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CONTACT AND BOUNDARY-CONTACT
PROBLEMS OF STATICS OF ANISOTROPIC
INHOMOGENEOUS ELASTIC BODY



Abstract. The paper presents the proofs of the existence and unique-
ness of solutions of the contact and boundary-contact problems of inhomo-
geneous anisotropic elastic body in the two-dimensional case. The potential
method and the theory of Fredholm integral equations is used. These prob-
lems for isotropic elastic body have been solved earlier by D.I. Sherman [1],
who used for their solution the method of general solutions due to Kolosov—
Muskhelishvili, complex potentials and also the methods of the theory of a
complex variable. The boundary conditions of the above-mentioned prob-
lems will be written in natural way. In his work D.I. Sherman instead of a
stress vector takes its integral. First we consider the contact problem after
which the boundary-contact problems are treated comparatively elementar-

ily.
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1. THE BaAsic CONTACT PROBLEM

Let an infinite plane be divided into two parts by a closed curve S;. One
(infinite) part occupying the domain Dyis characterized by Hook’s constants

A<101>7 Agg), Agg), A(202)’ A(Q%), A:(g%) , while the other (finite) part occupying
the domain D, is characterized by Hook’s constants Aﬁ), A%), A%), AgIQ),
A(213), A§13). These constants in the domains Dy and D; are independent of

each other.
We introduce the following notation:

i @), cff) (an] o 1)

C(J)(a )u () — _
O (@:), C)(2:)

where u(!) is the (real) vector of displacement in the domain D; (j = 0, 1),
and

) 92 u 82u(]) ) 82u(j)
C(J) B (7)) — A(]) 1 2A 1 (9) 1
11 (02)u 82 + 128182 33 012
) ) N 92 u ) ) aQu(j) ) aQu(j)
o 4G ANNVO YN & ST L 1
1 2
2, (7) 92y (1.2)
; 9% 0“u N O0%u
O (9x)yu) = AY) 52 ; (AR + A% 5 o @ axlg ,
aQu ) aQu(j) ) aQu(j)
C o A(]) 2 2A(J) 2 A(]) 2
22( .17) ox 2 + 23 6.1718372 22 6.17% ’
where 1 and x5 are the coordinates of the point x which is either in Dg or
in Dl.
Let now
TOu® = (TOyMy, (T yM),), (1.3)
where

(TOul)y = (AP el + ARel) + Ael)n+
+ (AW + AD)e (j)+A§J) Yna,
(TDy@))y = (ADeW) 1+ AP e @) +AQe Yy + (1.4)
+ (ADeD 4 A e +AQe yno,
(3) (5) (5)
oo’ 0w ) ou 4 Ous
x 83?1 ’ Y 83?2 ’ ry 6332 6331
We define the regular vector as follows [2]. The vector vt is said to be
regular in the domain D; if it has continuous second order derivatives in
that domain, and «() itself and its first order derivatives are continuous
vectors up to the boundary 5.

Now we formulate the basic contact problem: find regular vectors u(% (x)
and u(M () in the domains Dy and D; which satisfy the equation C'/)u() =0
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and the contact conditions

WD N — (0O ()~ =
(P (t)* = W (1) f(t),} w5)

(Tt —(TOyON = = F(4), te S,

where f(t) € C1*(Sy), f/(t) and F(t) € C%*(Sy), @ > 0 [3]. The symbols
(uM)* and (u(®)~ denote the boundary values u(") and u(®) for t € S,
from D; and Dy, respectively. (TMu(M)* and (T(O)u(o))_ for t € S; denote
limiting values of the expressions TMu(®) and T w9 at the point ¢ from
D, and Dy, respectively. It should be noted that the normals are viewed in
the positive direction from D; to Dg. Moreover, we require that S; € C%°,
a >0, i.e. Sy is of Hélder continuous curvature.
The solutions u(*) and u(?) are sought in the form

1 orw
W) = = Oy x@) L 22 " y(1)
u®(z) 7r/Im{[(T rOYXW 4 Gy }
S1
- r<1>z<1>h}d5, x € Dy,
(1.6)
1 oro
0) () = = O )y x0) 4 22 " y(O)|,_
u© (z) 7r/Im{[(T oYX+ FosY }g
S1
~T©:On}ds, e D,
where g and h are unknown real vectors,
2 [ )
N M Olnoy;
(T(l)p(l))/ - ko k. N
; Y, RY| 05@y)
oo 2 [49, BY] ooy, W
aS(y) = _Bl(cj)’ C]g]) aS(y) ) .
2 [ (9)
ro = A’fj‘f B’é) In o,
J k)
k=1 _Bk ) Ck

okj = (&1 — Y1) + ag;(x2 — y2), where y; and y» are the coordinates of the
point y € S1, and ax; = ag; + ibr;, by; > 0, is the root of the characteristic
equation [2]

aﬁ)aij_QG%)azj"—(Qag)+a§?)aij_QG%)O‘M +ag]; =0, k=12, j=0,1,

where the elastic constants agjl), a(ljé), 2a(1é) + a%), a%), ang) are expressed
uniquely through Hook’s coefficients [2], X ), YU) Z0U) are constant real

matrices which will be defined below.
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In the sequel, we will take into account that

dlnoy;  Olnr 4 00 N 0 ln<1+)\ E)
2S(y) ~ 9S(y) ' 9S(y) ' Ay) Mo )

Inog; =Inr+i0 +1n (1 +>\ka) + In(1 — day;)
o

P?Inoy;  0*(Inr+i0) 0? N T
95(2)05(y) ~ 05(x)0S(s) T 05(2)05(s) (1“’” )

o=x1—y1+i(ra—y2), T=x1—1y1 — i(x2 — Y2),

d o _d 9 9
where 65(1) =n1(2) 5o —n2(7) 55—, 7507 = n1(y),; —n23,; are tangential

derivatives at the points z and y, n(y) = (n1(y),n2(y)) is the unit normal
vector at the point u € S, directed from D; to Dy,

1+ 2y

Akj = :
7 1—ioy;

3 |)‘k]| < 17

Y2 — X2

r=v/(x1 —y1)? + (x2 — y2)%, © =arctg
Y1 — 21

The potentials having the terms with the kernels In(14Ay; Z), %(y) In(1+

Ak; Z) and W@S(y) In(1+ A; Z) that continuously cross the boundary So
can temporary be neglected since they do not affect the boundary values.
Taking into account the above reasoning, we can write [2]

8ln0k

2 . .
. . NJ M(])
T7OTGY = : _
( y=> _C](fJ)’ D) )

dS(y
(2 510

or®) _22: _A;J), B(J) Olnog;
0S(y) = |BY, ¢] 95@y)
im, [C’], A} (0lnr ; 00 ) (1.8)
T B;Cj - A2 [A;, Bi| \aS(y) " 9S(y)/’
mj = a(ljl)[l - WJQ‘(BJCJ - A?)]a
2 () ()
) — Al(cj.)’ B/gj.) In o =
k=1 Bk]’ ij
im C;, A; .
B C J A |:AJ Bj:| [(lnr—i—z@)—i—ln(l —zak])]

where F is the unit matrix.
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Bearing in mind the above formulas and passing to the limit in (1.6) as
r — t € S1, after simple calculations we obtain

1 00
Ot — xO _/ 99 s
() 9+ 7 Nasp s *
S
—A1, Gi] mi Ci, Ai] ) 9lnr
X _— Y —
+(w1 [Bl’ AJ " B,Cy — A} A1, By QS(y)g
my Ci, A1 ()
—_—— Inrh pdS
B1Cy — A [Alv Bl] o | (1.9)
1.9
1 00
O (1))~ — —x©® _/ 99 o
U(1) 92 Nasw ™
=40, Co| (0 mo Co, Ao| 10\ Olnr
X Mo y@) 22,
+(w0 [Bo, Ao] * ByCy — A2 | Ao, Bo aS(y)”?
mo Co, Ao| (o)
—_—— Inrh pdS'.
BoCy — A2 {Ao, Bo} =
Now with regard for (1.3) and (1.4), from (1.6) we have
T, _ L /Im { [T<1>(T<1>p<1>)/X<1>+
e
S1
T(W1(1)
LY(I)}g _ T<1>r<1>z<1>h}ds, x € Dy,
95() (1.10)
70,0 _ 1 / Im { [T<o>(T<o>p<o>)/ X0
™
S
oTO0)
= = v, —7ODPO,Oh g D
a5(y) Jo Onjds, e Dy,

where

2
OOy = 2 3

TOTY) = E + iw, {—A, —Bj:| .

Cj, A
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Taking into account the last formulas and substituting in (1.10), after
the passage to the limit as x — ¢t € S; we obtain

dg 1 %0
T, _ym_99 @ _/ _90 o
(THu) a5 T2 T [ \eswasm X T

1

+|: |: Bl, —A1:| X(l) W |:—A1, _BI:| Y(l):| Olnr 0g _

A, Gy aﬁ) Ci, A 0S(t) 0S(y)
a@ *Al, 7Bl 3ln7’ (1)
(8S(t) +°"1{ch Al} aS(t))Z hyds i)
(TO,) - = _y©_2%9__ o) l/ _0  vo,
aS(t) 7] 1951)aS(y)
S
By, —Ag] X© —Ao, —DBo] )] Olnr g
= Y =7
+[ |:A07 Co} al? Yl o Ao S (z) 0S(y)
. a@ *AO, 7BO 31117” (0)
(65(33) o { Co, Ao ] asm” ) (95

Taking now into consideration the contact conditions (1.5), we easily see
that to obtain Fredholm integral equations it is sufficient that the unknown
constant real matrices satisfy the following conditions:

XD 4 xO=p yO4yO® =g 04.,0=Ff

ol |:A1; 01] X0 _ o [Ao, Co] X4

_Bla Al _BO) AO
my Cl; Al mo CO, AO (1)
- |:B101 - A% |:A1; Bl] * ByCoy — A(Q) |:A0, BO:| ] ’
[Bl, Al} xw [Bo, AO] X©
1 — 0
Al; C1 a’(ll) AO; Co agl)
~Ai, -B ~Ao, —Bol o
*{“1[01, AJJFWO{CO, AOHY =0,
7A17 7Bl (1) *A(), *BO (0) -
1 |: Cl; Al :| : T CO; AO : =0

Thus for the determination of X, Y () 2() j =0,1, we have obtained
six equations. First of all, we find z() and 2(9). The third and the sixth
equations yield

*Ala 7Bl *A()a 7BO (1) _ 7A07 7B0
(wl |: Cla Al :| +wo |: CO; AO :| ) N o CO; AO ’

—A, —B; —Aog, —DBo 0) _ -Ay, =B
(wl |:Cla Al :| +w0|:00; AO:|>Z - Cl; Al ’
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whence

CO R

A, B Ao, By Ao, —By
S R R e | 2 il
B1Cy — AgAy, B1Ay— A1 By
{ {01140 —A1Cy, BoCi — AJ ot
W2
wo

+ l>’H l>’

(BocoAg)E},
(1.12)
Z(O):L w An, B +wo Ao,  Bo Wy —A, —B1
A0, —A —Co, —4Ao Ci, A
1
T A
[3001 — ApAi, BoA; — AOBl] w0w1}

{wgBﬂx A2)E+

CoAy — ApCy, B1Co— ApAy
where
A1 = wi(BoCo—A2)+w?(B1C1— A2 +(B1Co+BoC1 —2A0 A1 )wowr . (1.13)
Let us now prove that Ay > 0. To this end we notice [2] that

1
BoCy — A} = :
-0 O biobao[(a1o — az0)? + (bio + b20)?]

1
BiCy — A} = :
o L biibor[(a11 — a1)? + (biy + b21)?]

B1Cy + ByOy — 2A0A; = (BoCo — AZ)(B1Cy — A}){biob11[(azo — az1)?+
+b30 + b31] + biobai [(azo — a11)? + b3, + b7, ]+
+b20b11[(@10—a1, )% + b + b31] + baobar[(a10 — a11)? + b3 + ba1]}

Since by;; >0, k=1,2, j =0, 1, we immediately get A; > 0.
To solve the fourth and the fifth equations, we multiply the left-hand side

of the fifth equation by the matrix [Oi (1]}, obviously det [Oi (1]} =1,

and we have

—A1, Ci| —Ao, Col| (0
w1 |:_Bla A1:| X o _BO7 AO X +

my Cla Al
* {3101 —a? |:A1; Bl] N

mg Co, Ao (1)
L — YW =0
t B — A2 [Ao, BJ } ’
—Al, Cl X(l) _AO) CO X(O)+
*Bla Al aﬁ) *BO; AO ago)

Cl; Al CO; AO (1) _
*{“’1 [Al, BJ*‘*’O [Ao, Bo] }Y =0
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which directly leads to
w1 wo \ [—Ay, 01] (1) { 1 {Co, Ao}
XVt = +
<W§?) ﬁ)) [—Bl, Ay ByCy — Ag Ao, DBy
Cy, A
() 8]
(B1C1 — A?)ay, b !

wi  wo \ [—4o, Col| (0 1 G, A
Gr-m) [ Sl lea=a o 2

+ <—m0 . +wow1) [io’ go] }Y(l) =0.
au (BOcO — A7) 0 0

Thus we have

w
((;) (1))(3101 A x4
a1y

n 1 A1Cy — C1Ag, A1Ao — BoCh n
BoCo — A2 | B1Co — ApA1, B1Ag — A1By

my 0, -1 2 (1)
g™} e o
aff (BiCy — A3) L0

w1 2y y(0)
( o (1))(3000 — AHX O+
a1y

1 —4iCo+Ci Ay, Aoy~ BiGo] |
B.Cy — BoCy — AgA1, BoAi — AgBy

+< o +w0w1> {(1)’ 1] (BoCo — Ag)}y(l) = 0.
{9 (ByCy — A02) ;0

Dividing the former by (B1C; — A?) and the latter by (BoCy — A2), with
regard for XM + X(©) = F we obtain

w1 >
St E+
0 1
<a§1> oD

1 0, -
+{ (Blcl — A%)(BOCO — Ag) |:1, 0 :| (B100 + BoCp — 2A1A1)+

+< m . o . +2w0w1) [(1)’ 01} }Y(l) =0,
‘111 (BICI A1) u111 (3101 A7) ’

and hence

(1.14)

(1.15)
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where

Ay =

1

mi

(BoCo — A3)(B1Cy — A3)

mo

+
agol) (Bl Cl — A%

T 2
) aiq (B1Cy — Al)

M. Basheleishvili

+ 2w0w1) .

(3100 + BoCy — 2A1 Ap+

(1.16)

Taking into account the above reasoning and the fact that m; > 0,

mo > 0, a

(1)
11

(0)

>0 and aq;

Thus we have

> 0 [2], we can easily notice that Ag > 0.

1 1
XM= —{ X
Ay | (BoCy — A3)(B1Cy — A3)
{z‘hco —C1Ag, A1Ao— BOCI] atYafy i
BiCo — AoAr, Bido — Boi] 000 _ 0 0
my 0, -1
+ + wowi |: ’ :| }a
(aﬁ)(Blcl — A}) ) Lo
(1.17)
X@.L{ 1 "
Az | (BoCo — AF)(B1Cy — A7)
{Aocl — CoAy, AoAr — BOCI] affafy i
BoCr — AoAr, Bor — AoBr] o) — 0
mo 0 —1
R 1
(aﬁ)(Blcl — A}) ) Lo
where alagll) — woaﬁ) #0. If wlagll) — woag, then from (1.15) we arrive at

Y = Yy = 0, and instead of six we obtain four equations which can
be solved in an easier way. Indeed, in this case the fourth and the fifth
equations transform into one equation which has the form

o [Al; } XM _ [go,

3 1 — Do,

Col (0 _
AJX —0,

and
X0 4 xO0 = g

Therefore we have:

-4, Oy —Ao, Co o) _ Ag, Co
{un {—Bh AJ + wo {—BO, Ao} } XV =wg By Al

A1, Gy —Ao, Co a _ A1, Gy
{wl [31, AJ +wo [Bo, 0} X =w —-By, Al
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1 0
Hence when w1a§1) = w0a§1), we have

1 Ay, —C Ay, —C —Ag, C
(1) — 1, 1 05 0 05 o _
= A {w1 [31, A1] o |:B07 Ao} }wl [Bo, Ao} B
1 BoCy — AgA1, A1Cy — C1Ap
{wlwo [A1Bo — B1Ag, B1Cy — AgAy +

+wi(BoCo— A3 E},

X(O) — i w Al; 701 +w AO; 700 W *Ala Cl _ (118)
o A3 ! Bl; 7A1 0 B07 7*’40 ! *Bla Al -
1 B1Cy — AgA1, —AoCi+ CoAs
T Ag YOI _AoBy + BoA1, BiCo— AgAy

+ WS(B()CO — A(Q))E},

where Az = A1 = w2 (ByCy — A2) +w?(B1Cy — A?) + wow1 (B1Cy + BoCh —
2AOA1) > 0.

Thus we have defined X (@, X1 y@®) y© ~0) 1) in the general
case. In what follows, we will use just these constants which have the form
(1.12), (1.15), (1.17) and (1.18).

It should be noted that in case x =t € S; we have the identity
s = [ 20 _ds_

82
S/ 95(t)9S(y) 95(t) S (y)

s

Here S; € C%“, a > 0. We have used the above identity in (1.11).

Taking into account the obtained values X)) 5(0) y(l), y(o), AQRSACN
we can write (1.11) in somewhat different manner. Moreover, in (1.11) we
will restore the terms neglected earlier.

Thus we obtain

(U(l)(t))Jr(u(O))f =g+ 1 / {8_®(X(1) _ X(O))x

T ) | 9S(y)
S1
2 (1) (1) (1) (1)
N M my A B
x Im ’ Eol XMW ——— [Tk Py () )i
([ ] s
o} o mi Cl Al
m(1+Xq=)g—|—1 ) N
dS(y) n( * klU)g [310114% |:A1; By ? nr
2 _
mi g
I I (14 Ma— | 2" |hdS—
+mZ(Blcl—A%) n< * klU)Z :| s
k=1
2 (0) (0)
N, M,
_Im{ g M| o
o) ad




26 M. Basheleishvili

(0) (0) ol

* BOcT(i A3 2’;:0{ g§°> Y(O)) 856(11) 8 (1 " A’“’%) }ds’
(T(l)u(l)(t))Jr _ (T(O)U(O))f =h+ 1 / {827@()((1) _ X(O))+
ﬂ'Sl 05 (x)0S(y)
+ Imi ( [ s O‘kl] di XV 4 (1.19)
1 N LR 1

(1) (1) 2 _

e |, o] ) g () -

2 2
o ak07 —Qko d X(O) mo
; < {—akm 1 } KA F BoCo — A2

v (i) ([mo
PEIGER) Mo ByCy — A2
90 2 { NYm ( o
2 (0 PN k 9\ )
+ 2 hdS + Im In 1+ A )z —
d5(t) ; [M,E”, R o
(0) (0) =
N Lk o
X |k In {14 Ago— <0>}+
[Mlgoa o | (14 m2)

mi on, 7BO 8@ (0)
+ (3101/@ [Co, Ag } 55w )? h )ds.

ngo)7 L](CO)
M]EO); R](€0)

7"40; *BO
Co Ap

Y(O)) X

+

Hence
/ (TOuD () TdS — / (TOu°(t))~dS = —22¢ / hdS.
S S1 S
Since [q (TWuM (@)t = 0, [ (TOuO)” = -2z [hdS and
det zg # 0, we obtain
/hds =0. (1.20)
S1

This condition ensures that u(V)(z) and u(®)(z) are equal to zero at in-
finity.
Now we prove the following

Theorem. The homogeneous basic contact problem has only zero solu-
tion.

Proof. Using the well-known formulas [2]

1 [Bl, —Al] vt o0 L [Bo, —Ao} A

Ny 1) —
" —A1, C1 ] 05(z) mo |—Ao, Co | 8S(z)’

mi
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we obtain Ny =0 and N©u(© = 0. But since u(? is equal to zero at

infinity, therefore

u®(z) =0, ze Dy.
Just analogously, u) = C, € D;, where C] is a constant. But since
uM) is defined to within a constant vector and if we assume that (M) (x;) = 0,
where z1 = (211, 212) € D1, then we obtain u(l)(x) =0,z € D.
It is known [2] that u®, VO 40 VO are conjugate vector-functions.
Writing V) (z) and V(O (z), we have

1
V() = -1 /Re {[@®royxmy
s
S1
@
+ a—Y(l)}g — r<1>z<1>h}ds, € Dy,
95(y) (121)
. :
VO (z) = — 1 / Re { [0y x4
s
S1
or©
2 vl 10,04 gg Dn.
T 950 Jo-1©@=On}ds. = e Dy
Similarly,
1
Wy @) - = @O (rO@y x (1)
TOY W) (g) 7T/Re{[T (TOTOY x4
S1
1 1
wy(l)}g_T(l)F(l)z(l)h}dS
95(y) (1.22)
TOVO () = L / Re{[Tw)(T(mp(m)/ X0
™
S1
o710
A7 ], — 770,05 g
95(2) Jo Oh}as
The expressions (1.21) and (1.22) yield
(V(l)(t))Jf _ (V(l))— =
—-A, C (1) 2my Ci, A (1)
=<2 X —_— M
{ w1 |:—Bl, A1:| + 3101 —A% Al; Bl g
VO = (vO)” =
=40, Co| +(0) 2my Co, Aol 1,0
=19 X —_— M
{ o [—Bo, Ao] JrBOC'O—Ag Ao, Ao g
Analogously,
B, -A]XxW
Wy WY+ My Oy = L 2 -
(THVENT —(THVE) {2{_141, 01} i
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B —An, —Bi] | 99 —Ai, —Bi|
QOJI{CH, A1}Y 85(t)+2w1 C, A~ P,

0
(TOVOYF _ (7O Oy~ — {2 { By, Ao} X©

_ )
Ao, Co | g®
—Ao, —Bol| )| 99 —Ao, —Bo| 0
—2 Y — =2 h.
o [ Co, Ao } aS(t) “lco, A~

Taking now into account the fact that (V1) = (VO (¢))~ = (1My W)+ =
(TOV ()= =0 and the above formulas, we get

OOy + Oy =2 | pr o) x0-

—By, A
@ [:g; ij X - [BOCTO A2 [iﬁ éﬁ] +
+ 731071“_ yy Ei gj ] }M(O) + 2w [C‘?l ABﬂ 2Mh =0,
(TOV O+ (OO~ o { [f&? Cféo] % B
_ (1) A _B !
- el W
cuf i 2o

Thus we have obtained
(V(l))— — —(V(O))+, (T(l)V(l))— - _(T(O)V(O))+_

According to Green’s formulas [2]

/E(V<1>,V<1>)da = —/(V<1>)—(T<1>V<1>)—d5,

DO Sl
/ EWV©® vO)4s = 4 / (VOYH(T Oy ©O)+gs,
D1 Sl

where E(V®), V(1) is the doubled potential energy, we have

/E(V<1>,V<1>)da + /E(V(O), VO)do = 0.
Do D,
Therefore
~ X,
v _ 40 +5<1>( M
Since V(9 (00) = 0, therefore A(®) = 0and ¢ =0, i.e. (V(®)* =0, and
hence (V) (¢))~ = 0. With regard for the above formulas of discontinuity,

-X
), r € Dy, V(O)zA(O)+€(O)(X2), r € Dyg.
1
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we obtain
—A, (1) my Ci, A (1)
X _— M =0
{w1 |:B1; A1:| * B1Cy — A3 | A1, By =5
—Ao, Col| (0 mo Co, Aol 5,0
X _— M =0
{WO |:B0, A0:| + B()CO — A(2) AO; BO g ’
and hence g = 0. Analogously we find that h = 0. Thus we have proved
that the homogeneous contact problem has only the trivial solution. [

2. SOLUTION OF THE FIRST BOUNDARY VALUE PROBLEM OF AN
INHOMOGENEOUS ANISOTROPIC ELASTIC BODY.

Let an elastic anisotropic body with the constants Ag?), Ag), (A13)),
A(QOQ), A(203), A§O3) and the boundary Sy wholly contain in itself a finite inclu-
sion with properties in general different from those of the medium, charac-
terized by the constants A AL (4,5, AL AL AL and bounded
by the curve S;. Denote the domain occupied by the inclusion by D; and
the remaining domain by Dg. The complement of D1 U S; U Dy U Sy with
respect to the whole plane we denote by Ds. The counter-clockwise direc-
tion on each of the contours is taken to be positive; the direction of the
outer normal is also positive. A point belonging to the domain Dy will be
the origin of coordinates.

The first boundary-contact problem for such inhomogeneous elastic body
is formulated as follows: find regular vectors u(?(z) and u)(z) in the
domains Dy and D; that satisfy the equation Cu(9) = 0, the condition
(u© ()t = fo(t), and the contact conditions on S,

(W (@)t = W) = f(t),
(OO - (TOU @) = Fo),

where the signs + and — denote the same as in Section 1. fy € Cl’a(Sl)

and f'(t) and F(t) € C%*(S1), a > 0 [3]. fo, f and F are the given vectors.

A solution of the above-posed boundary-contact problem is sought in the
form

(2.1)

Oy / Tn(NOTOY ;4(3)dS + = / Im{[(T(O)F(O))'X(O)—i—
s Vs
SO Sl
0)
+ aF—Y(O)}g — r<0>z<0>h}ds, 2 € Dy,
95(y) (2.2)
uW(z) = l/Im{ [/Im{[(T(I)F(U)’X(U-i—
s
S1 S1
or®
el VA QD PR NICOPVCO) ARG D
+ 0S(y) :|g Z Sa T € D,

where p, g and h are unknown real vectors, and
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2

N(O)F(O) Z

k=

E(o F<o>

where the coeflicients are defined in [2].

Taking into account the conditions of the first boundary-contact problem
and the properties of the potentials contained in (2.2), for determination of
the unknown vectors p, g, h we obtain the following system of Fredholm

integral equations

() + = / T (NOTOY 4()dS + = / Im { [(T(O)F(O))’X(O)Jr
™ ™
So Sl
oro)
25(y)

1 00 —A,, C
- — x@® L 1 ()
v [ase ¥+ (o [ ] X+
s

1

mi 017 Al (1) 61117"
o Yy _
T B - A2 {Al, BJ a5(y)?

mi Cl’ Al ( ]. / 8@ (0)
L — ds — X
3101 — A% |:A17 Bl:| } S 85( ) "

Y<0>]g 1), <o>h}d5 folt), te So,

S1
_AO) CO (0) mo C, AO (0) alnr
X _— Y _

i (wo [—Bo, AO} +BOCO_A2 Ao, Bo 25(y)”
___mo_|Co, Ao| (o) N

BoCp — A {Am Bo} 27N pds

1 (2.3)
- [ OrOy s - o),

S1

1 520 By, —-A] X
h+ — - xM 1 1 _
H/ {asuwsw) *H—Ah Ci | Tl

S

1

Al, Bl Y(l) Olnr 89 _ 00 +
Ci, A 05(t) 0S(y) 9S(t)

1417 _Bl Olnr (1) / 626 (0)
—X
i {Ch !5t =2 [ s <
S
+ |:|: Bo, —A0:| X(O)i |:—1417 —31:| Y(O):| dlnr ag
1

— /1 (TONOTOY 4(y)dS = F(t).

So

AO) Co | afy Ci, A aS(t) S (y)
7140, 7BO alnr 0) _
[co, ] asw)z iy
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Let us now prove that the system (2.3) is uniquely solvable. Suppose
that the homogeneous system corresponding to (2.3) has a solution, which
we will denote by po, go and hg. Using Green’s formulas

/E(u(m,u(m)da _ /u<0>T<0>u(0>ds—/u(0>T<0>u<0>ds,
Do So S1

/E(u(l),u(l))da = /u(l)T(l)u(l)dS
D1 Sl

and taking into account the conditions of the boundary-contact problem,
we obtain

/E(u(o),u(o))daJr /E(u(l),u(l)dcf =0,

Do Dy
whence u(z)(z) = A 4O (72), uM(z) = AW + D (772). Since
u9(x) = 0 at infinity, we find that v(*)(z) = 0 and u")(z) = 0. Note that
the operation N(© from (2.2) passes continuously through the boundary So,
ie. (N(O)u(o))’ = (. Using now Green’s formulas, in the domain D5 we get
u® =0, x € Dy. Thus we have obtained (u(®)(t))* — (u(® (t))~ = 2uo(t).

Since (u(®(t))t = (u®(t))~ = 0, therefore uo(t) = 0, and from (2.2) it
remains to prove that go = hg = 0. But this is just how the matter stands,
because (2.2) and (2.3) provide us with the Fredholm homogeneous integral
equation for the contact problem.

Thus we have proved that the first boundary-contact problem has a so-
lution, because the homogeneous boundary-contact problem has only the
trivial solution. It should be noted that here we have used the condition
/. S, hdS = 0, which follows from the second contact condition as far as

/(T(O)u(o))’dS = —22 / hdS =0
S S1
and
/(T<1>u(1>)+ds =0, /(T(O)u(o))_dS =0.
S1 S1

3. SOLUTION OF THE SECOND BOUNDARY-CONTACT PROBLEM OF AN
INHOMOGENEOUS ANISOTROPIC ELASTIC BODY

The second boundary-contact problem is formulated analogously to the
first one, the only difference being that the boundary-contact conditions are
of the form

(TOuONF = Fy(t), teSo, (3.1)
@)t = W) = f(t)7}

(T(l)u(l))+ _ (T(O)U(O))* = F(t). 32)
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All the definitions, agreements and formulas remain as before.
A solution of the second boundary-contact problem is sought in the form

uO(z) = l/Im MO (2, y)pdS+

™

So

1 or©)

2 OOy x© L 2 0],
+W/Im{{(T POYX O+ Gy g

S1
_p<o>z<o>h}d57 z € Dy, (3.3)
i
S1

orm

—— YW g—1Wpla D
+E)S(y) }g } S, x € Dy,

where
2 ZI(CO)
M(z k0> } In
v ,;{Ckm Dio ( Cko)
a1y Co, Ao B 0, —1
_ 4
BoCo — A2 [Am BJ* G U PO R

and the remaining matrices involved in (3.3) are defined in Section 2. The
unknown matrices u, g and h will be defined below.

From (3.3), with regard for the boundary-contact conditions (3.1), (3.2)
and properties of potentials contained in (3.3) and (3.4), for determination
of i, g and h we obtain the following system of Fredholm integro-differential
equations of second kind:

1 1
—ult) + = / {7 MO (¢, y)udS} + — / Im { [T(O)(T(O)F(O))’X(O)—i—
™ Vs

S() SO
o700
I 0], — OO ,0Rds | _ @y
R M} = Fift), t€ S,
1 orw
| TOTOY x 1) L 22y |, M —
7r/ m{( S X+ 550 Jo njds
S1
1 or®
= 0)1(0) (0) _1(0),(0)
7r/Im{[(T Py x +8S(y)}g ), h}d5+ (3.5)
S1
1
+XWg 4 xOg ;/ImMo(t,y)udSzf(t)7
So
1 orMmr)
- OrOPOyx@®) 4 2= = "y |, - 7Op1) _
h+ﬂ/1m{[T (rOTyY X ¢ Sy ]g TWp h}ds

51
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1 oTO00)
_ L ©) (OO x () L IL L 0], () p(0) ,(0) _
7T/{Im[T (TP X O+ ey O g1 Or O h}ds
S
21 /ImT<0>M<0> (t,p)dS = F(t), teS;.
™
S

Instead of (3.5) we consider the equations

1

et [ E{TOMO ) uds
™

So
Pros  qro | OIn zko /
dS—
|:7"k07 Sko] aS(t) g
So

1 g0 0 1
_ 1 MO
or 2 <5k0> 950 20

0 0
n l/Im { [Tw) (TOTO x© 4 wyw)} g—TOr® h}ds

1
+§Imz

2
k=1

T 95 (y)
S
:Fo(t),
1 / or
1 wpmY x4 I )], p@Opm 0 gg—
g(t)+7r/ImH(T r )X +tasaY }g TP, h}ds
S1 (36)
1 or©)
21 ©p@y x©® 4 L @], _p©, 05 5
7T/Im{[(T rOYXO oY }g r©, h}ds
S1
1
-+ [ 1O g)pas = f0),
Y
So
1 ’ orw
1 WrmY x4 I 0], _rOpm 05 gg—
h(t)+7r/hn{[(T r )X +tas)” }g TWpM), h}dS
S1

1 oTOTO)
_ 21 {[ 7O (0)y x(0) 45/(0)} _
w/ m |l ) T TO5w) /
S1
1
- T<0>r<0>z<0>h}ds - —/ImT(O)M(O) (t,y)udS = F(t).
i
S

Let us now prove that the system (3.6) is always solvable. Towards this
end we denote a solution of the homogeneous system (3.6) by o, go and hg
and prove that it is equal to zero. From (3.6), integrating with respect to
So, we obtain

/gdS =0, M© =0y, (3.7)

So
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For M©) we have the following expression:

au(o) au(o)
MO - (222 271 )
( 6.171 83?2 )zl_azg O’ (3 8)

where u(®)(z) is defined by means of (3.3). In this case (3.6) coincides with
(3.5), which satisfies the conditions

(T(O)U(O))+ =0,
(@) — (@) =0
(T(l)u(l))+ _ (T(O)U(O))f —0.
Using Green’s formulas [2]

t/% ©, cw—/j@ﬂo O(t)dS — /Mmﬂ%MM&

S() Sl

/El(u(l),u(l))da = /u(l)T(l)u(l)dS,
D,

S

(3.9)

since (uM)* = (u®)~ and (TWuM)* = (T~ we find from (3.9)

that
/Eo(u(o),u( ))d0+/ 1w, uM)ds = 0.

Do D
Thus we obtain

u© () = A 4 (0 (—302), x € Dy,
&

u(l)(a:) =AM 4 M (—302), z € Dy.
&

Taking into account the fact that according to (3.7) u(®)(x) = 0 in the
domain Dy, we have V(%) (x) = 0 (this follows from the formula N (©¢(®) =
1 { By, Ao} v ()

I C 55— Where u®(z) and V) (z) are the conjugate
— 410, 0

vector-functions).
It is not difficult to see that

(T Oy @)+ _ (7O )= — ¢
but since V(® = 0, where C' is a constant, we have (TOVO)+ =

(T(O)V(O))’ = 0. Using the uniqueness theorem, for the domain Dy we
find that V() (x) = 0, 2 € Dy. Now we can see [2] that

0, =1} [Coy, Ao
1, 0] [Ao, Bo

4

2
(LOVO @) —LOVO()” - |

whence it follows that po(t) = 0. In this case u(%)(z) and u(!) coincide with
the potentials introduced in Section 1. As far as the contact problem has
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always a solution, the second boundary-value problem is always solvable.
Thus we have proved that the second boundary-contact problem has always
a solution if the resultant vector on each of the contours is equal to zero,
and the principal moment of external stresses acting on the boundaries of
the domain Dy is equal to zero.

1.

2.

REFERENCES

D. I. SHERMAN, Static plane problem of elasticity for isotropic inhomogeneous media.
(Russian) Trudy Seismologicheskogo Inst. AN SSSR, No. 86 (1938), 1-50.

M. BASHELEISHVILI, Two-dimensional problems of elasticity of anisotropic bodies.
Mem. Differential Equations Math. Phys. 16(1999), 9-140.

. V. D. KupraDZE, T. G. GEGELIA, M. O. BASHELEISHVILI, AND T. V. BURCHULADZE,

Three-dimensional problems of the mathematical theory of elasticity and thermoe-
lasticity. Translated from the second Russian edition. Edited by V. D. Kupradze.
North-Holland Series in Applied Mathematics and Mechanics, 25. North-Holland
Publishing Co., Amsterdam-New York, 1979; Russian original: Nauka, Moscow,
1976.

(Received 1.05.2005)

Author’s address:

I. Vekua Institute of Applied Mathematics
Thilisi State University

2, University St., Thilisi 0143

Georgia



