a

|v(t)| dt.

On the interval [0, ω], let us consider the nonlinear differential inequality
∣

∣

∣
u(n)(t)− p(u)(t)u(τ(t))

∣

∣

∣
≤ q(t) (1)

with the boundary conditions of periodic type
n

∑

i=1

∣

∣u(i−1)(0)− u(i−1)(ω)
∣

∣ ≤ c0, (2)

where p : Cn−1([0, ω]) → L([0, ω]) is an operator, q ∈ L([0, ω]) is a non-
negative function, c0 is a nonnegative number, and τ : [0, ω] → [0, ω] is a
measurable function.

The function u : [0, ω] → R is said to be a solution of the differential
inequality (1) if it is absolutely continuous together with its derivatives
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up to the order n− 1 inclusive and almost everywhere on [0, ω] satisfies the
inequality (1).

A solution of the differential inequality (1) satisfying the condition (2) is
called a solution of the problem (1), (2).

For an arbitrary v ∈ L([0, ω]) and a measurable function w : [0, ω] →
[0, ω] we assume

`(v, w) =

(

ω
∫

0

|v(t)| |w(t) − t| dt

)1/2

.

Theorem 1. Let n = 2m and let there exist k ∈ {0, 1} and nonnegative

functions pi : L([0, ω]) (i = 0, 1) such that

p0(t) ≤ (−1)m+kp(x)(t) ≤ p1(t) for t ∈ [0, ω] and x ∈ C([0, ω]).

Moreover, let
ω

∫

0

p0(t) dt > 0 (3)

and

(1− k)p1(t) +
2π

ω
|p1(t)|

1/2`(p1, τ) <
(2π

ω

)n

for t ∈ [0, ω].

Then there exists a positive constant ρ, independent of p, q, and c0, such

that an arbitrary solution of the problem (1), (2) admits the estimate

‖u‖Cn−1 ≤ ρ(c0 + ‖q‖L). (4)

Corollary 1. Let n = 2m and there exist nonnegative functions pi ∈
L([0, ω]) (i = 0, 1) such that

p0(t) ≤ (−1)mp(x)(t) ≤ p1(t) for t ∈ [0, ω] and x ∈ Cn−1([0, ω]),

and the inequality (3) holds. Let, moreover,

|p1(t)|+
(2π

ω

)m+1

`(p1, τ) <
(2π

ω

)n

for t ∈ [0, ω].

Then there exists a positive constant ρ, independent of p, q, and c0, such

that an arbitrary solution of the problem (1), (2) admits the estimate (4).

Corollary 2. Let n = 2m and there exist nonnegative functions pi ∈
L([0, ω]) (i = 0, 1) such that

p0(t) ≤ (−1)m−1p(x)(t) ≤ p1(t) for t ∈ [0, ω] and x ∈ Cn−1([0, ω])

and the inequality (3) holds. Let, moreover,

|p1(t)|
1/2`(p1, τ) <

(2π

ω

)n−1

for t ∈ [0, ω]. (5)

Then there exists a positive constant ρ, independent of p, q, and c0, such

that every solution of the problem (1), (2) admits the estimate (4).
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Theorem 2. Let n = 2m+1 and there exist k ∈ {0, 1} and nonnnegative

functions pi ∈ L([0, ω]) (i = 0, 1) such that

p0(t) ≤ (−1)kp(x)(t) ≤ p1(t) for t ∈ [0, ω] and x ∈ Cn−1([0, ω])

and the inequalities (3) and (5) hold. Then there exists a positive constant ρ,

independent of p, q, and c0, such that every solution of the problem (1), (2)
admits the estimate (4).
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