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ON SOME BOUNDARY VALUE PROBLEMS
FOR FOURTH ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS



Abstract. Optimal in a sense sufficient conditions are established for
the solvability and unique solvability of the boundary value problems of the
type

ul™(t) = g(u)(t),
u(a) =0, u®) =0, Y (axu®(a)+ Bupu® (b)) =0 (i=1,2),
k=1

where g : C1([a,b];R) — L([a,b];R) is a continuous operator, a;; and B
(i,k = 1,2) are real constants such that

2 2
Z ‘ Z(aikxk + ﬂikyk)‘ >0 for z122 < y1%2.
=1 k=1
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Let —oo < a < b < 400, C! be the space of continuously differentiable
functions w : [a,b] — R with the norm |[jul| ,, = max{[u(t)| + [v'(t)| : @ §
t < b}, L be the space of Lebesgue integrable functions v : [a,b] —

with the norm |jv]|, = f |v(t)|dt, and let g : C' — L be a continuous
operator satisfying the condition ¢g*(p)(-) € L for 0 < p < +o0, where

g*(p)(t) = sup{lg(u)(t)] : v € C, [|ull, < p}.
Consider the functional differential equation
ul™(t) = g(u)(t) (1)

with the boundary conditions
2

u(a) =0, u®) =0, Y (apxu®(a)+Bpu® () =0 (i=1,2), (2)

k=1
where the constants a;x and Si (i, k = 1,2) are such that

2 2
Z ‘ Z(aikxk + ﬂikyk)‘ >0 for z120 < y1yo. (3)
i=1 k=1

The particular cases of (1) are the differential equations
ul™(t) = f(tuln(0), ' (r2(1))), (11)
ul™(t) = f(tult), w'(t)), (12)

and the particular cases of (2) are the boundary conditions
u(a) =0, u() =0, ajv'(a)+ au”’(a) =0, Giu'(b) + Bou”(b) =0, (21)

u(a) =0, u(b) =0, u'(a) =au'(b), u(b) =au’(a), (22)

u(a) =0, w(b) =0, u'(a) =u'(b), u(a)=1u"(D). (23)

Here f : [a,b] x R — R is a function satisfying the local Carathéodory

conditions, 7; : [a,b] — [a,b] (i = 1,2) are measurable functions, a # 0 and
a;, B; (i = 1,2) are constants satisfying the inequalities

apap <0, S182 20, |oa|+|az[ >0, [Bi] +[B2] > 0. (31)

By C? we denote the space of functions w : [a,b] — R absolutely conti-
nuous along with their first three derivatives, and by 6'5’ we denote the set
of all u € C3 satisfying the boundary conditions (2). The function u € 53
is said to be a solution of the problem (1), (2) if it almost everywhere
on [a, b] satisfies the equation (1).

Theorem 1. Let there exist £ € [0,1] and £y > 0, such that for an
arbitrary u € C3 the inequality
b b
/ g(u)(t)u(t)dt < ¢ / W (t) dt + £ (4)
is fulfilled. Then the problem (1), (2) has at least one solution.

To prove this theorem, we will need the following
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Lemma 1. If ¢ € [0,1] and €, > 0, then an arbitrary function u € C3
satisfying the integral inequality

b b
/ W) (yu(t) dt < ¢ / Wt dt + £ (5)

admits the estimate

b
e <70, [ @ <ot ©
a

where

m=ro-a(p2y) e )

Proof. According to the formula of integration by parts, by virtue of the
conditions (2) and (3) we have

b
/ u™ (t)u(t) dt = u" (b)u(b) — v (a)u(a) + v’ (a)u" (a) — v’ (b)u” (b)+

b b
+/ ’U,”2(t) dt:u’(a)u"(a)—u’(b)u”(b)+/ u//2(t)dt,
(e (a) > ' (B b),

/ b ul™) (Hu(t) dt > / b W (t) dt.

Therefore from the inequality (5) we find that

b b b Lo
/”()dt<€/ u"(t)dt + ¢y and / N()d—1—£

On the other hand, by the condition u(a) = u(b) = 0 there exists to €
Ja, b[ such that u'(tg) = 0. Therefore

b 1/2
! (¢ |7‘/ ds‘< )1/2(/ u”Q(s)ds) <
to a

1/2
< —a)l/? <t<
(176) (b—a) for a <t <b,

0y \1/2
|—‘/ ds‘< 1f€) (b—a)®? for a<t<b.

Consequently, the estimate (6) is valid. O

and hence

By Lemma 1, the differential equation u (") (t) = 0 under the boundary
conditions (2) has only a trivial solution. Taking this fact into consideration,
Corollary 2 of [2] leads to

Lemma 2. Let there exist a positive constant v such that for every
A €10,1] an arbitrary solution u of the differential equation

ul™ (1) = Ag(u)(t) (8)



On Some Boundary Value Problems for Functional Differential Equations 59

satisfying the boundary conditions (2) admits the estimate

4
Z V@) <7 for a <t<b. 9)
i=1

Then the problem (1), (2) has at least one solution.

Proof of Theorem 1. Let ro be the number given by the equality (7), and

b
r=ro+4rolb—a) "2 +6ro(b—a) Y2+ (1+b—a) / g*(ro)(s) ds.
a

According to Lemma 2, to prove Theorem 1 it suffices to establish that
for every A €10, 1] an arbitrary solution u of the problem (8), (2) admits the
estimate (9).

By virtue of the condition (4), every solution of the problem (8),(2)
satisfies the integral inequality (5). This fact by Lemma 1 ensures the va-
lidity of the estimates (6). Therefore from (8) we have |u(™)(t)| < g*(ro) ()
for almost all ¢ € [a,b]. On the other hand, the existence of the points
t1 € [a, 3] to € [B2F2 1], tg € ]t1, to[ such that

[u” ()] < 2ro(b—a)~Y? (i=1,2),
[ (to)| = (t2 — t1) 7 | (t2) — v (t1)| < dro(b—a)™3/2,

is obvious. Therefore

b
[u" (t)] < 4ro(b— a)~3/? +/ g*(ro)(s)ds for a <t <b,

b
lu” ()] < 6ro(b—a)~ Y2+ (b— a)/ g*(ro)(s)ds for a <t <hb.

If along with the above-said we take into account (6), the validity of the
estimate (9) becomes clear. g

Theorem 2. Let there exist £ € [0, 1] such that for arbitrary u and v € 53
the inequality

2

b b
| 6w ®) ~ g0 o)~ )@t < ¢ [ @) - o"@)*de 10)
is fulfilled. Then the problem (1), (2) has one and only one solution.
Proof. For v(t) =0, from (10) we obtain the inequality

b b b
/ o) (B)u(t) dt < ¢ / W) dt + / 9(0) (H)u(t) dt.

On the other hand, by virtue of u(b) = u(a) = 0 we have

lu(t)| < b;a /: [u" ()| ds < /: (12—;61/'2(5) n ébQTa_)Z)) s,
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where p =1+ ff lg(0)(¢)| dt. Therefore

b b
/ g(w)Out) dt < 6 / W (t) dt + L,

where ¢, = L 4y = (;’2(‘;) 5) However, by Theorem 1, the last inequality
guarantees the solvability of the problem (1), (2).

It remains for us to prove that the problem (1),(2) has at most one
solution. Let uw and v be arbitrary solutions of that problem, and w(t) =

u(t) — v(t). Then w € 53 On the other hand, by the condition (10) we

have

/ @) (tyw(t) dt < ¢ / "2 (t) dt
whence by Lemma 1 it follows that w(¢) = 0, and consequently u(t) =
v(t). O

Before we proceed to the problem (1), (2), we will cite one lemma which
is a simple corollary of Wirtinger’s theorem.

Lemma 3. Let u : [a,b] — R be a twice continuously differentiable
function such that
u(a) =0, wu(d)=0. (11)
Then

/ZQ(@ dt < (bﬂ“)‘l/b "2(¢) dt, /Z’Q(t)dtg (bﬂ“)Q/b "2(¢) dt. (12)

a

If, however, along with (11) the condition
' (a) = u/(b) (13)
is fulfilled, then

LZ%) dtgi (b = “)4/}"2(7:) dt, /}’2(7:) dt< (b;ﬂ“)Q/b"Q( B dt. (14)

a

Proof. Applying along with (11) the formula of integration by parts and the
Schwartz inequality, we obtain

/ab WP (t)dt = /abu(t)u”(t) dt < (/ab u2(t) dt)1/2</ab W (t) dt)l/Q.

On the other hand, by Theorem 256 of [1] we have

/bu2(t)dt§ (bﬂa)Q/bu’Q(t)dt. (15)

The last two inequalities result in the inequalities (12).
Assume now that along with (11) the condition (13) is fulfilled. Then by
Theorem 258 of [1], along with (15) we have

/b W (t)dt < (b;ﬁaf /b u(t) dt.
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Consequently, the inequalities (14) are valid. O
We introduce the sets
IO:{tG[a,b]: Tl(t):t}, I =[a,b]\ Iy

and the numbers

b 1/2
§; = (/ Imi(t) — ¢ dt) (i=1,2).
a
The following theorem holds.

Theorem 3. Let there exist nonnegative constants ¢; (i = 1,2) and a
function h € L such that

(22 ea) (52 e (2 a) () 0 (o

™

and the conditions
f(t,z,y)sgna < bi|z| + Loly| + h(t) for t € I, (v,y) € R?, (17)
[f(tz.y)| < lilz] + Loyl + h(t) for teh, (z,y) €R*  (18)
are fulfilled. Then the problem (1), (2) has at least one solution.

Proof. We choose ¢35 > 0 in such a way that

(= (b_a+61>(b;a>3€1+(b_a+52>(b;a>252+53<1. (19)

s s

If we put

g(u)(t) = f(t,u(ni (1), v (r2(1))), (20)
then the equation (1;) takes the form (1). On the other hand, by the
conditions (17) and (18), almost everywhere on [a, b] the inequality

g(w)(u(t) < Glu@)u(r(t)] + Lult)u’ (ra(t))| + h(t)|u(t)]
is fulfilled. Therefore

b
/ g(u)(Hu(t) <
b b b
<0 / lu(tyu(ry (1)) dt + 6 / Ju(t) (7a(8))| dt + / ()] dt. (21)

By Lemma 3, the function u satisfies the inequalities (12) from which we

find that
b b b T1(t)
/ fu(tyu(n ()] dt < / 2@ dt+ [ Ju(t)] / o/ (s) ds| i <
a a a t
b

g/abu2(t)dt+ (/abzﬁ(t)dt)m(/a (/tn(t)u’(s)ds)th)l/2 <
g/abu2(t)dt+51(/abu2(t)dt)l/Q(/abu’Q(s)dS)l/g <
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< (b )(b_a> /bu"Q(t)dt (22)

/ju "(Ta(t \dt</|u |dt+/ lu(t) |‘/72(t) ds‘dt<
< (/abu2(t)dt)1/2[(/a ()dt) +52(/ "Q(t)dt)m} <

a

<(Fea)(2e [wtoa ey

and

/al;z(t)|u(t)| dt/al;z(t) /GL’(S) ds‘ dté(b*a)l/QHhHL (/al’)u'Q(t) dt)l/Q -

< %Ihlu(/b "t )dt) " <f3/b“"2(t)dt+€o, (24)

a

where £o = =22 ||p2.
e
With regard for the inequalities (19) and (22)—(24), from (21) we obtain
inequality (4), where ¢ < 1. Consequently, all the conditions of Theorem 1

are fulfilled, which guarantees the solvability of the problem (1), (2). O

Theorem 4. Let there exist nonnegative, satisfying inequality (16) con-
stants £1 and {5 such that the conditions

[f(t,z,y) = f(£,T, )] sgn(z — T) < bz — T + Lo|y — 7 (25)
for te Iy, (z,y) €R? (z,7) € R?,

for te i, (z,y) €R? (7,7) € R
are fulfilled. Then the problem (1), (2) has one and only one solution.

Proof. Let £ = (=2 +61)(2=2)30, + (%% +65)(2=2)%¢5. Then by Theorem 2
and the condition (16), in order to prove Theorem 4 it suffices to establish
that the operator g given by the equality (20) for arbitrary u and v € 58
satisfies the condition

b b
/ (g(u+w)(t) — g(u)(t))w(t) dt < 6/ w"*(t) dt. (27)
By virtue of (20), (25) and (26), we have

/(g(u+w)(t)—g( )(t) t<£/ w(r ()] dt+£2ﬁw(t)w’(rg(t))‘ dt.

However, when proving Theorem 3 we have established that an arbitrary
function w € C} satisfies the condition

b b b
61/ \w(t)w(n(t))|dt+£2/ \w(t)w’(n(t))|dt§£/ W (t) dt.
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Consequently, the inequality (27) is valid. O

If a1 = a1, 2 = a, B11 = P12 =0, a1 = age =0, oy = B, Paz = Bo,
then by virtue of (31) the condition (3) is fulfilled. The same condition is
obviously fulfilled for ay; = (11 = 1, Bo2 = a9y = a, a2 = a1 = 0,
B12 = P21 = 0. Therefore from Theorems 3 and 4 we have

Corollary 1. Let there exist nonnegative, satisfying inequality (16) con-
stants €1 and a3, such that the conditions (17) and (18) (the conditions (25)
and (26)) are fulfilled. Then the problem (11),(21), as well as the problem
(11), (22) has at least one solution (one and only one solution).

For 7;(t) =t (i = 1,2), from Theorems 3, 4 and Corollary 1 we obtain

Theorem 5. Let there exist nonnegative constants £1 and {5, such that

() e (P50 e =

and the condition (17) (the condition (25)) is fulfilled, where Iy = [a,b].
Then each of the problems (12), (2); (12), (21) and (12), (22) has at least one
solution (one and only one solution).

As an example, we consider the linear differential equation

ul™ () = pi(t)ult) + pa(t)u' (1) + q(t) (29)
with Lebesgue integrable coefficients p1, po, ¢ : [a,b] — R. From Theorem 5
we get

Corollary 2. Let almost everywhere on [a,b] the inequalities
pi(t) <y, |p2(t)] < Lo, (30)

be fulfilled, where €1 and ¢2 are nonnegative constants satisfying the condi-
tion (28). Then the problem (29), (2) and, consequently each of the problems
(29), (21) and (29), (22) has one and only one solution.

If p1(t) = 61 = (%)% p2(t) = f2 = 0 and a = —1, then it is obvious
that (30) is fulfilled, but instead of (28) we have (2=%)4¢; + (2=2)3¢, < 1.
Nevertheless, the homogeneous equation (") (t) = p (t)u(t) +pa(t)u’ (t) has
the nontrivial solution u(t) = sin % satisfying the boundary conditions
(22). Therefore there exists ¢ € L such that the problem (29), (22) has no
solution.

The above-constructed example shows that in Theorems 1 and 2 the
condition ¢ <1 is optimal, and it cannot be replaced by the condition ¢<1.

Analogously, in Theorems 3 and 4 and in Corollary 1 (in Theorem 5 and
Corollary 2) the strict inequality (16) (the strict inequality (28)) cannot be
replaced by the nonstrict inequality.

Theorem 6. Let there exist nonnegative constants £1 and {y such that

(o) () (0 o) () e < 4
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and the conditions (17) and (18) (the conditions (25) and (26)) are fulfilled.
Then the problem (11),(23) has at least one solution (one and only one
solution).

This theorem can be proved just in the same way as Theorems 3 and 4.
The only difference in the proof is that instead of the inequalities (12) we
use the inequalities (14).

For 7;(t) =t (i = 1,2), from Theorem 6 we have

Theorem 7. Let there exist nonnegative constants £1 and {o, such that
b—a\4 b—a\3

() () < o

and the condition (17) (the condition (25)) is fulfilled, where Iy = [a,b].

Then the problem (13),(23) has at least one solution (one and only one
solution).

Corollary 3. Let almost everywhere on [a,b] the inequalities (30) be
fulfilled, where €1 and €y are nonnegative constants satisfying the condition
(31). Then the problem (29), (23) has one and only one solution.
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