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Abstract. We consider Dirichlet and Poisson type problems for the
Maxwell-Dirac operator Dk = d + δ + k dt· on a Lipschitz subdomain Ω of
a smooth, Riemannian manifold M. The emphasis is on solutions of finite
Lp energy, i.e. sections u satisfying

∫∫

Ω
[|u|p + |du|p + |δu|p] dVol < +∞.

In this context, we prove well-posedness for p near 2. Our approach relies
heavily on the analysis of the spectra of Cauchy type operators naturally
associated with the problems at hand.
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1. Introduction

In a series of recent papers [19], [21], [18], [22], [17], we have initiated a
program aimed at studying boundary value problems for differential forms
in subdomains of Riemannian manifolds, under minimal smoothness as-
sumptions. This includes the Hodge–Laplacian, Dirac type operators, as
well as Maxwell’s equations and other related PDE’s. The emphasis is on
regularity (or lack thereof) of solutions, coefficients of the operators, and
boundaries of the domains involved.

In this paper we continue this line of work by considering the following
geometric context. Let M be a smooth Riemannian manifold, and denote
by d, δ the exterior derivative operator and its adjoint, respectively, on M.
We shall find it convenient to further embed M into a larger ‘space-time’
manifold M×R; throughout the paper all differential forms are defined on
(subdomains of) M and with values in the Grassmann algebra of M× R.

In this scenario, it is therefore natural to consider the Dirac type operator

Dk := d+ δ + k dt (1.1)

where k is a complex parameter (playing the role of the wave number), t is
the ‘time’ variable and dt· acts as a Clifford algebra multiplier. The main
goal is to study Poisson problems with half-Dirichlet boundary conditions
of the type

(BV P )

{

Dku = η in Ω,

utan or unor prescribed on ∂Ω.
(1.2)

Above, Ω is an arbitrary Lipschitz subdomain of M and utan, unor are,
respectively, the tangential and the normal component of u on ∂Ω.

The case k = 0 and η ∈ Lp(Ω) has been studied in [18]. In this scenario,
there are intimate connections between (1.2) and classical topological in-
variants of the underlying domain. A thorough analysis of the case when
η = 0 and boundary data are from Lp(∂Ω) can be found in [21]. There,
the estimates for the solution u are in terms of the so called nontangential
maximal function. For three-dimensional manifolds, the problem (1.2) with
η ∈ Hs,p(Ω), the Lp-based Sobolev space of fractional index of smoothness
s, has been treated in [22] for the optimal range of the parameters s, p.

While the corresponding situation in higher dimensions remains an open
problem at the moment, here we consider the case when dimM≥ 3, k ∈ C

and η ∈ Lp(Ω) for p ∈ (2− ε, 2 + ε), where ε > 0 depends on the Lipschitz
domain Ω. The spirit of our main result (cf. Theorem 8.3 for details) is that,
in the aforementioned context, the problem (1.2) is well-posed, provided
ε = ε(∂Ω) is small enough (depending on the Lipschitz character of the
domain Ω).
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It is worth pointing out that (1.2) can be thought of as an ‘elliptization’
of (the standard, non-coercive) Maxwell’s equations

(Maxwell)















dE − ikH = 0 in Ω,

δH + ikE = 0 in Ω,

Etan or Enor prescribed on ∂Ω,

(1.3)

under the identification u = H − i dt · E. This also better clarifies the role
played by the parameter k in (1.1). In the Lp context, (1.3) has been solved
in [20], [11].

For C∞ structures and for sufficiently regular data, problems such as
(1.2) are regular elliptic (cf. [25], [2]) and, hence, Fredholm solvable (i.e.,
well-posed modulo finite dimensional spaces). The standard approach in
this scenario is via algebras of pseudo-differential operators.

Nonetheless, the nature of the problem at hand changes drastically when
the smoothness assumptions are significantly relaxed. This is certainly the
case for the situation we are interested in, i.e. Lipschitz boundaries, met-
ric tensors with low regularity, and Lp data. In this context, the method
of layer potentials (which we systematically employ in this paper) leads
to considering operators which can only be described in terms of singular
integrals (of Calderón–Zygmund type). Here we rely on harmonic analy-
sis techniques which have been successful in the treatment of second-order,
constant coefficient elliptic boundary problems in Lipschitz domains of the
Euclidean space. The reader is referred to the excellent survey [15] for a
more thorough discussion in this regard.

The organization of the paper is as follows. Section 2 contains a discus-
sion of the geometrical set up. Several distinguished spaces of (boundary)
differential forms – of Sobolev–Besov type – are introduced in Sections 3–4.
Boundary integral operators of Cauchy type are defined in Section 5. The
main issues studied here are boundedness and jump relations. As a prelimi-
nary step, half-Dirichlet boundary problems for (1.1) of finite L2-energy are
analyzed in Section 6. In turn, this well-posedness result translates into a
Rellich type estimate to the effect that

‖utan‖ ≈ ‖unor‖, (1.4)

uniformly for L2 null-solutions of Dk. Here, the norms are taken with respect
to certain subspaces of B2,2

−1/2(∂Ω), well adapted for the problem at hand;

cf. Corollary 6.4 for a precise statement. A similar estimate at the L2(∂Ω)
level has been proved in [21].

The Rellich estimate (1.4) is then utilized in Section 7 in order to show
that the boundary versions of our Cauchy operators are isomorphisms at
the level of Besov spaces. Such invertibility results are crucial in the treat-
ment of the Poisson problem for (1.1), taken up in Section 8. Here we also
discuss connections with Maxwell’s system (1.3). In Section 9 and Section
10 we look at finer spectral properties of our Cauchy type integral operators
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in the context of boundary Besov spaces. In Section 9 we prove that their
essential spectra are contained in C\(− 1

2 ,
1
2 ). In this section we also discuss

the well-posedness of a natural transmission problem for the operator (1.1)
with Lipschitz interfaces. Finally, in Section 10, we show that the Fred-
holm spectra of these operators are contained in a certain hyperbola whose
geometric characteristics depend (explicitly) on the underlying domain.

2. Geometrical Preliminaries

Let M be a smooth, oriented, connected, compact, boundaryless mani-
fold of real dimension m. We equip M with a metric tensor

g =
∑

i,j

gijdxi ⊗ dxj , gij ∈ C1,1, ∀ i, j. (2.1)

As is customary, take (gij)i,j to be the matrix inverse to (gij)ij , and set
g := det [(gij)i,j ]. Also, we let dV denote the corresponding volume element,
so that, locally, dV =

√
g dx.

Denote by TM the tangent bundle to M and by Λ`TM its `-th exterior
power. Sections in this latter vector bundle are `-differential forms and can
be described in local coordinates (x1, . . . , xm) as u =

∑

|I|=` uI dx
I . Here

the sum is performed over ordered `-tuples I = (i1, . . . , i`), 1 ≤ i1 < i2 <
· · · < i` ≤ m and, for each such I , dxI := dxi1 ∧ · · · ∧ dxi`

. Also, the
wedge stands for the usual exterior product of forms, while |I | denotes the
cardinality of I .

The Grassmann algebra on M is then defined as

GM := ⊕0≤`≤mΛ`TM. (2.2)

We shall not make any notational distinction between Λ`TM, GM and their
respective complexified versions.

The Hermitian structure in the fibers on TM extends naturally to the
cotangent bundle T ∗M by setting 〈dxi, dxj〉 := gij . In turn, this induces a
Hermitian structure on Λ`TM by selecting {ωI}|I|=` to be an orthonormal

frame in Λ`TM provided {ωj}1≤j≤m is an orthonormal frame in T ∗M
(locally). Finally, the latter further induces a Hermitian structure on GM,
by insisting that the direct sum in (2.2) is also orthogonal. We denote by
〈·, ·〉 the corresponding (pointwise) inner product in GM.

Let us now embed the Riemannian manifold M into R ×M, equipped
with the product metric. Here R is considered with the standard metric, i.e.
if t denotes the generic variable in R, then |dt| = 1. In the sequel, it will be
convenient to work in a (one codimensional) extension E of the Grassmann
algebra GM, consisting of forms of the type f + dt ∧ g, with f, g ∈ GM. In
other words,

GM ↪→ E := GM ⊕ (dt ∧ GM) ↪→ GIR×M. (2.3)

Moreover, the above direct sum is orthogonal, and we continue to denote
by 〈·, ·〉 the corresponding (pointwise) inner product on E . In particular, for
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arbitrary one-forms α, β, and u,w ∈ E , the following are true:

α ∧ (β ∨ u) + β ∨ (α ∧ u) = 〈α, β〉u, 〈α ∧ u,w〉 = 〈u, α ∨ w〉. (2.4)

Also, throughout the paper, we shall let d stand for the (exterior) derivative
operator on the manifoldM and denote by δ its formal adjoint (with respect
to the metric introduced above). Thus, d(f + dt ∧ g) = df − dt ∧ dg and
δ(f + dt ∧ g) = δf − dt ∧ δg, for any f, g ∈ GM. In particular, d d = 0,
δ δ = 0, and

∆ := −(dδ + δd) (2.5)

is the Hodge–Laplacian on M. The bundle E has a natural Clifford algebra
structure. In fact, if · stands for the Clifford algebra product, then

α · u = α ∧ u− α ∨ u, 〈α · u, v〉 = −〈u, α · v〉. (2.6)

for every α ∈ Λ1 and u, v ∈ E .
Next, we introduce the family of Dirac type operators, indexed by k ∈ C,

Dk := d+ δ + k dt, (2.7)

where dt acts as a Clifford algebra multiplier. Thus

Dk : C1(M, E) → C0(M, E) (2.8)

is an elliptic first order differential operator. Some of its most immediate
properties are:

D
2
k =−∆− k2, D̄k = −Dk, D

c
k =Dkc , D

t
k =D−k, D

∗
k =D−kc , (2.9)

where (·)c denotes complex conjugation, and ∆ is the Hodge–Laplacian on
M.

A domain Ω ⊂ M is called Lipschitz provided its boundary is given
by graphs of Lipschitz functions in suitable local coordinates. Fix such a
Lipschitz domain Ω and denote by dσ its surface measure (inherited from
the metric on M), and by ν ∈ T ∗M its outward unit conormal, defined a.e.
on ∂Ω. Then, for each u, v ∈ C1(Ω̄, E), we have

∫∫

Ω

〈du, v〉 dV −
∫∫

Ω

〈u, δv〉 dV =

∫

∂Ω

〈ν ∧ u, v〉 dσ =

∫

∂Ω

〈u, ν ∨ v〉 dσ. (2.10)

3. Sobolev Spaces of Differential Forms

Call a measurable section f : ∂Ω → E tangential if ν ∨ f = 0 a.e. on
∂Ω, and normal if ν ∧ f = 0 on ∂Ω. We now define two closed subspaces of
Lp(∂Ω, E), i.e.

Lp
tan(∂Ω, E) := {v ∈ Lp(∂Ω, E); ν ∨ v = 0}, (3.1)

Lp
nor(∂Ω, E) := {v ∈ Lp(∂Ω, E); ν ∧ v = 0}. (3.2)
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Assume now that the form f ∈ Lp
tan(∂Ω, E), 1 < p < ∞, has the property

that there exists a constant κ > 0 so that
∣

∣

∣

∫

∂Ω

〈dψ, f〉 dσ
∣

∣

∣ ≤ κ‖ψ‖Lq(∂Ω,E) for any ψ ∈ C1(M, E), (3.3)

where 1/p+1/q = 1. By Riesz’s representation theorem, there exists a form
in Lp(∂Ω, E), which we denote by δ∂f , so that

∫

∂Ω

〈dψ, f〉 dσ =

∫

∂Ω

〈ψ, δ∂f〉 dσ, for any ψ ∈ C1(M, E). (3.4)

We set

Lp,δ
tan(∂Ω, E) := {f ∈ Lp

tan(∂Ω, E); δ∂f ∈ Lp(∂Ω, E)} , (3.5)

and equip it with the natural norm

‖f‖Lp,δ
tan(∂Ω,E) := ‖f‖Lp(∂Ω,E) + ‖δ∂f‖Lp(∂Ω,E). (3.6)

See [19] for a more extensive discussion, and other references. It is not
difficult to check that

δ∂δ∂f = 0 and ν ∨ δ∂f = 0 on ∂Ω for any f ∈ Lp,δ
tan(∂Ω, E). (3.7)

For f ∈ Lp
nor(∂Ω, E), we define the distribution d∂f by requiring that
∫

∂Ω

〈δψ, f〉 dσ =

∫

∂Ω

〈ψ, d∂f〉 dσ for any ψ ∈ C1(M, E). (3.8)

Set

Lp,d
nor(∂Ω, E) := {f ∈ Lp

nor(∂Ω, E); d∂f ∈ Lp(∂Ω, E)} , (3.9)

equipped with the natural norm

‖f‖Lp,d
nor(∂Ω,E) := ‖f‖Lp(∂Ω,E) + ‖d∂f‖Lp(∂Ω,E). (3.10)

Analogously to (3.7), we have that

d∂d∂f = 0 and ν ∧ d∂f = 0 on ∂Ω for any f ∈ Lp,d
nor(∂Ω, E). (3.11)

4. Besov Spaces of Differential Forms

Let Hs,p(Ω) and Bp,q
s (Ω), s > 0, 1 < p <∞, stand, respectively, for the

usual scales of Sobolev and Besov spaces on Ω. We shall also work with
Bp,q

s (∂Ω), 0 < |s| < 1, 1 < p, q < ∞, the class of Besov spaces on ∂Ω. In
particular, the trace map

Tr : Hs,p(Ω) −→ Bp,p
s−1/p(∂Ω) (4.1)

is well-defined and bounded for 1 < p < ∞, 1/p < s < 1 + 1/p, and has a
bounded right inverse (Gagliardo’s lemma). More detailed accounts on these
matters can be found in [1], [12], [24]. Finally, set Bp,q

s (Ω, E) := Bp,q
s (Ω)⊗E ,

Bp,q
s (∂Ω, E) := Bp,q

s (∂Ω)⊗ E , etc.
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Let us consider d, δ : Lp(Ω, E) → Lp(Ω, E) as unbounded operators with
domains

Dom(d;Lp(Ω, E)) := {u ∈ Lp(Ω, E); du ∈ Lp(Ω, E)}, (4.2)

Dom(δ;Lp(Ω, E)) := {u ∈ Lp(Ω, E); δu ∈ Lp(Ω, E)}. (4.3)

The action of d and δ on their respective domains is considered in the sense
of distributions.

For u ∈ Dom(δ;Lp(Ω, E)), 1 < p < ∞, we now define the distribution
ν ∨ u on ∂Ω by requiring that

〈ν ∨ u, ϕ〉 := −
∫∫

Ω

〈δu, v〉 dV +

∫∫

Ω

〈u, dv〉 dV , (4.4)

for any v ∈ H1,q(Ω, E), 1/p+ 1/q = 1, with Tr v = ϕ. Thus, the right side
of (4.4) is well defined for ϕ ∈ Bq,q

1/p(∂Ω, E), independently of the choice of

such v, so we have

ν ∨ u ∈ Bp,p
−1/p(∂Ω, E) (4.5)

with naturally accompanying estimates. Furthermore, if u ∈
Dom(d;Lp(Ω, E)) then we can define the distribution ν ∧ u by a similar
procedure. Once again,

ν ∧ u ∈ Bp,p
−1/p(∂Ω, E) (4.6)

plus natural estimates. It follows that the mappings

Dom(d;Lp(Ω, E)) 3 u 7→ ν ∧ u ∈ Bp,p

− 1
p

(∂Ω, E), (4.7)

Dom(δ;Lp(Ω, E)) 3 u 7→ ν ∨ u ∈ Bp,p

− 1
p

(∂Ω, E), (4.8)

are well-defined and bounded, when the spaces in the left side are equipped
with the natural graph norm.

Next, for 1 < p < ∞ we introduce some distinguished subspaces of
Bp,p
−1/p(∂Ω, E). More concretely, we define

X p
nor(∂Ω) :=

=
{

f ∈ Bp,p

− 1
p

(∂Ω, E); ∃u ∈ Dom(d;Lp(Ω, E))) with ν ∧ u = f
}

, (4.9)

equipped with the natural norm

‖f‖Xp
nor(∂Ω) :=

=inf
{

‖u‖Lp(Ω,E) + ‖du‖Lp(Ω,E); u ∈ Dom(d;Lp(Ω, E), ν ∧ u=f
}

(4.10)

and

X p
tan(∂Ω) :=

=
{

g ∈ Bp,p

− 1
p

(∂Ω, E); ∃ v ∈ Dom(δ;Lp(Ω, E)) with ν ∨ v = g
}

, (4.11)
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endowed with the norm

‖g‖Xp
tan(∂Ω) :=

=inf
{

‖v‖Lp(Ω,E) + ‖δv‖Lp(Ω,E); v ∈ Dom(δ;Lp(Ω, E)), ν ∨ v=g
}

. (4.12)

We also define the (bounded) operators

d∂ : X p
nor(∂Ω) −→ X p

nor(∂Ω), (4.13)

δ∂ : X p
tan(∂Ω) −→ X p

tan(∂Ω), (4.14)

by setting

d∂(ν ∧ u) := −ν ∧ du, u ∈ Dom(d;Lp(Ω, E)), (4.15)

δ∂(ν ∨ v) := −ν ∨ δv, v ∈ Dom(δ;Lp(Ω, E)). (4.16)

The following proposition, proved in [18], collects some of the main prop-
erties of the spaces introduced above. To state it, for each Ω ⊂ M we set
Ω+ := Ω, Ω− := M\ Ω̄.

Proposition 4.1. Let Ω be a Lipschitz subdomain of M. Then, for each

1 < p <∞, the following hold.

(i) X p
nor(∂Ω+) ≡ X p

nor(∂Ω−), in the sense that the two spaces coincide

as sets and their respective norms are equivalent.

(ii) X p
nor(∂Ω) is a reflexive Banach space and X p

nor(∂Ω) ↪→ Bp,p

− 1
p

(∂Ω, E)

continuously.

(iii) Both inclusions ν ∧ C1(Ω̄, E)|∂Ω ↪→ X p
nor(∂Ω) and Lp,d

nor(∂Ω, E) ↪→
X p

nor(∂Ω) are continuous and with dense range.

(iv) The class {X p
nor(∂Ω)}1<p<∞ is a complex interpolation scale. That

is, for each 0 < θ < 1, 1 < p0, p1 <∞ and 1/p := (1−θ)/p0 +θ/p1,

we have

[X p0
nor(∂Ω),X p1

nor(∂Ω)]θ = X p
nor(∂Ω). (4.17)

(v) If the metric tensor is smooth and ∂Ω ∈ C∞ then, for each 1 < p <
∞,

X p
nor(∂Ω) ≡

{

f ∈ Bp,p

− 1
p

(∂Ω, E); ν ∧ f = 0 and d∂f ∈ Bp,p

− 1
p

(∂Ω, E)
}

(4.18)

in the sense that the two spaces coincide as sets and

‖f‖Xp
nor(∂Ω) ≈ ‖f‖Bp,p

− 1
p

(∂Ω,E) + ‖d∂f‖Bp,p

− 1
p

(∂Ω,E). (4.19)

(vi) The scales X p
tan(∂Ω) enjoy similar properties as (i)−−(v) above.

(vii) For each 1 < p, q <∞ conjugate exponents, the mapping

ν ∧ · : X p
tan(∂Ω) −→ (X p

nor(∂Ω))∗ (4.20)

defined by

〈ν ∧ f, g〉 :=

∫∫

Ω

〈u, dw〉 dV −
∫∫

Ω

〈δu, w〉 dV (4.21)
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for u ∈ Dom(δ;Lq(Ω, E)), with f = ν∨u and w ∈ Dom(d;Lp(Ω, E))
with g = ν ∧ w is well-defined and bounded. In fact, this map is an

isomorphism. Its adjoint is

ν ∨ · : X p
nor(∂Ω) −→ (X p

tan(∂Ω))
∗

(4.22)

whose action is defined similarly.

5. Integral Operators

The Hodge–Laplacian ∆ : H1,2(M,GM ) → H−1,2(M,GM ) is a bounded,
negative, formally self-adjoint operator. Since (∆ − λI)−1 gives rise to a
negative, self-adjoint, compact operator on L2(M,GM ) for λ ∈ R with |λ|
large, it follows that there exists Spec (∆) ⊆ (−∞, 0], a discrete set (which
accumulates only at −∞) so that

z /∈Spec (∆)⇒(∆−zI) : H1,2(M,GM )→H−1,2(M,GM ) is invertible. (5.1)

Select an increasing sequence kj ∈ [0,∞) so that

{−(kj)
2}j = Spec (∆). (5.2)

For k /∈ {±kj}j , we let Γk(x, y) be the Schwartz kernel of ∆ + k2. In
particular, the fact that ∆ commutes with d and δ translated into

δx(Γk(x, y)) = dy(Γk(x, y)), dx(Γk(x, y)) = δy(Γk(x, y)). (5.3)

Next, fix a Lipschitz domain Ω ⊂ M with outward unit normal ν and
surface measure dσ, and denote by Sk the single layer potential operator on
∂Ω with kernel Γk(x, y), i.e.

Skf(x) :=

∫

∂Ω

〈Γk(x, y), f(y)〉 dσ(y), x ∈M \ ∂Ω, (5.4)

where f ∈ Lp(∂Ω, E), 1 < p < ∞. Note that (∆ + k2)Skf = 0 in M\ ∂Ω.
Also, set

Skf := Skf |∂Ω. (5.5)

Going further, let us introduce the principal value singular integral op-
erators

Mkf(x) := p.v.

∫

∂Ω

〈ν(x) ∨ dxΓk(x, y), f(y)〉 dσ(y), x ∈ ∂Ω, (5.6)

and

Nkf(x) := p.v.

∫

∂Ω

〈ν(x) ∧ δxΓk(x, y), f(y)〉 dσ(y), x ∈ ∂Ω. (5.7)

Here, p.v.
∫

∂Ω
. . . is taken in the sense of removing geodesic balls (with

respect to some smooth background metric); see [23] for more details.
These operators are the higher degree analogue of the so-called magne-

tostatic and electrostatic operators arising in scattering theory in R3 (cf.,
e.g., [6]). At the level of Lp spaces, these have been studied in detail in [19].
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For further reference, some basic properties are collected in the theorems
stated below. For proofs, the reader is referred to [19], [24]. Here, we only
want to mention that all restrictions to the boundary of ∂Ω are taken in the
pointwise nontangential sense. That is,

u
∣

∣

∣

∂Ω
(x) := lim

y∈γ(x), y→x
u(y), x ∈ ∂Ω, (5.8)

where γ(x) ⊆ Ω is an appropriate nontangential approach region. Also,
N is going to denote the nontangential maximal operator defined on some
section u in Ω by

(Nu)(x) := sup {|u(y)|; y ∈ γ(x)}, x ∈ ∂Ω. (5.9)

Finally, recall the convention that Ω+ := Ω, Ω− := M\ Ω̄.

Theorem 5.1. Let Ω ⊂ M be a Lipschitz domain. Also, fix k ∈ C \
{±kj}j. Then for each 1 < p <∞ we have:

(i) There exists C = C(∂Ω, p) > 0 so that

‖N (Skf)‖Lp(∂Ω), ‖N (dSkf)‖Lp(∂Ω),

‖N (δSkf)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω,E),
(5.10)

uniformly for f ∈ Lp(∂Ω, E), and

‖N (Skf)‖Lp(∂Ω) ≤ C‖f‖H−1,p(∂Ω,E), (5.11)

uniformly for f ∈ H−1,p(∂Ω, E) = (H1,q(∂Ω, E))∗, 1/p+ 1/q = 1.
(ii) The following jump-relations are valid

ν ∨ dSkf
∣

∣

∣

∂Ω±
= ∓ 1

2 (ν ∨ (ν ∧ f)) +Mkf,

ν ∧ δSkf
∣

∣

∣

∂Ω±
= ± 1

2 (ν ∧ (ν ∨ f)) +Nkf
(5.12)

a.e. on ∂Ω for each f ∈ Lp(∂Ω, E) and 1 < p <∞.

(ii) The following intertwining identities are valid

δSkf = Sk(δ∂f), ∀ f ∈ Lp,δ
tan(∂Ω, E), (5.13)

dSkg = Sk(d∂g), ∀ g ∈ Lp,d
nor(∂Ω, E). (5.14)

(iii) The adjoint of Mk acting on Lp
tan(∂Ω, E) is the operator M t

k acting

on Lq
tan(∂Ω, E), with 1/p+ 1/q = 1, given by

M t
k = ν ∨Nk(ν ∧ ·). (5.15)

(iv) For 0 ≤ s ≤ 1, the operator

Sk : H−s,p(∂Ω, E) −→ Bp,p#

1−s+1/p(Ω, E) (5.16)

is well defined and bounded. Hereafter, we set

p# := max {p, 2}. (5.17)
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We now aim at extending the action of the operators Mk and Nk to the
spaces X p

tan(∂Ω) and X p
nor(∂Ω), respectively. As a preliminary step, we first

analyze the action of Sk on these spaces.

Lemma 5.2. Assume that Ω ⊂ M is a Lipschitz domain. Then, for

k /∈ {±kj}j and 1 < p <∞, the following hold.

(i) The operators

Sk : X p
nor(∂Ω) −→ H1,p(Ω, E), (5.18)

Sk : X p
tan(∂Ω) −→ H1,p(Ω, E) (5.19)

are well-defined and bounded. In particular, Sk = Tr ◦ Sk and

Sk : X p
nor(∂Ω) −→ Bp,p

1−1/p(∂Ω, E),

Sk : X p
nor(∂Ω) −→ Bp,p

1−1/p(∂Ω, E)
(5.20)

are bounded. In fact, so are the operators

ν ∧ Sk : X p
tan(∂Ω) −→ X p

nor(∂Ω), (5.21)

ν ∨ Sk : X p
nor(∂Ω) −→ X p

tan(∂Ω). (5.22)

(ii) The nontangential maximal function estimates

‖N (Skf)‖Lp(∂Ω) ≤ C‖f‖Xp
nor(∂Ω), (5.23)

‖N (Skg)‖Lp(∂Ω) ≤ C‖g‖Xp
tan(∂Ω) (5.24)

hold uniformly in f , g.
(iii) The intertwining identities

dSkf = Sk(d∂f), ∀ f ∈ X p
nor(∂Ω) (5.25)

δSkg = Sk(δ∂g), ∀ g ∈ X p
tan(∂Ω) (5.26)

hold.

We next turn our attention to the operators Mk, Nk. In analogy with
(5.12) we define

(

∓ 1
2I +Mk

)

f := ν ∨ (dSkf |Ω±), f ∈ X p
tan(∂Ω), (5.27)

(

± 1
2I +Nk

)

g := ν ∧ (δ Skg|Ω±), g ∈ X p
nor(∂Ω). (5.28)

Proposition 5.3. Let Ω be a Lipschitz domain and let k /∈ {±kj}j . Then

for any 1 < p <∞ the operators ± 1
2I+Nk, originally defined on Lp(∂Ω, E)

have bounded extensions to X p
nor(∂Ω), i.e.

± 1
2I +Nk : X p

nor(∂Ω) −→ X p
nor(∂Ω). (5.29)

In fact, similar results are also valid for the operators

± 1
2I +Mk : X p

tan(∂Ω) −→ X p
tan(∂Ω). (5.30)
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Moreover, if 1/p+ 1/q = 1, the diagrams

X p
tan(∂Ω)

ν ∧ ·
∼

- (X q
nor(∂Ω))

∗

X p
tan(∂Ω)

± 1
2I +Mk

? ν ∧ ·
∼

- (X q
nor(∂Ω))

∗

(± 1
2 I +Nk)t

?

(5.31)

and

X q
nor(∂Ω)

ν ∨ ·
∼

- (X p
tan(∂Ω))

∗

X q
nor(∂Ω)

± 1
2I +Nk

? ν ∨ ·
∼

- (X p
tan(∂Ω))

∗

(± 1
2I +Mk)t

?

(5.32)

are commutative.

Our next task is to define certain Cauchy type operators which are well
adapted to the problems we intend to study in this paper. Concretely, for
k ∈ C \ {±kj}j , introduce

Ckf(x) :=

∫

∂Ω

〈Dk,xΓk(x, y), f(y)〉 dσ(y), x /∈ ∂Ω, (5.33)

and

Ckf(x) = p.v.

∫

∂Ω

〈Dk,xΓk(x, y), f(y)〉 dσ(y), x ∈ ∂Ω, (5.34)

if f ∈ Lp(∂Ω, E), 1 < p <∞. It follows that

Ck : Lp(∂Ω, E) −→ Lp(∂Ω, E) (5.35)

is well-defined and bounded for each 1 < p < ∞; cf. [19], which further
builds on [5]. Also, for 1 < p <∞,

‖N (Ckf)‖Lp(∂Ω) ≤ κ‖f‖Lp(∂Ω,E), (5.36)

uniformly for f ∈ Lp(∂Ω, E). For further reference, we also note that

Ckf = DkSkf = dSkf + δSkf + k dt · Skf. (5.37)

In particular, from this and Theorem 5.1,

Ckf |∂Ω± = ∓ 1
2ν · f + Ckf, (5.38)

a.e. on ∂Ω, for each f ∈ Lp(∂Ω, E), 1 < p <∞.
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The first order of business is to extend the action of these operators to
X p

nor(∂Ω) and to X p
tan(∂Ω). More specifically, we shall eventually prove that

the operators

Ck, dCk, δCk : X p
nor(∂Ω) −→ Lp(Ω, E), (5.39)

Ck, dCk, δCk : X p
tan(∂Ω) −→ Lp(Ω, E), (5.40)

and

± 1
2I + ν ∧ Ck : X p

nor(∂Ω) −→ X p
nor(∂Ω), (5.41)

± 1
2I + ν ∨ Ck : X p

tan(∂Ω) −→ X p
tan(∂Ω), (5.42)

are well-defined and bounded for each 1 < p <∞.
With this aim in mind, fix an arbitrary f ∈ X p

nor(∂Ω) and define u :=
Ckf = DkSkf in Ω. Our immediate aim is to show that, for each 1 < p <∞,

‖u‖Lp(Ω,E) + ‖du‖Lp(Ω,E) + ‖δu‖Lp(Ω,E) ≤ κ‖f‖Xp
nor(∂Ω), (5.43)

uniformly in f . First, the point (i) in Lemma 5.2 gives that u ∈ Lp(Ω, E)
and ‖u‖Lp(Ω,E) ≤ κ‖f‖Xp

nor(∂Ω). Going further, we write

du = dδSkf − k dt · dSkf =

= −δdSkf + k2Skf − k dt · dSkf =

= −δSk(d∂f) + k2Skf − k dt · dSkf, (5.44)

where, for the last equality, we have used the fact that Sk intertwines d and
d∂ ; cf. (5.25). Now, (5.44) in concert with (i) in Lemma 5.2, gives that
du ∈ Lp(Ω, E) plus a natural estimate. The case of δu is similar and this
concludes the proof of (5.43). This, in turn, entails the boundedness of the
operators in (5.39)–(5.40).

Next, in analogy with (5.38) we define
(

1
2I + ν ∧ Ck

)

f := ν ∧ Ckf ∈ X p
nor(∂Ω), ∀ f ∈ X p

nor(∂Ω), (5.45)
(

1
2I + ν ∨ Ck

)

g := ν ∨ Ckg ∈ X p
tan(∂Ω), ∀ g ∈ X p

tan(∂Ω). (5.46)

Thanks to (5.39)–(5.40) and the above definitions, it follows that, for each
1 < p < ∞, the operators (5.41)–(5.42) are well defined and bounded, and
that their action is compatible with that on the space Lp(∂Ω, E).

Next, we elaborate on connections between the Cauchy operators just
introduced and the operators Mk, Nk.

Proposition 5.4. Assume that k ∈ C \ {±kj}j, and fix a Lipschitz

domain Ω ⊂M. Then for each λ ∈ C,

(λI + ν ∧ Ck)f = (λI +Nk)f + ν ∧ Sk(d∂f)− k dt · (ν ∧ Skf) (5.47)

for any f ∈ X p
nor(∂Ω), 1 < p <∞. Also,

(λI + ν ∨ Ck)g = (λI +Mk)g + ν ∨ Sk(δ∂g)− k dt · (ν ∨ Skg) (5.48)

for any g ∈ X p
tan(∂Ω), 1 < p <∞.
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Proof. As far as (5.47) is concerned, obviously, it suffices to consider the
case λ = 1

2 . In this situation the identity (5.47) follows from (5.37) and
the jump relations of (the derivatives of) the single layer, at least if f is in
Lp

tan(∂Ω, E). The extension to f ∈ X p
tan(∂Ω, E) is then done by density. The

case of (5.48) is similar. �

Proposition 5.5. Retain the same assumptions made in Proposition 5.4.
Then, for each 1 < p <∞, the operators

ν ∧ Sk : X p
nor(∂Ω) −→ X p

nor(∂Ω), (5.49)

ν ∨ Sk : X p
tan(∂Ω) −→ X p

tan(∂Ω) (5.50)

are compact. Furthermore, for k1, k2 ∈ C \ {±kj}j, so are

ν ∧ Ck1 − ν ∧ Ck2 : X p
nor(∂Ω) −→ X p

nor(∂Ω), (5.51)

ν ∨ Ck1 − ν ∨ Ck2 : X p
tan(∂Ω) −→ X p

tan(∂Ω). (5.52)

Proof. Indeed, let (fα)α be a bounded sequence in X p
nor(∂Ω). The aim is to

prove that, by eventually restricting to a subsequence, {ν∧Skfα}α converges
in X p

nor(∂Ω). In turn, since

‖ν ∧ Skfα − ν ∧ Skfβ‖Xp
nor(∂Ω) ≤ ‖Sk(fα − fβ)‖Lp(Ω,E)+

+‖dSk(fα−fβ)‖Lp(Ω,E) =

= ‖Sk(fα − fβ)‖Lp(Ω,E) + ‖Sk(d∂fα − d∂fβ)‖Lp(Ω,E) (5.53)

it suffices to show that Sk : Bp,p
−1/p(∂Ω, E) → Lp(Ω, E) is a compact operator.

This, however, is an immediate consequence of (5.16) and Rellich’s selection
lemma.

This proves that the operator (5.49) is compact. The case of (5.50) is
similar.

As for the second part of the proposition, from what we have proved so
far and (5.47)–(5.48), it suffices to show that Mk1 −Mk2 and Nk1 −Nk2 are
compact operators on X p

tan(∂Ω) and X p
nor(∂Ω), respectively.

In turn, this claim follows from the fact that the main singularity in
Γk(x, y) is actually independent of k. The idea is that this implies that
operators with integral kernels Γk1(x, y)−Γk2(x, y), dΓk1(x, y)−dΓk2(x, y),
δΓk1(x, y)−δΓk2(x, y), are only weekly singular; cf. [19], [18] for details. �

6. Finite Energy Solutions for Half-Dirichlet Problems

In this section we initiate the study of (1.2), by considering the case when
η = 0 and when solutions have finite energy. That is, we shall work with
the class of functions u satisfying

∫∫

Ω

[

|u|2 + |du|2 + |δu|2
]

dVol < +∞. (6.1)
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Thus, the context is somewhat analogous to that for Maxwell’s equations
in the L2 setting (cf. [7], Vol. I, pp. 96-97 or Vol. III, p. 240, [4], p. 68 and
[25], Vol. I, p. 169). Our approach is variational, and the departure point is
the following general functional analytic result.

Proposition 6.1. Let H be a Hilbert space and suppose that T :
Dom (T )(⊆ H) −→ H is a linear, unbounded closed, densely defined op-

erator, which also satisfies T 2 = 0.
Then T +T ∗ is self-adjoint, its spectrum, Spec (T +T ∗), is a subset of R

and, for each complex number z /∈ Spec (T + T ∗), there holds

‖w‖H + ‖Tw‖H + ‖T ∗w‖H ≤ Cz‖(zI − T − T ∗)w‖H , (6.2)

uniformly for w ∈ Dom (T + T ∗).

Proof. For starters, we note that Dom (T + T ∗) = Dom(T ) ∩ Dom (T ∗) is
dense in H , as a consequence of (6.5) below. Next, since (T ∗)∗ = T̄ = T , it
follows that T + T ∗ = T ∗ + (T ∗)∗ ⊆ (T + T ∗)∗, i.e. T + T ∗ is symmetric
(cf., e.g., p. 191 in [26], or [14]).

To prove the opposite inclusion, fix some arbitrary u ∈ Dom ((T +T ∗)∗).
It follows that there exists w ∈ H so that

〈(T+T ∗)v, u〉 = 〈v, w〉, ∀ v ∈ Dom (T+T ∗) = Dom (T )∩Dom (T ∗). (6.3)

We aim at showing that u ∈ Dom ((T ∗)∗) = Dom (T̄ ) = Dom (T ). To this
end, it suffices to prove that

|〈T ∗φ, u〉| ≤ C‖φ‖H , uniformly for φ ∈ Dom (T ∗). (6.4)

At this stage, we recall a lemma due to M. P.Gaffney [9] (cf. also Propo-
sition 1.3.8 in [8]) which states that, under the current hypotheses on T ,

S := I + TT ∗ + T ∗T is a self-adjoint operator on H, (6.5)

with a bounded, everywhere defined inverse

S−1 = (I + TT ∗)−1 + (I + T ∗T )−1 − I.

All operators above are considered in the sense of composition of unbounded
operators. For further reference, let us also note that S ≥ I ⇒ S−1 ≤ I ; in
particular,

‖S−1‖ ≤ 1. (6.6)

With an eye toward (6.4), fix an arbitrary φ ∈ Dom (T ∗) and set ψ := S−1φ.
It follows that ψ ∈ Dom (S) and ‖ψ‖H ≤ ‖φ‖H . Also, simple calculations
give

〈φ− ψ, ψ〉 = ‖ψ‖2
H + ‖T ∗ψ‖2H + ‖Tψ‖2H and

‖φ− ψ‖2H = ‖TT ∗ψ‖2H + ‖T ∗Tψ‖2H .
(6.7)

Thus, ‖TT ∗ψ‖H , ‖T ∗ψ‖H≤C‖φ‖H . Next, we claim that TT ∗ψ∈Dom (T +
T ∗) and note that, granted T 2 = 0, this comes down to checking the mem-
bership of TT ∗ψ to Dom (T ∗). Nonetheless, this is a direct consequence of
φ = ψ + TT ∗ψ + T ∗Tψ, φ ∈ Dom (T ∗), and the fact that (T ∗)2 = 0. Thus,
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using v := TT ∗ψ in (6.3) and observing that (T + T ∗)v = T ∗(TT ∗ψ) =
T ∗φ− T ∗ψ, yields

〈T ∗φ, u〉 = 〈(T + T ∗)v, u〉+ 〈T ∗ψ, u〉 = 〈TT ∗ψ,w〉+ 〈T ∗ψ, u〉. (6.8)

With this at hand and our previous estimates on TT ∗ψ, T ∗ψ, (6.4) readily
follows. Thus, u ∈ Dom (T ). The same reasoning but with T replaced by
T ∗ also gives that u ∈ Dom (T ∗) so that, ultimately, u ∈ Dom (T + T ∗).
Thus, Dom((T + T ∗)∗) ⊆ Dom (T + T ∗) so that (T + T ∗)∗ = T + T ∗, as
desired.

We are left with proving (6.2). Fix z /∈ Spec (T+T ∗), w ∈ Dom (T +T ∗),
and set u := (zI − T − T ∗)w ∈ H . Then, it follows that

‖w‖H = ‖(zI − T − T ∗)−1u‖H ≤ Cz‖u‖H . (6.9)

Also, a straightforward calculation (which utilizes the fact that T 2 = 0)
gives

‖Tw‖2H + ‖T ∗w‖2H = ‖u‖2H − |z|2‖w‖2H + 4(Re z)(Re 〈Tw,w〉). (6.10)

Since, for each ε > 0, the right hand side above is ≤ ‖u‖2
H + Cz,ε‖w‖2H +

ε‖Tw‖2H , for some appropriately large constant Cz,ε, the estimate (6.2) fol-
lows from this and (6.9). �

Our next theorem deals with the half-Dirichlet boundary value problem
for the Dirac operator Dk in the class of forms of finite (global) L2-energy.

Theorem 6.2. For each arbitrary Lipschitz domain Ω in M there exists

a sequence of real numbers {k∧j }j which does not accumulate in R and with

the following significance. For any complex number k /∈ {k∧j }j the boundary

problem
{

Dku = 0 in Ω,

ν ∧ u = f ∈ B2,2

− 1
2

(∂Ω, E)
(6.11)

is solvable in the class of forms of (global) L2-energy, i.e. satisfying u, du,
δu ∈ L2(Ω, E), if and only if f ∈ X 2

nor(∂Ω). In this latter case, the solution

is unique and

‖u‖L2(Ω) + ‖du‖L2(Ω) + ‖δu‖L2(Ω) ≈ ‖f‖X 2
nor(∂Ω) (6.12)

uniformly in f .
Furthermore, there exists a sequence of real numbers {k∨j }j (with no finite

accumulation point) so that for any complex number k /∈ {k∧j }j the dual

problem
{

Dku = 0 in Ω,

ν ∨ u = g ∈ B2,2

− 1
2

(∂Ω, E)
(6.13)

is well-posed in the class of forms satisfying u, du, δu ∈ L2(Ω, E), if and

only if g ∈ X 2
tan(∂Ω). In this latter situation, we also have

‖u‖L2(Ω) + ‖du‖L2(Ω) + ‖δu‖L2(Ω) ≈ ‖g‖X 2
tan(∂Ω) (6.14)

uniformly in g.
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In the proof of this theorem (as well as later on), the following regularity
result from [19], [24] is going to be important.

Theorem 6.3. For any Ω arbitrary Lipschitz domain in M there exists

ε = ε(Ω) > 0 with the following significance. Assume that 2− ε < p < 2 + ε
and that the form u ∈ Lp(Ω, E) has, in the sense of distributions, du ∈
Lp(Ω, E) and δu ∈ Lp(Ω, E). Then the following are equivalent:

(i) ν ∨ u, initially considered as a distribution, actually belongs to

Lp(∂Ω, E) (thus, in fact, to Lp
tan(∂Ω, E));

(ii) ν ∧ u, initially considered as a distribution, actually belongs to

Lp(∂Ω, E) (hence, in fact, to Lp
nor(∂Ω, E)).

Moreover, if (i) or (ii) above is valid, then u ∈ Bp,p#

1/p (Ω, E) (recall that

p# := max {p, 2}). Also, naturally accompanying estimates are valid in

each case.

We now turn to the task of presenting the

Proof of Theorem 6.2. Consider δ as a densely defined, closed, unbounded
operator on L2(Ω, E), with domain Dom(δ;L2(Ω, E)), and set T := −dt ·δ =
δ(dt·). Since T 2 = 0, Proposition 6.1 applies and gives that T + T ∗ is self-
adjoint on L2(Ω, E). Note that the domain of T ∗ = δ∗(dt·) = −dt · δ∗ is
{u ∈ Dom(d;L2(Ω, E)); ν ∧ u = 0}. Thus,

Dom(T + T ∗) =

= {u ∈ L2(Ω, E); du, δu ∈ L2(Ω, E), ν ∧ u = 0} ↪→ B2,2
1/2(Ω, E), (6.15)

where the last inclusion follows from Theorem 6.3. In particular, Dom (T +
T ∗) ↪→ L2(Ω, E) is compact, by Rellich’s selection lemma. In this scenario,
it is well-known that Spec (T +T ∗) consists only of real eigenvalues of finite
multiplicity and which accumulate only at ±∞. Denote by {k∧j }j this set.

Hence, if Dk,∧ := dt · (kI − T − T ∗) = δ∗ + δ + k dt·, in the sense of un-
bounded operators, we have that (Dk,∧)−1 exists and is a bounded operator
on L2(Ω, E) for each complex number k /∈ {k∧j }j .

Let us now turn our attention to the boundary problems in the statement
of the theorem under discussion. The fact that f ∈ X 2

nor(∂Ω) is a necessary
condition for the solvability of (6.11) in the class of finite L2-energy forms
is clear from definitions. Conversely, let f ∈ X 2

nor(∂Ω) be arbitrary and fix
some k /∈ {k∧j }j . Then there exists w ∈ Dom(d;L2(Ω)) so that f = ν ∧ w
and ‖f‖X 2

nor(∂Ω) ≈ ‖w‖L2(Ω,E) + ‖dw‖L2(Ω,E).
Indeed, we claim that w can be chosen with the additional property

that δ w = 0. To see this, we invoke the Hodge decomposition w =
dα+ δβ+ γ, where α ∈ Dom (d;L2(Ω; E)), ν ∧α = 0, β ∈ Dom (δ;L2(Ω; E))
and γ ∈ Dom (d;L2(Ω; E)) ∩ Dom (δ;L2(Ω; E)) satisfies ν ∧ γ = 0; see
Theorem 6.1 in [18]. Then, the fact that w ∈ Dom (d;L2(Ω; E)) entails
δβ ∈ Dom (d;L2(Ω; E)). Also, since ν ∧ dα = −d∂(ν ∧ α) = 0, it follows
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that f = ν ∧w = ν ∧ (δβ). Redenoting δβ by w shows that there is no loss
of generality in assuming that δw = 0.

If that this is the case, then a solution of (6.11) is given by

u := w − (Dk,∧)−1(Dkw). (6.16)

Notice that u has finite L2-energy and, by (6.2) in Proposition 6.1,

‖(Dk,∧)−1(Dkw)‖L2(Ω)+

+‖d(Dk,∧)−1(Dkw)‖L2(Ω) + ‖δ(Dk,∧)−1(Dkw)‖L2(Ω) ≤

≤ C‖Dkw‖L2(Ω) ≤ C(‖w‖L2(Ω) + ‖dw‖L2(Ω)) ≤ C‖f‖X 2
nor(∂Ω). (6.17)

From this, the estimate (6.12) follows easily. Finally, uniqueness follows
from our assumption that k /∈ Spec (T + T ∗). The proof of the portion of
the theorem concerning (6.11) is therefore finished.

As for (6.13), define this time Dk,∨, analogously to the operator Dk,∧.
Once again, (Dk,∨)−1 exists and is a bounded operator on L2(Ω, E) for any
complex number k, except for a subset {k∨j }j of R without finite accumu-
lation points. The rest is much as before. �

A very useful consequence of this theorem is recorded below.

Corollary 6.4. Let Ω be a Lipschitz domain in M and fix a complex

number

k /∈ {k∧j }j ∪ {k∨j }j . (6.18)

Then

‖ν ∧ u‖X 2
nor(∂Ω) ≈ ‖ν ∨ u‖X 2

tan(∂Ω) (6.19)

uniformly for forms u satisfying

u, du, δu ∈ L2(Ω, E), and Dku = 0 in Ω. (6.20)

Proof. Our assumption on k ensures that (Dk,∧)−1 and (Dk,∨)−1 exist and
are bounded operators on L2(Ω, E). From Theorem 6.2 it follows that, under
the current hypotheses,

‖ν∧u‖X 2
nor(∂Ω) ≈ ‖u‖L2(Ω)+‖du‖L2(Ω)+‖δu‖L2(Ω) ≈ ‖ν∨u‖X 2

tan(∂Ω) (6.21)

uniformly in u satisfying (6.20). �

7. Inverting Boundary Layer Operators

Our next goal is to show that the operators (5.41)–(5.42) are actually iso-

morphisms for all p’s in some open interval containing 2 (further restrictions
on the complex parameter k are also needed).

Theorem 7.1. For each Lipschitz domain in Ω ⊆ M there exists a

discrete set U ⊆ R with no finite accumulation point and ε > 0 with the

following property. If 2− ε < p < 2 + ε and k ∈ C \ U , then the operators

in (5.41)–(5.42) are in fact isomorphisms.
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Proof. We shall only consider the case of (5.41) since the proof for (5.42) is
very similar.

Let us assume for a moment that the operators in (5.41) are invertible for
p := 2 and k := ko, some fixed, purely imaginary complex number. Then
the extension to the more general situation described in the statement of the
theorem is accomplished as follows. To begin with, since by Proposition 4.1
the family {X p

nor(∂Ω)}1<p<∞ is a complex interpolation scale, it follows that
there exists ε = ε(Ω) > 0 so that the operators in (5.41) are isomorphisms
if 2 − ε < p < 2 + ε and k = ko. This is a consequence of known stability
results (cf., e.g., [13] for a discussion).

Extending further the aforementioned invertibility result to arbitrary
wave numbers k ∈ C \ U , requires two other ingredients. First, recall that
ν ∧Ck − ν ∧Cko

is a compact operator on X p
nor(∂Ω) for any 1 < p <∞ and

k ∈ C \ {±kj}. In particular, if 2 − ε < p < 2 + ε, the operators in (5.41)
are Fredholm with index zero for any k as above. The second ingredient is
a general stability result (cf. [13]) to the effect that if a linear operator T ,
mapping a complex interpolation scale X p (of quasi-Banach spaces) bound-
edly into itself, is Fredholm with index zero on X p for 2−ε < p < 2+ε and is
invertible on X 2, then T is actually invertible on X p for each 2−ε < p < 2+ε.

Summarizing, at this stage it suffices to prove that the operators in (5.41)
are isomorphisms if p = 2 and k ∈ C \ U for some appropriate discrete set
U ⊆ R. For the time being, suppose that U contains {±k∧j }j , {±k∨j }j and

Spec (∆). Assuming that this is the case, for f ∈ X 2
nor(∂Ω) arbitrary, we set

u := DkSkf = Sk(d∂f) + δSkf + k dt · Skf, in Ω±. (7.1)

It follows that u, du, δu ∈ L2(Ω±, E) and Dku = 0 both in Ω+ and in Ω−.
Consequently, by Corollary 6.4 and our assumptions on k,

‖ν ∧ (u|Ω±)‖X 2
nor(∂Ω) ≈ ‖ν ∨ (u|Ω±)‖X 2

tan(∂Ω). (7.2)

The claim we make at this stage is that

ν ∨ (u|Ω+) = ν ∨ (u|Ω−) in X 2
tan(∂Ω). (7.3)

In order to see this, we note that the applications

X 2
nor(∂Ω) 3 f 7→ ν ∨ (u|Ω±) ∈ X 2

tan(∂Ω) (7.4)

are continuous. Hence, by (iii) in Proposition 4.1 (with p = 2), it suffices
to prove (7.3) when f ∈ L2,d

nor(∂Ω, E). In this case, based on the results of
Section 5 we see that, even in the sense of nontangential convergence to the
boundary,

ν ∨ u|∂Ω± = ν ∨ Sk(d∂f) + ν ∨
[

± 1
2ν ∨ f + δSkf

]

+ k ν ∨ (dt · Skf) =

= ν ∨ Sk(d∂f) + ν ∨ δSkf + k ν ∨ (dt · Skf). (7.5)

From this, (7.3) follows.
Next, notice that (5.45) gives

ν ∧ (u|Ω±) =
(

± 1
2I + ν ∧ Ck

)

f. (7.6)
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Armed with (7.3) and (7.6) we are finally ready to tackle the issue of in-
vertibility of the operators (5.41) when p = 2. Based on these and (7.2) we
may write:

‖f‖X 2
nor(∂Ω) ≤

∥

∥

(

1
2I + ν ∧ Ck

)

f
∥

∥

X 2
nor(∂Ω)

+
∥

∥

(

− 1
2I + ν ∧ Ck

)

f
∥

∥

X 2
nor(∂Ω)

=

= ‖ν ∧ (u|Ω−)‖X 2
nor(∂Ω) + ‖ν ∧ (u|Ω+)‖X 2

nor(∂Ω) ≤
≤ C‖ν ∨ (u|Ω−)‖X 2

tan(∂Ω) + C‖ν ∨ (u|Ω+)‖X 2
nor(∂Ω) ≤

≤ Cmin
{

‖ν ∨ (u|Ω+)‖X 2
nor(∂Ω) , ‖ν ∨ (u|Ω−)‖X 2

nor(∂Ω)

}

≤

≤ Cmin
{

‖ν ∧ (u|Ω+)‖X 2
nor(∂Ω) , ‖ν ∧ (u|Ω−)‖X 2

nor(∂Ω)

}

=

= Cmin
{∥

∥

(

1
2I + ν ∧ Ck

)

f
∥

∥

X 2
nor(∂Ω)

,
(

− 1
2I + ν ∧ Ck

)

f
∥

∥

X 2
nor(∂Ω)

}

. (7.7)

That is,

‖f‖X 2
nor(∂Ω)≤C

∥

∥

(

± 1
2I+ν∧Ck

)

f
∥

∥

X 2
nor(∂Ω)

uniformly for f∈X 2
nor(∂Ω). (7.8)

In particular, ± 1
2I+ν∧Ck : X 2

nor(∂Ω) → X 2
nor(∂Ω) are one-to-one and with

closed range.
At this point we need to recall a result from [21] according to which

± 1
2I + ν ∧ Ck are isomorphisms of L2,d

nor(∂Ω, E) for all complex k’s, except
a discrete subset of the real line. In concert with (iii) in Proposition 4.1,
this gives that the operators under discussion have also dense ranges when
acting on X 2

nor(∂Ω). Thus, by eventually enlarging U we may conclude that
the operators (5.41) are indeed isomorphisms of X 2

nor(∂Ω), as desired.
The remaining cases are treated in a similar fashion, and this completes

the proof of the theorem. �

Next, for 1 < p <∞, introduce

Yp
nor(∂Ω) := Lp

nor(∂Ω, E) ∩ X p
nor(∂Ω), (7.9)

Zp
nor(∂Ω) := {f ∈ X p

nor(∂Ω); d∂f ∈ Lp(∂Ω, E)} (7.10)

equipped with the norms

‖f‖Yp
nor(∂Ω) := ‖f‖Lp(∂Ω,E) + ‖f‖Xp

nor(∂Ω), (7.11)

‖f‖Zp
nor(∂Ω) := ‖f‖Xp

nor(∂Ω) + ‖d∂f‖Lp(∂Ω,E). (7.12)

Clearly, this makes Yp
nor(∂Ω) and Zp

nor(∂Ω) Banach spaces. Analogously,
we introduce

Yp
tan(∂Ω) := Lp

tan(∂Ω, E) ∩ X p
tan(∂Ω), (7.13)

Zp
tan(∂Ω) := {f ∈ X p

tan(∂Ω); δ∂f ∈ Lp(∂Ω, E)} (7.14)

and equip them with the natural norms.
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Theorem 7.2. Let Ω be a Lipschitz domain in M and let k be as in

Theorem 7.1. Then the operators

± 1
2 I + ν ∧ Ck : Yp

nor(∂Ω) −→ Yp
nor(∂Ω), (7.15)

± 1
2 I + ν ∧ Ck : Zp

nor(∂Ω) −→ Zp
nor(∂Ω) (7.16)

are well defined and bounded for each 1 < p <∞. Furthermore, there exists

ε = ε(Ω) > 0 so that for 2− ε < p < 2 + ε they are in fact isomorphisms.

Similar conclusions are valid for the operators

± 1
2 I + ν ∨ Ck : Yp

tan(∂Ω) −→ Yp
tan(∂Ω), (7.17)

± 1
2 I + ν ∨ Ck : Zp

tan(∂Ω) −→ Zp
tan(∂Ω). (7.18)

Proof. That the actions of ν ∧ Ck on Lp
nor(∂Ω, E) and on X p

nor(∂Ω) agree
on the intersection, can be seen via a routine limiting argument. Also, the
boundedness of 1

2I + ν ∧Ck on Yp
nor(∂Ω, E) follows from that of 1

2I + ν ∧Ck

on Lp
nor(∂Ω, E) and on X p

nor(∂Ω), separately.
Next, we consider the operators (7.16). Let f ∈ Zp

nor(∂Ω) and set u :=
DkSkf . Then

d∂

(

1
2I + ν ∧ Ck

)

f = d∂(ν ∧ u) =

= −ν ∧ du =

= ν∧
(

δSk(d∂f)
)

−k2ν ∧ Skf + k ν ∧
(

dt · Sk(d∂f)
)

=

=
(

1
2I + ν ∧ Ck

)

(d∂f)− k2ν ∧ Skf. (7.19)

In particular, by Lemma 5.2 plus the fact that ν∧Ck is a bounded mapping
of X p

nor(∂Ω) and of Lp(∂Ω, E) for each 1 < p <∞, we see that the operators
(7.16) are indeed well-defined and bounded.

Next, consider the issue of the invertibility of the operators (7.15)–(7.16)
when p is close to 2. First, injectivity on X p

nor(∂Ω) clearly entails injec-
tivity on Yp

nor(∂Ω, E) and Zp
nor(∂Ω, E). To show ontoness, in the light of

Theorem 7.1, it suffices to prove the implications

f ∈ X p
nor(∂Ω)

(

1
2I + ν ∧ Ck

)

f ∈ Lp
nor(∂Ω, E)

}

⇒ f ∈ Lp
nor(∂Ω, E), (7.20)

f ∈ X p
nor(∂Ω)

d∂

(

1
2I + ν ∧ Ck

)

f ∈ Lp
nor(∂Ω, E)

}

⇒ d∂f ∈ Lp
nor(∂Ω, E). (7.21)

To this end, let f be as in the left side of (7.20) and set u := DkSkf in Ω±.
As before,

{

u, du, δu ∈ Lp(Ω±, E),

ν ∧ (u|Ω+) =
(

1
2I + ν ∧ Ck

)

f ∈ Lp
nor(∂Ω, E).

(7.22)
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Theorem 6.3 applied to u in Ω+ then implies that

ν ∨ (u|Ω+) ∈ Lp
tan(∂Ω, E). (7.23)

Now, as in (7.3),

ν ∨ (u|Ω+) = ν ∨ (u|Ω−) (7.24)

so that, by (7.23),

ν ∨ (u|Ω−) ∈ Lp
tan(∂Ω, E). (7.25)

In turn, the first condition in (7.22) and (7.25) together with the same
regularity result (i.e. Theorem 6.3), applied this time to u in Ω−, yield

ν ∧ (u|Ω−) ∈ Lp
nor(∂Ω, E). (7.26)

With this at hand and using the fact that, by definition,

ν ∧ (u|Ω±) =
(

∓ 1
2I + ν ∧ Ck

)

f (7.27)

we arrive at the conclusion that

f =
(

1
2I + ν ∧ Ck

)

f −
(

− 1
2I + ν ∧ Ck

)

f =

= ν ∧ (u|Ω+)− ν ∧ (u|Ω−) ∈ Lp
nor(∂Ω, E). (7.28)

This proves (7.20) and concludes the proof of the part in Theorem 7.2 which
refers to the operators (7.15).

As for (7.21), note that if f is as in the left side of (7.21) then (7.19) and
Lemma 5.2 imply that d∂f ∈ X p

nor(∂Ω) has the property that
(

1
2I + ν ∧ Ck

)

(d∂f) ∈ Lp
nor(∂Ω, E).

Thus, by our assumptions on k and (7.20), it follows that d∂f ∈ Lp(∂Ω, E),
as wanted. This finishes the proof of the claim made in the statement of
the theorem for the operators (7.16).

Finally, the last part of the statement of the theorem follows in a similar
manner. �

8. The Poisson Problem for Dirac Operators

In this section we study the Poisson problem (1.2). The departure point
is the Lp-version of the half-Dirichlet problem (6.11), in the theorem below.

Theorem 8.1. Let Ω be a Lipschitz domain in M. Then there exists

a discrete set of real numbers U without finite accumulation points and ε =
ε(Ω) > 0 so that the following holds.

If 2− ε < p < 2 + ε and the complex number k satisfies k /∈ U , the Dirac

boundary value problem










u, du, δu ∈ Lp(Ω, E),

Dku = 0 in Ω,

ν ∧ u = f ∈ X p
nor(∂Ω),

(8.1)
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is uniquely solvable. Also, there exists C > 0 so that the solution u of (8.1)
satisfies

‖u‖Lp(Ω) + ‖du‖Lp(Ω) + ‖δu‖Lp(Ω) ≤ C‖f‖Xp
nor(∂Ω). (8.2)

Moreover, the following regularity statements are true:

(i) N (u) ∈ Lp(∂Ω) ⇔ f ∈ Yp
nor(∂Ω). If one (and, hence, both) of these

conditions is true then, actually, u ∈ Bp,p#

1/p (Ω, E);

(ii) N (du) ∈ Lp(∂Ω) ⇔ f ∈ Zp
nor(∂Ω). If one (and, hence, both) of

these conditions is valid then, in fact, du ∈ Bp,p#

1/p (Ω, E);

(iii) N (u), N (du), N (δu) ∈ Lp(∂Ω) ⇔ f ∈ Lp,d
nor(∂Ω, E). If one (and,

hence, both) of these conditions holds then

‖N (u)‖Lp(Ω) + ‖N (du)‖Lp(Ω) + ‖N (δu)‖Lp(Ω) ≤ C‖f‖Lp,d
nor(∂Ω,E). (8.3)

Finally, similar results hold for the dual problem, i.e.










u, du, δu ∈ Lp(Ω, E),

Dku = 0 in Ω,

ν ∨ u = g ∈ X p
tan(∂Ω).

(8.4)

Proof. Let ε > 0 and U ⊆ R be so that the conclusions of Theorem 7.1 and
Theorem 7.2 are valid for each 2− ε < p < 2 + ε and k ∈ C \ U . Granted
this, a solution to (8.1) can be expressed in the form

u := DkSk

[

(

1
2I + ν ∧ Ck

)−1
f
]

in Ω. (8.5)

From this (and the mapping properties of the operators involved), it is clear
that u satisfies the desired Lp estimates.

Turning our attention to the uniqueness part, assume that u is a null-
solution for (8.1). Then Theorem 6.3 applied to u and du (note that ν ∧
du = −d∂(ν ∧ u) = 0) gives that u, du ∈ Bp,p#

1/p (Ω, E). Since 0 = Dku =

du+ δu+ k dt · u = 0, we also see that δu ∈ Bp,p#

1/p (Ω, E). Consequently, by

standard embedding results, we see that u is also a null-solution for the Lp+γ

version of (8.1) for some γ > 0. This is an improvement over the original
regularity assumptions on u. Iterating this procedure finitely many times
yields that u is a null-solution for the L2 version of (8.1). At this stage,
granted that k /∈ {k∧j }j , which we can and will assume, we may conclude

(based on Theorem 6.2) that u = 0, as wanted.
Next, we consider the regularity statements. Clearly, the fact that f ∈

Yp
nor(∂Ω) entails N (u) ∈ Lp(∂Ω). The converse implication follows from

the fact that (∆ + k2)u = 0, N (u) ∈ Lp(∂Ω) ⇒ ∃u|∂Ω ∈ Lp(∂Ω, E) in
the sense of the nontangential convergence; cf. [19]. Note that, granted
the membership of f to Yp

nor(∂Ω), (8.5) entails the fact that u belongs to

Bp,p#

1/p (Ω, E). This proves (i).
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The left-to-right implication in (ii) is seen from the identity

ν ∧ du = −d∂(ν ∧ u) = −d∂f (8.6)

and the fact that (∆ + k2)(du) = 0, N (du) ∈ Lp(∂Ω) imply (du)|∂Ω ∈
Lp(∂Ω, E). To see the opposite implication in (ii) first we note that, by

Theorem 7.2, g :=
(

∓ 1
2I + ν ∧ Ck

)−1
f ∈ Zp

nor(∂Ω). Then, the desired
conclusion follows from the identity

du = −δSk(d∂g) + k2Skg − k dt · Sk(d∂g), (8.7)

and (ii) in Lemma 5.2. That any of the two conditions in (ii) implies the

membership of du to Bp,p#

1/p (Ω, E) is also seen from (8.7). Finally, (iii) is a

direct consequence of (i) and (ii). �

Corollary 8.2. Let Ω be a Lipschitz domain and let k ∈ C, ε = ε(Ω) > 0
be as in Theorems 7.1–7.2. Then, for 2 − ε < p < 2 + ε, consider the

normal-to-tangential operator

NTk : X p
nor(∂Ω) −→ X p

tan(∂Ω) (8.8)

given by

NTk(f) := ν ∨ u, (8.9)

where u is the solution of the boundary problem (8.1) with boundary datum

f . Then, for k as in the statement of Theorem 8.1, the following hold.

(i) NTk is an isomorphism of X p
nor(∂Ω) onto X p

tan(∂Ω);
(ii) NTk maps Yp

nor(∂Ω, E) isomorphically onto Yp
tan(∂Ω);

(iii) NTk maps Zp
nor(∂Ω, E) isomorphically onto Zp

tan(∂Ω).

Furthermore, the operators

ν ∧ Ck : X p
tan(∂Ω) −→ X p

nor(∂Ω) (8.10)

ν ∧ Ck : Yp
tan(∂Ω) −→ Yp

nor(∂Ω) (8.11)

ν ∧ Ck : Zp
tan(∂Ω) −→ Zp

nor(∂Ω) (8.12)

are isomorphisms. Finally, similar results are valid for the operator ν ∨Ck.

Proof. The first part is an immediate consequence of Theorem 8.1. Also,
the second part follows easily from Theorems 7.1–7.2, with the aid of the
identity ν ∧ Ck = −[ 12I + ν ∧ Ck ] ◦NT−1

k (cf. also [21]). �

Next we discuss the general Lp-Poisson boundary problem for the Max-
well-Dirac operator Dk with half-Dirichlet boundary conditions.

Theorem 8.3. For any Ω Lipschitz domain there exists ε = ε(Ω) > 0 and

a discrete subset U ⊆ R with the following significance. For any 2− ε < p <
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2+ε and k ∈ C\U , the Lp-Poisson boundary problem for the Maxwell-Dirac

operator Dk with half-Dirichlet boundary conditions:










Dku = η ∈ Lp(Ω, E),

u, du, δu ∈ Lp(Ω, E),

ν ∧ u = f ∈ X p
nor(∂Ω)

(8.13)

has a unique solution which also satisfies

‖u‖Lp(Ω) + ‖du‖Lp(Ω) + ‖δu‖Lp(Ω) ≤ C(‖η‖Lp(Ω) + ‖f‖Xp
nor(∂Ω)). (8.14)

Furthermore, a similar set of conclusions holds true when the dual bound-

ary condition is emphasized, i.e. for










Dkv = ξ ∈ Lp(Ω, E),

v, dv, δv ∈ Lp(Ω, E),

ν ∨ v = g ∈ X p
tan(∂Ω).

(8.15)

Proof. Assume that k and ε > 0 are as in Theorems 7.1–7.2, and introduce
the Newtonian potential

Πku(x) :=

∫∫

Ω

〈Γk(x, y), u(y)〉 dV(y), x ∈ Ω. (8.16)

As in the classical setting of the Euclidean space, for each 1 < p <∞,

Πk : Lp(Ω, E) −→ H2,p(Ω, E) (8.17)

is well-defined and bounded.
We look for a solution u of (8.13) expressed in the form

u := DkΠkη + Ckg, (8.18)

where g ∈ X p
nor(∂Ω) is yet to be determined. Note that, by Lemma 5.2, u

satisfies

‖u‖Lp(Ω) + ‖du‖Lp(Ω) + ‖δu‖Lp(Ω) ≤ C(‖η‖Lp(Ω) + ‖g‖Xp
nor(∂Ω)), (8.19)

as well as all the conditions in (8.13) except for the requirement that ν∧u =
f . However, choosing

g :=
(

1
2I + ν ∧ Ck

)−1
(

f − ν ∧ Tr (DkΠkη)
)

∈ X p
nor(∂Ω) (8.20)

takes care of this as well. Moreover, for this choice,

‖g‖Xp
nor(∂Ω) ≤ C(‖η‖Lp(Ω) + ‖f‖Xp

nor(∂Ω)), (8.21)

so that (8.21) and (8.19) yield (8.14). Uniqueness follows from the corre-
sponding uniqueness part in Theorem 8.1. This concludes the proof of the
first part of the theorem. Finally, the argument for the dual problem is
similar and we omit it. �
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We conclude this section by attempting to rephrase the Lp-Poisson prob-
lem (with half-Dirichlet boundary conditions) for the Maxwell-Dirac oper-
ator Dk in terms of differential forms on M. Thus, by ‘eliminating’ dt in
(8.13), the latter becomes















































E, dE, δE ∈ Lp(Ω, E),

H, dH, δH ∈ Lp(Ω, E),

δE + dE − ikH = J ∈ Lp(Ω, E),

δH + dH + ikE = K ∈ Lp(Ω, E),

ν ∧ E = f ∈ X p
nor(∂Ω, E),

ν ∧H = g ∈ X p
tan(∂Ω, E).

(8.22)

This is the Lp-Poisson problem for the elliptic version of the Maxwell system.
Theorem 8.3 then immediately translates into the following.

Theorem 8.4. For any Lipschitz subdomain Ω of M there exists some

ε = ε(Ω) > 0 and a discrete subset U ⊆ R (with no finite accumulation

points) having the following significance. For any 2 − ε < p < 2 + ε and

k ∈ C \ U , the Poisson problem for the generalized Maxwell system (8.22)
is well-posed.

The system (8.22) should be compared with the Lp-Poisson problem for
the ordinary Maxwell system, i.e.



























E,H ∈ Lp(Ω, E),

dE − ikH = J ∈ Lp(Ω, E),

δH + ikE = K ∈ Lp(Ω, E),

ν ∧ E = f ∈ X p
nor(∂Ω, E).

(8.23)

For a treatment of (8.23) see [18]. Notice that (8.23) splits into a direct
sum of boundary problems according to the degrees of the differential forms
involved.

Theorem 8.5. Retain the assumptions and notation in the previous

theorem. Then, when J = K = 0, (8.22) and (8.23) are equivalent if and

only if

g = −ik−1d∂f. (8.24)

Proof. This is seen as in [21], granted the results of this section. We leave
the details to the interested reader. �

9. Spectral Radius Estimates

In this section we study finer spectral properties of the operators ν ∧Ck,
ν ∨ Ck, Mk and Nk. Fix an arbitrary Lipschitz domain Ω and, for k as in
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Sections 5–8, consider the operators

Tk : X p
tan(∂Ω, E) −→ X p

nor(∂Ω, E),

Tkf := ν ∧
(

δdSkf |Ω
)

, f ∈ X p
tan(∂Ω, E), (9.1)

and

Rk : X p
nor(∂Ω, E) −→ X p

tan(∂Ω, E),

Rkg := ν ∨
(

dδSkg|Ω
)

, g ∈ X p
nor(∂Ω, E). (9.2)

Their main properties are summarized below.

Proposition 9.1. Let Ω be a Lipschitz subdomain of M and assume

that the complex parameter k is such that all results in Sections 5–8 hold.

Then the following are true.

(i) The operators Tk, Rk are well-defined and bounded for each 1 < p <
∞ and k ∈ C.

(ii) The following identities hold:

k2
(

− 1
2I +Mk

) (

1
2I +Mk

)

= Rk ◦ Tk, (9.3)

k2
(

− 1
2I +Nk

) (

1
2I +Nk

)

= Tk ◦Rk, (9.4)

and

Tk ◦Mk = Nk ◦ Tk, Rk ◦Nk = Mk ◦Rk. (9.5)

(iii) There exists ε > 0 so that for each 2− ε < p < 2 + ε the operators

(9.1), (9.2), are Fredholm with index zero for any k ∈ C. In fact,

except for k in a discrete subset of R, these operators are in fact

isomorphisms (for p near 2).
(iv) There holds

NTk = Tk ◦
(

− 1
2I +Mk

)−1
. (9.6)

(v) For any f ∈ X p
tan(∂Ω, E) and g ∈ X q

tan(∂Ω, E) with 1/p + 1/q = 1,
we have

〈Tkf, ν ∧ g〉 = 〈ν ∧ f, Tkg〉, (9.7)

where the pairings are understood in the sense of (vii) in Propo-

sition 4.1. A similar identity holds for the operator Rk.

Proof. For starters, note that

Tkf = −ν∧
(

dSk(δ∂f)|Ω
)

+k2 ν∧Skf = d∂(ν∧Sk(δ∂f))+k2 ν∧Skf. (9.8)

This and (5.21) then justify (i).
Next, we observe that if (∆ + k2)u = 0 in Ω, then the Green’s integral

representation formula

u = −dSk(ν ∨ u) + δSk(ν ∧ u) + Sk(ν ∧ δu)− Sk(ν ∨ du) (9.9)

holds whenever u, du, δu ∈ Dom(d;Lp(Ω, E))∩Dom(δ;Lp(Ω, E)); cf. [11] for
a similar identity in a slightly different context.
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Fix now f ∈ X p
tan(∂Ω, E) and write (9.9) for u := dSkf . Then the first

identity in (9.5) follows after some straightforward algebra. If, on the other
hand, we utilize u := δSkg, for g ∈ X p

nor(∂Ω, E) then we arrive at the second
identity in (9.5).

To see (9.3), we use (9.9) with u := dSkf , f ∈ X p
tan(∂Ω, E) and then apply

ν ∨ dδ to both sides. Similarly, (9.4) follows by writing (9.9) for u := δSkg,
g ∈ X p

nor(∂Ω, E) and applying ν ∧ δd to both sides.
Next, we note that if E := dSkf and H := δE in Ω±, then (E,H) solve

Maxwell’s equations (1.3). The fact that Tkf = ν ∧ (H |Ω) in concert with
NTk

(

ν ∨ (E|Ω)
)

= ν ∧ (H |Ω) translates precisely into (iv).
Consider now (v). By a standard density argument (cf. (iii) in Propo-

sition 4.1) we may take f ∈ ν ∧ C1(M, E)|∂Ω and g ∈ ν ∨ C1(M, E)|∂Ω.
Assuming that this is the case we write

〈ν ∧ dSk(δ∂f), ν ∧ g〉 = 〈dSk(δ∂f), g〉 = 〈Sk(δ∂f), δ∂g〉 =

= 〈δ∂f, Sk(δ∂g)〉 = 〈f, dSk(δ∂g)〉 =

= 〈ν ∧ f, ν ∧ dSk(δ∂g)〉. (9.10)

In the light of (9.1), the identity (9.7) follows. �

Theorem 9.2. Let Ω be a Lipschitz domain in M and let k be as in

Theorem 7.1. Then there exists ε = ε(Ω) > 0 so that for each 2−ε < p < 2+ε
the operators

λI + ν ∧ Ck : X p
tan(∂Ω) −→ X p

tan(∂Ω) (9.11)

λI + ν ∨ Ck : X p
nor(∂Ω) −→ X p

nor(∂Ω) (9.12)

are Fredholm with index zero for each λ ∈ C \ (− 1
2 ,

1
2 ). In particular,

the essential spectral radius of ν ∨ Ck on X p
tan(∂Ω) is < 1

2 , (9.13)

and

the essential spectral radius of ν ∧ Ck on X p
nor(∂Ω) is < 1

2 . (9.14)

Proof. Since X p
tan(∂Ω) is a complex interpolation scale, it suffices to consider

the case p = 2 only. The extension to p ∈ (2 − ε, 2 + ε) then follows from
the stability of the property of being Fredholm; cf. the discussion in [13].
Also, there is no loss of generality in assuming that k ∈ iR \ 0, which we
shall do for the duration of this proof. In particular, kc = −k.

For an arbitrary, fixed f ∈ X 2
tan(∂Ω) consider E := dSkf and H := δE in

Ω±. Thus, dE = δH = 0, (∆+k2)E = (∆+k2)H = 0 and dH = k2E in Ω±.
Furthermore, Tkf = ν∧(H |Ω+) = ν∧(H |Ω− ) and f = ν∨(E|Ω− )−ν∨(E|Ω+ ).
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Consequently,

〈f, ν ∨ Tkf
c〉 = 〈ν ∨ (E|Ω−), [ν ∨ (ν ∧ (H |Ω−))]c〉 −

−〈ν ∨ (E|Ω+), [ν ∨ (ν ∧ (H |Ω+))]c〉 =

= −
∫∫

Ω−

{

〈E, [dH ]c〉 − 〈δE,Hc〉
}

dV −

−
∫∫

Ω+

{

〈E, [dH ]c〉 − 〈δE,Hc〉
}

dV =

=

∫∫

M

{

(−k2)c|E|2 + |H |2
}

dV , (9.15)

since the outward unit conormal to Ω− is −ν. Recalling that we are cur-
rently assuming that k ∈ iR \ 0, we may therefore write

‖f‖2X 2
nor(∂Ω) ≤ ‖ν ∨ (E|Ω−)‖2X 2

nor(∂Ω) + ‖ν ∨ (E|Ω+)‖2X 2
nor(∂Ω) ≤

≤ C

∫∫

Ω−

{

|E|2 + |δE|2
}

dV + C

∫∫

Ω+

{

|E|2 + |δE|2
}

dV ≤

≤ C

∫∫

M

{

(−k2)c|E|2 + |H |2
}

dV =

= 〈f, ν ∨ Tkf
c〉. (9.16)

Next, we make the claim that

〈Mkf, ν ∨ Tkf
c〉 ∈ R, ∀ f ∈ X 2

tan(∂Ω). (9.17)

To see this, we use the commutativity of the diagram (5.31) along with the
first intertwining identity in (9.5) to write

〈Mkf, ν ∨ Tkf
c〉 = 〈f, ν ∨NkTkf

c〉 = 〈f, ν ∨ TkMkf
c〉 =

= 〈ν ∨ Tkf,Mkf
c〉 = [〈Mkf, ν ∨ Tkf

c〉]c; (9.18)

(recall that k ∈ iR). This justifies (9.17).
At this stage, we compute

∣

∣Im 〈(λI +Mkf), ν ∨ Tkf
c〉

∣

∣ =
∣

∣Imλ
∣

∣〈f, ν ∨ Tkf
c〉 ≥

≥ C
∣

∣Imλ
∣

∣‖f‖2X 2
tan(∂Ω), (9.19)

by (9.16). From this, it readily follows that

λ ∈ C \ R, k ∈ iR \ 0 =⇒ ‖(λI +Mk)f‖X 2
tan(∂Ω) ≥ Cλ‖f‖X 2

tan(∂Ω). (9.20)
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In particular,

λ ∈ C \ R, k ∈ iR \ 0 =⇒ λI +Mk (9.21)

Fredholm with index zero on X 2
tan(∂Ω).

Next, if λ ∈ ( 1
2 ,∞), we write

〈(λI +Mkf), ν ∨ Tkf
c〉 = 〈( 1

2I +Mkf), ν ∨ Tkf
c〉+

+
(

λ− 1
2

)

〈f, ν ∨ Tkf
c〉 =: I + II. (9.22)

Now,

I = 〈ν ∨ (E|Ω−), ν ∨ (ν ∧ (HΩ−))c〉 =

= −
∫∫

Ω−

{

〈E, [dH ]c〉 − 〈δE, [H ]c〉
}

dV =

=

∫∫

Ω−

{

(−k2)c|E|2 + |H |2
}

dV ≥ 0, (9.23)

whereas II ≥ Cλ‖f‖2X 2
tan(∂Ω)

, by (9.16). At this point we may therefore

conclude that λI +Mk is bounded from below on X 2
tan(∂Ω) whenever λ ∈

( 1
2 ,∞) and k ∈ iR. Thus, in this setting, λI +Mk is Fredholm with index

zero.
When λ ∈ (−∞,− 1

2 ) and k ∈ iR we write

〈(λI +Mkf), ν ∨ Tkf
c〉 = 〈(− 1

2I +Mkf), ν ∨ Tkf
c〉+

+
(

λ+ 1
2

)

〈f, ν ∨ Tkf
c〉 =: III + IV. (9.24)

This time,

III = 〈ν ∨ (E|Ω+), ν ∨ (ν ∧ (H |Ω+))c〉 =

=

∫∫

Ω+

{

〈E, [dH ]c〉 − 〈δE, [H ]c〉
}

dV =

= −
∫∫

Ω+

{

(−k2)c|E|2 + |H |2
}

dV ≤ 0, (9.25)

and IV ≤ Cλ‖f‖2X 2
tan(∂Ω)

for some positive constant Cλ. Nonetheless, in

this setting, it follows once again that λI + Mk is bounded from below
on X 2

tan(∂Ω). Accordingly, λI + Mk is Fredholm with index zero for λ ∈
(−∞,− 1

2 ) and k ∈ iR, as well.
Summarizing, at this point we have proved that λI + Mk is Fredholm

with index zero on X 2
tan(∂Ω) for each λ ∈ C \ [− 1

2 ,
1
2 ] and each k ∈ iR \ 0.

In the light of Proposition 5.4 and Proposition 5.5, this further implies that



40 Dorina Mitrea and Marius Mitrea

λI+ν∧Ck is Fredholm with index zero on X 2
tan(∂Ω) for each λ ∈ C\ [− 1

2 ,
1
2 ]

and each k as in Theorem 7.1.
In concert with Theorem 7.1 (where the endpoints λ = ± 1

2 have been
treated) this ultimately proves the claim made in the statement of Theo-
rem 9.2 about the operator (9.11). The case of the operator (9.12) follows
from what we have proved up to this point and duality (or by proceeding
in a similar manner). �

We now state a simple lemma to the effect that the spectral radius of
a linear, bounded operator acting on a complex interpolation scale is loga-
rithmically convex.

Lemma 9.3. Assume that T : Xi → Xi, i = 0, 1, is a bounded, linear

operator between two pairs of Banach spaces. Denote by r(T ;X) the spectral

radius of T on X. Then

r(T ; [X0, X1]θ) ≤ r(T ;X0)
1−θr(T ;X1)

θ (9.26)

for each 0 ≤ θ ≤ 1.

Proof. Let us Denote by ‖T‖L(X) the operator norm of T on X . Then, for
each positive integer n, the interpolation inequality

‖T‖L([X0,X1]θ) ≤ ‖T‖1−θ
L(X0)

‖T‖θ
L(X1)

(9.27)

holds for each fixed θ ∈ [0, 1]. Taking the n-th root of both sides and letting
n→∞ yields (9.26). �

Theorem 9.4. If k ∈ C is such that |Im k| > |Re k| then the spectral

radius of Mk on X p
tan(∂Ω) is < 1

2 for each 2 − ε < p < 2 + ε. A similar

result holds for Nk on X p
nor(∂Ω).

Proof. We know, from Lemma 9.3, that the property that r(T ;X) < 1
2 is

amenable to interpolation; hence, by (iv) in Proposition 4.1 it suffices to
treat the case p = 2 only.

In this later scenario, the estimate

‖f‖X 2
tan(∂Ω) ≤ Cλ‖(λI +Mkf)‖X 2

tan(∂Ω), λ ∈ C, |λ| > 1
2 , (9.28)

has been established in the proof of Theorem 9.2 when k ∈ iR. In fact,
much as in Lemma 7.3, p. 949-950 of [11], the same conclusion holds when
k ∈ C is such that |Im k| > |Re k|.

This easily leads to the desired conclusion for the operator Mk. The case
of Nk is similar (alternatively, one can use duality; cf. Proposition 5.3). �
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For each parameter µ ∈ C, consider the Dirac transmission boundary
value problem







































u, du, δu ∈ Lp(Ω+, E),

w, dw, δw ∈ Lp(Ω−, E),

Dku = η ∈ Lp(Ω+, E),

Dkw = ζ ∈ Lp(Ω−, E),

ν ∧ u− µ ν ∧ w = f ∈ X p
nor(∂Ω),

ν ∨ u− ν ∨ w = g ∈ X p
tan(∂Ω).

(9.29)

The main goal is to discuss the well-posedness of (9.29). Eventually, we
shall prove the following.

Theorem 9.5. For each Lipschitz domain Ω ⊂M there exists ε > 0 and

a discrete set of numbers U ⊂ R without finite accumulation points so that

the following holds.

For each transmission parameter µ ∈ C \ (−∞, 0), µ 6= 1, the problem

(9.29) is Fredholm solvable, with index zero, whenever 2− ε < p < 2+ ε and

k /∈ U .

If, in fact, |Im k| > |Re k| and µ > 0, µ 6= 1, then the problem (9.29) is

actually is uniquely solvable, with natural estimates.

For the time being we study the uniqueness issue.

Lemma 9.6. Suppose that |p − 2| is sufficiently small and that µ > 0,
µ 6= 1. Also, assume that k satisfies |Im k| > |Re k|. Then the boundary

problem (9.29) has at most one solution.

Proof. By linearity we may assume that f = 0, g = 0, and η = 0, ζ = 0; our
goal is to prove that u = 0 and w = 0. From Theorem 8.1, we know that
any null-solutions u, w of Dk which also satisfy the conditions in the first
two lines of (9.29) admit the integral representation formula u = Ck(h1),
w = Ck(h2), for some h1, h2 ∈ X p

nor(∂Ω). The fact that ν ∨ u = ν ∨ w then
forces ν ∨ Ck(h1 − h2) = 0 and, ultimately, h1 = h2 =: h, provided k is as
in Sections 7–8.

Our immediate priority is to show that h is more regular than arbitrary
sections in X p

nor(∂Ω). Indeed, the Cauchy integral representation formulas
for u and w give that 0 = ν ∧ u − µ ν ∧ w = (µ − 1)(λI + ν ∧ Ck)h,
where λ := (µ+ 1)/[2(µ− 1)] ∈ R \ (− 1

2 ,
1
2 ). Consequently, Proposition 5.4

and Theorem 9.4 eventually give h ∈ L2,d
nor(∂Ω, E) (assuming that p was

sufficiently close to 2, to begin with). Thus,

N (u), N (du), N (δu)∈L2(∂Ω) and N (u), N (du), N (δu)∈L2(∂Ω). (9.30)

Having established the regularity statement (9.30) allows us to justifies
the integration by parts identity

∫∫

Ω

{

|du|2 + |δu|2
}

dV =

∫∫

Ω

〈u,−∆uc〉 dV+
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+

∫

∂Ω

〈ν ∧ u, duc〉 dσ −
∫

∂Ω

〈ν ∨ u, δuc〉 dσ. (9.31)

Going further, we replace −∆uc by (k2)cuc and duc, δuc by −δuc−kcdt ·uc

and −duc − kcdt · uc, respectively. A useful identity at this stage is Re〈ν ∧
u, dt ·uc〉 = Re〈ν∨u, dt ·uc〉, which can be seen with the help of (2.6). Thus,
after taking the real parts of both sides and cancelling the terms involving
dt, the identity (9.31) becomes

∫∫

Ω

{

|du|2 + |δu|2 −Re(k2) |u|2
}

dV =

= Re

∫

∂Ω

〈ν ∨ u, duc〉 dσ −Re

∫

∂Ω

〈ν ∧ u, δuc〉 dσ =

= −Re

∫

∂Ω

〈ν ∨ u, ν ∨ (d∂(ν ∧ u))c〉 dσ +

+Re

∫

∂Ω

〈ν ∧ u, ν ∧ (δ∂(ν ∨ u))c〉 dσ. (9.32)

Utilizing the transmission boundary conditions in the last two integrals and
then retracing essentially the integration by parts formulas (with w, Ω−,
−ν in place of u, Ω+, ν), we arrive at

∫∫

Ω+

{

|du|2 + |δu|2 −Re(k2) |u|2
}

dV =

= −µ
∫∫

Ω−

{

|dw|2 + |δw|2 −Re(k2) |w|2
}

dV . (9.33)

Since, by assumption, |Im k| > |Re k| and µ > 0, this last identity ultimately
forces u = w = 0, as desired. �

We now temporarily digress in order to comment on the invertibility of
the operators (9.11)–(9.12). At the level of L2 spaces, such a result has been
proved in [21].

Proposition 9.7. Let Ω be a Lipschitz domain in M and assume that

k satisfies |Im k| > |Re k|. Then there exists ε = ε(Ω) > 0 so that for each

2− ε < p < 2 + ε the operators

λI + ν ∧ Ck : X p
nor(∂Ω) −→ X p

nor(∂Ω), (9.34)

λI + ν ∨ Ck : X p
tan(∂Ω) −→ X p

tan(∂Ω) (9.35)

are invertible for each λ ∈ R \ (− 1
2 ,

1
2 ).

Proof. From Theorem 9.2 we know that the operators in question are Fred-
holm with index zero. Therefore, there remains to establish that they are
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also one-to-one. Now, an inspection of the proof of Lemma 9.6 reveals that
uniqueness for (9.29) (for all µ’s positive, 6= 1) is equivalent with the fact
that (9.11)–(9.12) are one-to-one (for all real λ’s outside (− 1

2 ,
1
2 )). Thus,

by Lemma 9.6, the operators under discussion are also one-to-one (in the
current setting); the desired conclusion follows.

Parenthetically, we would like to point out that instead of Lemma 9.6,
we could have used (7.76) in [21]. �

We are now ready to present the final details in the
Proof of Theorem 9.5. By the results in Section 8, there exists a discrete
set U ⊂ R such that, whenever k ∈ C \ U , the following is true: any u,
w satisfying the conditions in the first four lines of (9.29) can be uniquely
represented as

u = DkΠkη + Ckh1, w = DkΠkζ + Ckh2,

for some h1, h2 ∈ X p
nor(∂Ω). (9.36)

Corresponding to these integral representation formulas, the boundary con-
ditions in (9.29) come down to

ν ∨ Ck(h1 − h2) = g − ν ∨ DkΠkη + ν ∨ DkΠkζ, (9.37)

( 1
2I + ν ∧ Ck)h1 − µ(− 1

2I + ν ∧ Ck)h2 =

= f − ν ∧ DkΠkη + µ ν ∧ DkΠkζ. (9.38)

Solving for h2 in (9.37) and substituting its expression in (9.38) yields an
equation of the form (λI + ν ∧ Ck)h1 = F , where λ := (µ + 1)/[2(µ −
1)] ∈ C \ (− 1

2 ,
1
2 ) and F ∈ X p

nor(∂Ω) has an explicit (linear) formula in
terms of f, g, η, ζ. In particular, the index of the problem (9.29) equals
Index (λI + ν ∧ Ck) = 0.

Given Lemma 9.6, the proof of the theorem is therefore finished. �

10. Further Spectral Analysis of the Operator Ck

In this section we shall work in the Euclidean context, i.e. M≡ R
m. Let

{ej}j be the canonical orthonormal basis in R
m and set em+1 := dt. The

starting point is the following Rellich type identity from [16]. To state it,
we define (u)0 as the scalar part of the ⊕`Λ

`-valued function u. Also, set
u± := {u± ū}/2.

Theorem 10.1. Let Ω ⊂ R
m be a Lipschitz domain and assume that

k ∈ iR and Dku = uDk = 0 in Ω. Then the following identities hold:
∫

∂Ω

|u|2νm dσ = ±2 Re

( ∫

∂Ω

em u (νu)c
± dσ

)

0

= ±2 Re

( ∫

∂Ω

(uν)c
±u em dσ

)

0

=

= ±2 Re

( ∫

∂Ω

(em u)c
± ν̄ ū dσ

)

0

= ±2 Re

( ∫

∂Ω

ū ν̄ (u em)c
± dσ

)

0

.
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We now discuss a more elaborated version of Theorem 10.1. Define the
tangent vector field t to ∂Ω by setting at almost every point on ∂Ω

t := em − 〈em, ν〉n = em − νmν.

Theorem 10.2. Assume the same hypotheses as in the previous theorem

and, besides, that the function u is Λ`+1-valued. Then
∫

∂Ω

(−νm)|ν ∧ u|2 dσ −
∫

∂Ω

(−νm)|ν ∨ u|2 dσ=2Re

∫

∂Ω

〈t ∨ u, ν ∨ uc〉 dσ =

=−2Re

∫

∂Ω

〈t ∧ u, ν ∧ uc〉 dσ.

Proof. Let ε stand for the sign of (−1)
`(`+1)

2 . From the easily checked iden-
tities

(νu)+ =







ν ∧ u, if `(`+1)
2 is odd,

−ν ∨ u, if `(`+1)
2 is even,

(10.1)

(νu)− =







ν ∧ u, if `(`+1)
2 is even,

−ν ∨ u, if `(`+1)
2 is odd.

(10.2)

we know that (νu)ε = −ν ∨ u. Consequently,

(νu (νu)c
ε)0 = (−1)

`(`+1)
2 |ν ∨ u|2.

Recall from Theorem 10.1 that

∫

∂Ω

|u|2 νm dσ = 2(−1)
`(`+1)

2 Re





∫

∂Ω

em u (νu)c
ε dσ





0

.

In the left-hand side, we use

|u|2 = |νu|2 = |ν ∨ u|2 + |ν ∧ u|2.
As for the right-hand side, we use the fact that emu = tu+ νmνu, so that

(em u(νu)c
ε)0 = ((tu)(νu)c

ε)0 − (−1)
`(`+1)

2 (−νm)|ν ∨ u|2 =

= −(−1)
`(`+1)

2 〈t ∨ u, ν ∨ uc〉 − (−1)
`(`+1)

2 (−νm)|ν ∨ u|2.
Combining all these observations, we arrive at the desired identity. �

Remark . Set unor := ν ∧ (ν ∨ u). Later, we shall need the fact that t∧ u
and t ∧ unor are congruent modulo tangential forms. Indeed, this is seen
from

t ∧ u− t ∧ unor = t ∧ (u− ν ∧ (ν ∨ u)) = t ∧ (ν ∨ (ν ∧ u)) =

= −ν ∨ (t ∧ (ν ∧ u)) + 〈t, ν〉(ν ∧ u) =

= −ν ∨ (t ∧ (ν ∧ u)),
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since 〈t, ν〉 = 0. Now −ν ∨ (t ∧ (ν ∧ u)) is tangential and the conclusion
follows.

We shall use the identity in the previous theorem in the following context.
For some arbitrary, fixed B ∈ L2,d

nor(∂Ω,Λ`+1) we set

u := 1
ikdδSkB + i(−1)`+1δSkB em+1 (10.3)

in R
m\∂Ω. Set Ωi := Ω, Ωe := R

m\Ω̄ and denote by νi,e their outward unit
normal vectors. Clearly, νi = n = −νe. We denote by ui,e the nontangential
boundary traces of u on ∂Ωi,e, respectively. One can easily check that u
satisfies the hypotheses of the Theorem 10.2 both in Ωi and in Ωe, so that

∫

∂Ω

(−νi,e
m )|ν ∧ ui,e|2 dσ −

∫

∂Ω

(−νi,e
m )|ν ∨ ui,e|2 dσ = (10.4)

= −2Re

∫

∂Ω

〈t ∧ ui,e, νi,e ∧ (ui,e)c〉 dσ.

Next, for a fixed, arbitrary real number λ, we multiply the two identities
corresponding to writing (10.4) with boundary traces taken from the interior
and from the exterior, respectively, by λ ± 1

2 and then add them up. By

an earlier discussion, ν ∨ u does not jump across ∂Ω, i.e. ν ∨ ui = ν ∨ ue.
Also, (by the remark following the proof of the Theorem 10.2) the jump of
t ∧ u is in the ‘tangential direction’, i.e. t ∧ ui − t ∧ ue is a tangential form.
Therefore, the resulting equality reads

∫

∂Ω

(−νm)|ν ∨ u|2 dσ+ (10.5)

+

∫

∂Ω

(−νm)
(

(λ+ 1
2 )|ν ∧ ui|2 − (λ− 1

2 )|ν ∧ ue|2
)

dσ =

= −2Re

∫

∂Ω

〈t ∧ u , (λ+ 1
2 )ν ∧ (ui)c − (λ− 1

2 )ν ∧ (ue)c〉 dσ.

A rather lengthy, yet straightforward, calculation based on the trace formu-
las

ν ∧ ui,e = − 1
ik (d∂(± 1

2 I +Nk)B) + i(−1)`+1(± 1
2I +Nk)B em+1

allows us to transform (10.5) into

0 =
(

1
4 − λ2

)

∫

∂Ω

(−νm)
(

|B|2 + 1
|k|2 |d∂B|2

)

dσ+

+

∫

∂Ω

(−νm)
(

|(λI +Nk)B|2 + 1
|k|2 |d∂(λI +Nk)B|2

)

dσ−

−
∫

∂Ω

(−νm)|ν ∧ u|2dσ +

∫

∂Ω

2Re 〈t ∧ u ,
(

i(−1)`+1(λI +Nk)Bem+1 −
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− 1
ikd∂(λI +Nk)B

)c〉 dσ. (10.6)

This technical result is one of the key ingredients in our analysis of the
semi-Fredholm spectrum of Nk, which we now commence. The main es-
timate on which our analysis of the spectrum of the operator Nk rests is
contained in the following theorem.

Theorem 10.3. Let k ∈ iR+. Consider Ω the Lipschitz domain in

R
m above the graph of a Lipschitz function ϕ : R

m−1 → R with Lipschitz

constant ω. Also, let Hω ⊆ C be the interior of the hyperbola in R
2 ≡ C

having vertices at
(

±1

2

ω√
1 + ω2

, 0

)

and asymptotes with slopes ± 1
ω .

Then, for any complex number λ ∈ Hω, there exists a positive constant

C, depending on λ and ω but independent of k, such that, for any A ∈
L2,d

nor(∂Ω,Λ`) we have

‖A‖L2(∂Ω) + 1
|k| ‖d∂A‖L2(∂Ω) ≤

≤ C
(

‖(λI +Nk)A‖L2(∂Ω) + 1
|k| ‖d∂(λI +Nk)A‖L2(∂Ω)

)

. (10.7)

Based on the estimate (10.7) and elementary functional analysis, we read-
ily obtain the following.

Corollary 10.4. With the above hypotheses, we have that the operators

λI +Nk : L2,d
nor(∂Ω,Λ`) −→ L2,d

nor(∂Ω,Λ`), (10.8)

λI + ν ∧ Ck : L2,d
nor(∂Ω,⊕`Λ

`) −→ L2,d
nor(∂Ω,⊕`Λ

`) (10.9)

are Fredholm with index zero for each λ ∈ C \ Hω.

Proof of Theorem 10.3. We shall first prove that

(

λ2 − 1
4

)

∫

∂Ω

(−νm)|A|2 + 1
|k|2

(

λ2 − 1
4

)

∫

∂Ω

(−νm)|d∂A|2 ≤

≤ (1 + ω2)

∫

∂Ω

(−νm)|(λI +Nk)A|2+

+(1 + ω2) 1
|k|2

∫

∂Ω

(−νm)|d∂(λI +Nk)A|2 (10.10)

for any real λ with |λ| > 1
2 . Before proceeding with the proof of (10.10)

we first indicate how this estimate can be used to finish the proof of (10.7).
To this end, we note that simple applications of Hölder’s and Minkowski’s
inequalities show that for any µ ∈ C the right-hand side of (10.10) is ma-
jorized by

(1 + ω2)

∫

∂Ω

(−νm)|(µI +Nk)A|2 + (1 + ω2) 1
|k|2

∫

∂Ω

(−νm)|d∂(µI +Nk)A|2+
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+(1 + ω2)|µ− λ|2
∫

∂Ω

(−νm)|A|2 + 1
|k|2 (1 + ω2)|µ− λ|2

∫

∂Ω

(−νm)|d∂A|2+

+O
(

‖A‖L2(∂Ω)‖(µI +Nk)A‖L2(∂Ω)

)

+

+ 1
|k|2O

(

‖d∂A‖L2(∂Ω)‖d∂(µI +Nk)A‖L2(∂Ω)

)

.

Hence, the usual argument yields (10.7) (with µ in place of λ), provided
µ ∈ C is so that there exists λ ∈ R \ (− 1

2 ,
1
2 ) such that

(

λ2 − 1
4

)

−−(1 + ω2) |µ− λ|2 > 0.

Now a straightforward calculation shows that this is equivalent to the mem-
bership of µ to Hω and the theorem follows.

We are thus left with showing (10.10). The idea of proof is to further
refine the estimates used to establish (10.6). Let us first estimate the last
integral in (10.6). Recall the definition of u in (10.3) and the remark made
immediately after the proof of Theorem 10.2 to the effect that t ∧ u and
t∧(ν∧(ν∨u)) differ only by a tangential form. Also, since the decomposition

em = t+ νmν is orthogonal, we have |t|2 = 1− ν2
m = |∇ϕ|2

1+|∇ϕ|2 . In particular,

|t| ≤ (−νm)ω. Consequently, using the estimate

|t ∨ (ν ∨ (ν ∧ u))| ≤ |t · (ν ∨ (ν ∧ u))| = |t‖ν ∨ (ν ∧ u)| =
= |t‖ν ∧ u| ≤ ω (−νm)|ν ∧ u|,

and Hölder’s inequality, we get
∣

∣

∣

∣

∣

∣

∫

∂Ω

2Re 〈t ∧ u ,
(

i(−1)`+1(λI +Nk)Aem+1 − 1
ikd∂(λI +Nk)A

)c〉 dσ

∣

∣

∣

∣

∣

∣

≤

≤ 2

∫

∂Ω

|t ∧ (ν ∧ (ν ∨ u))|
∣

∣i(−1)`+1(λI+Nk)Aem+1− 1
ikd∂(λI +Nk)A

∣

∣ dσ≤

≤ 2ω





∫

∂Ω

(−νm)|ν ∧ u|2 dσ





1
2

×

×





∫

∂Ω

(−νm)
(

|(λI +Nk)A|2 + 1
|k|2 |d∂(λI +Nk)A|2

)

dσ





1
2

.

With some self-explanatory notation, the structure of this inequality is

|X | ≤ 2ωY 1/2Z1/2

(e.g., X :=
∫

∂Ω 2Re 〈·, ·〉 dσ, etc). Recall from (10.6), written with A in
place of B, that the left-hand side (LHS) in (10.10) satisfies

LHS = Z − Y +X.
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Hence,

LHS ≤ Z − Y + 2ωY 1/2Z1/2 ≤ Z + ω2Z = (1 + ω2)Z

which is precisely (10.10). The proof of the theorem is therefore complete. �
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