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Abstract. In this paper, the question on the existence and uniqueness
of a constant sign solution of the initial value problem
u'(t) = L(u)(t) +q(t), wu(a)=c1, u'(a)=co
is studied. More precisely, the nonimprovable effective sufficient conditions
for a linear operator ¢ : C([a,b];R) — L([a,b];R) are established guaran-
teeing that the considered problem with ¢ € L([a,b];R;) and ¢1,¢c0 € Ry
has a unique solution and this solution is nonnegative. The question on

the existence and uniqueness of a monotone solution of the same problem
is discussed, as well.
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INTRODUCTION

The following notation is used throughout the paper.

N is the set of natural numbers.

R is the set of real numbers, R} = [0, +o0].

If z € R, then [z]} = 1(|z| + 2) and [z]— = 1(|z| — ).

C(Ja,b];R) is the Banach space of continuous functions w : [a,b] — R
with the norm |lu|l¢ = max{|u(t)| : t € [a,b]}.

C(la,b;Ry) ={u € C([a,b];R) : u(t) > 0 for ¢ € [a,b]}.
Ca(la,0];Ry) = {u € C([a,0]; Ry) : u(a) = 0}.

C([a,b]; R) is the set of absolutely continuous functions u : [a, b] — R.
C'(Ja,b];R) is the set of functions u € C([a,b);R) such that u' €
& ((a, ;).
loc([ b[;R) is the set of functions u € C([a,b);R) such that ' €
([ B];R) for every 3 €]a,b].
C..(Ja,b[;R) is the set of functions u € C([a,b];R) such that u' €
C(Jov, B R) for every [, 8] Ca, b].

Mab is the set of measurable functions 7 : [a,b] — [a, b].

L([a,b];R) is the Banach space of Lebesgue integrable functions p :
[a,b] — R with the norm ||p|| = f: Ip(s)|ds.

L(Ja,b);R4) = {p € L([a,b];R) : p(t) > 0 for ¢t € [a, b]}.

Lap is the set of linear bounded operators ¢ : C([a, b]; R) — L([a, b];R).

P,y is the set of operators ¢ € L4 transforming the set C([a, b]; Ry ) into
the set L([a, b]; R4).

We will say that £ € L, is an a—Volterra operator if for arbitrary ag €
Ja,b] and v € C([a, b]; R) satisfying the condition

v(t) =0 for ¢t € la,aop]
we have
((v)(t) =0 for almost all ¢ € [a, ag].
The equalities and inequalities with integrable functions are understood

almost everywhere.

Consider the problem on the existence and uniqueness of a solution of
the equation

a () = 0(u)(t) + q() (0.1)

satisfying the initial conditions
u(a) = co, u'(a)=cy, (0.2)
where £ € La, ¢ € L([a,b]; R) and ¢y, ¢; € R. By a solution of the equation

(0.1) we understand a function u € C’([a,b]; R) satisfying this equation
(almost everywhere) in [a, ).
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Along with the problem (0.1), (0.2) consider the corresponding homoge-
neous problem

u'(t) = £(u)(t), (0.19)
u(a) =0, u'(a)=0. (0.29)

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [9]).

Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable iff the cor-
responding homogeneous problem (0.1¢), (0.29) has only the trivial solution.

Introduce the following definitions.

Definition 0.1. An operator £ € L, belongs to the set Hgy(a) if for
every function u € C’([a, b]; R) satisfying

u’(t) > l(u)(t) for te€ a,b], (0.3)
u(a) 20, u'(a) =0,
the inequality
u(t) >0 for tE€]Ja,b (0.5)
holds.

Definition 0.2. An operator £ € L,;, belongs to the set fi:ab(a) if for
every function v € C’([a, b];R) satisfying (0.2¢) and (0.3), the inequality
(0.5) holds.

Definition 0.3. An operator ¢ € L, belongs to the set H/,(a) if for
every function u € C’([a, b]; R) satisfying (0.3) and

u(a) =0, u'(a) >0, (0.6)
the inequalities
u(t) >0, u'(t)>0 for tea,b (0.7)
hold.
Remark 0.1. From Definitions 0.1-0.3 it immediately follows that
Hap(a) € Hu(a),  Hiy(a) € Hupla). (0.8)

It is not difficult to verify that
Py N Hap(a) = Pay N Hap(a) and  Pay N H'y(a) = Pay N Hap(a). (0.9)
Nevertheless, in general
Ha(a) # Hup(a) and  H.y(a) # Hup(a).
Indeed, let
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By virtue of Sturm’s comparison theorem (see, e.g., [7]), it is not difficult
to verify that £ € Hyp(a). On the other hand, the functions

. 7w(t—a) _m(t—a)
u1(t) = sin P ua(t) = cos b a for t € [a,b]
satisfy
W{(t) = () (1) for t € [a,b], wi(a) =0, wi(a) = = ~ () <0,
ub (t) = L(uz)(t) for t € [a,b], wz2(a) =1, wuh(a)=0, u2(b) < 0.

Therefore, ¢ ¢ H.,(a) and ¢ ¢ Hap(a).
Remark 0.2. As it follows from (0.9), Py N Hep(a) = Puy N H.y(a).

Nevertheless, in general
Hap(a) € Hyy(a) and  Hpy(a) Z Hap(a).

First, let £(v)(t) = —g(t)v(a), where g € L([a,b;Ry). Evidently, ¢ €

H!,(a). By a direct calculation, one can easily verify that £ € Hq(a) if and
only if

b
/ (b—s)g(s)ds < 1. (0.10)
a
Therefore, in general H,(a) € Hap(a).
Now, put a =0, b € ]%,%[, and

def 14 2sin® o7 (t)
B cos® p1(¢)

£(v)(t)

~o(t),
where
p(t) = sint — %sin?’t for ¢ € [a,bl.
Clearly, the function
y(t) =cosp t(t) for t € [a,b]
satisfy
V() =L()(t) for t€ab],
y(t) >0 for tea,b], v (a)=0.
Hence, by virtue of Theorem 1.2 below, we get £ € Hgp(a). On the other
hand, the function
u(t) =sin2¢ '(t) for t € [a,b]
satisfies (0.1¢), (0.6), and w'(b) < 0. Therefore, ¢ ¢ H!,(a). Thus, in general
Hap(a) £ Hyy(a).

Remark 0.3. It follows from Definition 0.2 that if ¢ € f[ab(a), then the
homogeneous problem (0.1¢), (0.2¢) has only the trivial solution. Therefore,
according to Theorem 0.1, the problem (0.1), (0.2) is uniquely solvable
provided ¢ € I;'ab(a). Consequently, by virtue of (0.8), each of the inclusion
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¢ € Huy(a) and £ € H],(a) yields the unique solvability of the problem (0.1),
(0.2). Moreover, the inclusion £ € Hqp(a), resp. € € Hqy(a), guarantees that
if ¢ € L([a,b];R4), then the unique solution of the problem (0.1), (0.2p),
resp. the problem (0.1), (0.2), with cg, ¢; € R is nonnegative. Analogously,
if ¢ € H(a), ¢ € L([a,b];R4), and ¢ > 0, then the unique solution of the
problem

u'(t) = L) (t) +q(t), u(a) =0, wu'(a)=c

is nonnegative and nondecreasing.

In the present paper, we establish sufficient conditions guaranteeing the
inclusions ¢ € Hyy(a), £ € Hyp(a), € € H!,(a). The results obtained here
generalize and make more complete the previously known ones of an analo-
gous character (see, e.g., [1, 3, 8] and references therein). The related results
for another type of the equations can be found in [4, 5, 6, 8].

The paper is organized as follows. The main results are formulated in
Section 1. Their proofs are contained in Section 2. Section 3 deals with the
special case of operator ¢, with so-called operator with a deviating argument.
Section 4 is devoted to the examples verifying the optimality of obtained
results.

1. MAIN RESULTS

In this section, we formulate the main results. Theorem 1.1, Corollar-
ies 1.1 and 1.2, and Proposition 1.1 concern the case ¢ € P,,. The case,
when —¢ € P,;, is considered in Theorems 1.2-1.4, and Corollaries 1.3-1.5.
Finally, Theorem 1.5 deals with the case, where the operator £ € L, admits
the representation ¢ = £y — £1 with £y, 41 € Py .

Theorem 1.1. Let ¢ € P,,. Then £ € Hyp(a) iff there exists a function
v € Cl,.([a,b[;R) satisfying the inequalities

V() Z L)) for t € ab, (1.1)
v(t) >0 for té€]la,b], (1.2)
7' (a) > 0. (1.3)

Corollary 1.1. Let £ € P,y be an a— Volterra operator. Then £ € Hyp(a).

Corollary 1.2. Let ¢ € Py, and let at least one of the following items be
fulfilled:

a) there exist m,k € N and a constant « €10, 1[ such that m > k and
cpm(t) < O“Pk(t) fO?" le [aab}a (14)
where

e1(t) = 1, @ita(t) d;f/ (t —s)l(pi)(s)ds for te€[a,b], i €N;



On Sign Constant and Monotone Solutions 71

b) there exists £ € Py, such that

b B b
/a (b—s)0(1)(s)ds < exp [m /a (s —a)(b—s)l(1)(s)ds (1.5)

and on the set Cy([a,b];Ry) the inequality
o)t — ) Op)(E) T for tefab]  (16)
holds, where
def

p)(t) = /(tfs)ﬁ(v)(s)ds for te€a,b]. (1.7)

a

Then £ € Hyp(a).

Remark 1.1. Example 4.1 below shows that the assumption o €]0,1[ in
Corollary 1.2 a) cannot be replaced by the assumption « €10, 1].

Remark 1.2. Tt follows from Corollary 1.2 a) (for m = 2 and k = 1) that
if ¢ € Py, then ¢ € Hyp(a) provided

/b(b —$)0(1)(s)ds < 1. (1.8)

Example 4.1 below shows that the strict inequality (1.8) cannot be replaced
by the nonstrict one. However, the following assertion is true.

Proposition 1.1. Let £ € Py, and

b
/ (b— s)e(1)(s)ds = 1. (1.9)

If, moreover, the problem (0.1p), (0.29) has only the trivial solution, then
le Hab(a).

Theorem 1.2. Let —¢ € P, be an a— Volterra operator and let there

exist a function v € 5’[00([a b[;R) satisfying
~'(t) < L(y)(t) for t € a,b], (1.10)
~({t) >0 for te€]a,b], (1.11)
v (a) < (1.12)
Then £ € Hyp(a).
Corollary 1.3. Let —{ € P, be an a— Volterra operator and
/b(b — )|e(1)(s)[ds < 1. (1.13)

Then ¢ € Hqp(a).

Remark 1.3. Let £(v)(t) = —g(t)v(a), where g € L([a,b];R4). As it
was mentioned above, by the direct calculation, one can easily verify that
¢ € Hyp(a) iff (0.10) holds. Therefore, the constant 1 in the right-hand side
of the condition (1.13) is the best possible.
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Theorem 1.3. L~et —L € P,y be an a— Volterra operator and let there
exist a function v € C},.(Ja,b[; R) satisfying (1.10) and

loc

v() >0 for t€]la,bl, (1.14)
y(a) + lim 5'() # 0. (1.15)

Then ¢ € ﬁab(a).

Corollary 1.4. Let —{ € P, be an a— Volterra operator and

(bft)/ (s — a)|€(1)(s)|ds+
b
+(t—a)/t(b—s)|£(1)(s)|ds§b—a for telab.  (1.16)

Then ¢ € ﬁab(a).

Remark 1.4. Example 4.2 below shows that the condition (1.16) in Corol-
lary 1.4 cannot be replaced by the condition

(b—1) / (5 — a)|E(1)(s)|ds+

—|—(t—a)/t b—9s)l1)(s)|ds < (1+4e)(b—a) for tela,b], (1.17)

no matter how small € > 0 would be.

Theorem 1.4. Let —{ € P, be an a— Volterra operator. Then ¢ € H!,(a)
iff there exists a function v € C],.(la,b[; R) satisfying (1.10),

() >0, () =0 for te€la,bl, (1.18)
and
. !
tlir;1+7 (t) > 0. (1.19)

Corollary 1.5. Let —{ € P, be an a— Volterra operator and

b
[ torslas <1, (1.20)
where p(t) =t —a fort € [a,b]. Then { € H},(a).

Remark 1.5. Example 4.3 below shows that the condition (1.20) in Corol-
lary 1.5 cannot be replaced by the condition

b
[ 1ersyas < 1. (121

no matter how small € > 0 would be.
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Theorem 1.5. Let the operator ¢ € Ly, admit the representation { =
by — Ly, where £y,l1 € Py, and let

lo € Hup(a), —L1 € Hap(a), (1.22)
resp.

lo € Hup(a), —01 € Hap(a), (1.23)
resp.

ly € H.,(a), —t1€ H. (a). (1.24)

Then { € Hay(a), resp. £ € Hyy(a), resp. £ € H! (a).

2. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let £ € Hgp(a). According to Remark 0.3, the
problem

V'(t) = L(v)(D), (2.1)
v(a) =1, 9'(a) =1 (2.2)

has a unique solution 7 (i.c., v € C’([a,b];R)) and
v(t) >0 for te€[a,b]. (2.3)

It follows from (2.1), by virtue of (2.3) and the assumption ¢ € Py, that
7'(t) >0 for tela,bl
Hence, on account of (2.2), the inequality (1.2) holds, as well. Therefore,
the function ~ satisfies (1.1)—(1.3).
Now suppose that v € Cj,.([a,b[;R) is a function satisfying (1.1)-(1.3)
and ¢ € Hgp(a). Then there exists a function u € C’([a, b]; R) and tg € ]a, b]
such that (0.3), (0.4) hold and

u(to) <O0. (2.4)
Put
w(t) = My(t) +u(t) for t € [a,b,
where
u(t) }
A=maxq———=: t €la,b] .
{5 e
Obviously
w(t) >0 for tE€ a,b (2.5)
and there exists ¢, €]a,b] such that
w(t,) = 0. (2.6)

On account of (2.4), it is clear that
A> 0. (2.7)
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By (1.1)-(1.3), (0.3), (0.4), and (2.7), we get
w”’ () > L(w)(t) for t€ [a,b], (2.8)
w(a) >0, w'(a) > 0. (2.9)
It follows from (2.8), by virtue of (2.5) and the assumption ¢ € Py, that
w’(t) >0 for t€la,b].
Hence, on account of (2.9), we get
w(t) >0 for tE€la,bl,
which contradicts (2.6). O
Proof of Corollary 1.1. Let v be a solution of the problem
7'(t) = L))y (1), (2.10)
Ya)=1, () =1.
It follows from (2.10), in view of the assumption £(1) € L([a, b];R4), that
the inequality (1.2) holds. Moreover, v € C’([a, b]; R) and

7Y(t) >0 for te]a,b,

i.e., the function = is nondecreasing. Since ¢ is an a— Volterra operator and
{ € P,p, we easily conclude that

() () < L(1)(t)y(t) for t € [a,b].
Hence, on account of (2.10), the inequality (1.1) is fulfilled. Therefore, the
function + satisfies all the assumptions of Theorem 1.1. O
Proof of Corollary 1.2. a) Tt is not difficult to verify that the function

k m
a0 e+ S eilt) for tela]
=1 i=k+1

satisfies the assumptions of Theorem 1.1.
b) Denote by vy, v1, and v the solutions of the problems

vo (t) = €(1)(H)vo(t), vo(b) =0, vh(b) = —1,
v (t) = £1)()ui(t), vi(a) =0, vi(a) =1,
vy (t) = £(1)(t)va(t), v2(a) =1, wvj(a) =0.
It is not difficult to verify that
vo(t) = v1(b)va(t) — va(b)vi(t) for t € [a,b] (2.11)
and
0<wo(t) < (b—t)ro for tela,bl, (2.12)
where

b
ro = exp [ﬁ/ (s — a)(b— s)(1)(s)ds| . (2.13)
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On account of (1.5), there exists £ > 0 such that

b
7"0/ (b—8)l(1)(s)ds + ¢||lvz]lc < 1.
Let v be a solution of the problem

A(8) = €Y (E(E) + T (D),
Va)=¢, +(a)=0.

Obviously, v € C’'([a, b]; R),
y(t) >0, +'(#)>0 for tE€la,bl,
and

Y(t) = evz(t)+

+/ [v1(t)v2(s) — va(t)v1(s)]€(1)(s)ds for t € [a,b].
By virtue of (2.11) and (2.16), it follows from (2.17) that
b
() < (D) <ellvz]le —|—/ vo(s)l(1)(s)ds for t € [a,b].

The latter inequality, together with (2.12)—(2.14), implies

v(t) <1 for t€[a,b)].

Hence, we get from (2.15), on account the assumption lc Py,

() = L))y () + E()(8) for ¢ € [a,b].

Therefore, according to Theorem 1.1, we find
€ Hy(a),

where

)(t) < ey (tyw(t) + T(w)(t) for t€ [a,b).

75

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Now assume that the function u € C’([a,b];R) satisfies (0.3) and (0.4).

It is not difficult to verify that

[u(t)]- §/ (t —9)l([u]-)(s)ds for t € [a,b].

Put
w(t) = ([u]-)(t) for t€[a,b],
where ¢ is the operator defined by (1.7). Clearly,
w(a) =0, w'(a)=0,
w(t) >0 for tE€ [a,bl.

(2.19)

(2.20)
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By virtue of (1.7), (2.19), (2.20), and the assumption £ € Py, it is also
evident that

w”(t) = £([u]-)(t) < e(w)(t) = L) (Hw(t)+
+ [l(w)(#) —()(H)w(t)] for t€a,b]. (2.23)
Hence, on account of (1.6), (2.19), (2.20), and the condition £ € P, we get

w”(t) < LO)Ow(t) + £ul ) (1) < L) Owt)+
+0(w)(t) = Lw)(t) for t€ [a,b]-

The latter 1nequahty, together with (2.21), (2.22), and the condition (2.18),
implies w = 0. Therefore, it follows from (1.7), (2.19), and (2.20) that
[u]- =0, i.e., (0.5) holds. O

Proof of Proposition 1.1. Let v be a solution of the problem (2.1), (2.2).
Put

¥« = —min{~(t) : t € [a,b]} (2.24)
and choose t. €]a,b] such that
N — (2.25)
Suppose that
Y« 2 0. (2.26)

The integration of (2.1) from a to ¢, by virtue of (2.2), yields

Y(t)=1 +/ 0(y)(s)ds for t € [a,b]. (2.27)

Integrating (2.27) from a to ¢, and taking into account (1.9), (2.2), (2.24)—
(2.26), and the condition ¢ € P,;, we get the contradiction

T s b
et 1= —(t —a)— / / 0(7)(€)deds < . / (b= 5)(1)(s)ds = 7. .

Thus, v, < 0, i.e., the inequality (1.2) holds. Therefore, the function ~
satisfies the assumptions of Theorem 1.1. O
Proof of Theorem 1.2. Assume the contrary, let ¢ ¢ Hgu,(a). Then there
exist u € C'([a,b];R) and to €]a,b[ such that (0.3), (0.4), and (2.4) hold.
Denote by ¢;, the restriction of the operator £ to the space C([a,to];R). By
virtue of (0.3) and (1.10), we have

u’(t) > by (u)(t) for t € [a,tol, (2.28)
Y'(t) < iy (7)(t)  for t € [a,to]. (2.29)

Taking now into account (0.4) and the assumption —¢¢, € Py, it follows
from (2.28) that

max{u(t) : t € [a,to]} > 0. (2.30)
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Put
A = max { (—2 € [a, to]} (2.31)
and
w(t) = My(t) —u(t) for t € Ja,to] (2.32)
By (1.11) and (2.30) we get
A> 0. (2.33)
On account of (1.11), (2.4), and (2.33), we obtain
w(ty) > 0. (2.34)
In view of (2.31), clearly
w(t) >0 for tE€la,tol, (2.35)

and there exists t. € [a,to[ such that

w(t,) = 0. (2.36)
It follows from (2.28), (2.29), and (2.33) that
w’ (t) < by, (w)(t) for t € [a,tol. (2.37)

Hence, on account of (2.35) and the condition —£;, € Py, , we get

w”(t) <0 for te€[a,to) (2.38)
On the other hand, it follows from (0.4), (1.12), and (2.33) that

w'(a) <0 for t € la,tol,
which, together with (2.35), (2.36), and (2.38), contradicts (2.34). O

Proof of Corollary 1.3. Assume that ¢(1) # 0 (if £(1) = 0 then Corollary
1.3 is trivial). Put

=(b—1) / [e(1) |ds+/(bfs)|€(1)(s)|ds for ¢ € [a,b]. (2.39)

Obviusly, (1.11) holds and +/(a) = 0. Moreover, v € C'([a, b]; R),

7Y(t) <0 for te|a,b], (2.40)
and
¥'(t) =£()(t) for t€ [a,b]. (2.41)
By virtue of (1.13), (2.39), and (2.40), we get
v(t) <1 for t€]Ja,b]. (2.42)

On account of (2.42) and the assumption —¢ € Py, it follows from (2.41)
that (1.10) holds. Therefore, the function ~y satisfies all the conditions of
Theorem 1.2. g
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Proof of Theorem 1.3. Assume the contrary, let ¢ & ﬁab(a). Then there
exist u € C’([a,b]; R) and to €]a, b[ such that (0.3), (0.20), and (2.4) hold.
Denote by ¢, the restriction of the operator £ to the space C([a,to]; R). By
virtue of (0.3) and (1.10), the inequalities (2.28) and (2.29) are fulfilled. In
view of (0.2p) and the assumption —¢;, € P,y,, it follows from (2.28) that
(2.30) holds.

Put
=su ult) a
A= p{w). t €] ,to]}. (2.43)
By (1.15) and (0.29), evidently
coou(t)
Jim ~ =0 (2.44)

Therefore, A < +00. On the other hand, by virtue of (2.30), the inequality
(2.33) is satisfied.

Define the function w by (2.32). In view of (1.14), (2.4), and (2.33),
we get (2.34). On account of (2.43), the inequality (2.35) holds. It easily
follows from (2.35), (2.43), and (2.44) that there exists t, €]a,to[ such that

w(t,) =0, w'(ty)=0. (2.45)

The inequalities (2.28), (2.29), and (2.33) imply (2.37). Hence, on account
of (2.35) and the condition —¢;, € Py, we get (2.38). It follows from (2.38)
and (2.45) that w(tg) < 0, which contradicts (2.34). O

Proof of Corollary 1.4. Assume that ¢(1) #Z 0 (if £(1) = 0 then Corollary
1.4 is trivial). By the same arguments as in the proof of Corollary 1.3 one
can easily verify that the function

)= 2 |00 [ 6= ) slast
b
+(t — a)/1t b- s)|€(1)(s)ds] for ¢ € [a,b]
satisfies the assumption of Theorem 1.3. O

Proof of Theorem 1.4. Let ¢ € H.,(a). According to Remark 0.3, the
problem

V') =L)(@), v(a)=0, 7'(a)=1
has a unique solution ~ (i.e., v € C'([a, b]; R)) and

y(t) >0, Y(t) >0 for tE€la,bl.
Therefore, the function + satisfies (1.10), (1.18), and (1.19).

Now suppose that a function v € Cj_.(Ja, b[;R) satisfies (1.10), (1.18),
and (1.19). Put

A= {z€la,bl:/(t) > 0 for t €]a,z]} (2.46)
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and
by = sup A. (2.47)
By virtue of (1.19), we have by € ]a, b]. It is clear that
Y (t) >0 for te€la,bo. (2.48)
Let u € C'([a, b]; R) satisfies (0.3) and (0.6). First we will show that
u'(t) >0 for tE€ |a,bg. (2.49)

Assume the contrary, let (2.49) do not hold. Then there exists to €]a, bg|
such that

u(to) < 0. (2.50)

Denote by ¢, the restriction of the operator ¢ to the space C([a,to]; R).
Clearly, (2.28) and (2.29) are fulfilled. It is not difficult to verify that

max{u/(t) : t € [a,to]} > 0. (2.51)
Indeed, if (2.51) does not hold, then, by virtue of (0.6), the inequality
u(t) <0 for tE [a,tol

Is satisfied. Hence, on account of (2.28) and the assumption —¢y, € P,
we get

u’(t) >0 for t € la,tgl.
which, together with (0.6), contradicts (2.50).

Put
=su wit) . a
A= p{,yl(t) D te] ,to]} (2.52)
and
w(t) = My(t) — u(t) — My(a) for t € [a,to). (2.53)

By (2.51), evidently (2.33) holds. The inequalities (2.28), (2.29), and (2.33)
imply (2.37). On the other hand, (1.18), (2.33), and (2.50) yield

w'(tg) > 0. (2.54)
It easily follows from (1.18), (2.33), (2.52), and (2.53) that
w'(t) >0 for t€la,tgl, (2.55)
w(a) =0, (2.56)
and there exists ¢, € [a, o [ such that
w'(tx) = 0. (2.57)

On account of (2.55), (2.56), and the condition —¢;, € Pg,, it follows
from (2.37) that (2.38) holds. Hence, by (2.57), we get w’(t9) < 0, which
contradicts (2.54).

Thus, we have proved that (2.49) is fulfilled. Consequently, if by = b,
then the theorem is proved. Therefore, we will suppose that by < b.
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By virtue of (1.10), (1.18), and the assumption —¢ € Py, it is clear that
7' (t) <0 for té€a,b]
Hence, on account of (1.18), (1.19), and (2.46)—(2.48), we get

~v(t) >0 for t€la,bol, (2.58)

~v(t) = v(bg) for ¢ € [bg,D], (2.59)
On the other hand, (1.10) and (2.59) yield

£(v)(t) =0 for t € [by,b]. (2.60)
It easily follows from (0.6), (1.19), and (2.58) that

m % <+

Hence, by virtue of (2.58), there exists M > 0 such that

u(t) < M~(t) for tE€ [a,b]. (2.61)

On account of (2.60), (2.61), and the condition —¢ € Py, it follows from
(0.3) that
u'(t) >0 for t e [by,b].

Hence, by virtue of (2.49), we get

u'(t) > u'(bg) >0 for te€ [by,b],

u(t) > u(bg) >0 for ¢ € [bo,b].
Therefore, (0.7) holds. O
Proof of Corollary 1.5. If £(p) = 0, then Corollary 1.5 is trivial. Indeed, let
the function u € C'([a, b]; R) satisfies (0.3) and (0.6). Obviously,

u(t) < (t—a)llvlo = e®)[vlc for € [a,b]. (2.62)
It follows from (0.3), by virtue of (2.62) and the assumption —¢ € Py, that
u'(t) > o) (t)||u'||c =0 for te[a,b].

The latter inequality and (0.6) yield (0.7).
Suppose that £(¢) £ 0. Tt is easy to verify that the function

t b
~(t) = / (s —a)ll(1)(s)|ds + (t — a)/t |¢(1)(s)|ds for t € [a,b]

satisfies the assumptions of Theorem 1.4. O
Proof of Theorem 1.5. Assume that (1.22) (resp. (1.23)) holds and the
function u € C’([a, b]; R) satisfies (0.3) and (0.4) (resp. (0.3) and (0.20)).
By virtue of the assumption —¢; € Huy(a) (resp. —f € Huy(a)), the
problem
o' (t) = —Lu(@)(t) — Lo([u] -)(1), (2.63)
ala) =0, a(a)=0 (2.64)
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has a unique solution « (see Remark 0.3) and
a(t) <0 for tE€ [a,bl. (2.65)
It follows from (0.3), (2.63), and the assumption ¢y € Py, that
(u(t) — ()" = —ti(u — a)(t) + Lo([u]+)(t) =
> —li(u—a)(t) for t€la,b].

Hence, by virtue of (0.4), (2.64), and the condition —¢; € Hgp(a) (resp.
—l1 € Hgp(a)), we get

u(t) > a(t) for t € a,bl. (2.66)
On account of (2.65), we get from (2.66) that
—[u(t)]= > a(t) for t € [a,bl. (2.67)

By virtue of (2.65), (2.67), and the assumptions £g,¢1 € Pg, the equality
(2.63) results in
o’ (t) > Lo(a)(t) for t € la,b)].
Hence, on account of (2.64) and the condition ¢y € Hgp(a) (resp. £y €
ﬁab(a))a we get
a(t) >0 for t€la,b].

The latter inequality, (2.65), and (2.66) yield (0.5). Therefore, ¢ € Hgp(a)
(resp. £ € Hup(a)).

Suppose now that (1.24) holds and the function u € C’([a, b); R) satisfies
(0.3) and (0.6). By the same arguments as above we get that (0.5) is fulfilled.
On account of (0.5) and the condition £y € Pgp, it follows from (0.3) that

u’(t) > —L1(u)(t) for t € [a,b)].
Hence, by virtue of the condition —¢1 € H/,(a), we get
W'(t) >0 for tE€ [a,b] U

3. COROLLARIES FOR EQUATION WITH DEVIATING ARGUMENT

In this section, the results from Section 1 will be concretized for the case,
when the operator ¢ € L, has one of the following forms:

()(t) Y p(tyo(r(t)), (3.1)
(w)(8) < —g(tyo(u(t)), (3.2)
)(1) < plt)o(r(t)) — g(t)o(u(t)), (3.3)

where p,g € L([a,b];R}) and 7,4 € Myp. In the sequel, we will use the
notation

7 = esssup{7(t) : t € [a,b]}.
Theorem 3.1. Let at least one of the following items be fulfilled:
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a) there exists a €10, 1] such that

t 7(s)
JAGEE ( [ 5)p(5)d£> ds <

< a/ (t —s)p(s)ds for te€a,b]; (34)

/azbs [/ v / dndg]dm 55)

where

o(t) = %(1 +sgn(r(t) —t)) for te€[a,b], (3.6)

b
T = exp <ﬁ/ (s—a)(b— s)p(s)ds) ;

¢) [T (7% = s)p(s)ds # 0 and

esssup{/T(t)/ ¢)deds : t € [a, }} <\, (3.7)

where
3* = atp {l N |: A exp [)\ faT*(T* - s)p(s)ds} ] e 0} 58)
A e A (7 shp(s)ds] — 1] ' '

Then the operator £ defined by (3.1) belongs to the set Hqp(a) (and therefore
to the sets Hqp(a) and H)\(a)).

From Theorem 3.1 a) and c¢) it immediately follows

Corollary 3.1. Let either

/ "~ spls)ds < 1,

or

*

| = smisas

T(t) ps
ess sup {/ / p(§)déds : t € [a,b}} < é .
t a

Then the operator £ defined by (3.1) belongs to the set Hqp(a).

and

The next theorem is, in a certain sense, a complement of Corollary 3.1.
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Theorem 3.2. Let

/T (7" = s)p(s)ds = 1. (3.9)

Then the operator ¢ defined by (3.1) belongs to the set Hap(a) if and only if

/: (v — t)p (/(t)/ d5d8> dt # 0. (3.10)

Theorem 3.3. Let
w(t) <t for tE€a,b (3.11)

and

b
/ (b—s)g(s)ds < 1. (3.12)
Then the operator £ defined by (3.2) belongs to the set Hqp(a).

Remark 3.1. The constant 1 in (3.12) is the best possible and cannot be
replaced by 1+ €, no matter how small € > 0 would be (see Remark 1.3).

Theorem 3.4. Let (3.11) hold and let

w(t) b
= ne) [ = @ods + w0 —a) [ =gty <
a n(t
<b—a for tela,b]. (3.13)
Then the operator £ defined by (3.2) belongs to the set ﬁab(a).

Remark 3.2. Example 4.2 below shows that the condition (3.13) in The-
orem 3.4 cannot be replaced by the condition

w(t) b
=) [ (s - aglds + (u(t) ~ o) | (b= a)ds <
a n(t
<(1+¢e)b—a) for te]la,b],
no matter how small ¢ > 0 would be.

Theorem 3.5. Let (3.11) hold and let

b
/ (u(s) —a)g(s)ds < 1. (3.14)
Then the operator £ defined by (3.2) belongs to the set H.,(a).

Remark 3.3. Example 4.3 below shows that the condition (3.14) cannot
be replaced by the condition

b
/ (uls) — a)g(s)ds < 1+,

no matter how small ¢ > 0 would be.
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Theorem 3.6. Let ¢ be the operator defined by (3.3). Let, moreover,
(3.11) be fulfilled and at least one of the conditions of Theorem 3.1 hold.
Then the condition (3.12) implies the inclusion ¢ € Hgp(a), the condition

(3.13) implies the inclusion £ € Hgp(a), and the condition (3.14) implies the
inclusion £ € H.,(a).

Proof of Theorem 3.1. a) It is easy to verify that (3.4) implies
p3(t) < aps(t) for t€la,bl],

where
pa(t) = / (t —s)p(s)ds for t€ a,b],

©3(t) :/ (t — s)p(s)p2(r(s))ds for t € [a,b].

Thus, the inequality (1.4) holds for m = 3 and k = 2. Therefore, by virtue
of Corollary 1.2 a), the operator ¢ given by (3.1) belongs to the set Hyp(a).
b) Let £ € L, be the operator defined by

_ . 7(t) s
awwéwwdwl [ o ©igas tor te o
Obviously, the inequality
T(t) ps
L(p(v))(t) = L(1)(B)p(v)(t) = p(t) t / p(&)v(7(§))déds <

<Lv)(t) for tela,b]
holds on the set C,([a, b]; Ry), where
def t s
o [ [ puir(e)dsas
On the other hand, it follows from (3.5) that (1.5) holds. Therefore, the

Assumptions of Corollary 1.2 b) are fulfilled.
¢) On account of (3.7), there exists g9 €]0, A*[ such that

T(t) ps
/ / p(€)deds < A" — ey for £ € [ab] (3.15)
t a
By virtue of (3.8), there exist 6 > 0, Ag > 0, and ¢ > 0 such that
e<1 (3.16)

and

) Ao exp [Ao e s)p(s)ds}
AN —ep< —1In

- (3.17)
Mo | exp [)\0 7 - s)p(s)ds] +o(b—a)—e
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It follows from (3.15) and (3.17) that

exp [)\0/ t)/ d{ds] <
_ oo [ 1060 — s)pls)ds]
e Mo [ (7(0) = 9p(s)ds| +6(r(t) —a) — ¢

for t € [a,b].

Hence,

oesp [0 [ 6= opls)as]| 2 exo [Ao / " r(e) — s)pls)as| +

+(7(t) —a) —e for t€Ja,b]. (3.18)

Put
~(t) = exp [)\0/ (t— s)p(s)ds} +d(t—a)—e for te€]la,bl.

On account of (3.18), it is not difficult to verify that

V() Z pt)y(r(t)) for t€[a,b].

On the other hand, evidently (1.2) and (1.3) hold. Thus, the function ~
satisfies the assumptions of Theorem 1.1. O

Proof of Corollary 3.1. Corollary 3.1 immediately follows from Theorem 3.1
a) and c). O

To prove Theorem 3.2 we need the following lemma.

Lemma 3.1. Let ¢ be the operator defined by (3.1) and let (3.9) hold.
Then every function v € C’'([a,b];R) satisfying (0.1) and (0.2¢) is either
nonnegative or nonpositive.

Proof. Let the function u € C’([a,b];R) satisfy (0.1g) and (0.29). It is
sufficient to show that the function u is either nonnegative or nonpositive
in [a,7*]. Put

M =max{u(t): t €[a,7"]}, —m =min{u(t): t€ [a,77]} (3.19)
and choose tar, t,, €]a, 7] such that
u(ty) =M, u(ty) =—m. (3.20)
Without loss of generality we can assume that ¢, < tj;. Suppose that
M >0 and m>0. (3.21)

Integrating (0.1¢) from a to ¢ and taking into account (0.2y), we get

u’(t)z/ p(s)u(r(s))ds for t € [a,b). (3.22)
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The integration of (3.22) from t,, to ¢as, by virtue of (3.19)—(3.21) and (3.9),
yields the contradiction

tm
M+m = / / dfds<M/ (7" — s)p(s)ds = M.
Therefore, (3.21) does not hold, i.e., the function u is either nonnegative or
nonpositive. (Il

Proof of Theorem 3.2. Let (3.9) and (3.10) hold. According to Proposi-
tion 1.1, it is sufficient to show that the problem (0.1¢), (0.2¢) has only the

trivial solution. Let the function u € C’([a, b]; R) satisfy (0.1p) and (0.29).
By virtue of Lemma 3.1, without loss of generality we can assume that

u(t) >0 for tE€Ja,b]. (3.23)
It follows from (0.1p), on account of (0.2p) and (3.23), that
u(r(t)) <u(r*) for t € [a,b]. (3.24)

The integration of (0.1p) from a to ¢, in view of (0.2¢), yields (3.22). Inte-
grating (3.22) from ¢ to 7* and taking into account (3.24), we get

u(t) > u(t™) (1 - /tT /sp(g)dfds) for t € [a,b]. (3.25)

The latter inequality, by virtue of (3.9), results in

> u(r") / / T p(€)deds for te [ab]. (3.26)

On the other hand, integrating (3.22) from a to ¢ and taking into account
(3.24) and (0.2¢), we get

t s
() / / p(€)deds for € [a,b]. (3.27)
Thus, it follows from (3.26) and (3.27) that
u(t) = u(t*)f(t) for tE€]Ja,bl, (3.28)
where
t) / t / T p(€)deds for te [ab]. (3.29)

On account of (3.28), the equality (3.22) results in

u'(t) = u(T*)/ p(s)f(7(s))ds for t € [a,b]. (3.30)

The integration of (3.30) from a to 7*, on account of (0.2¢), implies

u(r™) = u(r") /T (7 = s)p(s) f(7(s))ds. (3.31)
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On account of (3.9) and (3.29), from (3.10) we obtain

| oo £ 1
a
Thus, it follows from (3.31) that
u(r*) = 0.
Taking now into account (3.23) and (3.24), from (0.1p) we get
u'(t)=0 for te€la,b],

which, together with (0.2), yields u = 0.
Now suppose that (3.9) holds and

[ - p ( /@ [ dgds) (332)

By virtue of (3.9) and (3.32), we have
) =1 (3.33)

and

*

/ (7" = Op@)[f (77) = f(7(t))ldt =0, (3.34)
where the function f is defined by (3.29). In view of the inequality

fr(®) < f(77) for t€a,b],
it follows from (3.34) that

0< / / — F(r(€))]deds =

- / / PO () — F(r(©)deds <0 for t€ a,7].

Therefore, on account of (3.33) and (3.29),

/ / €))déds for t € [a,T"]. (3.35)
Put
ult) = f(t) for t € [a, 7]
1+({t—7" f p(s derf f (& (€))déds  for t e [t*,b]

)
On account of (3.33), we obtain u(7*) = 1, i.e., u # 0. On the other hand,
taking into account (3.35), it is not difficult to verify that

u'(t) = p(H)u(r(t)) for ¢t € [a,bl.

Thus, « is a nontrivial solution of the problem (0.1g), (0.29). Therefore,
according to Remark 0.3, we have £ & Hy(a). O
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The proofs of Theorems 3.3-3.5 are similar to ones of Corollaries 1.3-1.5.
Theorem 3.6 immediately follows from Theorem 1.5 and Theorems 3.1-3.5.

4. EXAMPLES

Example 4.1. Let ¢(v)(t) e p(t)v(b), where p € L([a,b];R,), and

b
/ (b—s)p(s)ds = 1.
Obviously,

on(t) = / (t —s)p(s)ds for t€la,b], n€N,

where ¢, are functions defined in Corollary 1.2 a). It is clear that for each
m,k € N the inequality (1.4) holds with @ = 1. On the other hand, the
function

u(t) = / (t— $)p(s)ds for € [a,b]

is a nontrivial solution of the problem (0.1g), (0.2¢). Therefore, according
to Remark 0.3, we have £ & Hy(a).

Example 4.2. Let ag < b, € €]0,1[, A = 1, to = 1(ap+b), § = 3(b—ao),

(t"g# [1+>\7 (t}#] for t €lao,to]

9 =3 - —t)*
%412[1_’_)\_%} for ¢t €lto,b]
—1
a=ag— % (fabo E(S)dS) , and

_Jo for t€la,ap|
9(t) = {ﬁ(t) for t €Jag,b]

Let, moreover, ¢(v)(t) LS —g(t)v(t). Obviously, (1.17) holds. It is not
difficult to verify that the function

(t — ag) exp [— (t;(‘;ﬂ)k] for t € [ao,to]

(b —t)exp [f (bft)k} for t € [to, bo

u(t) =

BYRS
is a solution of the problem
v'(t) = —g(t)v(t), wv(ap) =0, wv(b)=0 (4.1)
and
v(t) >0 for t€]aog,bl (4.2)
Now let

1 for t€]la,ao]
t) =
a) {0 for t €lag,b|
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and let the function u be a solution of the problem (0.1), (0.2p). Obviously,
(0.3) holds, as well. On the other hand, u satisfies
1
u”’(t) = —g(t)u(t), wulag) = 5(@ —ap)?, ' (ap) = a— ao.
By virtue of (4.1), (4.2), and Sturm’s separation theorem, we get u(b) < 0.

Therefore, £ & Hyy(a).
Example 4.3. Let € €]0,1[, A= 1, tg €]a, b, t1 €]to,b], § = (to — a)*,
1 —

m=e? [(t1 —a)® — (to — a)?] * and

(t*g# {1+/\7 M} for t€la,tof

o
g(t) = < m? for telto, t1] -
0 for telty, b
Let, moreover, £(v)(t) LS —g(t)v(t). Obviously, (1.21) holds. On the other
hand, the function
—a)?
tto__aa exp [% - (t)\,;x) } for t € [a,tof
u(t) = g cos[m(t — to)] for t € [to,t1]

cos[m(ty — to)] — m(t — t1) sin[m(t; —tp)] for ¢t € [t1,D]

is a solution of the problem

(0 = (e, ul@) =0, W)= (0~ @) e )

and
™
u'(t) <0 for t0<t<min{t1,t0+—}.

2
Therefore, ¢ ¢ H.,(a).
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