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Short Communications

Malkhaz Ashordia

ON A PRIORI ESTIMATES OF BOUNDED SOLUTIONS OF
SYSTEMS OF LINEAR GENERALIZED ORDINARY

DIFFERENTIAL INEQUALITIES

(Reported on March 12, 2006)

Let σi ∈ {−1; 1} (i = 1, . . . , n) and let ail, fi : R → R (i 6= l; i, l =
1, . . . , n) and aii : R → R (i = 1, . . . , n) be, respectively, nondecreasing and
nonincreasing functions.

In this paper we consider the question on a priori estimates of nonnegative
solutions (ui)

n
i=1 of the system of linear generalized ordinary differential

inequalities

σidui(t) ≤
n

∑

l=1

ul(t)dail(t) + dfi(t) for t ∈ R (i = 1, . . . , n) (1)

satisfying the condition

lim sup
t→∞

ui(σit) < ∞ (i = 1, . . . , n). (2)

A particular case of the condition (2) is the periodic problem

ui(t + ω) = ui(t) for t ∈ R (i = 1, . . . , n).

We will use these results for the proof of theorems concerning the exis-
tence of bounded (on infinite intervals of the real axis) solutions for systems
of generalized ordinary differential equations.

To a considerable extent, the interest to the theory of generalized ordi-
nary differential equations has also been stimulated by the fact that this
theory enables one to investigate ordinary differential, impulsive and differ-
ence equations from a unified point of view (see, e.g., [1]–[7] and references
therein).

These results for systems of linear ordinary differential inequalities belong
to I. Kiguradze ([8], [9]).
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Throughout the paper, the use will be made of the following notation
and definitions.

R = ]−∞, +∞[ , R+ = [0, +∞[ ; [a, b] and ]a, b] are, respectively, closed
and open intervals.

R
n×m is the set of all real matrices X = (xij)

n,m
i,j=1.

r(X) is the spectral radius of the quadratic n×n-matrix X = (xij )
n
i,j=1.

A matrix-function X = (xij)
n,m
i,j=1 → R

n×m is said to be nonnegative,

continuous, nondecreasing, etc., if each of its components xij (i = 1, . . . , n;
j = 1, . . . , m) is such.

b
∨

a

(x) is the total variation on [a, b] of the function x : [a, b] → R.

BV([a, b], R) is the set of all functions x : [a, b] → R with bounded total
variation.

BVloc(R, R) is the set of all functions x : R → R, such that
b
∨

a

(x) < ∞

for a < b (a, b ∈ R); x(t−) and x(t+) are, respectively, the left and right
limits of the function x : R → R at the point t ∈ R; d1x(t) = x(t) − x(t−),
d2x(t) = x(t+)− x(t).

v(x) : R → R is the function defined by v(x)(0) = 0, v(x)(t) =
t
∨

0
(x) for

t > 0 and v(x)(t) =
a
∨

t

(x) for t < 0.

s0(x) : R → R is the continuous part of the function x ∈ BVloc(R, R),
i.e.,

s0(x)(0) = 0,

s0(x)(t) = x(t) − x(0)−
∑

0<τ≤t

d1x(τ) −
∑

0≤τ<t

d2x(τ) for t > 0

and

s0(x)(t) = x(t)− x(0)−
∑

t<τ≤0

d1x(τ) −
∑

t≤τ<0

d2x(τ) for t < 0.

A : BVloc(R, R)×BVloc(R, R) → BVloc(R, R) is the operator defined by

A(x, y)(0) = 0,

A(x, y)(t) = y(t) +
∑

0<τ≤t

d1x(τ) ·
(

1− d1x(τ)
)−1

d1y(τ)−

−
∑

0≤τ<t

d2x(τ) ·
(

1 + d2x(τ)
)−1

d2y(τ) for t > 0,

A(x, y)(t) = y(t)−
∑

t<τ≤0

d1x(τ) ·
(

1− d1x(τ)
)−1

d1y(τ)+

+
∑

t≤τ<0

d2x(τ) ·
(

1 + d2x(τ)
)−1

d2y(τ) for t < 0
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for every x ∈ BVloc(R, R) such that

1 + (−1)jdjx(t) 6= 0 for t ∈ R (j = 1, 2).

If g : R → R is a nondecreasing function, x : R → R and s < t, then

t
∫

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) ds0(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ) +
∑

s≤τ<t

x(τ)d2g(τ),

where
∫

]s,t[

x(τ) ds0(g)(τ) is the Lebesgue–Stieltjes integral over the open

interval ]s, t[ with respect to the measure µ(s0(g)) corresponding to the
function s0(g).

If s = t, then we assume

t
∫

s

x(τ) dy(τ) = 0.

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then

t
∫

s

x(τ) dg(τ) =

t
∫

s

x(τ) dg1(τ) −

t
∫

s

x(τ) dg2(τ) for s ≤ t.

By a solution of the system (1) we understand a vector function (ui)
n
i=1,

ui ∈ BVloc(R, R) (i = 1, . . . , n) such that

σi

(

ui(t)−ui(s)
)

≤
n

∑

l=1

t
∫

s

ul(τ) dail(τ)+fi(t)−fi(s) for t≤s (i=1, . . . , n).

If s ∈ R, and β ∈ BVloc(R, R) is such that

1 + (−1)jdjβ(t) 6= 0 for t ∈ R (j = 1, 2),

then by γβ(· , s) we denote the unique solution of the Cauchy problem

dγ(t) = γ(t)dβ(t), γ(s) = 1.

By a solution of this problem we understand a function γ ∈ BVloc(R, R),
such that

γ(t) = 1 +

t
∫

s

γ(τ) dβ(τ) for t ∈ R.

It is known (see [6],[7]) that

γβ(t, s) = exp
(

ξβ(t)− ξβ(s)
)

∏

s<τ≤t

sgn
(

1− d1β(τ)
)

×

×
∏

s≤τ<t

sgn
(

1 + d2β(τ)
)

for t > s,

γβ(t, s) = γ−1
β (s, t) for t < s,
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where

ξβ(t) = s0(β)(t)− s0(β)(0)−

−
∑

0<τ≤t

ln
∣

∣1− d1β(τ)
∣

∣ +
∑

0≤τ<t

ln
∣

∣1 + d2β(τ)
∣

∣ for t > 0,

ξβ(t) = s0(β)(t)− s0(β)(0)+

+
∑

t<τ≤0

ln
∣

∣1− d1β(τ)
∣

∣ −
∑

t≤τ<0

sgn
∣

∣1 + d2β(τ)
∣

∣ for t < 0.

Remark 1. Let β ∈ BV([a, b], R) be such that

1 + (−1)jdjβ(t) > 0 for t ∈ [a, b] (j = 1, 2).

Let, moreover, one of the functions β, ξβ andA(β, β) be nondecreasing (non-
increasing). The other two functions will be nondecreasing (nonincreasing),
as well.

Let δ > 0. We introduce the operators

ν1δ(ξ)(t) = sup
{

τ ≥ t : ξ(τ) ≤ ξ(t+) + δ
}

and

ν−1δ(η)(t) = inf
{

τ ≤ t : η(τ) ≤ η(t−) + δ
}

,

respectively, on the set of all nondecreasing functions ξ : R → R and on the
set of all nonincreasing functions η : R → R.

If σ = (σi)
n
i=1, where σi ∈ {−1; 1} (i = 1, . . . , n), then by N+(σ) (N−(σ))

we denote the set of all i ∈ {1, . . . , n} such that σi = 1 (σi = −1).

Lemma 1. Let cik : R → R (i 6= k; i, k = 1, . . . , n) and cii : R → R

(i = 1, . . . , n) be, respectively, nondecreasing and nonincreasing functions,

and σi ∈ {−1; 1} (i = 1, . . . , n) be such that

1 + (−1)jσidjcii(t) > 0 for t ∈ [a, b] (j = 1, 2)

and

r(S) < 1, (3)

where S = (sil)
n
i,l=1,

s11 = · · · = snn = 0,

sil = sup

{∣

∣

∣

∣

t
∫

ti

γσicii
(t, s) dV

(

A(σicii, cil)
)

(s)

∣

∣

∣

∣

: t ∈ [a, b]

}

(i 6= l; i, l = 1, . . . , n),

ti = a if σi = 1 and ti = b if σi = −1 (i = 1, . . . , n).

Let, moreover, the numbers δi > 0 (i = 1, . . . , n) be such that

σi

(

ξσicii
(a)− ξσicii

(b)
)

> δi (i = 1, . . . , n).
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Then there exists a positive number ρ > 0 such that for every nondecreas-

ing functions qi : [a, b] → R (i = 1, . . . , n) an arbitrary nonnegative solution

u = (ui)
n
i=1 of the system of linear generalized differential inequalities

σidui(t) ≤
n

∑

l=1

ul(t)dcil(t) + dqi(t) for t ∈ [a, b] (i = 1, . . . , n)

admits the estimate
n

∑

i=1

ui(t) ≤ ρ
(

ρ0 +
n

∑

i=1

ρi

)

for t ∈ [a, b],

where

ρ0 =
∑

i∈N+(σ)

ui(a) +
∑

i∈N
−

(σ)

ui(b),

ρi = sup

{

∣

∣

∣

νi(t)
∨

t

A(σicii, fi)
∣

∣

∣
: t ∈ [a, b] (i = 1, . . . , n)

}

,

νi(t) ≡ νσiδi
(−ξσicii

)(t) (i = 1, . . . , n).

Theorem 1. Let σi ∈ {−1; 1} (i = 1, . . . , n) be such that

1 + (−1)jσidjaii(t) > 0 for t ∈ R (j = 1, 2; i = 1, . . . , n)

and the condition (3) hold, where S = (sil)
n
i,l=1, s11 = · · · = snn = 0 and

sil = sup

{∣

∣

∣

∣

t
∫

ti

γσiaii
(t, s) dV

(

A(σiaii, ail)
)

(s)

∣

∣

∣

∣

: t ∈ R

}

< ∞

(i 6= l; i, l = 1, . . . , n),

ti = a if σi = 1 and ti = b if σi = −1 (i = 1, . . . , n).

Let, moreover,

σi lim inf
t→∞

(

ξσiaii
(t)− ξσiaii

(−t)
)

> δ > 0 (i = 1, . . . , n)

for some δ > 0. Then there exists a positive number ρ > 0 such that for

any nondecreasing functions fi : R → R (i = 1, . . . , n) such that

ρi = sup

{

∣

∣

∣

νi(t)
∨

t

(

A(σiaii, fi)
)

∣

∣

∣
: t ∈ R

}

< ∞ (i = 1, . . . , n),

where νi(t) ≡ νσiδ(−ξσicii
)(t) (i = 1, . . . , n), an arbitrary nonnegative solu-

tion of the problem (1), (2) admits the estimate

n
∑

i=1

ui(t) ≤ ρ

n
∑

i=1

(ri + ρi) for t ∈ R,

where

ri = lim sup
t→∞

ui(σit) (i = 1, . . . , n).
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Remark 2. If n = 2, then the condition (3) in Theorem 2 has the following
form:

|s12s21| < 1,

where s12 and s21 are defined as in the theorem.

Acknowledgement

This work is supported by the Georgian National Science Foundation
(Grant No. GNSF/ST06/3-002).

References

1. M. Ashordia, On the stability of solutions of the multipoint boundary value prob-
lem for the system of generalized ordinary differential equations. Mem. Differential

Equations Math. Phys. 6(1995), 1–57.
2. M. Ashordia, A criterion for the solvability of a multipoint boundary value problem

for a system of generalized ordinary differential equations. (Russian). Differ. Uravn.

32(1996), No. 10, 1303–1311; English transl.: Differ. Equations 32(1996), No. 10,
1300–1308.

3. M. Ashordia, Conditions of existence and uniqueness of solutions of the multipoint
boundary value problem for a system of generalized ordinary differential equations.
Georgian Math. J. 5(1998), No. 1, 1–24.

4. M. Ashordia, Lyapunov stability of systems of linear generalized ordinary differential
equations. Comput. Math. Appl. 50(2005), No. 5-6, 957–982.

5. M. Ashordia and N. Kekelia, On the ξ-exponentially asymptotic stability of linear
systems of generalized ordinary differential equations. Georgian Math. J. 8(2001),
No. 4, 645–664.

6. J. Groh, A nonlinear Volterra–Stieltjes integral equation and a Gronwall inequality
in one dimension. Illinois J. Math. 24(1980), No. 2, 244–263.

7. T. H. Hildebrandt, On systems of linear differentio-Stieltjes-integral equations.
Illinois J. Math. 3(1959), 352–373.

8. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equa-
tions. (Russian) Itogi Nauki i Tekhniki, Current problems in mathematics. Newest re-

sults, Vol. 30 (Russian), 3–103, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.

Inform., Moscow, 1987; English transl.: J. Soviet Math. 43(1988), No. 2, 2259–2339.
9. I. Kiguradze, The initial value problem and boundary value problems for systems of

ordinary differential equations, Vol. I. Linear theory. (Russian) Metsniereba, Tbilisi,
1997.

(Received 19.03.2007)

Author’s address:

A. Razmadze Mathematical Institute
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: ashord@rmi.acnet.ge


