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INVESTIGATION OF BASIC PLANE BOUNDARY
VALUE PROBLEMS OF STATICS OF
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Abstract. Using potentials with complex densities, we reduce solution
of basic plane boundary-value and boundary-contact problems of statics of
elastic mixtures for piecewise homogeneous isotropic media to solution of
systems of Fredholm linear integral equations of second kind.

The solvability of the integral equations is proved, and the uniqueness and
existence theorems are proved for the above-mentioned boundary-contact
problems.
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1. SOME AUXILIARY FORMULAS AND OPERATORS

The homogeneous equation of statics of the theory of elastic mixture in
the complex form is written as [5]

0?U 02U
K——=0 1.1
9207 07> ’ (1.1)
where U = {u; + iug,uz + ius}?, v’ = {ur,uz}? and v’ = {ugz,us}? are

R d 1(_0 d 9
partial displacements, 7> = 5 3or " 325 ) 35 = 3\l 5er T g )

k= —lem_1 e= [64 65}
2 ) )

_m1 ma -1 _ | m3 —ma
m - b m - )
ma M3 —mz My

1
Ao =detm, my =ex + 3 E3+k; k=1,2,3, e =as/ds, ez = —c/ds,

es=ai/dy, a1=p1—Ns, as=p2 — X5, c=p3+ A5, do=ajaz —c*, (1.3)
e1+es=b/dy, ea+es=—co/d1, es+es=a/di, a=a1+b1, b=as+ ba,
co=c+d, bi=p1+ M+ X5 —azpa/p, ba=pa+ A2+ A5+ api/p,
d=pus+ A3 — s —aap1/p = ps + M — As + aopa/p, aa=A3 — Ag, (1.4)
p=p1+p2, dlzabfcg.

o) o] 1

(1.2)

Here p1, po, ps, Ap, p = 1,5 and ay are elastic moduli characterizing
mechanical properties of the mixture, p; and py are partial densities of the
mixture (positive constants).

It is assumed that the elastic constants pi, p2, ps, Ap, p = 1,5, and the
partial densities p; and po satisfy the following conditions [2]:

2
p1 >0, Ay =pipy —p3 >0, )\1—042P2/P+§M1>07 As <0,

2 2
(M —aopa/p+ 5#1) ()\2 + aop1/p + 5#2) > (1.5)

2
> ()\3 —agp1/p+ %Ms) > 0.
The above conditions guarantee both positive definiteness of the potential
energy and fulfillment of the following inequalities for A5 < 0 [1]:
a; >0, a2>0, a>0, b>0, ag=p1+ p2+2u3 >0,
bo = (b1 — A5) (b2 — X5) — (d+ As)? > 0,
po = p1(ba — As) + p2(by — As) — 2u3(d + As) > 0,
qo = b1 + by +2d > 0, dy = ajas — & = A1 — ap)s > 0,
dy=ab—ct =AM +po+by>0 mg >0, mz>0,

(1.6)

Ay = mims —m% > 0.
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Using the analogues of the general representations established by Kolo-
sov—Muskhelishvili [3], we can write

1 _

U = mp(z) + 5627 (2) + B(2), (17)

TU = {(Tu)y — i(Tu)1, (Tu)s —i(Tu)3)}T =

1o _

= A—-2F Bzo 2 1.

5oy (A~ 2B)0() + BF () + 22, (1)
where E is the unit matrix, and ¢(z) = {p1,02}7 and ¥(z) = {¢1,92}7T
are arbitrary analytic vector functions, %(z) = Nige — nga%z — nga%l,

n = {n1,n2}7T is an arbitrary unit vector, m and e are the matrices defined
by (1.2),

Al A M1 g3 By By
A= =9 , — , B = = s 1.9
{A3 AJ g, L& 2 By By M€ (19)

(Tw)p, p = 1,4, are the components of stresses:

0
(TU)1=(ald’ +b0")n1 — (a1’ + cw”)ng — 2m(u1uQ + paug),
0
(TU)a=(aogl" + cob")nz + (a1w” + cw”)nq + 285—(1’)(mul + psus),

0
(TU)3=(cof" +b0")n1 — (cw’ + asw”)ng — 285—(:5)(M3u2 + potiy),

9]
(TU)y=(cof" + 00" )n2 + (cw’ + asw”)ny + QM(ugul + pousg),

/ . I /! . " ! I " "
0 =divu, 0" =divu’, w =rotu, W’ =rotu.

(1.10)

Let DT (D7) be a finite (infinite) two-dimensional domain bounded by
the contour S € 028, 0 < 3 <1, D = D+*US, D- = R\D*, D~ =
D~ uUS.

A vector U = {Uy, U2} = {ug + iuz,uz + ius}? defined in the domain
D7 is called regular if U € C*(DT)NnCY*(D*), 0 < a < B < 1. A vector
regular in D~ is defined analogously. In this case it is required of the vector
U = {U,U,}7 that along with the smoothness U € C?(D~)NCY*(D~) the
conditions

2 OU 2 2, .2
U=0(1), |z]*=—=0Q1), k=12, |z|°=2a]+ 3, (1.11)
8:%
be fulfilled at infinity [1].

To investigate boundary-contact problems, the use will be made of the

following vectors [5]:

V = {v +ivg,v3 +ivg}T = i[-mp(z) + %ez@’(z) +9(2)], (1.12)

TV = i [~(A - 2E)p(2) + B27 (2) + 2046(2)] =

0
0s(x)
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= i[2¢(2) — 2ipv(z)], (1.13)

NU =TU — (2u —m™1) aigc) = as((()x) [—2p(2) + m~ U (2)],  (1.14)
.0 N

NV = las(x) [2p(z) —im ™V (2)], (1.15)

where N is the pseudo-stress operator.
It is not difficult to prove that (1.12) satisfies (1.1); moreover,

U(z) + iV (z) = 2mep(z), (1.16)
; —18_‘/ = im~! ou
NU = —im 95(@)’ NV = 95(@) (1.17)

Here we introduce the following

Definition 1.1. If U and V satisfy the relations (1.17), then they are
mutually associated.

If U = {uy +iug,uz +iug}’ and W = {w; + iws, w3 + jwy}T are regular
solutions of the equation (1.1) in the domain D+ (D7), then

/T(u,w)dyldyg = iIm/UiTWids, (1.18)
D+ S

where Im is the imaginary part, TW = {(Tw)s —i(Tw)1, (Tw)s—i(Tw)s}7,
T'(u,w) is a symmetric function with respect to the derivatives of u, and
wp, p = T4, (T(u,w) = T(w,u)) [1].

If w = u, we have

/T(u,u)dyldyg = :I:Im/Ui(T_U)ids, (1.19)
D 5

/N(u,u)dyldyg = ilm/Ui(N_U)i = j:Im/Vi(N_V)ids, (1.20)
D+ S S

where T'(u,u) and N(u,u) defined in [1] (see pp. 5-6) are positive defi-
nite quadratic forms. The formulas (1.18)—(1.20) will be called generalized
Green’s formulas in the theory of elastic mixtures for the equation of statics

(1.1).

We have the following

Lemma 1.2. The solutions of the equations T'(u,u) =0 and N(u,u) =0
have, respectively, the form

1
U=a"+ib" <1>z, a* = {a}, a3}’ (1.21)

U=cr, cr={c;,c’, (1.22)

where a}, a3, ¢, ¢35 and b* are arbitrary constants.
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2. PROBLEMS FOR INHOMOGENEOUS MEDIA AND THE UNIQUENESS
THEOREMS

Let an isotropic body with the constants u,io), )\](00), p(o), k=1,2,3,
p = 1,5, ¢ = 1,2, and the boundary Sy contain entirely an inclusion of a
different isotropic material with the constants Mg), )\,()1), pO k=123,
p=1,5,¢=1,2, and bounded by a curve S;. By D; we denote the domain
occupied by the inclusion, and the remaining domain is denoted by Dy.
We denote by D, the complement of the domain D; U Sy U Dy U Sy with
respect to the whole plane. The counterclockwise direction on each of the
contours is selected as positive, and the positive direction of the normal is
the direction of the outer normal with respect to D; and Dy, respectively.
A point belonging to the domain D will be taken as the origin of the
coordinates.

(4)
Consider the following boundary value problems. Find the vector U,
j = 0,1, satisfying the conditions ([4], [6]):
() NNE))
0?U WorU 0. i—1.0
ooz e T RD
0 w o o may 4
20, Fort € Sy, (U (1) —(U (@) =f@), (TU®) —(TU®) = F(t).
39. For t € Sy,

(0)

(@) (U®) =é(t), or
©©O

) (TU®)" = o(t),

where f, F' and ¢ are given vector functions satisfying certain smoothness
conditions. In the case (a) we have the first boundary-value problem while
in the case (b) we have the second boundary-contact problem.

The following boundary-value problem is of great importance. Find the
()
vector U, j = 0,1, satisfying the conditions
(4) ()
0?U  WorU
19, f D; ——+K = 0;
or el Gzt hm =0
1) 0 _ 2.1
2. for teS (UMW) —(U®) = f), (1)
eoleY; )  _
(TU@)" = (TU®#) = F().
In this case Dg is an infinite domain. This problem will be called the
basic contact problem, or problem (A).

The following theorems are valid.

1%, For z € D;

Theorem 2.1. The general solution of the problem (A)° satisfying the

(4)
condition (1.5) is given by the formula U = a*, x € D;, j = 0,1, where a*
is an arbitrary constant vector.
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(0)
Corollary 2.2. If the vector U(x) tends at infinity to zero, then the
problem (A)° has only the trivial solution.

Theorem 2.3. The first homogeneous boundary-contact problem has only
the trivial solution.

Theorem 2.4. The general solution of the second homogeneous boundary-
contact problem is given by the formula
() i ] )
U=a*+ib"(})z, z=uax1+izy, z€D;, j=0,1,
where a* is an arbitrary constant vector, and b* is an arbitrary constant.

The proof of these theorems is based on Green’s formulas and on the
boundary conditions.

3. INTEGRAL EQUATIONS OF THE BASIC CONTACT PROBLEM

The basic contact problem (see (2.1)) can be formulated as follows. Find

_ a (0)
in the domains Dy and Dy = R?\D; regular vectors U (z) and U () satis-
fying the equation
) ©)
PU  ()oPT
920z " B2
and on S the contact conditions

Tnt - ((z(})(t))‘ = f(t), teS,

=0, ze€D;, j=0,1,

S S() (3.1)
Mmay. o 0)(0) _

/ (TU) ds — / (TU) ds = Fy(t) + const, t € Sy,

0 0

where Fy(t) = [P Fds, f € CY(Sy), F € C%(Sy), S1 € C2F, 0 < a <
B < 1, are given vectors, s is the arc of the contour S7, and the constant in
the right-hand side must be arbitrarily fixed.

First, for the basic contact problem we set up a system of Fredholm
integral equations of second kind. Towards this end, we use the formulas

(1.7) and (1.8) and choose ¢(z) and 9)(z) as follows:
() 1 dlno ()

w(z) = 5— aS(y)(ozg(y) + 3/ h(y))ds,
S1
) (7) olns (i )
(2) = % 851(1;) (Faly) + ggh(y))dS”r (3.2)
@ 2 ¢ ) ) ——
s Mg(a (y) + Bh(y))dS, j=0,1,
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WhereU:z—(jandE:E—Z, z =T +1x2, Z =21 —1x2, ( = Y1 + 1Yo,
C=wy1 —iy2, g ={g1,92}T and h = {hy, hg}T are smooth complex vectors;

i (49)
matrices (TJn), j = 0,1, are defined by (1.2) , B, (%) and (5 ,j=0,1, are

arbitrary real matrices of dimension 2 x 2 which will be deﬁned below.
After not difficult transformations we get
- ) , ,
() m Oln(o &) ) (C)ENE))
U(x):%/ () (a = 7)g(y) + (B — 0)h(y)]dS+

—

on(y)
S1
b O 1 Dy 4 (§ 1 Dynias—
2mi | 0S(y) 7)Y y
S1
(4)
9 ¢ (J)

4m/a g(y) + ﬁh( ))dS, j=0,1; (3.3)

e B 1 [dlne) /) G Do)
(T0)as+C =5 [ 5o ([(4 -2B)a — 4% ]g(y)+
0 S
() OO
+ (A —2E) 5 A8]h( ))ds+
olnlo| /., Gy D) ) @) )
+35: | 35 ([(A-2B)d ~ A% ]g(y)+[(A~2E) B+ A 0 ]h(y))ds—
S1
B o G
2 [_9 98- Dy _
2mi 0S(y)5( 9(y) + 8V h(y))ds, j=0.1, (34)
S1

(4) () )
where C' = {C1, C3}7 are arbitrary constant vectors (j = 0,1).

G G (J) )
In these formulas, m, €, A and B, j = 0,1, are the known matrices

(see (1.2) and (1.4)), g = {g1,92}, h = {h1,ha}" are unknown complex
j .
vectors with certain properties of smoothness, (]) , B, %) and (5 , 7 =01,
are arbitrary real matrices which will be deﬁned below so that the inte-
gral equations of the basic contact problem must necessarily be Fredholm
equations of second kind.
Let
D) (D) (W) (©)©0) (0 ) © @ ©
- D)+ @-) =28 W(F-9)+R(F-T) =

n,O @O () © (O

—0; M(B+0)—m(B+8)=0

W Wy O ©
(A—2B)a+ A% +(A—28)d - 4% =0, (3.5)

(1)((1) ()) (0)(() ())
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M W) () ©) ()
(A+2E)5 A6 +(A-2E)3—A b =2E,

Wy O o)
(A—2m) W+ AV (A —2m) @AY — o,

e o O () 0 (0)(0)
(A-2E)B+A 6 —(A-2E)3—-A6 =0,

Simple calculations yield

o Do © Ou @ 0) (1), (1)
a@=Xp, o= [E+ (W — p)m]

) (1) (0 (0)}-1 @D 1) (0 1(0)
X:[E+(/~I/_/~I/)m:| ) 5:__ ) :__X7
(3.6)
(1) 1 100 (0 1 1)@

(1), - (0)\ —

1) :fi(m) mX, o :fi(m) mX,

@ Wy -1 00 © 0y -1,01(0)
'yz(m) 1(mX,u—E), vz(m) 1(mXM—E).

After cumbersome, but evident transformations we can prove [7] that
~1

det (gg) >0,75=1,0.

Taking into account (3.1) and the properties of the potential appearing
n (3.3) and (3.4), on the basis of (3.5) after simple transformations for
the determination of g and h we obtain the following system of Fredholm
integral equations of second kind:

dln |t - 1)(1 (0)(0) o@D (0O
gy + & [ 2L R@ D8

7 ) o)g(y)+ (m B —m B)h(y)]dS+

1 0 t—C 00 1)) _ ©© (D)
Tiri) 95(y) 7 EKO & =N gr(e 8- 8 Rw)ds=f (1), tesi,
S1

ht) + & M([((z —2m)d - ((OA) —2B) W)+ (37

m on(y)
S1
1) ) (0) t=¢
+[(4 ~28) 5 — (4 -26) 3]ty >>d5+—/as md
(0) @ 0)(©) (1) _
B0~ B (B~ B tas - = . ces

where (f,F) € Cb%(S;), S1 € C*#,0<a<B<1,0* ={C;,C3}T is an
arbitrary constant vector.

We tie the unknown constant vector C* and the unknown vector functions
g and h by the relation

o = / (9(£) + h(t))dS. (3.8)

S
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If now in the left-hand side of the second integral equation in (3.7) under
the vector C* is meant the expression (3.8), then the system (3.7) will
turn into a system of integral equations containing no unknowns except the
vectors g and h.

Since (f, Fy) € C*(S1), S1 € C*P, and the vector C* is defined from
(3.8), we can conclude that (g,h) € C1*(S;), 0 < o < 8 < 1 and hence the
displacement and stress vectors exist and they are Holder continuous up to
the boundary.

4. SOLUTION OF THE BASIC CONTACT PROBLEM

Let us prove that the system

nlt — (1) (0)
g(t)+ - %()C'[(ﬁ%%{ (77@)(84))9(y)+ ((ﬁfﬂ —(7?@5) h(y)]dS+

1

1 ©  o®
+4Lm _51 _C[( ©_ OB+ (29 VD R as= 1), e

%/ lnlt—CI A_2E)%é)—((1(4)1)—2E)(002]9(y)+
/ (4.1)

H[(A - 2E)(ﬁ) — (4 —26)8 50w ) as-

Sl Sl
®@) W), )0 (D)
x[(Ba — Ba)g(y)+ (BB — B B)h(y)]dS = Fy(t), t € S,
is always solvable.

Towards this end, we consider the homogeneous system (4.1)° which
is obtained from (4.1) for f = 0, F = 0, (Fp = 0) and prove that this
system has no different from zero solutions. Let gg and hg be a solution of

()
that (homogeneous) system. We denote the corresponding vectors by (U),,
J=01

) @ n(o) G G G G
o) = e [ G (& = Dyauto) +(5 - 8 ol as+

2m ) On(y)
() -
01 W) G G @
o 8;‘((;) (& + %) g0(w) + (5 + 3)ho(y)]dS—
S1
Y 0 o) '
_R/asy)g( o(y) + ﬁhO( ))dS, x € Dj, j=0,1. (4.2)
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)
Obviously, Ug(x), 7 = 0,1, on S; satisfy the following homogeneous
contact conditions:

(1) (0) _
(Uo®) = (Uo(®))” =0,
(1)(1) (0)(0)

(TUo)" —(TUo(t)” =0,

Taking into account (4.3) and using Corollary 2.2, we obtain

te st (43)

(0) 1)
Uo(x) =0, =€ Dy, Ug(x)=0, x€ Dy, (4.4)

whence on the basis of (1.14) and (1.17) we can write

()

@)() N1 OV
O:NUO:fi((rg%) 185(5), z €D, j=1,0, (4.5)
where by (3.2) and (1.12)
; (J) ) )
) olnlol . G) ) @ O
Vo) =5 [ Gul 1@+ Dyaot) + (5 + 8o as-
@ ool G

05’( ) [((&) - (%’))go(y) + (8 — 6 )ho(y))]dS—
(4) ( )
4m/as 25o(0) + Bhola))dS, we Dy =01 (46)

(0) (0)
By virtue of (4.5) and the fact that V (c0) = 0, we find that Vo(z) =
1)
0, x € Dy. Since according to (4.5) Vo(x) is defined to within constant
M 1
summands, we can adopt that Vo((x)) = 0, where (x) is an arbitrary point
1)
in D, and hence we can assume that V(z) =0, € D;.
Thus
(4) .
Vo(z) =0, zeD;, j=0,1. (4.7)

Consider the vectors

(4) i aln|g|(j) G G) @) @)
S1
dln|o| () ) (4)

DG ")
550 )m[(a)f(’y)go(yH (8 = d)holy)]dS-

Sl
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~ 11 | 955 @90w) + Fo(w)as, (48)

S ((Sole + (51jD0), 7 =10,

where dj; is the Kronecker symbol.
From (4.6) and (4.8) we have

(1) (1) _ 1 1 1 1 @
(Vo)™ = (Vo) ™ = =im[(& + F)go(t) + (5 + ) ho(0)].
(Vo)™ = (Vo)™ = =[(% + Dygwtt) + (5 + 9 )hato)].
According to (4.7) and (3.5), we can write
((OV)O(t))+ - ((11/)0(t))_ =0, tes. (4.9)

(9) ()
Define now the vectors fos(z) TVydS, j =0,1. By (1.3) and (3.2) we

get
S@) ,
(7)) )
(TVo)dS+ L =
0
i dln(o) 7,9 G @G
“w ) ([(4 -2E)d + p/ ¥]g0(y)+
®) @ @)
+[(A-2B)3 + 4 5]h0(y))d57
i [0ln(o) /) G Gg)
“5:) oty ([(4 —2E)a ~ A3 ]go(0)+
S1
©) @) U

(A =25 B -4 oty ))ds-

(J) )
0J « (J)_ @) ,
0' ( )+ ﬂhO(y))dsa S Dja J = 1703 (410)
51 S,
(4)
where L, 7 = 0,1, are arbitrary constant vectors.
Consider the following vectors:

S(x)
”)() ) i [dl|o| /. ) G, W)
TV)S+ L = —— A —2F A
(TV)ds + o ([( )& + AY ] go(y)+
0 S1
(4) (4) ( ) (5)

+[(A—2B) 5 + A5 ]ho(y) ) dS—
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] o1 ) ) (4
i n|0|<[(A—2E)(J) A(’]y)]go(y)+

21 ) on(y)

S

(4) (4) ( ) (4)
+[(A—2E)3 — A3 |holy ))dS—
%) o (4)
() — .
— %\/M(O{go(y) + ﬂho)ds, 16(50]D1+51]D0)) ]:031 (411)
S1

Taking into account the equality (4.7), from (4.10) and (4.11) by virtue
of (3.5) we can conclude that

o ) ma
/ (TVo) ds - / (TVg) dS =
0 0

© O© 0 o)
_ —i<[(A—2E)(O)+A(%)—(A @4y

() © OO M 1 ma
+[(A-2E)B+ A6 —(A—-2E)3 - Ad])=0, teS. (412)

Thus we have

(%(t))*:((xlf)o(t))* and (%)((xof)o(t)f v

We will use the formulas

(0) 00
/ T (W0, o) dyrdys = Im / 0 (T V)*tds,

D,

1) )~ W) _
/ T (o, Wo)dyrdys = —Tm | Vo (T V) ds,
Dg Sl

@D W @y . :
where T’ ( v, U 0), 7 =0,1, are positive quadratic forms.

=(TVo) teS. (4.13)

(4.14)

(0)(0)
Taking into account the equality (4.13) and the fact that |, S (T V)erS =

(4) (1)
0, from (4.14) we arrive at T ((10))0, (10))0) =0, z€Dyand T ((11))0, (1)0)

x € Dy, and hence by Lemma 1.1 we have

(0) 1 (1) 1
Vo(z) =do+ <1)z, x € D1, Vo(z) =di +im (1),2, x € Dy, (4.15)

=0,

where dy and dy are arbitrary constant vectors, and ~yg and ; are arbitrary

constants(.)
1
Since Vo(00) = 0, we have d; =y, =0, i.e.,

1)
Vo(x) =0, € Dy. (4.16)
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This, by virtue of (4.13), allows one to write that

(0)
Vo(z) =0, z€D. (4.17)

From (4.4), (4.7), (4.16) and (4.17), by the relation (4.16), where ¢(z) is
an analytic vector function, we can conclude that the associate with (4.8)

vectors are also equal to zero, i.e.,
9 G G

€)) m nlo j j
Uo(z) = %/%ln(y [((a)*(’y))go(yH (8 = 6 )ho(y)]dS+

S
(7;1) olnlo| () ) @G @)
- [(& + %)goly) + (B + & )ho(y)]dS—

2mt ) 9S(y)
S1
(4) .
e 0 o ,()_ ()
- mg(égo(y) + Bholy))dS =0, (4.18)
S1

x € (50]'D1 + 51jD0), 7 =0,1.
The expressions (4.2), (4.4) and (4.18) yield
(1) 1) _ W, 1) @ 1 @
(Uo(t))Jr — (Uo(t)) = er[(a - )go(t) -+ (ﬂ -9 )ho(tﬂ =0
(0) 0) _ (0); ,(0)  (0) (0)  (0)
(U'()(t))Jr — (Uo(t)) = +m[(a — ’y)go(t) -+ (ﬂ ) )ho(t)] = 0,
which, according to (3.5), make it possible to conclude that go(t) = 0.
Let us now consider the vectors

S(x)

() () G 1 [ol ) ) GG
/ TUp(w)ds + C = o a;(L;' (f(4 - 28) & — 2% go(y)+

0 S

) OENO)
+[(A-2E)5 - A 5]h0(y))ds+
1 (olm|o| /. () G @G (4) @ @)

27| G507 ([(A=2E) &+ A5 ]go(u) +[(A-2B) 5 +40 [ho(y) )ds-

7

(4)
B o i ()
5 Mg(%é)?o(y)JF Ziho(y))dS, (4.19)

Si

)

x € (60; D1 + 61, Do), j=0,1.

Taking into account the formulas (3.4) (for g = go and h = hg), (4.19),
¢ m OO (O 0 (0
(4.4), (4.18) and also the relation (A —2E) B—Ad +(A —2E) a—Ad =
2FE, we obtain hy = 0.



Basic Plane Boundary Value Problems of Statics 15

Thus we have proved that the homogeneous system (4.1)° has only the
trivial solution, i.e., the system (4.1) is uniquely solvable. Consequently, we
have shown that the basic contact problem always has the solution which
is represented in the form (3.3) ( =0, 1).

5. THE FIRST BOUNDARY-CONTACT PROBLEM

The boundary and contact conditions in the case under consideration can
be written in the form (see § 2)

(Do) = o), teso (D®) - (V) = s, tes,
1 0 (5.1)
/ (( )1 )) ds — / TU ~dS = Fy(t) + const, te S,

0

where ¢, f and Fy are given vectors, ¢ € C1%(sq), f € C1%(sy), Fy €
Cle(s1),0<a<p<1,j=0,1.
To reduce the problem (5.1) to a system of Fredholm integral equations

i (4)
of second kind, we choose (g]o)(z) and @ (¢¥)(z), 7 = 0,1, as follows:

(n

() )"t [Olno 1 Olno G

?(2) =005 | g X W WS*% /55 )(a)g(y)Jrﬁh(y))ds,
5=~ (5 [ g5 _a S+

@ N (5.2)

olno )
*om 2ri | 05 )( o(y) + 3 h(y ))dS+
(J)
¢ ) -
4m as E 9(y) + Bh(y))dS, j=0,1.

After not complicated transformations, taking into account (1.7) and
(1.8), we obtain

() 1 81n|a|
Ul=) _5‘”'(E an(y) ~ *om / aS(y —X
So

& - (’jy))g(y) + (%) - %))h(y)} dS+
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() o
01 G G) O)C))
*%/ 05(5)' [(& +%)g(w) + (B + 8)h(y)]dS—
S1
@ 0 o o b o4 -
Tm/aS@)a( B)+ DRW)AS, we Dy, j=01  (3)

51

S@) : ) ,(0)
(4)() (9) 29 — -1 1
/ T UdS + do 50j( d ;m) Ol as—

on(y)
‘(%)Z‘_ISO %?(LZ'XW / 950y )
%LH—(L/U)'([(A 25) %~ A9 ()+{(%—2E)(J)—(£(§)]h(y))ds+
s [l (A 2y 8 Aot [(4-2) T+ 49 s
S1
2 [ s (W + FRyas, s=01 (54)
S1

where x, g and h are unknown complex vectors, ((Ji , j = 0,1, are arbitrary
constant vectors, and the remaining quantities appearing in (5.3) and (5.4)
have been defined in §1 and §3.

Taking into account (5.1) and the properties of potentials appearing in
(5.3) and (5.4), after some calculations for the determination of the vectors
X, g and h, we obtain the following system:

o+ [ S 2m/as s+
So
W romlt—¢l 0 © @O
tor | Tangy W@ = V)gw) + (8 = 9)h()]ds+
51
Oln |t — | (0 (0)

+27r T()[( & + 7)) (y)+ (B + &)h(y)]dS—

(0)_ _ (0)_
—— | sa—==——=(2g(y) +3(y) + Bh(y))dS = ¢(t), te So,
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Ol |t — (|

(L) () OO (0O
g(t)+ 7T an( ) [( ma) (

g(y) + (m B —m B)h(y)]dS+

(0)(0) L)1)\ _ ©© (@)
4m/85 C — e d)gy)) + (e B — ¢ B)h(y)|dS—

Oln |t |
S

(0)
,ﬁ/Lt_ X(y)dS = f(t), te S, (5.5)

2mi )
So

Oln|t —
ht) + = %:(y)d

S1

([(4 —25)& - (4 - 25) Qg1+

1) (VRN (V) (0)

+[(A-2E)3 - (A -2E) 5}h(y))d5f

t_¢ ©0 O
- [t + s+ o [ =215 - B350+

Sl Sl
©0©) 1)) _ 2 — (M)t [ om|i—
+(B 8- B ﬂ)h(y)]dsf T 8n(y)

C'x(y)d5+

0 (0) ()

(m)~' [OIn|t—(| B(m)~! 9 ¢ -

i a8y WS+ =0 aS(y)g_ng(y)dS—FO(t)a tesS.
S

o So

Let us show that the system (5.5) is always solvable. To this end, we
have to consider the homogeneous system which is obtained from (5.5) for
¢ = f = Fy = 0 and then to prove that it has no different from zero solution.

Let xo0, go and ho be any solution of that (homogeneous) system. Then

(4)

Uo(x), 7 = 0,1, defined by the formulas (5.3) for x = x0, ¢ = go and
h = hg, is a regular solution of the first homogeneous boundary-contact
problem, and hence

(1) (0)
UQ(JJ):O, x € Dy, UQ(JJ):O, x € Dy, (56)

by Theorem 2.3.
From (5.6) it follows (see (1.17)) that

(0)
_10V(z)

(0)(0) (0))
05(x)

O=NUyp(z)=—i(m

=0, € Dy, (5.7)
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where
(0)
©) 1 81n|a| K 0 oo
So s
(0)
m dlnlo| 0 (0 (0)
251 | ) [( + 7)go(y) + (B + ) ho(y)]dS—
S
75%) dln o] [(<3é>7<0>) ( >+<(%)f(§)>h (y)]dS—
o 6S(y) Y )9o\Y oly
S
0
,i 07 Qg. )+ B ))dS, zeD (5.8)
dri ) 0S(y) T oy oty ’ 0 '
S

(0)
Since Vg(00) = 0, by virtue of (5.7) we have

(0)
Vo(x) =0, € Dy. (5.9)

(0)
As far as V o(z) passes continuously through the boundary Sy, the equal-
ity (5.9) allows one to write

0)
Vo(t)=0, teSp. (5.10)

Consider in the domain Dy = R? \El UDy the following Green’s formulas:

(0) (0) (0) ©)~ 0)(0)
N(Ug, Uo)dyrdys = —Im/ Vo (NV)~ds, (5.11)
Dy
©0) (0) (0)

where N (Uo, U 0) is a positive definite function.

(0) (0) (0)
Taking into account (5.10), we find that N(Uo, Uo) = 0, and hence

(0)
Uo(x) = 09 = const, x € Dy, by Lemma 1.1.

(0)

Since U g(oc0) = 0, we have dg = 0, and
(0)
Uo(z) =0, ze€Dy. (5.12)

© . O
Taking into consideration that (Uo(t))" — (Uo(t)) = 2xo(t), t € So,
(0) 0) _
and (Uo(t))+ = (Uo(t)) =0,te Sy (see (5.12) and (5.6)), we obtain

xo(t) =0, teSo. (5.13)
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Comparing the formulas (5.6), (5.12) and (5.13), we obtain

) (4) a1 . . @ G
Uolx) = - ﬁ'ya)'[((é)—(%))go(y)ﬂt (5~ 3 )ho(y)]ds+

() ) Y
1 o O
[0l Dy goty) + (B + 8 )ho(w)]dS—

2mt ) 9S(y)
S1
(%.) 0 (4)
o ()_ -
-1 | 7507 2 @) + Baw)as = o. (514)
S1

ﬂCG(51,D1+50;D0US@UDa), 7 =0,1.

Obviously, the vectors (5.14) (for 7 = 0 and j = 1) satisfy the same
conditions as (4.3) (for j = 0,1) (see §4).

Repeating word by word the reasoning we have used for (4.3), j = 0,1,
we obtain gg = 0, hg = 0.

Thus the system (5.5)° has only the zero solution, i.e., the system (5.5)
is uniquely solvable.

Consequently, we have proved that the first boundary-value problem has
a unique solution which is representable in the form (5.3).

6. THE SECOND BOUNDARY-CONTACT PROBLEM

The boundary and contact conditions in the case under consideration can
be written as follows (see §2):

S(t)
(0)(0)

/(TU)+dS:¢0(t)+const, te Sy

(U@)" = (U®) =ft), tes, (6.1)
/ ((71)([1]))+d5 - / ((%(I(}))_ds = fo(t) + const, t € Si,

where ¢o(t) = [ ¢dS, Fo(t) = [P FdS, ¢ € CO2(Sy), f € CH(Sy),

FeC%(S),8; €C?P 0<a<pB<1,j=0,1, are given vectors.
To reduce the problem (6.1) to a Fredholm system of second kind, we
; @)
choose (gja)(z) and ¢ (for j =0,1) as
(0)
©))

A - - no
o (2) = do; ( Q;E) / gé(y)x(y)d5+

So
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1 Olno () ()
2mi | B5(y) (90 + FhW)
@) @D [ ome
0 =ty (22— [ S5 mtas- (6:2)

47 S(y)
So
(J)
Oolno (J)
+2m 950y )( g(y) + 6h)dS+

S1

(4)

4m/W§ &g + Bh ()) j=0,1,

where Y, g and h are unknown complex vectors, and the remaining quantities
appearing in (6.2) have been defined in §1 and §3.
Taking into account (6.2), from (1.7) and (1.8) we get

, (OB 0)
©) m(A —2E)"t+2u)"t foln|o
0o 0, (M4 =28) ) o]

o= any) x(y)dS+
So
©)
WA —28)1— )1 [ ol|o| S
i as(y) VY
So
WX _ap)yr p oo ((j)> olnlo| - ) ()
e _ o__ n|o J
B 47 /GS(y)gxw)dS) / on(y) [( 7) W)+
So Sl
OREO) (m) dln o] OIO)
DG nlol-,G) &) R
+(B = ) h(y)]dS + 5% 35(y) (& T 7)9@) + (5 + 0)h(y)]ds~
S1
Z( (j)ﬁ s D;, j=0,1 6.3
4m/35 0 gly) + ﬁ(y))  TEE TE0 (©.3)
e al | | i 9
n|o o__
So

1 o G @)
—2 / | | —2E) W — A f]y]g(y)Jr
S1
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+[(A )<> O >] y)>d5+
nlol @) or ) G ()0)
<2im/%g(|y)| (A —2B) &+ A9 g(y)+[(A —2E) B+ 4 3 by ))dS>
(”)
B d oG ) :
—%S’/Mg(ag(y)—&- ﬁh(y))dS, IED]‘, jZO,l, (64)

where dj, j = 0,1, are arbitrary constant vectors,

@ G 6) 1
H=B(A-2E) ", j=0,1 (6.5)

With regard for the boundary conditions of the second boundary-contact
problem, after some calculations for determination of the vectors x, g and
h we obtain the following Fredholm integral equations of second kind:

(0)
0+ > [ Foi=t) s—;; asi) (s

So
oln|t — (0) © o) (0) (0) (0)(0)
o 7;72@)4“%[@ 2B) 0 A%}g(y)+[(A—2E)ﬁ—A 5 h(y))ds+
S1
alnlt— ¢/ © 0 O © _© OO
L ;;( )C|([(A—2E)8¢+A%] )+ [(A=2E) 5+ A |h(y) ) ds-
S1

0 (0)

0)_
2m/85 (O) g(y) + Bh(y))dS — d = ¢o(t), t€ So,

g(t) ; %(_)d[(%%)—%)@)g(y)—k(%(é)—%zo)(g))h(y)]d5+

<o><o> (1)(1) @@ (®)
4m/as &~ Qgt) + (€8 @ 5)hw)as -
0) (9 . N
- m(A-2E)" +(2py) /8ln|t7C| (y)dS+
27 on(y) X

0

(0)
+<#%<A2E>1<2<2)>1/aln|t¢| ()5
2mi 0S(y) X

So
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(

0)
A - 2m) u/as WS = f(), teS,  (6.6)

n ) 1 (0)
h(t)+7r/8187|1t( ) |<[(A*2E)() (ﬁsz)(O)] (y)+

1 0 t—¢ o Dy, _ O©©) (M) _
5| BS(NT_ - - B B3 — B B)h(y)]dS—
tori | 5 i-¢ a)g(y) + ( B )h(y)]dS
S1
ot - oot
n _
7T/ on(y) ey XWdS+o— | o= y)t_cx(y) S —C*=Fy(t), tes
S[) SO

We tie now the unknown constant vectors d and C* with x(t), g(¢) and
h(t) as follows:

0)
d = /de, C* = /(g+h)dS+/XdS. (6.7)

So S1 So

0
If in the left-hand side of the system (6.6) under (d) and C* we mean the
expressions (6.7), then this system will transform into a system containing
no unknowns except x(¢), g(t) and h(t).
Investigate these systems. For this we have to consider those which can
be obtained from the given systems if to the first equation in the left-hand

side we add the expression - (1)M%, where t = t; — ity,

4m \1
=[O0 - 20,00, 6
a:Q:O

After elementary transformations the above system can be written as

(0)
)+ - [ S Snas— - [ o txwas— [ xas+
So So So

alt — ¢l ( (0)
[ s

o [ Gt (4 - 2) (U0 + (%)E@))dﬂ -
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Ol |t —¢| M) (1) (1)
_§[w/ anly) (A —2B)(ag(y) + Bhy)dS—

T [ o (4 —28) (Vg0 + H)as] +

0)
1[1 [Oln|t—{| H o t—(—
*5{; / ) "W aS(yﬁ—Zh(y)dS]*

1 Sl

nlt— ¢l ( 0)
[ PR3y S

(0)
H [ 9 t=¢©

5y >_<(

0)_

—2m) (Vaty) + Fh(w))d ]+

S

nlt — (1) 1 (1)
% 5 [ St (A -2y (o) + Fn)as-
S1

/as ! (4~ 26) (Wg) + Fhw)a s~

1 Oln|t —
5{77/ 95(y) S*_/as ds]+

1

+ﬁ<1>Mi¢0(t)’ ¢ = {bo1, p02}", t € So;

1) %
1 O]t -, (W) (0)0) od) (0)©
g(?f)—&-7T y) [(ma —ma)g(y)+ (m B —mB)h(y)]dS+
1 o) 0)(0)  (1)(1) ©©@ o)
= ——C[( & — Qg+ (©5 - ¥ 8 s—
y) y) 1
S1
(0) _
(A -2E) 1+(2(2))1/am|t¢| (s
27 on(y)
0
(0) _ (0) N
(4 -2p) 1—(2(,8))_1/81n|tC| ()5 + C(A-2m)"
2mi 0S(y) AaY 4ri

So
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x / O TS = f(1), f={fi.f2}T, te S

J IS(y)t—¢
nlt — (1) 1 (1)
h(t) + %/%@)Q(A —2E) [(a)g(y) + Bh(y)]dS—

S1
nlt— ©
7% / %@d(%w) (Qgty)+ B ()] ds+
o 1 ) i
% W—Z( —28)[@g() + ﬁh( )]dS—
1 folmjt—¢|
/ xdS — S/ ))ds — — S/ ) x(y)dS+
oo
z —)—4 ()dS = Fo(t), Fo={Foir,}, t€S. (6.9)

So

Obviously, the system (5.9) is a Fredholm system of second kind.
Let us show that if the system (6.9) has a regular solution, then neces-
sarily
M =0, (6.10)

if only the conditions for the principal vector and the principal moment to
be equal to zero are satisfied.
Indeed, performing elementary calculations, from (6.9) we obtain

M = Re/(¢01 + Po2)dt + Re/(Fo1 + Fo2)dt =

So S1
= —Re/f(¢1 + ¢2)dS — Re/E(Fl + F»)dS, t =t —its. (6.11)
So 8
Thus if
Re / T + 62)dS + Re / H(Fy + F3)dS =0, (6.12)
So S1

then the condition (6.10) is satisfied.

Note now that the condition that the principal vector and the principal
moment of external stresses acting at the boundary of the domain Dy are
equal to zero can be expressed by the formula (6.12).
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It is evident from (6.11) and (6.12) that if the equality (6.12) is fulfilled,
then the system (6.10) coincides with the system (6.6).

Let us now show that the system (6.9) is solvable. Consider the ho-
mogeneous system which is obtained from (6.9) for ¢9 = f = Fy = 0 or
¢ = f = F =0, and prove that it has no different from zero solution. Let
X0, go and hg be any solution of that (homogeneous) system.

Since ¢ = F = 0, from (6.11) we find that M = 0. In this case (6.9)°
coincides with the system (6.6)° which corresponds to the boundary-contact
conditions

S(t)

(0)(0) (0)(0)
/ (TU) dS =0, teSy, or (TUW) =0, teSy,
0
(1) 0) _
(Uo)" = (Uo(t))” =0, tes, (6.13)
e (1)(1) e (0)(0)
/ (T Uo)erS - / (T Uo)de = const, or
0 0

M (0)(0) _
(TU)" = (TUt)” =0, tes,

(4)
where Ug(z), j = 0,1, are obtained from (6.3) when x = xo0, ¢ = go and
h = hg.
Taking into account (6.13) and using Theorem 2.4, we obtain
() 1 T
Uo(z) =a” +ib* WEREE D;, j=0,1, a" ={a},a5}", (6.14)

where aj, a3 and b* are arbitrary constants.
If now we take into account that

1o (0 o 9 ©)
MO — —z[&(Um + Uo2) — £(U01 + UOQ)}M:S =0,
o=
then we write b* = 0, and hence
(4)
Uo(z)=0a", z€D;, j=0,1. (6.15)
(0)
Since U g(o00) = 0 (see (6.3)), we have a* =0,
(1) (0)
Uo(x) =0, z€ Dy, Ug(x)=0, z€ Dy. (6.16)
From (6.16) it follows (see (1.17)) that
(0)(0) B,
0
0= NUo(z) = —i(W) ' 2% — o, 2 ¢ Dy, (6.17)

) 05(x)
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where

0) (©

(0) m(A — -1 -1 nlo
V(o) = - A2 B [ s+

0

©
W(A —2E)"" — (2u)~ [ dlulo]

27 an(y) X0W4S—
A—2E)"
_ /as y)dS+
m [ Ollo] © 9 § Vho(y)]dS
+%!%@KMWMU (5 + 8 hotw)]s -
) nle © (0
o [ G (& = Dyt + (5 = 9ol as
Sl
(?) o (0)_ (0)_
e m—( Go(y) + Bho(y))dS, x € Dy. (6.18)

S1

(0)
As far as V¢(o0) = 0, by virtue of (6.17) we have

(0)
VO(OO) =0, x€ Dy, (619)

whence
(0)(0)
T VO(Z) - 03 T € DO? (620)

where

(0)(0) 1 [ 9l H 2 o_
TVo(r)= ;/mm(y)ds ~on / mgXo(y)der
S So

0

1 9%1n|o| (0) © @0
+%/m<[(1‘1 2E) o + A7 ]go(y)+

(A =28) 5 + A o) ) as-

1 9%In|o]| © © @)

(0) (0) )(0)

H(A—2m)d - 6]<Dwf
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82” (0)_ 0)_
27r/85 ago(y) + Bho(y))dS, z € Dy. (6.21)

(0)(0)
The vector T V (z) is continuous when the point x passes through the

contour Sy, therefore (see (6.20))

O
(TVo(t) =0, teSo. (6.22)

On the basis of the uniqueness theorem for the second external problem
of statics of elastic mixtures [5] we can conclude that

(0)
Vo(aj) =0, z€ D, = R2\D1 USiUDgU . (623)

(0) (0)
From (6.26), for the associate to V ¢(z) vector U o(z) in the domain Dy

we can write

(0)
Uo(z) =0, z€Dy. (6.24)

Taking into account (1.16), (6.16), (6.19), (6.23), (6.24) and (6.2); for
X = X0, § = go and h = hg, we get

(Do +iV o) = (Vo) +iVo(®) ™ = 29(A—2E) " xo(t), t € So.

(0)
whence it follows det (7(7)1) >0, det (A — 2E) > 0 since xo(t) =0, t € Sp [1].
Comparing the formulas (6.19), (6.24) and (6.3) (for x = x0 =0, g = go,
h = hg), we have

Vo) = %S [ = Dyaut) + (5 = § o) Gllas+
2(7; %1;1(|0)| [(%4) + %))go(y) - (%) + ((15))h0(y)]d5’—
4m/as Z ooy )+%)Eo(y))d5=0, z € Dy, (6.25)
([(})O(x) = ;mﬂ %:l(!;)' (& = D)goly) + (%) — (g))ho(y)]d5’+
S1
W ool @ © )
i [GS(y) (o +7)goly) + (B8 + 5)h0( )}ds,

51
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(0)
e 0 o (0)_ (O B _

S1

1 0

Obviously, the vectors (Uo(ac) and U) o(x) satisfy the same conditions as
(4.2) (for j =1 and j = 0) (see §4). Repeating word by word the reasoning
we have used above for (4.2) (for j =1, j = 0), we find that go = ho = 0.

Thus the system (6.9)° has only the zero solution, and hence, the in-
homogeneous system (6.9) has the unique solution. In case the principal
vector and the principal moment of external stresses are equal to zero, the
system (6.9) transforms into the system (6.5).

From the above reasoning it is obvious that if the principal vector and
the principal moment of external stresses are equal to zero, then the second
boundary-contact problem is solvable. The displacements are defined to
within the rigid displacement and the stresses are defined exactly.
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