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Abstract. In this paper, the question on the existence and uniqueness
of a constant sign solution of the initial value problem

u′′(t) = `(u)(t) + q(t), u(a) = c1, u′(a) = c2

is studied. More precisely, the nonimprovable effective sufficient conditions
for a linear operator ` : C([a, b]; R) → L([a, b]; R) are established guaran-
teeing that the considered problem with q ∈ L([a, b]; R+) and c1, c2 ∈ R+

has a unique solution and this solution is nonnegative. The question on
the existence and uniqueness of a monotone solution of the same problem
is discussed, as well.
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Introduction

The following notation is used throughout the paper.
N is the set of natural numbers.
R is the set of real numbers, R+ = [0, +∞[.
If x ∈ R, then [x]+ = 1

2 (|x| + x) and [x]− = 1
2 (|x| − x).

C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R

with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
C([a, b]; R+) = {u ∈ C([a, b]; R) : u(t) ≥ 0 for t ∈ [a, b]}.
Ca([a, b]; R+) = {u ∈ C([a, b]; R+) : u(a) = 0}.

C̃([a, b]; R) is the set of absolutely continuous functions u : [a, b] → R.

C̃ ′([a, b]; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈

C̃([a, b]; R).

C̃ ′

loc([a, b[ ; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈

C̃([a, β]; R) for every β ∈ ]a, b[ .

C̃ ′

loc(]a, b[ ; R) is the set of functions u ∈ C̃([a, b]; R) such that u′ ∈

C̃([α, β]; R) for every [α, β] ⊂ ]a, b[ .
Mab is the set of measurable functions τ : [a, b] → [a, b].
L([a, b]; R) is the Banach space of Lebesgue integrable functions p :

[a, b] → R with the norm ‖p‖L =
∫ b

a
|p(s)|ds.

L([a, b]; R+) = {p ∈ L([a, b]; R) : p(t) ≥ 0 for t ∈ [a, b]}.
Lab is the set of linear bounded operators ` : C([a, b]; R) → L([a, b]; R).
Pab is the set of operators ` ∈ Lab transforming the set C([a, b]; R+) into

the set L([a, b]; R+).
We will say that ` ∈ Lab is an a−Volterra operator if for arbitrary a0 ∈

]a, b] and v ∈ C([a, b]; R) satisfying the condition

v(t) = 0 for t ∈ [a, a0]

we have

`(v)(t) = 0 for almost all t ∈ [a, a0].

The equalities and inequalities with integrable functions are understood
almost everywhere.

Consider the problem on the existence and uniqueness of a solution of
the equation

u′′(t) = `(u)(t) + q(t) (0.1)

satisfying the initial conditions

u(a) = c0, u′(a) = c1, (0.2)

where ` ∈ Lab, q ∈ L([a, b]; R) and c0, c1 ∈ R . By a solution of the equation

(0.1) we understand a function u ∈ C̃ ′([a, b]; R) satisfying this equation
(almost everywhere) in [a, b].
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Along with the problem (0.1), (0.2) consider the corresponding homoge-
neous problem

u′′(t) = `(u)(t), (0.10)

u(a) = 0, u′(a) = 0. (0.20)

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [9]).

Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable iff the cor-

responding homogeneous problem (0.10), (0.20) has only the trivial solution.

Introduce the following definitions.

Definition 0.1. An operator ` ∈ Lab belongs to the set Hab(a) if for

every function u ∈ C̃ ′([a, b]; R) satisfying

u′′(t) ≥ `(u)(t) for t ∈ [a, b], (0.3)

u(a) ≥ 0, u′(a) ≥ 0, (0.4)

the inequality

u(t) ≥ 0 for t ∈ [a, b] (0.5)

holds.

Definition 0.2. An operator ` ∈ Lab belongs to the set H̃ab(a) if for

every function u ∈ C̃ ′([a, b]; R) satisfying (0.20) and (0.3), the inequality
(0.5) holds.

Definition 0.3. An operator ` ∈ Lab belongs to the set H ′

ab(a) if for

every function u ∈ C̃ ′([a, b]; R) satisfying (0.3) and

u(a) = 0, u′(a) ≥ 0, (0.6)

the inequalities

u(t) ≥ 0, u′(t) ≥ 0 for t ∈ [a, b] (0.7)

hold.

Remark 0.1. From Definitions 0.1–0.3 it immediately follows that

Hab(a) ⊆ H̃ab(a), H ′

ab(a) ⊆ H̃ab(a). (0.8)

It is not difficult to verify that

Pab ∩Hab(a) = Pab ∩ H̃ab(a) and Pab ∩H ′

ab(a) = Pab ∩ H̃ab(a). (0.9)

Nevertheless, in general

Hab(a) 6= H̃ab(a) and H ′

ab(a) 6= H̃ab(a).

Indeed, let

`(v)(t)
def
= −

π2

(b− a)2
v(t).
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By virtue of Sturm’s comparison theorem (see, e.g., [7]), it is not difficult

to verify that ` ∈ H̃ab(a). On the other hand, the functions

u1(t) = sin
π(t− a)

b− a
, u2(t) = cos

π(t − a)

b− a
for t ∈ [a, b]

satisfy

u′′1(t) = `(u1)(t) for t ∈ [a, b], u1(a) = 0, u′1(a) =
π

b− a
, u′1(b) < 0,

u′′2(t) = `(u2)(t) for t ∈ [a, b], u2(a) = 1, u′2(a) = 0, u2(b) < 0.

Therefore, ` 6∈ H ′

ab(a) and ` 6∈ Hab(a).

Remark 0.2. As it follows from (0.9), Pab ∩ Hab(a) = Pab ∩ H ′

ab(a).
Nevertheless, in general

Hab(a) 6⊆ H ′

ab(a) and H ′

ab(a) 6⊆ Hab(a).

First, let `(v)(t)
def
= −g(t)v(a), where g ∈ L([a, b]; R+). Evidently, ` ∈

H ′

ab(a). By a direct calculation, one can easily verify that ` ∈ Hab(a) if and
only if ∫ b

a

(b− s)g(s)ds ≤ 1. (0.10)

Therefore, in general H ′

ab(a) 6⊆ Hab(a).
Now, put a = 0, b ∈

]
π
4 , π

2

[
, and

`(v)(t)
def
= −

1 + 2 sin2 ϕ−1(t)

cos8 ϕ−1(t)
· v(t),

where

ϕ(t) = sin t−
1

3
sin3 t for t ∈ [a, b].

Clearly, the function

γ(t) = cosϕ−1(t) for t ∈ [a, b]

satisfy

γ′′(t) = `(γ)(t) for t ∈ [a, b],

γ(t) > 0 for t ∈ [a, b[, γ ′(a) = 0.

Hence, by virtue of Theorem 1.2 below, we get ` ∈ Hab(a). On the other
hand, the function

u(t) = sin 2ϕ−1(t) for t ∈ [a, b]

satisfies (0.10), (0.6), and u′(b) < 0. Therefore, ` 6∈ H ′

ab(a). Thus, in general
Hab(a) 6⊆ H ′

ab(a).

Remark 0.3. It follows from Definition 0.2 that if ` ∈ H̃ab(a), then the
homogeneous problem (0.10), (0.20) has only the trivial solution. Therefore,
according to Theorem 0.1, the problem (0.1), (0.2) is uniquely solvable

provided ` ∈ H̃ab(a). Consequently, by virtue of (0.8), each of the inclusion
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` ∈ Hab(a) and ` ∈ H ′

ab(a) yields the unique solvability of the problem (0.1),

(0.2). Moreover, the inclusion ` ∈ H̃ab(a), resp. ` ∈ Hab(a), guarantees that
if q ∈ L([a, b]; R+), then the unique solution of the problem (0.1), (0.20),
resp. the problem (0.1), (0.2), with c0, c1 ∈ R+ is nonnegative. Analogously,
if ` ∈ H ′

ab(a), q ∈ L([a, b]; R+), and c ≥ 0, then the unique solution of the
problem

u′′(t) = `(u)(t) + q(t), u(a) = 0, u′(a) = c

is nonnegative and nondecreasing.

In the present paper, we establish sufficient conditions guaranteeing the

inclusions ` ∈ Hab(a), ` ∈ H̃ab(a), ` ∈ H ′

ab(a). The results obtained here
generalize and make more complete the previously known ones of an analo-
gous character (see, e.g., [1, 3, 8] and references therein). The related results
for another type of the equations can be found in [4, 5, 6, 8].

The paper is organized as follows. The main results are formulated in
Section 1. Their proofs are contained in Section 2. Section 3 deals with the
special case of operator `, with so-called operator with a deviating argument.
Section 4 is devoted to the examples verifying the optimality of obtained
results.

1. Main Results

In this section, we formulate the main results. Theorem 1.1, Corollar-
ies 1.1 and 1.2, and Proposition 1.1 concern the case ` ∈ Pab. The case,
when −` ∈ Pab, is considered in Theorems 1.2–1.4, and Corollaries 1.3–1.5.
Finally, Theorem 1.5 deals with the case, where the operator ` ∈ Lab admits
the representation ` = `0 − `1 with `0, `1 ∈ Pab .

Theorem 1.1. Let ` ∈ Pab. Then ` ∈ Hab(a) iff there exists a function

γ ∈ C̃ ′

loc([a, b[ ; R) satisfying the inequalities

γ′′(t) ≥ `(γ)(t) for t ∈ [a, b], (1.1)

γ(t) > 0 for t ∈ [a, b], (1.2)

γ′(a) ≥ 0. (1.3)

Corollary 1.1. Let ` ∈ Pab be an a−Volterra operator. Then ` ∈ Hab(a).

Corollary 1.2. Let ` ∈ Pab and let at least one of the following items be

fulfilled:

a) there exist m, k ∈ N and a constant α ∈ ]0, 1[ such that m > k and

ϕm(t) ≤ αϕk(t) for t ∈ [a, b], (1.4)

where

ϕ1(t)
def
= 1, ϕi+1(t)

def
=

∫ t

a

(t− s)`(ϕi)(s)ds for t ∈ [a, b], i ∈ N;
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b) there exists ` ∈ Pab such that

∫ b

a

(b− s)`(1)(s)ds < exp

[
−1

b− a

∫ b

a

(s− a)(b− s)`(1)(s)ds

]
(1.5)

and on the set Ca([a, b]; R+) the inequality

`(ϕ(v))(t) − `(1)(t)ϕ(v)(t) ≤ `(v)(t) for t ∈ [a, b] (1.6)

holds, where

ϕ(v)(t)
def
=

∫ t

a

(t− s)`(v)(s)ds for t ∈ [a, b]. (1.7)

Then ` ∈ Hab(a).

Remark 1.1. Example 4.1 below shows that the assumption α ∈ ]0, 1[ in
Corollary 1.2 a) cannot be replaced by the assumption α ∈ ]0, 1].

Remark 1.2. It follows from Corollary 1.2 a) (for m = 2 and k = 1) that
if ` ∈ Pab, then ` ∈ Hab(a) provided

∫ b

a

(b− s)`(1)(s)ds < 1. (1.8)

Example 4.1 below shows that the strict inequality (1.8) cannot be replaced
by the nonstrict one. However, the following assertion is true.

Proposition 1.1. Let ` ∈ Pab and
∫ b

a

(b− s)`(1)(s)ds = 1. (1.9)

If, moreover, the problem (0.10), (0.20) has only the trivial solution, then

` ∈ Hab(a).

Theorem 1.2. Let −` ∈ Pab be an a−Volterra operator and let there

exist a function γ ∈ C̃ ′

loc([a, b[ ; R) satisfying

γ′′(t) ≤ `(γ)(t) for t ∈ [a, b], (1.10)

γ(t) > 0 for t ∈ [a, b[ , (1.11)

γ′(a) ≤ 0. (1.12)

Then ` ∈ Hab(a).

Corollary 1.3. Let −` ∈ Pab be an a−Volterra operator and
∫ b

a

(b− s)|`(1)(s)|ds ≤ 1. (1.13)

Then ` ∈ Hab(a).

Remark 1.3. Let `(v)(t)
def
= −g(t)v(a), where g ∈ L([a, b]; R+). As it

was mentioned above, by the direct calculation, one can easily verify that
` ∈ Hab(a) iff (0.10) holds. Therefore, the constant 1 in the right-hand side
of the condition (1.13) is the best possible.
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Theorem 1.3. Let −` ∈ Pab be an a−Volterra operator and let there

exist a function γ ∈ C̃ ′

loc(]a, b[ ; R) satisfying (1.10) and

γ(t) > 0 for t ∈ ]a, b[ , (1.14)

γ(a) + lim
t→a+

γ′(t) 6= 0. (1.15)

Then ` ∈ H̃ab(a).

Corollary 1.4. Let −` ∈ Pab be an a−Volterra operator and

(b− t)

∫ t

a

(s− a)|`(1)(s)|ds+

+(t− a)

∫ b

t

(b− s)|`(1)(s)|ds ≤ b− a for t ∈ [a, b]. (1.16)

Then ` ∈ H̃ab(a).

Remark 1.4. Example 4.2 below shows that the condition (1.16) in Corol-
lary 1.4 cannot be replaced by the condition

(b− t)

∫ t

a

(s− a)|`(1)(s)|ds+

+(t− a)

∫ b

t

(b− s)|`(1)(s)|ds ≤ (1 + ε)(b− a) for t ∈ [a, b], (1.17)

no matter how small ε > 0 would be.

Theorem 1.4. Let −` ∈ Pab be an a−Volterra operator. Then ` ∈ H ′

ab(a)

iff there exists a function γ ∈ C̃ ′

loc([a, b[ ; R) satisfying (1.10),

γ(t) ≥ 0, γ′(t) ≥ 0 for t ∈ ]a, b[ , (1.18)

and

lim
t→a+

γ′(t) > 0. (1.19)

Corollary 1.5. Let −` ∈ Pab be an a−Volterra operator and

∫ b

a

`(ϕ)(s)|ds ≤ 1, (1.20)

where ϕ(t) = t− a for t ∈ [a, b]. Then ` ∈ H ′

ab(a).

Remark 1.5. Example 4.3 below shows that the condition (1.20) in Corol-
lary 1.5 cannot be replaced by the condition

∫ b

a

|`(ϕ)(s)|ds ≤ 1 + ε, (1.21)

no matter how small ε > 0 would be.
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Theorem 1.5. Let the operator ` ∈ Lab admit the representation ` =
`0 − `1, where `0,`1 ∈ Pab, and let

`0 ∈ Hab(a), −`1 ∈ Hab(a), (1.22)

resp.

`0 ∈ H̃ab(a), −`1 ∈ H̃ab(a), (1.23)

resp.

`0 ∈ H ′

ab(a), −`1 ∈ H ′

ab(a). (1.24)

Then ` ∈ Hab(a), resp. ` ∈ H̃ab(a), resp. ` ∈ H ′

ab(a).

2. Proof of the Main Results

Proof of Theorem 1.1. Let ` ∈ Hab(a). According to Remark 0.3, the
problem

γ′′(t) = `(γ)(t), (2.1)

γ(a) = 1, γ′(a) = 1 (2.2)

has a unique solution γ (i.e., γ ∈ C̃ ′([a, b]; R)) and

γ(t) ≥ 0 for t ∈ [a, b]. (2.3)

It follows from (2.1), by virtue of (2.3) and the assumption ` ∈ Pab, that

γ′′(t) ≥ 0 for t ∈ [a, b].

Hence, on account of (2.2), the inequality (1.2) holds, as well. Therefore,
the function γ satisfies (1.1)–(1.3).

Now suppose that γ ∈ C̃ ′

loc([a, b[ ; R) is a function satisfying (1.1)–(1.3)

and ` 6∈ Hab(a). Then there exists a function u ∈ C̃ ′([a, b]; R) and t0 ∈ ]a, b[
such that (0.3), (0.4) hold and

u(t0) < 0. (2.4)

Put

w(t) = λγ(t) + u(t) for t ∈ [a, b],

where

λ = max

{
−

u(t)

γ(t)
: t ∈ [a, b]

}
.

Obviously

w(t) ≥ 0 for t ∈ [a, b] (2.5)

and there exists t∗ ∈]a, b] such that

w(t∗) = 0. (2.6)

On account of (2.4), it is clear that

λ > 0. (2.7)
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By (1.1)–(1.3), (0.3), (0.4), and (2.7), we get

w′′(t) ≥ `(w)(t) for t ∈ [a, b], (2.8)

w(a) > 0, w′(a) ≥ 0. (2.9)

It follows from (2.8), by virtue of (2.5) and the assumption ` ∈ Pab, that

w′′(t) ≥ 0 for t ∈ [a, b].

Hence, on account of (2.9), we get

w(t) > 0 for t ∈ [a, b],

which contradicts (2.6). �

Proof of Corollary 1.1. Let γ be a solution of the problem

γ′′(t) = `(1)(t)γ(t), (2.10)

γ(a) = 1, γ′(a) = 1.

It follows from (2.10), in view of the assumption `(1) ∈ L([a, b]; R+), that

the inequality (1.2) holds. Moreover, γ ∈ C̃ ′([a, b]; R) and

γ′(t) ≥ 0 for t ∈ [a, b],

i.e., the function γ is nondecreasing. Since ` is an a−Volterra operator and
` ∈ Pab, we easily conclude that

`(γ)(t) ≤ `(1)(t)γ(t) for t ∈ [a, b].

Hence, on account of (2.10), the inequality (1.1) is fulfilled. Therefore, the
function γ satisfies all the assumptions of Theorem 1.1. �

Proof of Corollary 1.2. a) It is not difficult to verify that the function

γ(t)
def
= (1− α)

k∑

i=1

ϕi(t) +

m∑

i=k+1

ϕi(t) for t ∈ [a, b]

satisfies the assumptions of Theorem 1.1.
b) Denote by v0, v1, and v2 the solutions of the problems

v′′0 (t) = `(1)(t)v0(t), v0(b) = 0, v′0(b) = −1,

v′′1 (t) = `(1)(t)v1(t), v1(a) = 0, v′1(a) = 1,

v′′2 (t) = `(1)(t)v2(t), v2(a) = 1, v′2(a) = 0.

It is not difficult to verify that

v0(t) = v1(b)v2(t)− v2(b)v1(t) for t ∈ [a, b] (2.11)

and

0 ≤ v0(t) ≤ (b− t)r0 for t ∈ [a, b], (2.12)

where

r0 = exp

[
1

b− a

∫ b

a

(s− a)(b− s)`(1)(s)ds

]
. (2.13)



On Sign Constant and Monotone Solutions 75

On account of (1.5), there exists ε > 0 such that

r0

∫ b

a

(b− s)`(1)(s)ds + ε‖v2‖C ≤ 1. (2.14)

Let γ be a solution of the problem

γ′′(t) = `(1)(t)γ(t) + `(1)(t), (2.15)

γ(a) = ε, γ′(a) = 0.

Obviously, γ ∈ C̃ ′([a, b]; R),

γ(t) > 0, γ′(t) ≥ 0 for t ∈ [a, b], (2.16)

and

γ(t) = εv2(t)+

+

∫ t

a

[v1(t)v2(s)− v2(t)v1(s)]`(1)(s)ds for t ∈ [a, b]. (2.17)

By virtue of (2.11) and (2.16), it follows from (2.17) that

γ(t) ≤ γ(b) ≤ ε‖v2‖C +

∫ b

a

v0(s)`(1)(s)ds for t ∈ [a, b].

The latter inequality, together with (2.12)–(2.14), implies

γ(t) ≤ 1 for t ∈ [a, b].

Hence, we get from (2.15), on account the assumption ` ∈ Pab,

γ′′(t) ≥ `(1)(t)γ(t) + `(γ)(t) for t ∈ [a, b].

Therefore, according to Theorem 1.1, we find

˜̀∈ Hab(a), (2.18)

where

˜̀(v)(t)
def
= `(1)(t)v(t) + `(v)(t) for t ∈ [a, b].

Now assume that the function u ∈ C̃ ′([a, b]; R) satisfies (0.3) and (0.4).
It is not difficult to verify that

[u(t)]− ≤

∫ t

a

(t− s)`([u]−)(s)ds for t ∈ [a, b]. (2.19)

Put

w(t) = ϕ([u]−)(t) for t ∈ [a, b], (2.20)

where ϕ is the operator defined by (1.7). Clearly,

w(a) = 0, w′(a) = 0, (2.21)

w(t) ≥ 0 for t ∈ [a, b]. (2.22)
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By virtue of (1.7), (2.19), (2.20), and the assumption ` ∈ Pab, it is also
evident that

w′′(t) = `([u]−)(t) ≤ `(w)(t) = `(1)(t)w(t)+

+ [`(w)(t) − `(1)(t)w(t)] for t ∈ [a, b]. (2.23)

Hence, on account of (1.6), (2.19), (2.20), and the condition ` ∈ Pab, we get

w′′(t) ≤ `(1)(t)w(t) + `([u]−)(t) ≤ `(1)(t)w(t)+

+ `(w)(t) = ˜̀(w)(t) for t ∈ [a, b].

The latter inequality, together with (2.21), (2.22), and the condition (2.18),
implies w ≡ 0. Therefore, it follows from (1.7), (2.19), and (2.20) that
[u]− ≡ 0, i.e., (0.5) holds. �

Proof of Proposition 1.1. Let γ be a solution of the problem (2.1), (2.2).
Put

γ∗ = −min{γ(t) : t ∈ [a, b]} (2.24)

and choose t∗ ∈ ]a, b] such that

γ(t∗) = −γ∗ . (2.25)

Suppose that

γ∗ ≥ 0. (2.26)

The integration of (2.1) from a to t, by virtue of (2.2), yields

γ′(t) = 1 +

∫ t

a

`(γ)(s)ds for t ∈ [a, b]. (2.27)

Integrating (2.27) from a to t∗ and taking into account (1.9), (2.2), (2.24)–
(2.26), and the condition ` ∈ Pab, we get the contradiction

γ∗ + 1 = −(t∗ − a)−

∫ t∗

a

∫ s

a

`(γ)(ξ)dξds ≤ γ∗

∫ b

a

(b− s)`(1)(s)ds = γ∗ .

Thus, γ∗ < 0, i.e., the inequality (1.2) holds. Therefore, the function γ

satisfies the assumptions of Theorem 1.1. �

Proof of Theorem 1.2. Assume the contrary, let ` 6∈ Hab(a). Then there

exist u ∈ C̃ ′([a, b]; R) and t0 ∈ ]a, b[ such that (0.3), (0.4), and (2.4) hold.
Denote by `t0 the restriction of the operator ` to the space C([a, t0]; R). By
virtue of (0.3) and (1.10), we have

u′′(t) ≥ `t0(u)(t) for t ∈ [a, t0], (2.28)

γ′′(t) ≤ `t0(γ)(t) for t ∈ [a, t0]. (2.29)

Taking now into account (0.4) and the assumption −`t0 ∈ Pat0 , it follows
from (2.28) that

max{u(t) : t ∈ [a, t0]} > 0. (2.30)
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Put

λ = max

{
u(t)

γ(t)
: t ∈ [a, t0]

}
(2.31)

and

w(t) = λγ(t)− u(t) for t ∈ [a, t0]. (2.32)

By (1.11) and (2.30) we get

λ > 0. (2.33)

On account of (1.11), (2.4), and (2.33), we obtain

w(t0) > 0. (2.34)

In view of (2.31), clearly

w(t) ≥ 0 for t ∈ [a, t0], (2.35)

and there exists t∗ ∈ [a, t0[ such that

w(t∗) = 0. (2.36)

It follows from (2.28), (2.29), and (2.33) that

w′′(t) ≤ `t0(w)(t) for t ∈ [a, t0]. (2.37)

Hence, on account of (2.35) and the condition −`t0 ∈ Pat0 , we get

w′′(t) ≤ 0 for t ∈ [a, t0]. (2.38)

On the other hand, it follows from (0.4), (1.12), and (2.33) that

w′(a) ≤ 0 for t ∈ [a, t0],

which, together with (2.35), (2.36), and (2.38), contradicts (2.34). �

Proof of Corollary 1.3. Assume that `(1) 6≡ 0 (if `(1) ≡ 0 then Corollary
1.3 is trivial). Put

γ(t) = (b− t)

∫ t

a

|`(1)(s)|ds +

∫ b

t

(b− s)|`(1)(s)|ds for t ∈ [a, b]. (2.39)

Obviusly, (1.11) holds and γ ′(a) = 0. Moreover, γ ∈ C̃ ′([a, b]; R),

γ′(t) ≤ 0 for t ∈ [a, b], (2.40)

and

γ′′(t) = `(1)(t) for t ∈ [a, b]. (2.41)

By virtue of (1.13), (2.39), and (2.40), we get

γ(t) ≤ 1 for t ∈ [a, b]. (2.42)

On account of (2.42) and the assumption −` ∈ Pab, it follows from (2.41)
that (1.10) holds. Therefore, the function γ satisfies all the conditions of
Theorem 1.2. �
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Proof of Theorem 1.3. Assume the contrary, let ` 6∈ H̃ab(a). Then there

exist u ∈ C̃ ′([a, b]; R) and t0 ∈ ]a, b[ such that (0.3), (0.20), and (2.4) hold.
Denote by `t0 the restriction of the operator ` to the space C([a, t0]; R). By
virtue of (0.3) and (1.10), the inequalities (2.28) and (2.29) are fulfilled. In
view of (0.20) and the assumption −`t0 ∈ Pat0 , it follows from (2.28) that
(2.30) holds.

Put

λ = sup

{
u(t)

γ(t)
: t ∈]a, t0]

}
. (2.43)

By (1.15) and (0.20), evidently

lim
t→a+

u(t)

γ(t)
= 0. (2.44)

Therefore, λ < +∞. On the other hand, by virtue of (2.30), the inequality
(2.33) is satisfied.

Define the function w by (2.32). In view of (1.14), (2.4), and (2.33),
we get (2.34). On account of (2.43), the inequality (2.35) holds. It easily
follows from (2.35), (2.43), and (2.44) that there exists t∗ ∈ ]a, t0[ such that

w(t∗) = 0, w′(t∗) = 0. (2.45)

The inequalities (2.28), (2.29), and (2.33) imply (2.37). Hence, on account
of (2.35) and the condition −`t0 ∈ Pat0 , we get (2.38). It follows from (2.38)
and (2.45) that w(t0) ≤ 0, which contradicts (2.34). �

Proof of Corollary 1.4. Assume that `(1) 6≡ 0 (if `(1) ≡ 0 then Corollary
1.4 is trivial). By the same arguments as in the proof of Corollary 1.3 one
can easily verify that the function

γ(t) =
1

b− a

[
(b− t)

∫ t

a

(s− a)|`(1)(s)|ds+

+(t− a)

∫ b

t

(b− s)|`(1)(s)|ds

]
for t ∈ [a, b]

satisfies the assumption of Theorem 1.3. �

Proof of Theorem 1.4. Let ` ∈ H ′

ab(a). According to Remark 0.3, the
problem

γ′′(t) = `(γ)(t), γ(a) = 0, γ ′(a) = 1

has a unique solution γ (i.e., γ ∈ C̃ ′([a, b]; R)) and

γ(t) ≥ 0, γ′(t) ≥ 0 for t ∈ [a, b].

Therefore, the function γ satisfies (1.10), (1.18), and (1.19).

Now suppose that a function γ ∈ C̃ ′

loc(]a, b[ ; R) satisfies (1.10), (1.18),
and (1.19). Put

A =
{
x ∈ ]a, b[ : γ′(t) > 0 for t ∈ ]a, x]

}
(2.46)
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and

b0 = supA. (2.47)

By virtue of (1.19), we have b0 ∈ ]a, b]. It is clear that

γ′(t) > 0 for t ∈ ]a, b0[ . (2.48)

Let u ∈ C̃ ′([a, b]; R) satisfies (0.3) and (0.6). First we will show that

u′(t) ≥ 0 for t ∈ [a, b0]. (2.49)

Assume the contrary, let (2.49) do not hold. Then there exists t0 ∈ ]a, b0[
such that

u′(t0) < 0. (2.50)

Denote by `t0 the restriction of the operator ` to the space C([a, t0]; R).
Clearly, (2.28) and (2.29) are fulfilled. It is not difficult to verify that

max{u′(t) : t ∈ [a, t0]} > 0. (2.51)

Indeed, if (2.51) does not hold, then, by virtue of (0.6), the inequality

u(t) ≤ 0 for t ∈ [a, t0].

Is satisfied. Hence, on account of (2.28) and the assumption −`t0 ∈ Pat0 ,
we get

u′′(t) ≥ 0 for t ∈ [a, t0].

which, together with (0.6), contradicts (2.50).
Put

λ = sup

{
u′(t)

γ′(t)
: t ∈ ]a, t0]

}
(2.52)

and

w(t) = λγ(t)− u(t)− λγ(a) for t ∈ [a, t0]. (2.53)

By (2.51), evidently (2.33) holds. The inequalities (2.28), (2.29), and (2.33)
imply (2.37). On the other hand, (1.18), (2.33), and (2.50) yield

w′(t0) > 0. (2.54)

It easily follows from (1.18), (2.33), (2.52), and (2.53) that

w′(t) ≥ 0 for t ∈ ]a, t0], (2.55)

w(a) = 0, (2.56)

and there exists t∗ ∈ [a, t0 [ such that

w′(t∗) = 0. (2.57)

On account of (2.55), (2.56), and the condition −`t0 ∈ Pat0 , it follows
from (2.37) that (2.38) holds. Hence, by (2.57), we get w′(t0) ≤ 0, which
contradicts (2.54).

Thus, we have proved that (2.49) is fulfilled. Consequently, if b0 = b,
then the theorem is proved. Therefore, we will suppose that b0 < b.
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By virtue of (1.10), (1.18), and the assumption −` ∈ Pab, it is clear that

γ′′(t) ≤ 0 for t ∈ [a, b].

Hence, on account of (1.18), (1.19), and (2.46)–(2.48), we get

γ(t) > 0 for t ∈ ]a, b0], (2.58)

γ(t) = γ(b0) for t ∈ [b0, b], (2.59)

On the other hand, (1.10) and (2.59) yield

`(γ)(t) = 0 for t ∈ [b0, b]. (2.60)

It easily follows from (0.6), (1.19), and (2.58) that

lim
t→a+

u(t)

γ(t)
< +∞.

Hence, by virtue of (2.58), there exists M > 0 such that

u(t) ≤ Mγ(t) for t ∈ [a, b]. (2.61)

On account of (2.60), (2.61), and the condition −` ∈ Pab, it follows from
(0.3) that

u′′(t) ≥ 0 for t ∈ [b0, b].

Hence, by virtue of (2.49), we get

u′(t) ≥ u′(b0) ≥ 0 for t ∈ [b0, b],

u(t) ≥ u(b0) ≥ 0 for t ∈ [b0, b].

Therefore, (0.7) holds. �

Proof of Corollary 1.5. If `(ϕ) ≡ 0, then Corollary 1.5 is trivial. Indeed, let

the function u ∈ C̃ ′([a, b]; R) satisfies (0.3) and (0.6). Obviously,

u(t) ≤ (t− a)‖u′‖C = ϕ(t)‖u′‖C for t ∈ [a, b]. (2.62)

It follows from (0.3), by virtue of (2.62) and the assumption −` ∈ Pab, that

u′′(t) ≥ `(ϕ)(t)‖u′‖C = 0 for t ∈ [a, b].

The latter inequality and (0.6) yield (0.7).
Suppose that `(ϕ) 6≡ 0. It is easy to verify that the function

γ(t) =

∫ t

a

(s− a)|`(1)(s)|ds + (t− a)

∫ b

t

|`(1)(s)|ds for t ∈ [a, b]

satisfies the assumptions of Theorem 1.4. �

Proof of Theorem 1.5. Assume that (1.22) (resp. (1.23)) holds and the

function u ∈ C̃ ′([a, b]; R) satisfies (0.3) and (0.4) (resp. (0.3) and (0.20)).

By virtue of the assumption −`1 ∈ Hab(a) (resp. −`1 ∈ H̃ab(a)), the
problem

α′′(t) = −`1(α)(t) − `0([u]−)(t), (2.63)

α(a) = 0, α′(a) = 0 (2.64)
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has a unique solution α (see Remark 0.3) and

α(t) ≤ 0 for t ∈ [a, b]. (2.65)

It follows from (0.3), (2.63), and the assumption `0 ∈ Pab that

(u(t)− α(t))′′ ≥ −`1(u− α)(t) + `0([u]+)(t) ≥

≥ −`1(u− α)(t) for t ∈ [a, b].

Hence, by virtue of (0.4), (2.64), and the condition −`1 ∈ Hab(a) (resp.

−`1 ∈ H̃ab(a)), we get

u(t) ≥ α(t) for t ∈ [a, b]. (2.66)

On account of (2.65), we get from (2.66) that

−[u(t)]− ≥ α(t) for t ∈ [a, b]. (2.67)

By virtue of (2.65), (2.67), and the assumptions `0, `1 ∈ Pab, the equality
(2.63) results in

α′′(t) ≥ `0(α)(t) for t ∈ [a, b].

Hence, on account of (2.64) and the condition `0 ∈ Hab(a) (resp. `0 ∈

H̃ab(a)), we get

α(t) ≥ 0 for t ∈ [a, b].

The latter inequality, (2.65), and (2.66) yield (0.5). Therefore, ` ∈ Hab(a)

(resp. ` ∈ H̃ab(a)).

Suppose now that (1.24) holds and the function u ∈ C̃ ′([a, b]; R) satisfies
(0.3) and (0.6). By the same arguments as above we get that (0.5) is fulfilled.
On account of (0.5) and the condition `0 ∈ Pab, it follows from (0.3) that

u′′(t) ≥ −`1(u)(t) for t ∈ [a, b].

Hence, by virtue of the condition −`1 ∈ H ′

ab(a), we get

u′(t) ≥ 0 for t ∈ [a, b]. �

3. Corollaries for Equation with Deviating Argument

In this section, the results from Section 1 will be concretized for the case,
when the operator ` ∈ Lab has one of the following forms:

`(v)(t)
def
= p(t)v(τ(t)), (3.1)

`(v)(t)
def
= −g(t)v(µ(t)), (3.2)

`(v)(t)
def
= p(t)v(τ(t)) − g(t)v(µ(t)), (3.3)

where p, g ∈ L([a, b]; R+) and τ, µ ∈ Mab. In the sequel, we will use the
notation

τ∗ = ess sup{τ(t) : t ∈ [a, b]}.

Theorem 3.1. Let at least one of the following items be fulfilled:
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a) there exists α ∈ ]0, 1[ such that

∫ t

a

(t− s)p(s)

(∫ τ(s)

a

(τ(s) − ξ)p(ξ)dξ

)
ds ≤

≤ α

∫ t

a

(t− s)p(s)ds for t ∈ [a, b]; (3.4)

b)

r

∫ b

a

(b− s)p(s)σ(s)

[∫ τ(s)

s

∫ ξ

a

p(η)dηdξ

]
ds < 1, (3.5)

where

σ(t) =
1

2
(1 + sgn(τ(t) − t)) for t ∈ [a, b], (3.6)

r = exp

(
1

b− a

∫ b

a

(s− a)(b− s)p(s)ds

)
;

c)
∫ τ∗

a
(τ∗ − s)p(s)ds 6= 0 and

ess sup

{∫ τ(t)

t

∫ s

a

p(ξ)dξds : t ∈ [a, b]

}
< λ∗, (3.7)

where

λ∗ = sup





1

λ
ln




λ exp
[
λ
∫ τ∗

a
(τ∗ − s)p(s)ds

]

exp
[
λ
∫ τ∗

a
(τ∗ − s)p(s)ds

]
− 1


 : λ > 0




 . (3.8)

Then the operator ` defined by (3.1) belongs to the set Hab(a) (and therefore

to the sets H̃ab(a) and H ′

ab(a) ).

From Theorem 3.1 a) and c) it immediately follows

Corollary 3.1. Let either

∫ τ∗

a

(τ∗ − s)p(s)ds < 1,

or ∫ τ∗

a

(τ∗ − s)p(s)ds > 1

and

ess sup

{∫ τ(t)

t

∫ s

a

p(ξ)dξds : t ∈ [a, b]

}
≤

1

e
.

Then the operator ` defined by (3.1) belongs to the set Hab(a).

The next theorem is, in a certain sense, a complement of Corollary 3.1.
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Theorem 3.2. Let
∫ τ∗

a

(τ∗ − s)p(s)ds = 1. (3.9)

Then the operator ` defined by (3.1) belongs to the set Hab(a) if and only if

∫ τ∗

a

(τ∗ − t)p(t)

(∫ τ∗

τ(t)

∫ s

a

p(ξ)dξds

)
dt 6= 0. (3.10)

Theorem 3.3. Let

µ(t) ≤ t for t ∈ [a, b] (3.11)

and
∫ b

a

(b− s)g(s)ds ≤ 1. (3.12)

Then the operator ` defined by (3.2) belongs to the set Hab(a).

Remark 3.1. The constant 1 in (3.12) is the best possible and cannot be
replaced by 1 + ε, no matter how small ε > 0 would be (see Remark 1.3).

Theorem 3.4. Let (3.11) hold and let

(b− µ(t))

∫ µ(t)

a

(s− a)g(s)ds + (µ(t)− a)

∫ b

µ(t)

(b− s)g(s)ds ≤

≤ b− a for t ∈ [a, b]. (3.13)

Then the operator ` defined by (3.2) belongs to the set H̃ab(a).

Remark 3.2. Example 4.2 below shows that the condition (3.13) in The-
orem 3.4 cannot be replaced by the condition

(b− µ(t))

∫ µ(t)

a

(s− a)g(s)ds + (µ(t)− a)

∫ b

µ(t)

(b− s)g(s)ds ≤

≤ (1 + ε)(b− a) for t ∈ [a, b],

no matter how small ε > 0 would be.

Theorem 3.5. Let (3.11) hold and let
∫ b

a

(µ(s)− a)g(s)ds ≤ 1. (3.14)

Then the operator ` defined by (3.2) belongs to the set H ′

ab(a).

Remark 3.3. Example 4.3 below shows that the condition (3.14) cannot
be replaced by the condition

∫ b

a

(µ(s)− a)g(s)ds ≤ 1 + ε,

no matter how small ε > 0 would be.
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Theorem 3.6. Let ` be the operator defined by (3.3). Let, moreover,

(3.11) be fulfilled and at least one of the conditions of Theorem 3.1 hold.

Then the condition (3.12) implies the inclusion ` ∈ Hab(a), the condition

(3.13) implies the inclusion ` ∈ H̃ab(a), and the condition (3.14) implies the

inclusion ` ∈ H ′

ab(a).

Proof of Theorem 3.1. a) It is easy to verify that (3.4) implies

ϕ3(t) ≤ αϕ2(t) for t ∈ [a, b],

where

ϕ2(t) =

∫ t

a

(t− s)p(s)ds for t ∈ [a, b],

ϕ3(t) =

∫ t

a

(t− s)p(s)ϕ2(τ(s))ds for t ∈ [a, b].

Thus, the inequality (1.4) holds for m = 3 and k = 2. Therefore, by virtue
of Corollary 1.2 a), the operator ` given by (3.1) belongs to the set Hab(a).

b) Let ` ∈ Lab be the operator defined by

`(v)(t)
def
= p(t)σ(t)

∫ τ(t)

t

∫ s

a

p(ξ)v(τ(ξ))dξds for t ∈ [a, b].

Obviously, the inequality

`(ϕ(v))(t) − `(1)(t)ϕ(v)(t) = p(t)

∫ τ(t)

t

∫ s

a

p(ξ)v(τ(ξ))dξds ≤

≤ `(v)(t) for t ∈ [a, b]

holds on the set Ca([a, b]; R+), where

ϕ(v)(t)
def
=

∫ t

a

∫ s

a

p(ξ)v(τ(ξ))dξds.

On the other hand, it follows from (3.5) that (1.5) holds. Therefore, the
Assumptions of Corollary 1.2 b) are fulfilled.

c) On account of (3.7), there exists ε0 ∈]0, λ∗[ such that

∫ τ(t)

t

∫ s

a

p(ξ)dξds ≤ λ∗ − ε0 for t ∈ [a, b]. (3.15)

By virtue of (3.8), there exist δ > 0, λ0 > 0, and ε > 0 such that

ε < 1 (3.16)

and

λ∗ − ε0 ≤
1

λ0
ln




λ0 exp

[
λ0

∫ τ∗

a
(τ∗ − s)p(s)ds

]

exp
[
λ0

∫ τ∗

a
(τ∗ − s)p(s)ds

]
+ δ(b− a)− ε



 . (3.17)
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It follows from (3.15) and (3.17) that

exp

[
λ0

∫ τ(t)

t

∫ s

a

p(ξ)dξds

]
≤

≤
λ0 exp

[
λ0

∫ τ(t)

a
(τ(t) − s)p(s)ds

]

exp
[
λ0

∫ τ(t)

a
(τ(t) − s)p(s)ds

]
+ δ(τ(t) − a)− ε

for t ∈ [a, b].

Hence,

λ0 exp

[
λ0

∫ t

a

(t− s)p(s)ds

]
≥ exp

[
λ0

∫ τ(t)

a

(τ(t) − s)p(s)ds

]
+

+δ(τ(t) − a)− ε for t ∈ [a, b]. (3.18)

Put

γ(t) = exp

[
λ0

∫ t

a

(t− s)p(s)ds

]
+ δ(t− a)− ε for t ∈ [a, b].

On account of (3.18), it is not difficult to verify that

γ′′(t) ≥ p(t)γ(τ(t)) for t ∈ [a, b].

On the other hand, evidently (1.2) and (1.3) hold. Thus, the function γ

satisfies the assumptions of Theorem 1.1. �

Proof of Corollary 3.1. Corollary 3.1 immediately follows from Theorem 3.1
a) and c). �

To prove Theorem 3.2 we need the following lemma.

Lemma 3.1. Let ` be the operator defined by (3.1) and let (3.9) hold.

Then every function u ∈ C̃ ′([a, b]; R) satisfying (0.10) and (0.20) is either

nonnegative or nonpositive.

Proof. Let the function u ∈ C̃ ′([a, b]; R) satisfy (0.10) and (0.20). It is
sufficient to show that the function u is either nonnegative or nonpositive
in [a, τ∗]. Put

M = max{u(t) : t ∈ [a, τ∗]}, −m = min{u(t) : t ∈ [a, τ∗]} (3.19)

and choose tM , tm ∈]a, τ∗] such that

u(tM ) = M, u(tm) = −m. (3.20)

Without loss of generality we can assume that tm < tM . Suppose that

M > 0 and m > 0. (3.21)

Integrating (0.10) from a to t and taking into account (0.20), we get

u′(t) =

∫ t

a

p(s)u(τ(s))ds for t ∈ [a, b]. (3.22)
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The integration of (3.22) from tm to tM , by virtue of (3.19)–(3.21) and (3.9),
yields the contradiction

M + m =

∫ tM

tm

∫ s

a

p(ξ)u(τ(ξ))dξds ≤ M

∫ τ∗

a

(τ∗ − s)p(s)ds = M.

Therefore, (3.21) does not hold, i.e., the function u is either nonnegative or
nonpositive. �

Proof of Theorem 3.2. Let (3.9) and (3.10) hold. According to Proposi-
tion 1.1, it is sufficient to show that the problem (0.10), (0.20) has only the

trivial solution. Let the function u ∈ C̃ ′([a, b]; R) satisfy (0.10) and (0.20).
By virtue of Lemma 3.1, without loss of generality we can assume that

u(t) ≥ 0 for t ∈ [a, b]. (3.23)

It follows from (0.10), on account of (0.20) and (3.23), that

u(τ(t)) ≤ u(τ∗) for t ∈ [a, b]. (3.24)

The integration of (0.10) from a to t, in view of (0.20), yields (3.22). Inte-
grating (3.22) from t to τ∗ and taking into account (3.24), we get

u(t) ≥ u(τ∗)

(
1−

∫ τ∗

t

∫ s

a

p(ξ)dξds

)
for t ∈ [a, b]. (3.25)

The latter inequality, by virtue of (3.9), results in

u(t) ≥ u(τ∗)

∫ t

a

∫ s

a

p(ξ)dξds for t ∈ [a, b]. (3.26)

On the other hand, integrating (3.22) from a to t and taking into account
(3.24) and (0.20), we get

u(t) ≤ u(τ∗)

∫ t

a

∫ s

a

p(ξ)dξds for t ∈ [a, b]. (3.27)

Thus, it follows from (3.26) and (3.27) that

u(t) = u(τ∗)f(t) for t ∈ [a, b], (3.28)

where

f(t)
def
=

∫ t

a

∫ s

a

p(ξ)dξds for t ∈ [a, b]. (3.29)

On account of (3.28), the equality (3.22) results in

u′(t) = u(τ∗)

∫ t

a

p(s)f(τ(s))ds for t ∈ [a, b]. (3.30)

The integration of (3.30) from a to τ ∗, on account of (0.20), implies

u(τ∗) = u(τ∗)

∫ τ∗

a

(τ∗ − s)p(s)f(τ(s))ds. (3.31)
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On account of (3.9) and (3.29), from (3.10) we obtain
∫ τ∗

a

(τ∗ − s)p(s)f(τ(s))ds 6= 1.

Thus, it follows from (3.31) that

u(τ∗) = 0.

Taking now into account (3.23) and (3.24), from (0.10) we get

u′′(t) = 0 for t ∈ [a, b],

which, together with (0.20), yields u ≡ 0.
Now suppose that (3.9) holds and

∫ τ∗

a

(τ∗ − t)p(t)

(∫ τ∗

τ(t)

∫ s

a

p(ξ)dξds

)
dt = 0. (3.32)

By virtue of (3.9) and (3.32), we have

f(τ∗) = 1 (3.33)

and
∫ τ∗

a

(τ∗ − t)p(t)[f(τ∗)− f(τ(t))]dt = 0, (3.34)

where the function f is defined by (3.29). In view of the inequality

f(τ(t)) ≤ f(τ∗) for t ∈ [a, b],

it follows from (3.34) that

0 ≤

∫ t

a

∫ s

a

p(ξ)[f(τ∗)− f(τ(ξ))]dξds =

= −

∫ τ∗

t

∫ s

a

p(ξ)[f(τ∗)− f(τ(ξ))]dξds ≤ 0 for t ∈ [a, τ∗].

Therefore, on account of (3.33) and (3.29),

f(t) =

∫ t

a

∫ s

a

p(ξ)f(τ(ξ))dξds for t ∈ [a, τ∗]. (3.35)

Put

u(t) =

{
f(t) for t ∈ [a, τ∗[

1 + (t− τ∗)
∫ τ∗

a
p(s)ds +

∫ t

τ∗

∫ s

τ∗
p(ξ)f(τ(ξ))dξds for t ∈ [τ∗, b]

.

On account of (3.33), we obtain u(τ∗) = 1, i.e., u 6≡ 0. On the other hand,
taking into account (3.35), it is not difficult to verify that

u′′(t) = p(t)u(τ(t)) for t ∈ [a, b].

Thus, u is a nontrivial solution of the problem (0.10), (0.20). Therefore,
according to Remark 0.3, we have ` 6∈ Hab(a). �
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The proofs of Theorems 3.3–3.5 are similar to ones of Corollaries 1.3–1.5.
Theorem 3.6 immediately follows from Theorem 1.5 and Theorems 3.1–3.5.

4. Examples

Example 4.1. Let `(v)(t)
def
= p(t)v(b), where p ∈ L([a, b]; R+), and

∫ b

a

(b− s)p(s)ds = 1.

Obviously,

ϕn(t) =

∫ t

a

(t− s)p(s)ds for t ∈ [a, b], n ∈ N,

where ϕn are functions defined in Corollary 1.2 a). It is clear that for each
m, k ∈ N the inequality (1.4) holds with α = 1. On the other hand, the
function

u(t) =

∫ t

a

(t− s)p(s)ds for t ∈ [a, b]

is a nontrivial solution of the problem (0.10), (0.20). Therefore, according
to Remark 0.3, we have ` 6∈ Hab(a).

Example 4.2. Let a0 < b, ε ∈ ]0, 1[ , λ = 1
ε
, t0 = 1

2 (a0 +b), δ = 1
2 (b−a0),

g̃(t) =






(t−a0)λ−2

δλ

[
1 + λ− (t−a0)

λ

δλ

]
for t ∈ ]a0, t0[

(b−t)λ−2

δλ

[
1 + λ− (b−t)λ

δλ

]
for t ∈ ]t0, b[

,

a = a0 −
ε
2

(∫ b

a0

g̃(s)ds
)
−1

, and

g(t) =

{
0 for t ∈ ]a, a0[

g̃(t) for t ∈ ]a0, b[
.

Let, moreover, `(v)(t)
def
= −g(t)v(t). Obviously, (1.17) holds. It is not

difficult to verify that the function

v(t) =





(t− a0) exp
[
− (t−a0)

λ

λδλ

]
for t ∈ [a0, t0[

(b− t) exp
[
− (b−t)λ

λδλ

]
for t ∈ [t0, b0]

is a solution of the problem

v′′(t) = −g(t)v(t), v(a0) = 0, v(b) = 0 (4.1)

and

v(t) > 0 for t ∈ ]a0, b[. (4.2)

Now let

q(t) =

{
1 for t ∈ ]a, a0[

0 for t ∈ ]a0, b[
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and let the function u be a solution of the problem (0.1), (0.20). Obviously,
(0.3) holds, as well. On the other hand, u satisfies

u′′(t) = −g(t)u(t), u(a0) =
1

2
(a− a0)

2, u′(a0) = a− a0.

By virtue of (4.1), (4.2), and Sturm’s separation theorem, we get u(b) < 0.

Therefore, ` 6∈ H̃ab(a).

Example 4.3. Let ε ∈ ]0, 1[ , λ = 1
ε
, t0 ∈ ]a, b[, t1 ∈ ]t0, b[, δ = (t0 − a)λ,

m = ε
1

2

[
(t1 − a)2 − (t0 − a)2

]
−

1

2 and

g(t) =






(t−a)λ−2

δλ

[
1 + λ− (t−a)λ

δλ

]
for t ∈ ]a, t0[

m2 for t ∈ ]t0, t1[

0 for t ∈ ]t1, b[

.

Let, moreover, `(v)(t)
def
= −g(t)v(t). Obviously, (1.21) holds. On the other

hand, the function

u(t) =






t−a
t0−a

exp
[

1
λ
− (t−a)λ

λδλ

]
for t ∈ [a, t0[

cos[m(t− t0)] for t ∈ [t0, t1[

cos[m(t1 − t0)]−m(t− t1) sin[m(t1 − t0)] for t ∈ [t1, b]

is a solution of the problem

u′′(t) = `(u)(t), u(a) = 0, u′(a) = (t0 − a)−1 exp

(
1

λ

)

and

u′(t) < 0 for t0 < t < min
{

t1, t0 +
π

2

}
.

Therefore, ` 6∈ H ′

ab(a).
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