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ON THE SOLVABILITY OF SOME
BOUNDARY VALUE PROBLEMS FOR
SYMMETRIC FIRST ORDER HYPERBOLIC
SYSTEMS IN A DIHEDRAL ANGLE



Abstract. The paper suggests an approach, which makes it possible
to state well-posed characteristic problems in dihedral angles for a class of
symmetric first order hyperbolic systems. That class involves the systems
of differential equations of Maxwell, Dirac, and crystal optics for which
well-posed characteristic problems in dihedral angles are presented.
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1. INTRODUCTION

It is known that the Goursat problem or the so-called characteristic
problem for the second order hyperbolic equation admits different state-
ments when passing from two-dimensional multi-dimensional case. For ex-
ample, the characteristic problem for the multi-dimensional wave equation
can be formulated both in a conic domain, whose boundary is a character-
istic conoid, and in a dihedral angle, whose faces are characteristic surfaces.
In addition, on the boundary of the domain one can consider the boundary
Dirichlet condition, and these problems are assumed to be posed correctly
[1-7]. As to the correct statement of the characteristic problem, the situa-
tion becomes more complicated when in the multi-dimensional case we pass
from one equation to a system of hyperbolic equations. For instance, despite
the fact that for a split in the principal part second order hyperbolic system
the Goursat problem with the Dirichlet data on a characteristic conoid is
well-posed [8], we can find in [9] an example of a non-split in the principal
part second order hyperbolic system for which the corresponding homo-
geneous characteristic problem has an infinite set of linearly independent
solutions. The fact that even for a non-split in the principal part strictly hy-
perbolic system, whose cone of normals consists of infinitely smooth sheets,
the cones of rays corresponding to these sheets may have strong singularities
[10, p. 586] already is a complexity. Therefore difficulties arise already in
the course of the statement of the characteristic problem in which a carrier
of the boundary data should be pointed out. In this direction the works
[11, 12] are worth noticing.

In the present work we suggest an approach allowing us to formulate cor-
rect boundary value problems for a class of symmetric first order hyperbolic
systems, among them are the characteristic problems in dihedral angles. To
that class of systems belong, for instance, the well-known from the math-
ematical physics systems of differential equations of Maxwell, Dirac and
crystal optics.

At the end of the paper for each of these systems we present well-posed
statements of characteristic problems in dihedral angles.

As for the Cauchy and mixed type problems for symmetric first order
hyperbolic systems, they are well studied and treated in [13-16].

2. STATEMENT OF THE BOUNDARY VALUE PROBLEM. A PRIORI

ESTIMATE
In the space R™*! of variables z1,...,%, and t we consider a system of
first order differential equations of the type
n
Lu=Eus+ Y Ay, + Bu=F, (1)
i=1

where A;, B are given real (m x m)-matrices, E is the unit (m X m)-matrix,
F ig a given and wu is an unknown m-dimensional real vector, n > 1, m > 1.
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Below, the matrices A; will be assumed to be symmetric and constant.
In this case the system (1) is hyperbolic [10, p.587].

Denote by D = {(xl,...,xn,t) € R iadt+ 37 abe; <0, i= 1,2}
a dihedral angle bounded by the hypersurfaces S; : abt + Y ajzr; =0
and Sy : a2t + i oje; = 0, where of = (of,...,0},0f) is the unit
vector of the outer to D normal at the point of the face S; = SN oD,
i=1,2, a' # o®. For the sake of simplicity of our exposition, below it will
be assumed that af < 0,7 =1,2.

Let us consider the boundary value problem formulated as follows: find
in the domain D a solution u of the system (1) by the boundary conditions

Tl =f i=12, (2)
where I'* are given real constants (»5; X m)-matrices, and fi=(f{,..., fL.)
are given s;-dimensional real vectors, ¢ = 1, 2.

Remark 1. Below, depending on the geometric orientation of the dihedral
angle D, we will indicate a method of constructing the matrices I'*, i =1, 2,
for which the boundary value problem (1), (2) will be well-posed.

Get now back to the system (1). Since the matrix Q(¢') = — > | A&,
& = (&,...,&) € R", is symmetric, its characteristic roots are real. We
enumerate them in decreasing order: A1 (¢') > Ao (€') > - -+ > A (€'). Below,
multiplicities k1, ..., ks of these roots will be assumed to be constant, i.e.,
independent of £, and we assume

ME) = Q)E) = = X (&) > Xe(€) = Xpu 1 (E) =+ = Xy 4a (€) >

> Xa(€) = Ank41(€) == Xn(€),€ € BN(0,..,0)}. (3)
Note that by virtue of (3) and continuous dependence of the roots of the
polynomial on its coefficients, A; (£'), .. ., As (&) are continuous homogeneous
functions of degree 1 [17].
Since the matrix Q(¢') is symmetric, there exists an orthogonal matrix
T =T(¢') such that
(T1QT)(E) = diagM (&), -, M (€, A(E), - A(€). (&)

-

~~

k B
By (3) and (4), the normal cone
K={¢=(&,....&, &) € "™ : det(B& — Q(¢')) = 0}
of the system (1) consists of separate sheets
Ki={{=(f,&) € R" 16 -N(¢) =0}, i=1,....s.

Since

NE) = Aras(-€), 0<5<[22], )

the cones K; and K, ,_; are centrally symmetric with respect to the point
(0,...,0), where [a] denotes the integer part of the number a.
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Remark 2. In case s is an odd number, we have j = s+1—j for j = [%]

2
the point (0,...,0). In this case, if s = 2s¢ + 1, to simplify our exposition
we assume that

Therefore the cone K for j = [ﬂ] is centrally symmetric with respect to

s+1

Mot (§) =0, |

i.e., Kgy41 is the hypersurface m : § = 0.

Remark 3. Below it will be assumed that 7o N Ky, = {(0,...,0)} for the
even s = 2s9. By (3) and (5), this means that the cones Ki,..., K, are
located on one face of mp : & = 0, while K 41,...,Ka,, on another face,
ie.,

]:so+1, (6)

A(E) > > Ao (€) > 0> Xy 1(€) > -+ > Aoy (€), (7)
& e R™\{(0,...,0)}.
For the odd s = 2s9 + 1, by virtue of (3), (5) and (6) there automatically
takes place mo N Ky, = {(0,...,0)} and, consequently,
M) > > Ao (&) > Ao (€) =0 > Agp2(€) > -+ > Aaspra(€),  (8)
¢ e R™M\{(0,...,0)}.
In this case Ki,...,K,, are located on one face of my = K, 41, while

Ket2,...,Ka5,41 on another face. From (5)—(8) it easily follows that for
the multiplicities k; of the roots A; the equalities

s+1]

ki =kerigy 5=10 |0

are valid.

Consider the case where the problem (1), (2) is characteristic, i.e., both
faces S1 and S; are characteristic surfaces of the system (1). The latter
implies that

al=(al,...,al,ab)eK = {feR"“ s det(E¢& + ZAjgj):o}, i=1,2.
j=1

In this case, since K = Uj_; K; and by our assumption ab <0,i=1,2,
by virtue of (7) and (8) there exist natural numbers s; and sy such that

1 .
st ] i=1,2 o ek,, i=12 9)

2

Denote by Qo(€) = E&+ Y1, Ai&i = E&o—Q(¢’) the characteristic matrix
of the system (1) and consider the problem on reduction of the quadratic
form (Qo(€)n,n) to the canonical form when ¢ € K] = K;\{(0,...,0)},
where g € R™ and (-, -) denotes the scalar product in the Euclidean space R™.

Si>|:
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By (4), for n = T'¢ we have

(Qo(&)n,m) = (T™'QeT)(€)¢,¢) =
= ((BE& — (T'QTYENE,C) = (o = MENG + -+ + (o — M(ENG,+
(& = A€ + o+ (G0 = X(ENCGppy + - F
ot (G0 = A (E)) iy + o F (G0 = (€D (10)

Since for £ = (€',&) € K] the equality & = A;(¢') holds, taking into
account (3), we will have

b= M| , <0, j=1,i=1; [0 =X , =0,
" " (1)
€= N[, >0, j=i+1,...s

i

If we denote by s and s; the positive and the negative indices of
inertia of the quadratic form (Qo(f)n,n)‘£ - then owing to (10) and (11)
€K}

we obtain

%z_ :k1+"'+ki_1, » :ki+1+"'+ks, (def)l:kl, (12)

T
where (def); is the defect of that form, and »; =0 for i =1.
If now ¢ = C'p is any non-degenerate hnear transformation reducing
the quadratic form (Qo (&), 77)‘£ . to the canonical one, then by (12) and
e 7

invariance of the indices of inertia of the quadratic form with respect to
non-degenerate linear transformations we have

@©nm),,, YT i PETP e
j=1 j=1

Here

m

z] 67 Z C;p npa A;; (67 77) = Z Cii—ﬂ,p(f)’?pa (14)
p=1

C =CH&) = (cj,(€), €Ki

According to (14) and (9), in the boundary conditions (2) in the capacity
of the matrix I'* we take the matrix of order (s; x m), where s; = s,
i = 1,2, and its elements Fép are given by the equalities

F;'.p:cj;(a"), i=12 j=1,...,5; p=1,...,m. (15)

Below, the elements of the matrix B in the system (l) are assumed to
be bounded measurable functions in D, i.e., B € Ly (D). Introduce the
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following weighted spaces:
WQI,A( ) ={u € Lo joc(D) : uexp(—At) € W3 (D)},
lullyy; | () = lluexp(=28)llw; (),
Lo (D) =A{F € Ly oc(D) : Fexp(—At) € Lyo(D)},

|# ”L“(D) || Fexp(— t)||L2(D)’

Lo (Si) = {f € Lajoc(Si) : fexp(—At) € La(Si)}, i = 1,2,
”f”LQ,x(si) = ||fexp —At) ||L2(5.),

where X is a real parameter and Lo 1oc(D), W3 (D), L2 joc(Si), ¢ = 1,2, are
the well-known functional spaces [18, p. 384].

Let Amax(P) be the largest characteristic number of the non-negative
definite symmetric matrix B'B at the point P € D (the prime denotes
matrix transposition). Then, because of the fact that B € L (D), we have

A= SUP Amax(P) < +o00. (16)
PeD

Lemma. Under the assumption (15), for any solution u € WQI’A(D) of

the problem (1), (2) with A > A the following a priori estimate is valid:

[ulls o) < m22||f||w5)+ Pl (1)

=1 j=1

where »; = »_, 1 =1,2.
Proof. Introduce a new unknown function v(z,t) = u(x, ) exp(—At), A =
const > 0. Then for v(z,t) we obtain the system of equations

n
Lyv EE'Ut"'ZAi'Uwi + Bv = F), (18)
i=1
where By = B + AE, F\ = Fexp(—At). Note that if u € Wj ,(D), then
F € Ly z(D) and v € W} (D), Fx € Ly(D) and the boundary conditions (2)
will take the form
=fi, i=1,2, (19)

where fi = flexp(—\t) € Lg(S) i=1,2.
By virtue of (18), integration by parts yields

/L)\U v)dD = /QO a)v vds+/ 2Byv,v)dD =

D
= Z/ Qo(a*),v,v)ds + /(QBAv,v)dD, (20)
= IS D
where Qo(a) = Eag + 2221 Aja;, and o = (oq,...,an, ) is the unit

vector of the outer normal to 8D.
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By (9), (12)—(15) and (19) we have

xt .

- Bl

' =1 =1 Si
»t 3,
S . 9 S m . 2
(Sl eo]) - (X[ | >
=1 Si j=1 tp=1 i
%S_i m . 2 s; ) ; )
> (|| | —-Xur=-Yur -2 e
j=1 "p=1 i j=1 j=1
Taking into account (16), we find that in the domain D
(2Byv,v) = 2A(v,v) + 2(Bv,v) > 2A(v,v)—
—2(Bv, Bv)'?(v,v)'/? = 2A(v,v) — 2(B'Bv,v)/?(v,v)"/? >
> 2)‘(U7U) - 2)\0(U7U)1/2(U7U)1/2 = 2()‘ - )\0)(’”711)‘ (22)

Next, by (18), for e = A — Ap > 0 we have

2 / (Lrv,0)dD = 2(Fx, 0) 100y < 2Flzacoy |0l a0y <
D

1 1
< g||F>\||L2(D) +ellvllZ,p) = )\_—)\OHFAH%Q(D) +A=20)ll0lT, ) (23)

It follows from (20)—(23) that

3

2
. 1
A =200l 0y < DD il s + )\_—)\OHFA”%Q(D)’

i=1 j=1
whence with regard for

[0l ooy =lull o s (0ys 1351 22(s0) = F 22 n(50)s 1FA220) = N F Il (0

we immediately obtain the desired inequality (17).

Remark 4. From (9), (12) and (15) it follows a completely definite de-
pendence of the structure and number of boundary conditions in (2) on the
geometric orientation of the dihedral angle D. The estimate (17) results
in the unique solvability of the problem (1), (2) in the class W21’ \(D) for
A> Ao

3. THE EXISTENCE OF A SOLUTION OF THE BOUNDARY VALUE
ProBLEM WITH HOMOGENEOUS BOUNDARY CONDITIONS

Consider now the question on the solvability of the boundary value
problem (1), (2) with homogeneous boundary conditions. Note that if
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v € WZ(D) N Wi(D), then on the boundary 8D we will have v = 0 and,
consequently,

OD vy = Vg, Vg = Uy, t=1,...,m, (24)

where vy = gy + D1 Qivg;, and & = (o, ..., ap, ap) is the unit vector
of the outer normal to 8D.

For the sake of simplicity of our exposition, we introduce the following
notation: ¢ = Zpy1, @ = apt1, Any1 = E. Then the principal part
of the system (18) can be written in the form Lv = 370 A;v,,. For

=1

v € W2(D) N W1(D), a simple integration by parts yields

1
/(Aivwi’vmﬂj)dD 9 /(Ajajijaij)dsa =17
D oD
1
/(Aivwi,ijwj)dD = /(Ajajvwi,ij)ds - 5 /(Aiaiijaij )ds, 71#],
D 8D 8D

whence it immediately follows that

n+1
/(L‘;v,ij)da = / (ZAiajij,ij)ds—
D

—
oD iZj
1 W 1
—= Z Aioivg;,vg; |ds + o | (Ajavg;, Vg, )ds. (25)
2 l 2
oD i) oD

By (24), (25) and the equality o® = "7 o? = 1, we have

n+1
/ (Lv, Av)dD = / (L‘;v, > ijw].)dD =
D D

Jj=1

n+1 n+1
:Z/ (ZAiajmeij)dsJ’_

Jj=1 =1
oD %

1 ntl n+1
+§Z / ([Ajaj — ZAiai]ij,ij)ds =
7=1gp i=1

#j

n+1 n+1
= Z / (Z Aiaiaﬁva, va) ds+

Jj=1 =1
oD %

1 n+1 n+1
2 _
+§ Z / ([Ajaj - ; Aiai] ajva,va) ds =

j=1 (=1
8D i£j
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:_nf/ ([A a]+n§A al]a vava)ds:

7=l6p =3
n+1 n+1
= _Z/ ((ZA al)a va,va)ds =
J=lgp
1 (n-‘rl ) :| (n"rl 2) 1
= | = Aiaiva,va ds a; | =z (Qo(a)vaava)dsa (26)
- x)=3)

where Qp(a) = Z"'H Aja; = Eag + Y1 A;a; is the characteristic matrix
of the system (18).
Below, the elements of the matrix D will be assumed to be bounded in
a closed domain D together with their partial derivatives of the first order,
and in the condition (9) it will be assumed that
si=ss=3s, oteK, i=1,2. (27)

According to (18) and (26) and an anologous argument, we get

n+1
- /(L)\U,AU —v)dD = —/ (Lw, vajwj - v) dD =
D =1

n+1 n+1
— / (Bavs;,ve;)dD + > / By, v,v,,)dD + / (Byv,v)dD+
i=lp i=lp D
+5 [ @(@w,0)ds - 5 [ (@o@)va,va)ds. (28)
8D [223)

Taking into account (10), (11) and (27), it is not difficult to see that
the matrix Qg(a), where « is the unit vector of the outer normal to 8D, is
non-positive. Therefore

_% / (Qo(@)va, va)ds > 0. (29)

[223)

Since v € W2(D) N W(D), we have U‘aD =0 and

1
: / (Qo(e)v, v)ds = 0. (30)
8D
Let X\i .. (P) be the largest characteristic number _of the non-negative
definite symmetric matrix B}, B, at the point P € D, i = 1,...,n + L
Then, because of the fact that by our assumption the elements of the matrix

B;,,i=1,...,n+1, are bounded in D, we have
2
= . 1
AZ ls%arﬁ-l sup Al (P) < 400 (31)

PcD
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By (16) and (31), analogously to how we have obtained the inequality
(22), we have

n+1 n+1

Z/ Byvg;, vg; dD+Z/ (Bag; v, vw])dD+/(B>\v v)dD >

i=lp i=lp D
n+1

+
o= [ ()40 =2 X llollen oot
n+1
+(A - ,\0/ D>(\- Ao)/(ngj)dD—
D D

=1
n+1 1
bl [0+ DY s |+ 0= 0) [ 120>
D
n+1 )\ 9
> (= 0) [ (3002, )a0 = 5ol
p =l
)\* n+1 9 )
_?(n+1)z ||ij||L2(D) + ()\—)\0)/11 dD =
j=1 D
1 jiass 1
p =l D
1 n+1
> (A= o= 5(n+ DA /(v +Z )dD—
D
1
==X — 5(n+1)A*)||v||“;v21w). (32)

Next, by (29)—(32), it follows from (28) that for any v € W2(D)NW3(D)
the inequality

1 2
‘ /(Lw, Av —v)dD| > (A= X — §(n + 1),\*)||u||W21(D) (33)
holds.
From (33) for
1
A>do+ 5(n + DA, (34)
in the well-known manner we obtain the following inequality [19, p.51]:

[L3wll-1 > cllwll-1 Vw € Wy (D), (35)
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where Liw = —Ew; — Y o, Ajw,, + Biw, the positive constant ¢ =
¢(A, Ao, Ax) does not depend on w, and

lwl]-x = sup

[e]
is the norm in the negative Lax space W3 (D).
Consider now, under the assumption (27), the characteristic problem
(18), (19) with homogeneous boundary conditions, i.e.,

L)\U = F)\, (36)
Iv| =0, i=1,2 (37)

Definition. The vector function v € Ly(D) will be called a weak solution
of the problem (36), (37), where F) € Lo(D), if the identity

(v, Lxw) LoDy = (Fx, W) Ly (D) (38)

is valid for any w € W (D).

It is easily seen that if a weak solution v of the problem (36), (37) belongs
to the space W4 (D), then it is a solution of that problem in the ordinary
sense.

Let us show that when the inequality (34) is fulfilled, for any vector

function F) € W}(D) there exists a unique weak solution of the problem
(36), (37) from the space W3i(D). Indeed, considering the linear functional
(v, Lyw),(p)y on the space W5 (D), by virtue of (35) for any w € Wy (D)
we have

—1 *
|(Fx, w) Lo (py] < IIFAIIM(D)IIwII—l <c IILAwII—lllFIIV-v;(D)-

(39)
The inequality (39) allows one to extend this functional to the entire
o]
space W5 (D) by continuity. Furthermore, using Riesz theorem on the
o]
functional representation on the space W' (D), we obtain that there exists

[e]
the vector function v € W1(D), satisfying (38). To prove the uniqueness of
the solution, it should be noted that for a weak solution v of the problem

(36), (37) from the space W(D) we have v|sp = 0. Therefore, integrating
(38) by parts, we get Lyv = Fy, (z,t) € D. It remains only to note that in
proving the a priori estimate (17), it has incidentally been shown that for

[e]
any v € W3(D) the inequality

1

1
o]l < A= (e

is valid.
Thus the following theorem is valid.
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Theorem 1. Let the conditions (27) and (34) be fulfilled. Then for any
F\ € Wi(D) there ezists a unique solution of the problem (36), (37) from
the space W} (D).

Since the problem (1), (2) with the homogeneous boundary conditions
| =0, i=1,2, (40)

in the space W21’ A\(D) is equivalent to the problem (36), (37) in the space
W3(D), from Theorem 1 follows

Theorem 2. Let the conditions (27), (34) be fulfilled. Then for any

F € WL(D) there ezists a unique solution of the problem (1), (40) from the
space W 5 (D).

Definition. Let F' € Ly »(D). The function u € Ly (D) will be called a
strong solution of the problem (1), (40) of the class Lo y, if there exists a se-
quence of the functions uy € W21’ (D) satisfying the homogeneous boundary
conditions (40) such that

i lu —ulle, 0y = Hm [|F = Lugllz, 5 ) = 0.

If F € Ly (D), then because of the fact that the space of infinitely
differentiable finite functions C§°(D) is dense in Ly (D), there exists a
sequence Fy € C§°(D) such that F, — F in Ly (D). Since Fj, € C§°(D),

hence Fy, € Wi(D). Therefore, according to Theorem 2, for F' = F}, there
exists a unique solution uy € W21’ A(D) of the problem (1), (40). From the
inequality (17) we have

1
llur — upllr,, () < P 1 F% — Fpll 15,5 (D)

from which it follows that the sequence {up} is fundamental in Lo x(D),
since F, — F in Ly (D). Because of the completeness of the space Lo (D),
there exists a function u € L »(D) such that up — v and Lu, = F, = F
in Ly x(D). Consequently, u is a strong solution of the problem (1), (40)
of the class Lo . The uniqueness of the strong solution of the problem (1),
(40) of the class Ly » follows from the inequality (17).

Thus we have proved the following

Theorem 3. Let the conditions (27) and (34) be fulfilled. Then for any
F € Ly z(D) there exists a unique solution u of the problem (1), (40) of the
class Ly ) for which the estimate

1
”u”L“(D) < A= o ”F“Lm(D)

is valid.
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4. THE EXISTENCE OF A SOLUTION OF THE NON-HOMOGENEOUS
BoOUNDARY VALUE PROBLEM

For F € Ly z\(D), f* € Ly (Si), i = 1,2, analogously to the homoge-
neous case we call the funetion u € Ly (D) a strong solution of the non-
homogeneous problem (1), (2) of the class Lo y, if there exists a sequence
of functions u, € Wj (D) such that

i s, oy = i[5~

bsoo SillLaa(si) —

- i 1= Ll =0 @

To simplify the question of the solvability of the non-homogeneous prob-
lem (1), (2) in the space Lo (D), the matrix B in the system (1) will be
assumed below to be constant.

Since the spaces C§° (D) and C§°(S;) of finite, continuously differentiable
functions are dense, respectively, in the spaces Lo x(D) and Ls »(S;), ¢ =
1,2, and F € Ly z(D), f* € Ly A(Si), i = 1,2, there exist sequences of
functions Fy, € C$°(D) and fi € C$°(S;:), i = 1,2, such that

B (5= fil sy =0 =12, Jim [P B, =0 (@)

First we will show that for sufficiently large A > 0 and for any fixed &
there exists a function vy € C*(D) N W22’ A(D) such that the equalities

(Lwvg — Fy)

=fi i=1,2 44
s; fk’ ? 9 &y ( )

S;=0, i=1,2, (43)

F’vk

hold. Since Fy € C§°(D), we have that Fj,

is equivalent to the equalities

=0, ¢ = 1,2. Therefore (43)

i

ka

=0, i=1,2. (45)
It can be easily seen that in order to construct the function v it is sufficient
to construct two functions v;, and v which possess the properties

vl € C®°(D)N WQQ,A(D), diam supp vi < +o00, i=1,2,
supp v,i NSy =¢, supp vi NS, =@, supp v,lc N supp vi =@,
Lo} =0 Tiv} o= fi, i=12, (46)

and then to take their sum, i.e., vy = v} + v2.

Introduce a new Cartesian rectangular system of coordinates connected
with the independent variables 2’ = (21, 25,...,2;,,7,,,, = t'). The equa-
tion of the surface S; in this system has the form z; ., = t' = 0, i.e,
' = Az, where £ = (21,...,%n,Zny1 = t), and A is an orthogonal (n +
1) X (n + 1)-matrix. We denote by D’ the domain D in variables z’.
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Taking into account that v, = Z’vw,, where V, = (%,...,ﬁaﬂ),
Vg = (%, . &E,L) and the prime in the matrix A’ denotes transposi-
1 n+1
tion, the system of equations (1) in variables 2’ will take the form
n
L'u= Aouy + Y Auitiy + Bu=F, (47)
i=1
where Ag, A4, i = 1,...,n, are also symmetric matrices, provided
n
Ag = —Qola') =— (Ea(l) + ZAiall) =—(Eo} — Q(v)).  (48)
i=1

Here Q(v) = — > 1, Aiaj, v=(af,...,ah).

If C* is matrix of the order m X m which reduces the quadratic form
(Qo(at)n,n) to the canonical type, then by virtue of (12)—(15) and (27) we
have

((C)7) Qo(@")(C*) ™! = diag(=1L,-..,=1,0,...,0),  (49)
S—— —
s ks
100 +evvrneens 0
010 coeeneees 0
1'\1(58)—1 e = %S—. (50)

=3¢,
In (49), it is taken into account that by virtue of (27) and according to

st
(11) the expansion (13) does not involve the first sum Zj;I[A;; (&,m))? for
1=s.
After the substitution v = (C®)~!w, the equation (47) can equivalently
be rewritten as

Tw = Agwy + 3" Ay, + Bu = F, 1)
i=1
where
Ao ==((C) ™) Qo(e" (€)™, Ai=((C*) ) Au(CHT,  (52)
B=((C*)YB(C*)™, F=(C*)")F.
Ag a result of that substitution u = (53)_1111, the boundary condition
(2) for i = 1 by virtue of (50) will take the form

wlg, = f', (53)

where W = (W1, ..., Wi, ), W= (Wi, ; Waey , Wag 415+ - -, Win)-
Let us now construct the function wj € C°°(D') satisfying the equalities

Lwilg, =0, (54)
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Wy, S fl% (55)

Suppose ko = tg 5, where a is the angle lying between the faces S1 and
S2, and introduce the function oy (z) possessing the following properties [20,
p. 19]:

o1(z) € C®[0,+00) : 01 (z) =
1 <zg<li 1
_ L Osesy, and 0<oi(z) <1 for 7 <z<1l (56)
z>1, 2

Obviously, without restriction of generality we can assume that z, = 0
is the equation of the boundary of the face S; or, what comes to the same,
of the edge of the dihedral angle D'.

Since the equation of the face S; has in the new variables zi,...,z},t
the form ¢ = 0, 2, > 0, a solution w; = (wy,,...,wy,,) of the system of
equations (54) will be sought in the form

!

whi (T, .., 2, 1) :al(k—l)al(t’)t’w;;(x'l,...,x'n)+
0L,

tl
+01(W)01(t')wk_i(x'1,...,x’n), i=1,..0m n =),  (57)

0Ln

wi; (T, .., 2, t) =

t _ .

= Ul(kox’ )al(t')wki(x'l,...,x'n), i=0 4+t +1,...,m, (58)
n

where w,i. are the functions to be defined.
Substituting (57) in the boundary condition (55) and taking into consid-
eration (56) and the fact that S; : ' =0, =}, > 0, we obtain

Ori(2y, -, @h) = fry i=1,...,50. (59)

Owing to (49) and (57)—(59), the last m — s, = k, equations of the
system (54) with respect to an unknown vector

Y= (w;ﬂﬁhgﬂ, s W)

can be rewritten as follows:
n—1
Ligy = Aoy, + ) Aithay = i, (60)
i=1
where gy, is the known vector function which is defined uniquely with respect
to f, and the matrix A}, 1 < i < n, consists of the elements located at
the intersection of the last ks rows and columns of the matrix A; from (52).
Since the matrix gl is symmetric, the matrix A} is likewise symmetric,
1<i<n.
Below it will be assumed that the matrix A, from (47), and hence the
matrix A, from (52), are positive definite. But then, according to the known
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criterion of the positive definiteness of a symmetric matrix, the matrix A},
is positive definite, as well. That is,

(426,¢) >0 V¢ e RP, |¢|#0. (61)

This implies that the system (60) is a symmetric hyperbolic system [10,
p.587], and if we consider for (60) the Cauchy problem with homogeneous
initial data on z], =0, i.e.,

=0, 62

s (62)

then owing to the fact that g5 € C§°(Q), where Q@ = {2’ € R" : z;, >
0}, the problem (60), (62) has a unique solution ¥(zj,...,z;,) of the class

C>() N W3 ,(Q) for sufficiently large A > 0; note that 1/1‘9 = 0 for

sufficiently small p, where Q, = QN {0 < z}, < p} [10, 21].

Knowing already wy; for 1 < < 31 and 35 + st + 1 <4 < m, the rest
unknowns wj;, 1 < i < sn + 3 in the representations (57), (58) can be
defined immediately from the first 50, + 35 equations of the system (54).

From the above reasoning it easily follows that the vector function wy
defined by the formulas (57), (58) satisfies the equalities (54), (55) and
w}, € C®(D)NWE, (D).

It is clear now that vk = (C*)~'w} in the original variables &1, ..., 2,
satisfies the equalities (46).

Analogously, we introduce the orthogonal coordinate system connected
with the variables z7,...,z,,z;,, = t", in which the equation of the face
Sy has the form ), , = t” = 0. We introduce the matrix A2 which is

T
assumed to be positive definite , i.e.,

(4760 >0, [¢#0, (63)

and construct appropriately the function v%, satisfying the equalities (46).
From these constructions it follows that v} € C*°(D), i = 1,2, suppvjNSs =
@, suppvi NSy = @, supp vy Nsupp vi = &. Therefore for sufficiently large
A > 0 their sum vy = vy + v} € C®(D) N W5 ,(D) satisfies the systems of
equalities (43) and (44).

Since v, € C®(D) N W3 (D) and Fj, € C§°(D), by virtue of (43) we

have F}, = F}, — Lvy, € Wé’ A(D), and according to Theorem 2 the problem

(1), (40) for F = F}, has a unique solution & € W21’ A(D). But with regard
for (44), the vector function ur = Ug + vr will be a solution of the non-
homogeneous problem (1), (2) for F = Fy, fi = fi, i = 1,2, of the class
W3, (D).

It now follows from (42) and the a priori estimate (17) that there exists a
unique function u € Ly (D) such that for the above-constructed sequence
uy, € W (D) the limiting equalities (41) take place.

Thus we have proved the following
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Theorem 4. Let the conditions (27), (61) and (63) be fulfilled. Then
for sufficiently large positive A and for any F € Ly z(D), f* € L2 A(S:),
i = 1,2, there exists a strong solution u of the problem (1), (2) of the class
L for which the estimate (17) holds.

Remark 5. Note that the cases where the faces S; or S3 or the both
are not characteristic can be considered analogously in connection with the
expansion (10).

5. SOME EXAMPLES OF SYSTEMS OF DIFFERENTIAL EQUATIONS FROM
MATHEMATICAL PHYSICS

1°. In the space of the variables z;,z2,z3 and t we consider the non-
homogeneous system of Maxwell differential equations for electromagnetic
field in the vacuum [10,p.182]

E,—totH=F,, H,+rotE=F, (64)

where E = (E1, Es, E3) is the vector of the electric field, and H = (H;, Ho,
Hj) is the vector of the magnetic field. Here the light velocity is adopted
to be unity. _

Assuming U = (E,H), F = (F, Fs), the system (64) can be rewritten

as
3

LU=U+Y AU, =F, (65)
i=1
where A;, 7= 1,2,3, are quite definite real symmetric (6 x 6)-matrices. The
characteristic determinant of the system (65) is equal to

p(€) = det Qo(§) = & (& — & — & — &) (66)

where £ = (&1, &,83,&) € R, Qo(¢) = £0E+Z?:1 &; A; is the characteristic
matrix of that system. FE is the unit 6 x 6-matrix.

In connection with (4), (6) and (8), for the system (65) we have so = 1,
s=2s0+1=3 ki =k =ks =2, M(€) = (E+E+&)2, M(&) =0,
A(€) = —(E2+E+6)7, Ki: &0 — Ni(€) =0,i=1,2,3. We take as D
the dihedral angle D : ¢ > |z3| whose faces are the characteristic surfaces
Si:t—xz3=0,t>0and Sy :t+23=0,¢>0.

If of = (af,ad,al,ad) = (&,af) is the unit vector of the outer normal
on S;, then, as is easily verified,

(Qo(e)U,U) = —%[(Hl — B+ (Hi+ B + B2+ HY,  (67)
(Qo(a2)U,U) = —%[(H2 B 4 (Hy - E)?+E+H).  (68)

In connection with (13)—(15), now from (67) and (68) we obtain the
following boundary conditions for the system (65):

= f1, (H1+E2)S = f1, E3s = f3, Hss = f1, (69)

H, - FE
(2 1)51 1 1 1
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H E
(Hz + 1)5

2

= fi, (Hy — E) 52:f22’ E3s = f3, Hss = fi- (70)

2 2

Corresponding to the face S1, the matrix A of passage from the variables
z, t to 2, t’, the matrix C* (s = 3) from (49) and the matrix A,3 from (47)
have the form

1 0 0010
10 0 0 0 1 0100
~ 01 0 0 ~ 1
AZOOLL,CSZT()OlOO(l),
A 210 0100
00 ——% = -
Ve 1 0 0010
-1 0 00 -1 0
0 101 0 O
A 110 010 0 0
L lo 101 0 0f
-1 0 00 1 0
0 000 0 1
and, as is easily verified,
1 {10
4=(0 1)
i.e., the condition (61) is fulfilled.
Analogously, to the face S3 there correspond the matrices
1 0 0010
10 0 0 0 -1 0100
~ 01 0 0 ~ 1
AZOO_LL,CS:T()OlOO(l),
sy Zle T et
00 —= =
VeV -1 0 0010
1 000 -10
0 101 0 O
1 0 010 0 O 2 (10
A“‘ﬁ 0 101 0 of’ A3_(0 1)’
-1 0 00 1 0
0 000 0 1

i.e., the condition (63) is likewise fulfilled.

Therefore by Theorems 2 and 4, for sufficiently large A > 0 and for any
F € Ly (D), fi € Laa(Si), i = 1,2; k = 1,...,4, there exists a unique
strong solution U of the problem (65), (69), (70) of the class Lo x for which
the corresponding to that problem estimate (17) is valid. If F € Wé’ (D)
and f,i =0,i=1,2; k=1,...,4, then this solution U will belong to the
space Wy 5 (D).
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Note that other statements of characteristic problems for systems of
Maxwell differential equations have been investigated in [22-25].

2°. Consider the non-homogeneous system of Dirac differential equations
in the complex form [10, p. 183]

4
S i (o —ae)u = fu = F, (71)
k=1

where the vector (a1,as,as) is proportional to the magnetic potential, a4
to the electric potential and b to the rest-mass; F = (F, Fs, F3, Fy) is the
given and u = (u1, us, U3, uq) is an unknown 4-dimensional complex-valued
vector function of the variables x1, z2, %3, 24 = t. Coeflicients in the system
(71) are the following matrices:

000 1 0 0 0 —i 0 0 1 0
fo 0o 10 fo 0o i o fo 0o 0o -1
=10 10 0[”* 7 |o =i 0 of”™7|1 0 0 o]

1000 i 0 0 0 0 -1 0 0

-1 0 0 0 10 0 0

0 -1 0 0 01 0 0] .

M=o o -1 ol B[00 -1 of t=Vv-1L

0 0 0 -1 00 0 -1

If w = w + iv, then the system (71) with respect to the unknown 8-
dimensional real vector U = (w,v) will be written in the form

4
LU =Y oUs, +0U =F, (72)
k=1

where F = (Re F,Im F), o is a real (8 x 8)-matrix, and

_(m O _( 0 ipe _(ms O _(msa O
Ul—(o Ml), U2_(-i/J/2 0)703_(0 /J/3), 04—(0 I .

The system (71) is a symmetric first order hyperbolic system whose char-
acteristic polynomial is equal to

p(&) =det Qo(&) = (6§ + & + & — )"

where & = (&1,&,83,&) € R*, Qo(§) = &io1 + &03 + €303 + Eoou is the
characteristic matrix of the system.

According to (4) and (7), for the system (72) we have
so=1, s=250=2 ki=hk =4, M(¢)=(&+&+8)?,
X@)=-E+8+8)7, Ki:b-X(E)=0, i=12

We rewrite the system (72) in the form of scalar equations and multiply
the equations the numbers 1, 2, 5 and 8 by —1. Then we replace these
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equations according to the permutation

1 23 45 6 7 8
218 3 45 6 7)°

In the new notation A = (W,V,w;,w2), where W = (vy,w1,—1v2), V =
(w3, —vs3, —w4), W1 = V4, Wy = —we, the obtained system of equations in
the matrix form can be rewritten as the symmetric system

3
LsA= Ay + ) Gihg, +5A =P, (73)
=1
where
00 0 0 0 0 -10
00 0 0 0 1 0 0
0 0 0 0 -1 0 0 0
= _|0 0000 1 01
1o 0 -10 0 1 0 o}
01 0 0 0 0 0 0
-10 0 0 0 0 0 0
00 01 0 0 0 0
0 0 000 -1 0 0
0 0 000 0 -10
0 0 010 0 0 O
= _|0 0 100 0 00
2“lo o o000 0 0 1]
-1 0 000 0O 0 O
0 -1 000 0 0 O
0 0 001 0 0 O
00 0 0 10 0 0
0 0 0 -1 00 0 0
00 0 0 00 -10
. o -1 0 0 00 0 o0
%=11 0 0o 0 00 0 Oof
00 0 0 00 0 1
0 0 -1 0 00 0 O
00 0 0 01 0 0

o,

F} is the given vector function, and o5 is a real (8 x 8)-dimensional matrix.
Obviously, the systems (71) and (73) are equivalent.
It can be easily verified that if L = E % —+ Zle 51'8%1- is the principal
part of the operator (73), then
ow av

2(LsA)A = QWV —2WrotV — 2W gradw; + 2V§+
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5] a
+2V rot W + 2V grad ws + 2w, % — 2w divWW + 2@% + 2we div V,

whence
2(LSA)A = (W2 + V2),+
+2div[W x V] + (w? + w3)s + 2diviwsV — w1 W], (74)

where [W x V] is the vector product of the vectors W and V.
On the other hand, similarly to (29), for any A € W4 (D) we have

2
2 [£5000dD = [ (Qo@)A,0)ds=3" [(@o(a)r, N)ds,  (75)
D 1) =13,
where Qo(a) = Eag + 2321 gja;, o = (&, ap) = (a1, 09,a3,a9) is the unit
vector of the outer normal to 8D, and
3
D = {(z1,z2,23,t) € R* : o}t + Zaéxj <0, i=1,2}
j=1

is the dihedral angle whose faces are the characteristic surfaces S; : at +
Z?=1 olz; =0,t>0,i=1,2,0D = S5, US,, where o = (o, 0, 04,af) €
Ky : & — (&) =& + (2 + €3 +62)7 =0,i=1,2. Obviously,
ah <0, (ag)’ =&, & =(af,ad,0f), i=1,2. (76)
By virtue of the known vector relations [10, p. 642]
W2 = (W x &) + [W-aP, V& =[V xa] +[V-al’,
(74)—(76) immediately imply
1 ~
(Qo(@)A, A) = — [(W? + V2)a§ +2[W x V](@ao+
0
+(Wi +wi)ag + 2weV —wiWla - ag =
1 ~ ~
= a—[(wlao - Wa)?] + (weag + Va)*+
0

+(W? +V?)ad +2[W x V]-&ao — (W -&)?% - (V- @)?| =

1 ~ ~
= — [(wlao - Wa)? + (weao + Va)?] + [W x &>+

Qo
+2[W x V]-dao + [V x &2]. (77)
Assume that
I=[W xa]*+2[W x V]-aag + [V x &% (78)
Let first
& = o = (0,0, |aol) = |a] (0,0, 1). (79)

Now it is easy to verify that
[W x @)? = |Olo|2(W12 + W22), 2[W X V]&ao = 2a0|a0|(W1V2 — WQ‘/l),
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[V x &]* = |ow|* (V" + V). (80)

Therefore in the case of (79), since |ag| = |&], a0 < 0, af + |&|* = 1 and
thus |ao]* = £, we find from (78) and (80) that

1 1
I=S(Wi = Vo) + (W + WA), (81)

Let T be the matrix of orthogonal transformation which is the rotation
transforming the vector & to the vector g = (0,0, |ao|) and which does not
change orientation of the space. As is known, the action of this transforma-
tion on the vector z = (21, 22, Z3) is given by the following equality [26, p.
68]:

Te=x— %(&+ ap) + azg(& - 3)0g, O F# —0p.

Using the properties of the vector and mixed products, we easily obtain
I=[Wxaf+2[WxV]-dag+[V xa®=
= [TW x Ta)* + 2[TW x TV] - Taay + [TV x Ta]* =
= [TW x ag)* + 2[TW x TV]-&ag + [TV x &) (82)

Let v1, vo and v3 be the rows of the matrix T, i.e.,

i Y2 s 121
T=\|va v wva3| = |1
V31 V32 Vsg V3
Using (79)—(81), from (82) we obtain
1 o 1 2
I= §(V1W—V2V) +§(V2W+I/1V) . (83)

Now (77), (78) and (83) imply that
(@o(@), ) = - [(wra0 — W& + (waag + Va)+
+%(V1W — V)2 + %(VW + V1V)2]. (84)
When & = —ag = —|ap|(0,0,1), instead of (81) we have
I= %(Wl +V2)2+%(W2—V1)2. (85)

Now, by virtue of (13)—(15), from (84) we obtain the following boundary
conditions for the system (73):

(wiad — Wat)

s; = flla (CUQCY?) + Val) s, = f;a

: (86)
=fl, i=1,2
s f47 ? v 4y

(AW —15V)

L = f W iy)
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Y
then by (77), (81) and (85) and in view of the fact that ag = —|ag| < 0,
the boundary conditions take the form

whereai:a‘ ,VZ::V]" ,i=12 If & = ag or @& = —ady, say, on S;,
S S

@+ W) =fl, @ -1)|_ =4
o ' . (87)
(W — Vo) 5 f3, (Wa+W1) s fi
for & = ap, and
@ =W =fl, @+ =4
o ' . (88)
Wi+ V)| =iy Wa=W)|_ =i

for & = —ay.

By Theorem 2, for any F € WiA(D) and fi=0,i=1,2,k=1,...,4,
there exists, in the space W21’ 1(D), a unique solution of the problem (73),
(86) for which the estimate (17) corresponding to this problem holds.

In considering the non-homogeneous boundary value problem for the sys-
tem (73), for simplicity we consider the case where the equality & = ap
holds on S;, and then we have the boundary conditions (87), and the equal-
ity @ = —ap holds on S; and then we have the boundary conditions (88),
ie. S1:t—23=0,t>0,8:t+23=0,¢£>0, and

(w1 + (=) W)

= e+ (CD'W)

L= M+ ()T

. =

. (89)
=fi, i=1,2.
s f47 ? ’

(W1 + (=1)'Vs)

The matrix A of transformation from the variables z,1 to the variables z',
t', which correspond to the face Sy : t —x3 =0, t > 0, the matrix C*(s = 2)
from (49) and the matrix A,s from (47) have the form

1 0 0 0 10 0 0
01 0 -100 0 0

10 o0 o 00 1 0 00 -10
oo o) ;001 0 100 0 0
= 1 1|, 4s="2]0 -1 0 1 00 0 0f,
88_@&7 V21 0 0 0 10 0 0
vz V3 00 0 0 01 0 1

00 -1 0 00 1 0

00 0 0 01 0 1
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i.e., the condition (61) is fulfilled.

tt+x3 =0,

Similarly, the following matrices correspond to the face Ss

t>0

0
0
0
0
-1 01

1
0
0
1
0

00 0 -1

1
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o 0L 0 0 - 0 o0
o 00 L L 0 0 o0
-1 00 0 0 0 o0 1
~ 0 00 -1 0o o0 o0
s\—1 __ 2 2
() o 0oL 0o 0 L o of
0o L0 0o 0o 0 -1 o0
1 90 0 0 0 0 1
0O Lo 0o 0o 0 L 0
1 0 00
., 0100
A3_0010’
0 0 01

i.e., the condition (63) is also fulfilled.

Therefore, by Theorem 4, for sufficiently large A > 0 and any F e
Ly A (D), f,ﬁ € Lyx(S:), 1 =1,2; k =1,...,4, there exists a unique strong
solution A of the problem (73), (89) from the class Lo », for which the
estimate (17) corresponding to this problem holds.

Remark 6. Since A = (W, V,w;,ws), where W = (vy,wq,—v2), V =

(w3, —vs3, —wW4), W1 = ¥4, We = —wa, the boundary conditions (89) can be
rewritten in terms of the unknown functions w; and v;,  =1,...,4, as
(va—v2)| =fl, (ws —w2)| =f3, (01 +vs)| =f3, (w1 +ws)| =Ffi,
S1 S1 S1 S

i+ o) =f2 (witws)| =£ @ -w)| =£ @ -w)| =1
Sy Sy Sy Sy
3%. The system of equations of crystal optics [10, p. 597] has the form
1_ ~ 1 ~
~E.E;—rotH=F, -pH;+rotE=F,, (90)
c c

where E and H are the same notation as in the Maxwell equation (64), ¢ is
the light velocity, p is the magnetic penetrability constant, E is the (3 x 3)
diagonal matrix with the elements €1, €2 and 3 on the diagonal, and g; are
the dielectric constants along three coordinate axes.

Using the notation U = (E, H), F = (F, Fy), we rewrite the system (90)

as follows:
3

E.Uy+)_ AU, =F, (91)
i=1
where A;, i = 1,2,3, are the same matrices as in (65), and

~ ) 1 1 1 1 1 1
EE = dla’g (_617 —€3, —€3, — ), — 4y —/J,) .
¢ ‘¢ ¢ e
Since all the coefficients in (91) are real symmetric matrices and E. is
positive definite, the system (91) is hyperbolic [10, p.587].
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We put o; = (u/c?)e;, i = 1,2, 3, and suppose that 01 > 03 > 03 > 0. If
K and S are, respectively, the cone of normals and that of rays for system
(90), then, as is known, they are algebraic surfaces which are specified by
the equations [10, p.598]

3 3 2 5 \
K : 2 — 08 [1— 671']:0, S:1- xil'ZO, 92
[0 -e |13 5o Y a2

where p? = €2 + & + £5.

According to (4), (6) and (8), for the system (91) we have so = 2, s =
25 +1 =5,k =ks =ky =ks =1ks =2, My = 5; )\3(6’)50,1’:}16 rest
A (&) are the roots of the first equation of (92) with respect to & which
define sheets K; : & — A\;(€') = 0 of the cone of normals K.

The system (91) with respect to the new vector function V = (E,)zU
can be rewritten in the equivalent form

3
Vit > AV, =F, (93)

=1

where A; = (E.)"2A;(E.)"%, i = 1,2,3, are real symmetric matrices, F =
(E.)"2F. Let D be a dihedral angle whose faces S; : ajjt + S aiz; =0,
t>0; o = (af,ab,al,ad) € Ks, i = 1,2, are characteristic surfaces of the
system (93); Qo(€) be the characteristic matrix of system (93) and T be the
orthogonal matrix from the corresponding equation (3). Then by virtue of
(10) and (11) applied to the system (93), we have

(@o(adymn) = = 3_[(s(0) = As (@) rg ] =
5 ~ . . 1, o~ g 5 ~ . . 1 6 ~
== 2 I(s(a) =A@ F @)l == F_ (s (0) = Xs(@)* 3 Tuyml* =
j=1 J=1 k=1
5 6 ) 2 )
= - Z |: 5jk(al)77k] ) al S K57 1= 17 27 (94)
=1 tk=1

where according to (3) we obtain Xl = A, Xg = Ao, X3 = X4 = Az, X5 =M\,
n € RS and (f’n)j is the j-th component of the vector T'n, cin(at) =
(Aj(a) — As(a?))2Ty;. By (13), (15) and (94), the boundary conditions (2)
will take the form

6
(szk(ai)v’“)‘s. =f, j=1,...,5 i=12, (95)
k=1 *
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which with respect to the unknown U = (E.)~2V of the initial system (91)
will be written as

6
(szk(al)dkvk)‘szfjla .7:1775a i=1,2, (96)
k=1 *

where di, kK = 1,...,6, are the diagonal elements of the matrix (Es)%,
and o' is the unit vector of the outer normal to S;, ¢ = 1,2. Therefore
by Theorems 2 and 3, for any F' € Ly (D) there exists a unique strong
solution of the problem (91), (96) of the class Lo  with the homogeneous

boundary conditions, i.e., for ff =0,j=1,...,5i=1,2. fF € V(E/'%’A(D),
then this solution will belong to the space Wy , (D).

When considering the non-homogeneous boundary value problem (93),
(95), to simplify our presentation we consider the dihedral angle D whose
faces are the following characteristic surfaces:

S1:t—fooxz3 =0, t>0; So:t++/ooz3=0, ¢t>0.

The corresponding to the face S matrix A of passage from variables z,
t to z', ¢/, the matrix C? (s = 5) from (49) and the matrix A,3 from (47)
are of the form

1 0 0 0
01 0 0
~— g9 ~: =, — ~. 1 J— 1 %N
A=lo 0 2 frz |, 0= (G =R@) - rs@))}Ty),
00 _V 1-7-20'2 \/131-70'2
~ ~ 1~ 1 ~
-1 _ [~—1 _ 1 I\ \—357, —
O = (53 = Bwla) = Xal@) HTix), Ao = S (VaRE + &),

where it is formally assumed that Ag(o!)-As(a)=1; a' =(al,0d,al,al) =
(0,0, \/ ﬁ:—fma_ﬁ)- As is easily seen, Qo(o!) = o) E + o3 A3, and by
the definition of the orthogonal matrix T from (3) and (94), the matrix
T’ A3T is diagonal, i.e.,

TI;{3T = dia’g(_lu’la ey _,u'ﬁ) (97)

It is not difficult to see that in the given case

N 1 ~ 1 ~ ~
)\12)\12\/—0—2(1§, )\22)\2=ﬁa§, Az = A = A3 =0,
(98)
~ 1 ~ 1
)\52)\42—\/—0—1(1%, )\62)\5:—ﬁa§;

and, at the same time, by virtue of (97)

(Qo(a®)n,m) = (Qo(@!)T¢, TC) =
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6
([a(l)E - dia’g(aélLl, .. 7aé1u'6)]<.7 C) = - Z(aéﬂj - a(l))C]2 (99)

j=1
Comparing (94) and (99) and taking into account (98), we get

1 1 1 1
:—, :—, _= :0, :——, e 100
M= = s s oo Mo = (100)
In the case under consideration ks, = 1 and, consequently, the matrix A}
from (61) is the scalar value which is equal to the element of (6 X 6)-matrix
(C—1)'A,5C~! lying in the right lower angle. If we take the lower row of

the matrix (C 1Y as the vector (o, then, as is easily seen,

Ay = (AusCo, Go) = \/%((\/_E + A3)¢0, o) =

= \/—(\/_KO Z/J’]CO]) \/H—O'Z Voa — Hj CO] (101)

It follows from (100) and (101) that the matrix A.g for oo > 1 is positive
definite and A} > 0, since {y # 0. Analogously, word by word we obtain
that the scalar value A% from (63) is likewise positive for g5 > 1. Therefore
by Theorem 4, in this case for sufficiently large A > 0 and any Fe L, A (D),
f’ € Ly 2(5:),1=1,2; j =1,...,5, there exists a unique strong solution V
of the problem (93), (95) of the class Ly » for which the corresponding to
that problem estimate (17) is valid.
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