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Abstract. A constructive technique for the study of linear differential
equations with arbitrary deviations is considered. This technique allows to
recognize the property of the correct solvability of the so called Principal
Boundary Value Problem for a class of differential systems and n-th order
differential equations, as well as to construct approximate solutions of such
problems with guaranteed error bounds.

2000 Mathematics Subject Classification. 34K07, 34A45, 34-04, 34KO06,
34K46, 65L70.

Key words and phrases: Differential equations with deviated argument,
the Cauchy problem, the principal boundary value problem, constructive
methods, unique solvability, approximate solutions.



DIFFERENTIAL EQUATIONS WITH DEVIATED ARGUMENT 95

1. NOTATION

The following notation is used.

R™ denotes the linear space of all real columns a = col{oy, ..., a,} with the
def
norm |||, = max lail; ld € col{|aul,...,|an|}; for a € R™, B € R",

the inequality o < 8 means a; < 8;, i =1,...,n;

R"™*" denotes the linear space of all real n X n-matrices A = {aij}?jzl with
n 9
the norm || Af| guxn = %lf;{nz; lai;]; 1Al = {las;1};
]:
< 00, is the Banach space of measurable functions
, 2() = col{z1(-),. .., 2n(-)}, such that

Lp[0,T], 1 < p
z:[0,T] > R"

1
P

T
_ . P .
lelligiom = max | [latePds | < oo
0

L7 [0,T] denotes the Banach space of essentially bounded measurable func-
tions z : [0,T] = R"™, z(-) = col{z1(:),...,2n()}; ||z||Lgo[0’T] =

2 P

L?*"0,T], 1 < p < oo is the Banach space of measurable functions Z :
D g o
[0,T] — R™", Z(t) = {2;(t)};;=;, such that ||Z||L;X"[0,T] =

n
1< 2 Wzisllypo.my
=
D710,T] denotes the Banach space of absolutely continuous functions z:

[0,T] - R™ such that & = 4 € L7[0,T}; 2l g0,y = IO, +
&1l Lz 0,77

Let us fix a collection of points £1,...,6,; 0 =t < t1 < -+ < &, <

tm+1 = T. Denote By = [tg—1,tq), ¢ = 1,...,m; Bpy1 = [tm, T]; xq(t) =

1, te B
’ ?’ is the characteristic function of B,.
0, t¢ B,

DS}0,T](m) = DSP[0,t1,...,tm,T] is the Banach space of all functions
y :[0,T] = R™ with § € L}[0,T] and the representation
t m
v(®) = ¥ + [ 9(6)ds + 3 xe, 1 (O Ay(ta),
0 g1
where
1, tet,T],

Ay(tg) = y(tg) — y(tg = 0); xpt,, (1) = {0 t ¢ [tq, T
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is the characteristic function of [ty, T];
Ay = col {y(0), Ay(tr), - Ay(tm)};

||y||DS;[0,T] (m) = ||y||L;[0,T] + 1AYll g

W Sio,71(m) denotes the Banach space of function y : [0,T] — R', y™ €
L1[0, T] with y € DS}[0,T)(m), i =0,...,n — 1, and the representa-

tion
y(t) = /t (t(; 5;)(:)_!1 y(™(s)ds + nf—,y"’(o) +
0 =0
Bl ~ o) Ay,
i=0 ¢=1
where

Ay (tg) = yD(tg) -y (8, - 0),

A"y = col {y(0),yM(0), -,y (0), Ay(t),
Ay (ty), ..., Ay V(ty), ..., AyD(tn,),
AYO (tm), -, Ay D (t) } 5

||y||WS;[0,T] (m) = ”y”L;[O,T] + 1A Y| s
p

p' denotes the exponent adjoint to p: p’ = { p—1’
00, p=1

p>1,

I is the identity operator;
E,, is the identity n X n-matrix;
O,, is the zero n X n-matrix;

Let A be a linear operator acting from BJ*, a space n-vector functions, into
BZ, a space of n-vector functions, and Z be an n X n-matrix with columns
from BJ'. In this case AZ means the n X n-matrix such that each its column
is a result of applying the operator A to the corresponding column of the
matrix Z.

Let B be a Banach space, 29,25 € B,k =1,2,...,00. We write z; — 2o
to denote the convergence of {z} to o in B:

li — =0.
kg{.lo || o $k||B
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2. PRELIMINARIES

Let us cite some facts from the theory of functional differential equations
[1,2, 3] which are necessary for the main presentation. Consider the equation

(Ly)(t) = f(¥), tel0,T], 1)

where £: DS}0,T](m) — L3[0,T] is a linear bounded operator; f €
L3[0,T]. An element y € DS}[0,T](m) is said to be a solution to (1)
iff the equality (1) is fulfilled almost everywhere (a.e.) on [0,7]. The rep-
resentation

t
y(t)z/y( )ds + y(0 +2Ay Xie,m(®), £ € [0,T],
0

implies

m

(Ly) (&) = (@Q5) (&) + Ao(B)y(0) + Y Aq(£)Ay(ty), 2)

g=1

€ [0,T], where Q : Lp[0,T] — Lp[0,T] is a linear bounded operator,
the so called principal part of £; Qz = E((f)z(s)ds); Ay € Lm0,
g=0,...,m; A (t) = (LEy) (O)x[t,,11(1), @ :01,...,m, Ao(t) = (LE,) (¢).
For a wide class of functional differential equations, the operator @) is a

Fredholm one and has the form @ = I — K, where K : L3[0,T] — L3[0,T]
is an integral completely continuous operator,

T
= /K(t, s)z(s)ds
0

The following equations are included in the above class:

Example 1. Ordinary differential system

(Ly)@) =9(@) + P@y(t) = f(B), t€[0,T];

3)
Pe Ly "0,T]; fe Lyo,T].
T
In this case (K2)(t) = — [ P(t)x(t, s)z(s) ds, where x(-,-) is the character-
0

istic function of the set

{(t,s) € [0,T] x [0,T]: 0<s<t}.
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Example 2. Differential system with deviated arguments

4)

pl € LL[0,T]; fi € Ly[0,T]; kY : [0,T] — R' is a given measurable function,
i,j=1,...,n, k=1,...,n;. The equation (4) admits the form

wt [yIr@®), () € [0,
(Sry) (1) = {0, "6 ¢ [0.7]
ropy def |0, r(t) € [0,T];

U = Lmﬁm r(t) ¢ [0,7]

Let us write Ly = {(Ly)*},_, . In this case K = {Ki}; =10 Kt Ly[0, T
— Ly[0,T],

ni]‘

T
wmmz—/Z%mmmm@w
k=1

where x%;(-,-) is the characteristic function of the set
{(t,5) € [0,T] x [0,T]: 0<s<hi(t)<T}.

Note that the operator () in Example 1 is invertible, but the operator ¢
in Example 2 is not invertible in general. The invertibility of the operator
Q takes place if hfj(t) <t tel0,7),4,5=1,...,n, k=1,...,n4 (the case
of delayed argument).

Let us cite some results of the general theory of functional differential
equations [1, 2, 3] concerning the equation (1) under the assumption that @
has the bounded inverse Q' : L2[0,T] — L2[0,T]. The solutions space of
the corresponding homogeneous equation (i.e., the null-space of the operator

£)

(Ly)(®) = 0, te[0,T], ()
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is finite-dimensional with the dimension mn +n. The basis {y1,.. ., Ymnin}
of the null-space of £ constitutes the fundamental system of solutions to
(5). The matrix Y € DSP*™ ) defined by

V() ={4.0)s- - ¥mnin()}

is said to be the fundamental matrix of the equation (5). In what follows
we put AY = E,,,+,. The principal boundary value problem (PBVP)

(Ly) @) = 1), t€l0,T],

Ay=a, (6)

is uniquely solvable for any f € L}[0,7T] and a € R™t7_ The solution of
the semihomogeneous problem

(Ly) (&) ZAf;t):, . te[0,7], ™)

admits the representation

t T
y(t) = / @'f) (9)ds < Gf) (1) & / G(t,5)f(s) ds,
0 0

t € [0,T], where G : L}[0,T] — D}[0,T] is the so called Green operator,
G(t,s) is the Green matrix. In case the operator Q! is Volterra, this
representation gets the form

y(t) = [ C(t,8)f(s)ds, te[0,T]. (8)

o

The kernel C(t,s) of the integral representation (8) is called the Cauchy
matrix.
3. A Crass OoF FUNCTIONS AND OPERATORS

The constructive techniques and algorithms for the study of systems with
deviated arguments described below are based on a specific approximation of
original problems within the class of computable functions and operators [5].

Remark. Everywhere in what follows we assume that the spaces
DS}[0,T](m) and WSP[0,T](m) are constructed by means of the partition

0=t <th <<ty <tmy1 =T, (9)

where t4, ¢ = 1,...,m + 1, are rational numbers. The sets By = [t4—1,4),
g=1,...,m; Bpt1 = [tm,T] are defined with respect to the same partition.
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Definition 1. We say that a function y € DS}'[0, T](m) possesses the prop-
erty C (is computable) if its components as well as the components of the
functions ¢ and Vy take rational values at rational values of argument.

Let y € DS}[0,T](m). The property C is fulfilled for the function of the
form

m
y(t) = Y Xa(pg(t),  t€0,T], (10)
g=1
where the components of p, : [0,7] = R", ¢ = 1,...,m, are polynomials

with rational coefficients. We denote by Py, the set of all y € DSZ[0, T](m)
of the form (10).

Definition 2. We say that a function y € WSP[0,T](m) possesses the
property C (is computable) if this function as well as the functions y(®,
i=1,...,n and Vy take rational values at the rational values of argument.

Definition 3. We say that a function h : [0,7] — R!, is computable over
partition (9) if h possesses the property C and for every j € {1,...,m} there
exists an integer ¢;, 0 < g; < j, such that h(t) € By, as t € B;.

An example of a function being computable over (9) is given by the
function h : [0,7] = R! of the form

m—+1
h(t) = Y xq(t) by, kg <tq, te€[0,T],
g=1

where hy, ¢ = 1,...,m + 1, are rational constants.

Definition 4. We say that a function h : [0,7] — R! is computable over
(9) in the generalized sense, if h possesses the property C and for every
j € {1,...,m}, there exists an integer ¢; = 0 < ¢; < m + 1, such that
h(t) € By, as t € B;.

A function h : [0,T] — R! of the form

m—+1

h(t) = Y xg@®) by, te€0,T],

with rational constants hg, ¢ =1,...,m+ 1, gives an example of a function
which is computable over (9) in the generalized sense.

Definition 5. A linear bounded operator £: DS}[0,T](m) — L7[0,T]
possesses the property C (is computable) if it maps the set P7 into itself.
Some examples of computable operators are as follows:

— the operator Ly = y + P(-)y such that the columns of P(-) are
elements of PJ;
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— the operator

is computable when the columns of P(-) are elements of P and
the function A is computable in the generalized sense.

4. KEY IDEAS AND CONSTRUCTIONS ILLUSTRATED BY THE CASE OF
THE SCALAR DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

The two main points of our approach are as follows:

— the constructive study of an approximate problem (AP) with com-
putable parameters for the correct solvability (this AP is construc-
ted by means of the original PBVP );

— the construction of an approximate solution to AP (in the case of the
correct solvability) in the way which allows to obtain a guaranteed
error bound (of a quite high accuracy).

It is principal for our aims that algorithms of constructing these error
bound provide (theoretically) the possibility of attaining as high accuracy
as we wish.

To outline the key ideas and constructions of our techniques we consider
in this section the case of scalar differential equation with deviated argument
in the space D}[0,T]. The general case will be considered in Section 5.

Consider the Cauchy problem

(Lz) (t) = &(t) + b@)z[h(t)] = f(), te[0,T],

_ 900(6)7 f < 07 _ (11)
“9_{%@L£>T,xm)_“

where b, f € L;[O,T], 1 < p < o0; a is a rational number; a given function
h:[0,T] = R! is strictly increasing and continuous.
Let us take h9, hT as rational approximations of h(0) and h(T"), respec-
tively, as well as a rational h, such that
B < B(0) < RS +hy; hI < B(T) < hE + hy.
Fix a constant m and construct the collection h? as follows:

hT + ho
hg:hg-f-V%, VZO,...,m,

and
hg—l + hv < hg, vV = 1,...,m.
For v=1,...,m — 1, define {1¢2,1 2} and {?¢2,2¢2} such that

RTU(RS) € [N, 12 + 2], hTU(RE + hy) € [P2,%18 + 2tY],
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and
e 4+ 10 < %t 0 < M, e+ %Y < T
Define the points tg, t1,. ..,y by the equalities

g 4+ + 2

t, = 5 , v=1....m—-=1, t, =0, t, =T.

Notethat 0 = tg < t; < - - < 1 < bty = T and
hy < h(t,) < hl + hy, v=0,...,m.

Denote B, = [ty—1,tu), ¥ = 1,...,m — 1, By, = [ty—1,T] and x,(-) =
x8, (-). Define the function h, : [0,T] = R! by

m

ha() = Y xe®hi_y, t€[0,T].

v=1
Obviously h, is computable in generalized sense over {¢,}." ,. We assume
bellow that
@, € Dy[h%,0], ¢, € D[T,R}],
where h7, b are defined by
hy = hg; h; = hg, + hy.

Next we approximate the functions b, f, ¢,, ¢, by polynomials b, fa, ¢,
@2 with rational coefficients. Let by, fy, %@?, 1", %9, 1¢¥, be correspond-

ing error bounds of the approximation

by 2 [1b=ballpajory> fo 2 IIf = fallzpo,77 5
“op 2 lpo(h) =5 (k)]s el 2 @ = &Gl as o

%0t > |op () =2 (ha)], el > [lo- ng“L;[T,h;] ‘
We call the Cauchy problem
Lo =2(t) + bo(t)z[ho ()] = fu(8), te€][0,T],

a
3 (8), ¢>T,
to be the approximating Cauchy problem to the problem (11). Note that
L,: DJ0,T] = L;[0,T] is a computable operator.
As is known (see, for instance, [1,2,3]), the problem (11) (and (12) as
well) is in general not uniquely solvable. Hence we have at first to study
(11) for the property of the unique solvability.
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With this aim we define the integral operator K : L;[0,T] — L}[0,T] by

T

(K2) () = / K(t,s)2(s)ds, te€[0,T],
0
K(t,8) = =b(t)x(t,s), (t,8)€[0,T]x][0,T],

(13)

where X(t, s) is the characteristic function of
{t,5) €[0,T x[0,T]: 0<s<h(t) <T},
and rewrite (11) in the integral form:
[(I-K)Z @) = g(t), te€[0,T], (14)
where
g(t) = f(t) —b(t)x(t,0)a — b(t) [1 — x(t,0)] [ (t)];

wolh(t)], h(t) <O,
elh(®)] = { 0, 0<h(t) <T,
erlh(®)], h(t)>T.

Next we define the integral operator K, : L[0,T] — L}[0,T] by the equality

T
(Ka2) () = / Ka(t,s)2(s)ds, te€[0,T],
0

(15)
Kaltys) = —ba(O)xalts),  (t,5) € [0,T] x [0,T],
where x, (¢, s) is the characteristic function of
{(t,) € [0,T x [0,T]: 0 < s < ho(t) < T},
and rewrite (12) in the integral form
(T-K)2 () = gu®), te€[0,T], (16)

where

9a(t) = falt) = ba(t)Xa(t, 0) — ba(2) [1 — Xa (2, 0)] a[ha (t)],
eolha®)],  ha(t) <0,
@alha(t)] = 40, 0< he(t) <T,
erlha(@®)], ha(t) >T.
The representation

m

Xo(t,8) = D xu(®)xpo,a51(8)s  (¢,9) € [0,T] x [0, ],

v=1
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hy_1, hy_q €[0,T7,
0, hy_1 ¢ 0,71,
kernel of the form

where d¢ = implies that K,(-,-) is a degenerate

Kalt) =3 w (s, (6s) € 0,T]x 0,1, (17)

where

uV(t) = _ba(t)XV(t)a U,,(S) = X[O,d,‘j](s)'
Following the known way of solving integral equations with degenerate ker-
nel (see e.g. [4]), we will try to find a solution z, to (16) in the form

m
2o(t) = Zu,,(t)c,, + g.(t). (18)
v=1
Define the matrix A by the equality
T
A= Pl M = b [un@ds 9
0
where 6,; is the Kronecker symbol. In the case where A is invertible, the
vector ¢ = col{cy,... ,cn} can be calculated:
c= A8, (20)

T
where 8 = {8}, By = [v,(8)ga(s)ds, v = 1,...,m. Let M = A™,
0

M = {m,,j},tr’”jzl. In this case the equation (16) is uniquely solvable, the
operator (I — K,) is invertible and there exists the resolvent operator R, :
Ly[0,T] = L}[0,T] such that (I + R,) = (I — K,)™" and

T

(Raga) () = / rat, 8)ga(s) ds,

0

ra(ta S) = iiul/(t)vj(s)m”ﬁ

v=1 j=1

za(t) = [(I+Ra)ga] (¢), t€[0,T]
There takes place the estimate
1 Ballzz0,175 221017 < P05 (21)

where

m m
pPo = Z Z |25 ”UVHL;[O,T] ||Uj||L11’,[0,T] .

v=1 j=1
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Define the operator AK: L}[0,T] = L3[0,T], AK = K — K,, by

T
(AK@@):(/KA@JV@ﬁk,tEHLﬂ, (22)
0
’CA(t,S) = _b(t)X(t7 S) + ba(t)Xa(t7 3)7
(t,5) € [0,T] x [0, T].

In what follows, an estimate of [|AK|| ;1o 71_, 110,77 I8 required. To obtain
pl¥? pl>¥?

such an estimate, we construct at first an estimate for |x(-,-) — xa (- )|-
There are the following cases:

1. One of the conditions h§ > T', h%, + h, < 0, holds. In this case
Ix(t,8) — Xxa(t,8)| =0, (¢,5) €[0,T] x [0,T}; (23)

2. The condition 0 < h§ < hZ, + h, < T is fulfilled. In this case

|X(t7 3) ~ Xa (t7 S)l < Z Xv (t)X[h,‘j_l,h,‘j-‘rhv] (3)7

(t,s) €[0,T] x [0,T7;

(24)

3. The equation h(t) = 0 has a solution belonging to the set B,; and
the equation h(t) = 0 has a solution belonging to the set B,:. In
this case

|X(t7 S) - Xa(tas)l <

vi—1
< Z Xu(t)X[hg_l,hg.g_hv](s) + Xvg (t) + Xvk (t), (25)
1/:1/6*—}-1

(t,5) € [0,T] x [0, 7.

The estimate

IAK]| 110,715 1200,17 < 0 (26)
holds, where a rational dy is defined as follows.
In case 1:
50 = 03
In case 2:

def
b 2> 1§Iun§ar§—1 (”baHL;[t,,_l,t,,] + ||ba||L11,[t,,,t.,+1]) X

X p\llt,,+1 —ty_1 + bv I’\/T.
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In case 3:
def '
(50 Z Vg-‘rlglllag(u}—l (”ba”L},[tu—l,tu] + ||ba||L11,[t,,,t,,+1]) \ tu+1 - tu—l +

+ [ p + b +b, | VT
(” a”L’l’ [t"g_l’t"g] | a”I“Il’ [tv;"p—l’t":”r] v)

Now we can formulate
Theorem 1. Let the matriz A defined by (19) be invertible and the condi-
tion
1
1+ po

hold, where oy and py are defined by (26) and (21), respectively. Then the
Cauchy problem (11) is uniquely solvable for any f € L;[0,T] and a € R'.

6 <

(27)

Proof. The condition (27) implies the estimate

1

AK < )
| ||L}, [0,7)—L}[0,T] I+ Ra”L;[o,T]—m;[o,T]

which provides the invertibility of the operator I — K due to the theorem
on the invertible operator (see [6, Th.3.6.3]). O

Under the condition of Theorem 1 there exists the resolvent operator R:
L[0,T] — L[0,T7,
(I+R)=(I-K), (28)
and the representation z(t) = [({ + R) g] (¢), ¢t € [0, T, of z, the solution to
(14), holds. As is known [6], there takes place the estimate

do (1 + po)?

1—4do (1+po) (29)

||R—Ra||L;[o,T]—>L;[o,T] < pu, With py =

The difference g — g, can be written in the form
9(t) — ga(t) = F(t) — fa(t) + [b() — ba(?)] G2 (2) —
— b, (t){ata(t) + @)}, te]0,T],
where
G(8) = x(t,0)a + [1 — x(2,0)] ¢[h(t)],
42(75) = X(t7 0) - Xa(t7 0)7
G(8) =[1 = x(@0)] ¢lh()] — [I — Xa(t,0)] wa[ha(t)].

Construct the estimate of |(;(¢)|, t € [0,T],i=1,3. Fixv=1,... ,m, t €
B,, and consider the following cases:
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(1) The condition A% + h, < 0 holds. In this case x(¢,0) = x,(¢,0) =0
and the following estimates take place:

GO < [@2(B)] + %60 + A /e + by — B2 X0

(P LR Y

()] =0 & 2, (31)

! def
G(#) < %02 + 1ol /e 4+ he —BE_ = . (32)

(2) The condition A%_; > T holds. Then x(t,0) = x,(¢,0) = 0 and the

estimates
G (#)] < [@%(T)] +°¢% + VR + by — T %
. def
. (||90;L"||L;[T,hg+hv] + 1901;) = % (33)
f
IG@)] =0 & 42, (34)
p’ f
|G (8)] < % + b 2 /he + hy — g E A (35)
hold.

(3) The conditions h%_; < 0, h% + h, > 0 are fulfilled (the equation
h(t) = 0 has a solution in B,). In this case x,(#,0) = 0, the sign of
h can not be established by calculations, and the estimates

|G < lal + |05 (h3)| + %0f +

s (g + 92) Y b G0

O =1 & 2, (37)

GO <%0 + ey =Ry + |3 (hy)] +

+ ||9bg||L;[h3,hg_1] p\I/ hy_y — by & o (38)

hold.
(4) The conditions h%_; < T, h% + h, > T are fulfilled (the equation
h(t) = T has a solution in B,). In this case x,(¢,0) = 1 and there
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take place the estimates

1G] < | (B + %% + Vhe + hy — T x

. (”90(; ”L;[T,hg-i—hv] + 1903) + ol €, (39)
@l =1 % 2, (40)
IG5 (8)] < |2 (T)] +°9% + V/hE + hy — T x

X (Hgb(;"”L}l,[T,hg-i-hv] + 1903}) L2, (41)

(5) The conditions h%_; > 0, h% + h, < T hold. In this case x(¢,0) =
Xo(t,0) =1 and

G (#)] = la] & AL (42)
G()] =0 £ 42 (43)
Gs(®)] =0 EF 2. (44)
Thus
m
¢ (8)] < ;xu(t)vi < lg}/aéxmﬁ,
-
|¢2(8)] < ;xu(thﬁ < lg}/aéxmﬁ,
-
|¢s ()] < ;xu(t)%?: < lg}/agcmﬁ-

The above estimates alow us to construct a constant g, such that

llg — ga”L;[O,T] < v, (45)

S+ !
v > fo + by (T Y +

2 3
+ Wllyiny (Jol max 2+ max +2),

where 7} is defined by one of (30), (33), (36), (39), (42); 42 is defined by

one of (31), (34), (37), (40), (43); ¥3 is defined by one of (32), (35), (38),
(41), (44). The representation

z(t) —2a(t) = [(BR—Ha)g] () + [(I + Ra) (9 — 9)] (B),
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t € [0,T], where z, is the solution of (16) defined by (18), implies the
estimate

||Z—Za||L11,[o,T] <z, (46)

zo = (1+po)go + pu (IlyallL;[o,T] +gv),

where the constant pg is defined by (21), the constant p, is defined by (29).
To conclude, we define an approximate solution z, to (11) as well as an
error bound @, > [|& — #all 1)o7 (here z is the exact solution of (11)) as

follows:
t
T, a + /za Yds, Ty = 2. (47)
0

Asymptotic accuracy of the error bound. Let the problem (11) be
uniquely solvable. The questions we consider in this subsection are:

(1) Is the proposed method an effective one? In other words, is there
an opportunity to recognize the property of the unique solvability
in any case, at least theoretically?

(2) (very close to 1) Does the estimate (46) possess the property of the
asymptotic accuracy?

Define the constants h}, h; by the equalities

by = min {h®} =1, by = max {h(t)} +

Let k= ko, ko +1,..., ko = 1 and ®h}, “h} be such that
1
*hy < h(0) < °hy +hY; hi < R(T) < °hp+hY, B E
Next construct the collection of points *h} as follows:

ahT + ahk
au_aho kk 0, VZO, ,m,
and assume that the conditions “h”_1 +h] <® hi,v=1,...,k, are fulfilled.
Forv=1,...,k — 1, define § g,g ¥, in such a way that

hTH(hy) € M5, 145 + Byl RT(RY + hR) €[5t 5t + by
and
S + hY < 9th. 0 < 9y, St 4+ RY<T.
Next define ¢}, by

atl/+h’l}+at1/
=t ——2% =0, =T

Note that this implies
“hy < h(ty) < *hy + h;, v=0,...,k



110 A. N. Rumyantsev

Introduce the sets BY = [t¢™',t/), v = 1,...,k— 1, and Bf = [t} T]
and their characteristic functions x%(-), v = 1,...,k. Let us define h; by
the equality

k
he(8) = D xp@)°hy™t, te[0,T).
v=1

The functions b, f, ¢, are to be approximated by polynomials 6%, f&,

0T k) Jk
“¢t, “op with rational coefficients in such a way that the error bounds by,
Ir, 0% 19%s 095 » 195 satisfy the inequalities

1 gef .,

16 = bxll 0,1y < P
o 1
If = FllLzom < %

|00 (hy) = o (h3)]

def

= Ir

IA

||9bo - agb?ﬁ”L;,[hs,O] <
1

ko2 (T) = *¢i (T)] < + = 1¢k,

||90T - a¢£||L;I[T,h;] S

Consider the Cauchy problem approximating the problem (11)

(Lrz) () =2(t) + bp()z[he(t)] = fr(t), te€[0,T], (48)
_ (8, €<, _
z(§) = {“goi ), E>T, z(0) = a.

Here the operator Ly, : D}[0,T] — L[0,T] is computable.

The principal part @ : L;[0,T] — L,[0,T] of the operator £ in (11) has
the form @ = I — K, where the integral operator K : L;[0,T] = L;[0,T] is
defined by (13). The principal part Qg : L,[0,T] = L;[0,T] of Ly (48) has
the form Qp = I — K}, where the operator Ky : L;[0,T] — L[0,T] is an
integral one:

T
mmmz/mmmww,mMH, (49)
0

Ki(t,s) = —bg(®)xn(t,s), (ts) € [0,T]x[0,T],
with x (-, -) being the characteristic function of the set

{(t;5) € 0,7 x [0,7]: 0 < 5 < h(8) < T}.
The estimate (26) implies

”Q - le|L11,[0,T]—>L11,[0,T] S 527 (50)
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where 47 is defined as follows:
Case 1. Either the inequality *h9 > T or the inequality *h7* + hY < 0

holds. In this case

8 = 0.

Case 2. The condition 0 < h <% h7* + kY < T is fulfilled. Then

def , )
0 Ly -1 »
O 2 | Joax | (IIb%IIL;[t;—l,t;] + IlbzllL;[tZ,t;H])x Vit -t oy VT

Case 3. The equation A(t) = 0 has a solution in BZS and the equation h(t)
= T has a solution in B,”. Then

> ma (10l + I8l ) VET -6

+ [ ||p2 et e1 + |82 Ry T
I kIIL;[tk0 1,tk°] I kIIL1 [t — T] k

P |7k "k

The way of constructing £y implies that, for any v=1,..., k, mes [t/ ', 7] —

0 as k — 00. Due to absolute continuity of the Lebesgue integral this im-

plies, for v = 1,...,k, ||b||L1[t.,_1 #+1] — 0 as k = oo0. Thus due to the
PrLk "k

estimate (50) we have §) — 0 (Qx — Q) as k — o0, and L, — L as k — oo.
Since under the above assumption () is invertible, the established conver-
gence of @y, implies that there exists N, > ko such that the problem (48) is
uniquely solvable for any k > N,. Below we assume k > N,. Let z; be a
solution of (48). Rewrite the problem (48) in the form

[(I-K) 2 () = git), te[o,T), (51)
gk(®) = F() = b)xi(t,0)a — b(8) [1 - xu (2, 0)] lhi (8],
wolhr(t)], hi(t) <O,
el (8)] = { 0, 0< h(t) <T,
Crlhi (@], hi() >T

(the operator K is defined by (49)). Let the equation h(t) = 0 have a

solution in BZS, and the equation h(t) = T have a solution in BZT. Then,



112 A. N. Rumyantsev

due to (45), we have

k

llg — gk”L;[O,T] < Z llg - gk”L;[tZ_l’tZ] +
1<v<k
V#VE,I/_#V;

el ol e ) +
P k "k

L
+ - v¥ —1 u* < v, 52
llg ykIIL; [tkT 1,tkT] < 9 (52)
def
gi = 317 + 30w + 116l 1 0,77 T +

Pk "k

(B ) OB s )
1
k

x (la] + 75 +73) 5

here
M = lal + [e,(hY)] + 9ol jne 01 Y/ —hs +

+ | (T)] + ||¢T||L;[T,h;] Ve =T,
Yo =0@h + o8\ —hi + ek + Yor W /hE =T,

Due to the estimate (52), convergence v — 0 as k — 00, and boundedness
of 7}, there takes place the convergence gi — g as k — oo, ie., gr = 0
as k —» o (”b”L;[tg—l,t;] — 0 as k — oo for absolute continuity of the
Lebesgue integral for any v =1, ..., k). Thus there exists a nonnegative g,
such that ||9k||l;[o,T] <gn,k=N,N.+1,....

Under the above assumptions there exists the resolvent operator Ry :
LY[0,T] — Li[0,T], (I + Ry) = (I — K3) ™', k= N, No +1,..., (with K
defined by (49)); therewith the convergence Ry — R ((28)) as k — oo takes
place. Hence there exists p, such that ||Rg|| L1[0,7]-L2[0,T] < py for any
k=N,N.+1,....

Assume the condition 63(1+p, ) < 1Vk = N,,N,+1,..., to be fulfilled
(with 69 defined by (50)). These conditions can be provided by proper choice
of the parameter kg. Let us use the invertible operator theorem again to
obtain the estimate

Q1 +p,)
1B = BrllLijo,m- 100,11 < 1-80(1+py)

This estimate and the representation

z() =z () = [(R— Bx) g (1) + [(I + Bx) (9 — 98)] (),
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t € [0,T], imply

”"i"_-’i:k”L}l,[O,T] = ||Z_zk||L11,[0,T] < =g, (53)
89 (1+ py)’

vo— (1 v k N v

Tk ( +pN)gk + 1_52(1+pN)(gN+gk)7

which provides the convergence z} — 0 as k — oo.
Thus we have

Theorem 2. Let the Cauchy problem (11) be uniquely solvable. Then there
exists a sequence of computable operators Ly, DII,[O,T] — L},[O, T, Ly, = L
(with L defined by (11)) such that the following conditions are fulfilled:

— there exists N, such that the Cauchy problem (48) is uniquely and
everywhere solvable for any k > N, and the solution zj to (48)
satisfies the estimate (52);

— the estimate (52) possesses the property of asymptotic accuracy (i.e.,
zp — 0 as k = 00).

5. DIFFERENTIAL SYSTEM WITH ARBITRARY DEVIATIONS

Consider in the space DS}[0,T](m), 1 < p < oo, the PBVP

Ly)' @) = u@) + D3 sy RE®] = fi),
=1 k=1
_ )56, €<0,
(e) = {%T(g), Sy otenm 6o
Ay; = a;, a;=col{a},...,a"""}

with pf, fi € Ly[0,T], ol € R', and the functions hE(), 65 = 1,...,m,
k =1,...,n;; being continuous and strictly monotone on each set B,.
The investigation of the problem (54) includes the following main stages:

— approximating the problem under consideration within the class of
computable operators;

— constructing the solution of the approximate problem (in the case
where it does exist);

— the study of the original problem for the solvability with the use of
the solution of the approximate problem;

— computing a guaranteed error bound of the approximate solution
in the case where the unique solvability of the original problem is
established.

In the sequel we consider these stages in details.
The approximation of the problem within the class of computable oper-
ators. The numbers o] are to be approximated by rational numbers *o]
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with rational error bounds Yo7 >

al — ol ‘ Introduce the vectors

a __ a1l a . m+1 v v, 1 v, . m+1
af =col {%aj,...,%" "}, a? =col{’aj,...,"a"*"},

i=1,...,n. Fixing ¢ = 1,...,m + 1, approximate the functions pfj, fion
the set B, by polynomials gpfj and °f] with rational coefficients and define
rational error bounds

k k k
%pij > ||pij - Zpij”L;[tq_l,td ) vfiq > |Ifi— afiq”L;[tq_l’tq] .

Now define
m—+1
PEE) = D xg®)ipli(), te[0,T],
=1
mj—l
) = x(®fit), tel0,T],
g=1

i,j: 1,...,n; k= 1,...,711']'.
_Fixing i,j = 1,...,n, k = 1,...,n;, calculate rational approximations
ah¥; of hi;(ty), ¢ =0,...,m + 1, and define a rational h, such that

4k — hy < BE(t) < IRE + he.

Let “h%. be defined by

a'vij

apk 1 _ ; qpk
max {ahij} min {ahij}
vk : ank 0<g<m+1 0<g<m+1
ahij = min {ahij} + v 2 ,
0<g<m+1 m”
_ k
V—O,... ,mij,
where
kE _ vk vk _ fqirkymt!
m;; = Ahij b, Ahij = {ahij}q:() .

The parameter vy, having positive integer values, define the accuracy of
approximation to the function hfj. We assume therewith that the condi-
tions ¥RE + hy <4 hE — hy, v = 1,...,mk; are satisfied. Let ), ¢ =

q,k —
0,...,m+1, be a value of v such that a””hfj = ghfj. Forg=1,...,m+1,
denote by quj +1 the number of values thj which are detectable as reliably

belonging to the inverse image of the function hfj on the set B,. Define the
<y Imk;
elements of 4Zf; = {g”hfj} " as follows:
v=0

- q—1_k
awik _ viitv, g _ ok E s . . .
1.9 hij =, hij, v=_0,...,9mj, if hij is strictly increasing on
By;
vik W=V g E i bk : .
2.0 = a hi;, v =0,...9mj, if hy; is strictly decreasing on

B,.
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In the way described in Section 4, construct by means of the set qIfj

collection of points &}, v = 0,... 2 mf;:

k k
tq—l — qot% < qlt% < ... < q(qmij—l)ti?j < qqmijtf’j :tq, (55)
such that

PhY — he < B(™tY) < PRY + hy, v=0,....0mf;,

hold. Next define
“Bj = [Q(V_l)t"c' @), v=1,...'mf -1,
qqm;chl". = [Q(qm _l)tfpt )7 g<m+1,
T, T), g=m+1,

and the characteristic function % xf;(-) of the set #Bf, v = 1,...,2mf,.
The function “h%; () is constructed by

m—+1 m”

ahli(t) = Z Z @k (1) 1= 1)hk t€10,T]. (56)

g=1 v=1

It is easy to see that *h¥; is computable over (55).

We assume below that 99 € Dylht,0], ¢7 € Dy[T,h], j =1,...,n, the
constants hy, h} are deﬁned as follows

hy = min {Obfj
1<4,j<n
1<k<n;;
°p®. = min{ min h m1n — hy
i ’ a z] ’
t€[0,T] 0<v<m
h: = max {"b
T . )
1<i,j<n
r1<k<n;;
bej = max { min {h }, max {a i T hv} .
t€[0,T] Ogugm

Let us approximate the functions ¢3, ¢ by polynomials *¢} and *¢7, re-
spectively, with rational coefficients and with rational error bounds {8 7

105}, {55, 10}
009 > (g3 — )], 56 > |

ésg' _ a¢0

Ll[h* ]

TY > |@T(T) — *¢5(T)|, T

v

¢;~ _ a¢T

LY[Thx]
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Finally we obtain the PBVP which approximates the problem (54):

n  Nij

(Lay)’ ORI AT (0] = fi*(2), (57)

=1 k=1

el (8, €<,
yj(f)—{aé(g), 6> T, te0,T],

a

Ay; = of, i,j=1,...,n
Recall that the operator £,: DSP[0,T](m) — L3[0,T] defined by £, =
3y
{(an)l} is computable.
=1
Construction of the solution of the approximate problem. Let ij(-, 3
and *x%; (-, -) be the characteristic functions of the sets

{(t,s) € [0,T] x [0,T]: 0<s<h(t) <T},

b ( (58)
{@,s)€[0,T]x[0,T]: 0<s<hf;(t)<T},
respectively; 4,5 = 1,...,n; k = 1,...,n;;. Define the functions ;;(-,-) and
K’?j('a ) by
nij
K',ij(t, S) = _Zpi?j(t)X?j(tas)a
n;
ij (59)
K’?j(t7 S) = Z pz] Xz] )
(t,s) € [0,T] x [O,T], i,j=1,...,n.
Put
K() = fri N e Kalo) = {0}, - (60)
There takes place the representation
T
=/x] (t,9)d()ds + 3 (O (1,0) +
0
+ ZAy x5t ty), tel[o0,T], (61)

3Rl (@), RE®) <O,
Sl O] = 10 0 < hf;(#) <T,
OI[RE )], B > T.
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Using the representation (61) and (59), (60), we rewrite the problem (54)
in the integral form

(I -K)2](t) = g(t), K:Lg[0,T] = Ly[0,T],

T
(62)

/IC s)ds, te€]0,T],

0

where z(-) = y(-). The components g;(-), 4 =1,...,n of g(-) are defined by

60 = £i0) = S PE® S ol (10
j:l k=1 q=0
- ZZpiz [1 = x5 (t,0)] ¢;[RE (2)]. (63)
=1 k=1

Analogously rewrite the problem (57):
(I — Ka) 2] (t) = ga(t), Ka: Lp[0,T] = Lp[0, T},

r (64)
/ICa s)yds, te][0,T],
0

where the components g¢(-), i = 1,...,n, of g.(-) are defined by

g0 = 720 - 33 (0 S alt exk (1, 1,) -
§=1k=1 4=0
= DD 9Pk [1 - Xk, 0)] e[k (0], (65)
j=1 k=1

e [*hl®)], *hE() <O,
“lRE®)] = <0, 0< Rkt < T,
F[hE(8)], °h(t) > T.

The function ¢ ij(-, -} admits the representation

m+1 mz]

"Xihs) = D2 D X OX[ozax(5); (66)

g=1 v=1

(t,s) € [0,T] x [0,T], where

v—1 . v—1)7
W W Dpk, i TVRE € [0,
¢ 0, otherwise,
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i,j=1,...,m; k =1,...,n. Define the functions uf; (), vf;(-) by
Tuli(t) = 15 X @), te[0,T],
v fj(s) = X[o,g”dfj]( s), s € [0,T],

,j=1,...,n; k=1,...,n45, v =1,...,2mf;. Due to (67), the functions
k; defined by (59) admit the representation

(67)

2
nij m+1 Im3;

=> > wuki(t) Vol (s), (68)

k=1 ¢=1 v=1

(t,s) € [0,T] x [0,T); i,5 = 1,...,n. Define the sets J as follows:

metlk
ZI; _ {0 Htfj, ot m”tf:],21tk - (m+1) (" imd l)tfj,T},

i,j=1,...,n, k=1,...,n4. Denote

n MNij
k
U U
t,7=1 k=1

Let ¢;, 1 =0,...,n9, be such that
T={0=t <t1 < <tpg—1 < typ, =T}.

Define the sets B, = [fo—1,5), 0 = 1,...,n0 — 1, Byy) = [fny—1,T] and
denote by ¥, the characteristic function of B,, 0 =1,...,ng. Taking into
account (66), we have for “ij(-) the representation

Xz] Z XG' de ) (69)

a”

(t,s) € [0,T] x [0,T], where gdZ“] = &dl, if B, C% B, i,5 = 1,...,n,

k=1,...,n;. In the similar way we can transform the representation (68)
of the function &f;(-,-):

nij ng

s) = > k() 70k (s), (70)

k=1o=1
(t,s) € [0,T] x [0,T], where

7af;(t) = O x. (1), te0,T],

oa (71)
o5(s) = Xogza)(®), s €[0,T].
Define the vector-functions ﬂ;’]() and x 17;’]() by
aZ; () = row [uif (),..,u;?° ()],
J() |: .7() if ()] (72)

’l_}f]() = col {Uiqu(')a e 7’U?jija(')} )
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i,j=1,...,n; 0 = 1,...,n9, and form n x n?-matrices U, and n? x n-
matrices V,, as follows:
Us () = row[Uis(?),Use(:),. .. ,Una(")], (73)
where
af; (1) ufa() ... ufy
0 0 ... 0
Ulo'(') - . ]
0 0 0
0 0 0
agy () ug() ... udy,
U2o'(') - . ]
0 0 0
0 0 0
0 0 0
Uno’(') - : ’
a7, () ane() Upy,
Vie ()
V20(')
Vo’(') = . (74)
Vo ()
with
Vie =diag{93,0%,...,05,}, i=1,...,n.

The representations (73), (74) allow us to define the elements of the
matrices Uy, V, as follows:

Uo' —{’U/” } l—]. ,n;jzl,...,n2, (75)
ug; (t), ifi<j<n+i-1i=1,...,n,
ag; (t) = row{O .,0}, otherwise,
?’Li]‘
t€1[0,7],

Vo(s) = {o5;(s)},i=1,...,n% j=1,...,n, (76)
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v7;(8), if n(k—-1)+1<i< nk,
j=ki, k=1,...,n;
5(s) =
col{O ,0}, otherwise,
ni]‘
s€[0,T].
Put 4g;(-) = row {7@f;(-)} .7, 95 () = col {78 (-)},Z,. With (68), (72),

(73) and (74), the kernel Ko+, ) defined by (60) can be written in the form
no

= > Us(t)Vo(s), () €[0,T]% [0, T]. (77)
o=1

Hence the equation (64) is a Fredholm equation of the second kind with a
degenerate kernel. Following the known way of solving such equations, we
will find a solution z, to (64) in the form

ZU )7e + 9a(8), t€[0,T]; (78)

here the n2-vector 7, has the elements 79:

’Yg = COI{I,‘Yg,' .. 7n19]e 700'} ? 0 - 17' "7n bl
ig = [0/n]+1, (79)
jo = 80— (ig—1)n

(here and below [(-)] means the greatest integer in (-)). The vectors vy,
oc=1,...,n9, may be found via solving the system

Ay = B (80)

Here vy =col {y1,---,Mno}, B =col{B1,--- ,Bno}>
8, = /V,(s)ga(s)ds, o=1,....n0.

The (n?ng) x (n?no)-matrix A has the form

E-P, -Po ... —Pip,

—Py, E-Pys ... —P,,

A= (81)

—P,1 —P,2e ... E—-PFPy
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with n? x n2-matrices P,¢ and E defined by

T

Py = /V,(S)Ug(s)ds; E = diag{E’l,... ,En2}.
0

Here E, is the identity matrix of ng, j,-th order, i, = [I] +1; 4, =7-—
n
(i — 1)n. The matrices P,y are of the form
{ﬁ;‘g r,7=1"
where the elements p7} are the following matrices:
Py = {"p5a}; i=1,..m5, 5=1,.. ;350
i =[i/n]+1; i =[j/n] +1;
Ji=i—(—1n;  jj=j— (i —n.
Define the constant ny by
n n
- 33w
i=1 j=1

Construct the ny X ny-matrices P,g in the natural way by means of the
matrices P4 having the elements “/p[7. Define the (nony) x (nonx)-matrix
A:

Eng — Pll —Plg e _Plno
_ _P21 E’I’Lg - P22 e _P2’I'L0
A= _ _ _ .82
- _nol - _n02 e Eng - Pnono

_ Let A be invertible, i.e., PBVP (57) be uniquely solvable. Denote B =
A~'. Following the structure of the matrix A (81), we construct by means
of the matrix B the (n?ng) x (n?ng)-matrix B:

Bll 312 e Blno
B B ... B

e e (83)
Bpo1i Bpg2 ... Bpgng

2

B., — { rr}”
o — o8 ’
T=1

— ’L] T N - =
reo= {95}, i=1,..., N J=1,...,n55;-
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Then the desired vectors v, are
no
— Y Busbs, o=1..e,m0 (89

It remains to write the solution z, to (64)

ng nNno

= > > Us()BooBs + galt), t€[0,T], (85)

o=160=1

as well as the solution y, of PBVP (57):
¢
Yo(t) :/za(s)ds + 3,(0) +
0

+ZAya )Xz, 1)(®),  t €[0,T]. (86)

A norm estimate of the resolvent operator. Let the problem (57) be
uniquely solvable, i.e., there exist the resolvent operator R, : L”[O,T]
L3[0,T] such that [I + R,] = [I - K,]™'. Now the solution z, to (64) can
be written in the form

za(t) = [({ + Ry) g0] (1), t€[0,T], (87)
where
(Rage) ( /’R (t,8)ga(s)ds, t € [0,T],
(88)
ZZU o'GVG ( ) € [OaT] X [OaT]
o=160=1

Denote by (i the elements of R,(-,-). To obtain an estimate of
[|[Rall Lz[0,T]—Lz[o,7] USe the matrix representation of the operator R, =
P ?

{Rg; }” o B 1 Ly[0,T] — Ly [0, T,

/Q]ts s)ds, t € [0,T].

Due to (88) we have
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The desired estimate is

1Ballzx 0,715 210,17 < @05

o l«zg o 2 159y

L;, [0, 7]

123

An estimate of ||g — ga||zn[o,7) Making use of (63), (65), obtain the

representation of the i-th component of [g(t) — g,(t)], t € [0,T]:

m+1
g —gi®) = > [filt) - “ff®)] -
-3 3555 oo - o
j=1 k=1 ¢=0 v=1

X Xtg,1] (M5 (0)] + (Xit,m1 [R5 (®)] — Xizg,m7 [*hE;(2)]) x

x TFph(t) %ad™ + X, [R5 )] X

1 1
x 17ph () (gt - 2adt )} v (t) -
n Niji m+1 mz]
j=1 k=1 g=1

v=1

{ PE(6) — 1k @] [1 = ¥ (,0)] x

AAGIEIAO) ([1 = x5 (&, 05 (8)] -

= [1 = *xf(,0)]¢5 [ahfj(t)]>} x5 (). (9
Fixij=1,...,n, k=1,...,n5,¢g=1,....m+1L v =1..9m
t € BE. Deﬁne the constants 3"hf,, " Al

pk 2 mm{qv RE — hy, PRE = h, }
nly  max {7 1R + by, 2B + By |
such that ¢"hY; < bl (t) < {"hf;. Denote

({ngj(t) = |X[tq_1, [hfg (t ]|
gydgj(t) = |X[tq_1, [hf](t :| = X[tq—1,T] [ahfj(t)] |;
gygfj(t) = |X[tq_1,T] [“hfj(t)] | ;

)
)

1)

k.
137
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Now construct the estimates for {“¢f(¢), i =1,...,3.

?lygz] t = ||:1 - Xf] 70 :| ¢] |
gVCz] t = ||:1 - ij 70 :| ¢]
- [1 - X t’O)] ]|

ing cases.

Case 1.

Case 2.

Case 3.

Case 4.

Now construct the estimates for

cases.

ty < §'hf; and "R, < T. In this case

def
ek = 1% g,

def
¢k = 0= 95,

ef
e =1= £

Either {"h¥, < ¢, or §h¥, > T. In this case

k def k
gVCz](t) = 0 (IV 52
k() = 0 & gk,

def
k() = 0 E Pk

Either (g"ﬁfj >T and J"hf; <T) or (gyﬁ%
In this case

def
ek = 1= 8,
k def k
gygij(t) =1= gy7z]7
def
@) = 0= b

Either (tq <@hE < T and 'Rl <ty) or
hY; > T). In this case

v def gqv
) =15

i1

k def k
2 =1= v,
k def k
3¢ =1= &y

A. N. Rumyantsev

There are the follow-

(92)

< tq and {'hE > 1,).

(94)

(tq <@hE < T and

(95)

“(k(t), i = 4,5. There are the following
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Case 1. {"hf; < 0. In this case

un” < | ¢0 h* | + 0¢J

unz] = | ¢T

+(

e <

a¢0

“

a¢;~

)| +§g) +

L[T, %" hE]
I
® fquy g
X 1 —
'
T AU T U P fqV L E
0P + 165 Vi hi; —

Case 3. ¢Rh% <0 and {“R¥; > 0. In this case

ek <

?@@s

0] + 395 +

+(

a¢2

7

x 0

7
8¢§ + ‘1’¢}“’

+
Lihz, Rk 1

0

qv .k
Yijs

?@@sw§IW?WM

Case 2. {"h¥; > T. In this case

4

+1

4

thk def qv_k

T

def qu k

if

thk def qv_k

+1¢;

L1[k:,0]

P —h* def qv _ k

4 ’Yz]a

Case 4. ¢R% >0 and {"RE; < 0. In this case

PO =

%

21

?

) %

) %

E

—0hly + "9 (R3] +

Ll[h* hE]
% p’ /guhf h* def qr/ Z];.;
FC® < [e5(h)| + §ef +
a 10 04U
) U] x
2 L1[hz,0] 1¢’)

x 4[/—h; &

5

5

def qv k def qv k
)

4

if

ij-

ij-

ij*

125

(97)

(98)
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Case 5. 9“RhE, > T and §h¥; < T. In this case
@ < 7 (M| + 545 +

a v
= (Pl gy 74) >
v df v
X \/"h’“ -T = 3%’;,
%”d}(t) <09 + 105 X (100)
X ’}/‘{”hfj - T + |*¢7(T)| +
LLT, & RE)

P v def v_k
X \/3 hf] - g 71]

Case 6. 9"RhE; < T and {"h% > T. In this case

P = < YIhl - Tx

X ( + ’f¢;’) +
Eodef qu_k (101)

def qu
+|a¢f(T)| + 565 = o= 8

a'T

LT, $ R}

Case 7. {"hf; > 0 and {“hf; < T. In this case

v v def qv def qv
) = ) = 0= 9 S Ik (102)
The above estimates imply conclusively
(103)

g = gollLzjo,r) < 9o, g0 = f?aéxngl

Here the rational constants g¥, ¢ = 1,...,n, are defined by the inequality

. def !
9 2 E
n Nij m
g+1, k a  q+1 v g+1 quv k
D22 18 (10ad T + e max =1 ¥+
=1 k=1 g=0 ISVSqm
1
“a;” ‘ max g"fyf]
1§V§‘1m

+ ||q+1pm ||L tgrtata]

v, 4+1 qv .k
a maxlc 37”}+

p ||L1 [tqftq+1] J 1<v<am

n Nij m+1
}: qv k
—+ p max 4 V;
vij 15"5‘17” z]
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bl 2, 5] (01

Constructing an estimate of || K — Ka||L;[0,T]—>L;;[0,T]- Define the op-
erator Ka: L3[0,T] — L7[0,T] as follows:

Ka=K - K,, (105)

where

T

(KAZ) (t) = Kalt,s
/
L)

(t,s)z(s)ds, t € [0,T],
’CA(ta ) = K(t, S) - ’Ca(tas

), (t,8) €[0,¢] x [0,T7,

and the matrices K(-,-), Kg(-,-) are defined by (60). To estimate
[| KAl Lz[0,T]—Lz[0,7], Use the matrix representation

Ka = {K§},,_,, K§:L0,T]—= Ly[0,T],
T

(K53z) (2) Z/Fu?j(t,s)ds, te[0,T],
0

K',iAj(t, 8) = kij(t,s) — k3;(t,s), (t,8) €0,¢] x [0,T7].
Here £;;(-,-) and &g;(-,-) are defined by (59). For K',iAj(', -) we have

nij m+1
_Z Z [P?j(t) - prj(t)] ij(t, s) —
k=1 g=1

Nij m—+1

=33 @) [k s) - “xhte)],  (106)
k=1 ¢=1
(t,s) € [0,T] x [0,T],

i,j = 1,...,n. For each triple (¥~1h¥,, vn¥, ”‘Hhk), v=1,...,mf -1,

13? a1y a
such that 4 ~'h% — h, > 0 and ”+1th + hy ’ < T, we form the set ¥GF; of
the values ¢, 1 < g < m+ 1, such that vTlhE, uhE, vtk et TE (by
the definition, the set qIZk] includes the inverse image of h¥ % (+) on the set
B,). Denote by 97v-1tk,, 97v ¢k, 4ov+1¢F the points of the partition of By,
which are appropriate to fixed triple (Z YhE;, ¥hE, vT1hE;), and define the
numbers ¥ w . by

k K !
VWij = Z ||Zpij||L117[qou_1ti§=j’qou+1t;cj] p\/qo-""'lt;?j - qa”_lt%- (107)

vk
q€v Gy
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k
Let ovf € [1,mf;] be such that the segment [ i h”, o hfj] includes 0.

Oy,
Define the set °Gf; of the values of ¢, 1 < ¢ < m + 1, such that 4 5 hfj,

oy
ov) h¥; € 1ZF;. Denote by 490 ~1¥;, 9%0t¥; the points of partition of By, which

oyk _ oyk
are appropriate to the fixed pair (a"” by a vis hfj) and define °w}; by
ko k ®
Owij = Z ||Zp” ||L11, [qa‘o—lt?j’ 90 t?j] \/T (108)

k
qe0gy;

z]7a

Tyk )
Let Tvf; € [1,mf;] be such that the segment [ R A hfj] includes

k
T. Define the set 7 GF; of the values of ¢, 1 < ¢ < m+1, such that Vi hfj,
k
Tl h¥; € 97F. Denote by 47z =1t} 997t the points of the partition of By,

k
which are appropriate to the pair (Z Vil pk Vi hfj) and define Twf; by

z]7a

T = Z ” pm”Ll ar ~lgk 9o ¢k ] VT. (109)

k
qeET G

Using the way of constructing the estimate (26), we obtain with (106) con-
clusively

n Mij
KAl Lago, 115 L210,77 < o5 1<z<n21;6”, (110)
J

where dfj are defined as follows:

1.
gk <o, (111)
if one of the condition §h¥; — h, > T, @ . B, + h, < 0 holds.
2. ’
def mtl ,
k 14 P
o > 1912% ok + Z ol VT (112)
k
if0 < 8hE — hy <o 7Bl + hy <T.
3.
def ” mtl "
dfj > max w” + Z vp”

OVl“.—‘,-lSVST Vl“

+0 w .+ Tk (113)

]7
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with “@?; defined by (107) and °wf;,
k

respectively, if there exist °vf;, Tvf.
The study of the original problem for the solvability and the construc-
tion of the error bound. Let the approximating problem (57) be uniquely

solvable, i.e. the resolvent operator R, (88) exist. Assume that

T, defined by (108), (109)

1
1400’

where g¢ is defined by (90), and §p is defined by (110). In this case the
estimate

6 <

(114)

1

11+ Rall £njo, 715 L 0,77

KAl Lajo, 11— 22 p0,77 <

holds, and due to the invertible operator theorem there takes place the
invertibility of the operator (I — K) as well as the existence of the resol-
vent operator R: L2[0,T] — L2[0,T], (I + R) = (I — K)™', giving the
representation of the solution z to (62):

2(t)=[(I+R)gl(t), tel0,T]. (115)
By (87) and (115) we have
Z(t) —2za(t) = [({ + Ra) (9 — 9] (t) + [(R—Ra)(g0)](8), t€[0,T].
Due to the invertible operator theorem, the estimate

8o (1+ 00)?
1B = Rallnjo, 17> Lm0, < 1— 4o (1+ 00)

holds. Conclusively we obtain

2 = zallLnjo, 1) < 205

where a rational z, is defined by the inequality

8 (1+ 00)”
2y > (1+00) g0 + {Hga”L;[o,T] +9v} m- (116)
Now the solution y, of the problem (57) can be defined as
¢ m
Yo (t) :/za(s)ds + of + ZaZX[tq,T](t), (117)
0 g=1

therewith the estimate

”y_ya”DS;(m)[o,T] < Yo
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takes place, where y is the exact solution to (54) and a rational y, is defined
by

m
vo 2 20+ 3 flogllg. (118)
g=0

6. n-TH ORDER DIFFERENTIAL EQUATION WITH ARBITRARY DEVIATION

Consider in the space W SP[0,T](m), 1 < p < oo, the PBVP

(L") (1) =y ™ () + iipij(t)y(i) [hi; ()] = f(2), (119)
=0 j=1
Gyey _ PP, €<0,
y (&) = {%T(g), EST, te 0,77,
Aty=a, a=col{ai,...,0mnin},

assuming that p;;, f € L;[O,T], a; € R', the functions h;;(-),i=0,...,n—
1,7 =1,...,n;, are continuous and strictly monotone on each B,.

The investigation of the problem (119) includes the following principal
stages:

— approximating the problem under consideration within the class of
computable operators;

— constructing the solution of the approximate problem (in the case
where the solution exists);

— the study of the original problem for the solvability (using the so-
lution of the approximate problem);

— computing a guaranteed error bound of the approximate solution
(in the case where the unique solvability of the original problem is
established).

Let us consider these stages in details.

Approximation of the problem under consideration within the class of
computable operators. The components a;, i = 1,...,mn + n, of a are
approximated by rational numbers of with rational error bound af >
|o; — af|. Next define

a, =col{af,...,a%, . n}, ay=col{ad,...,al . n}-
Fixing ¢ = 1,...,m + 1, approximate the functions p;;, f on each B, by

polynomials “pgj and f; with rational coefficients. Next define rational error
bounds

Upgj Z ||pz] — apgj“LIl,[tq_htq] ] f: Z ||f - f‘?”L;[tq_htq] ]
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as well as the functions

m—+1
pl] Z Xq pz] te [O7T]7

m+1

Z Xq(t)f;(t)a te [OaT]a

1=0,...,n—-1,3=1,...,n;.

Approximating h;;. Fixi=0,...,n—1, j =1,...,n,, calculate rational
approximations “hgj of h;j(tq), ¢ = 0,...,m + 1, define rational h, such
that

“hY; — by < hij(ty) < °hY + hy,

and construct the collection of *hY; by the rule

{*R }— min {ai_tgj}

. - 0<q<m+1 0<¢g<m+1
*hY, = min {“hg.} + v =9=
7 0<g<m+1 7 myj
v=0,...,my;, where
mi; = Sy Ahy = {oR ’”“.
0, ij

Here the positive integer parameter vy defines the accuracy of approximation

to hi;, assuming “h;’j_l + hy <% hi; — hy, v = 1,...,m;;. Denote by v, ”,

q -
g=0,...,m+1, a value of v such that “h:}j =°hj;. Forg=1,...,m+1,
denote by mgj + 1 the amount of values *h]; which belong reliably to the

inverse image of h;; on the set B,. Define the elements of the set T, =
‘1

{“hq" } V_i; as follows:

1.
aiﬂ{/ _ ah:j_l”fj""’,
v=20, ”, if hy; is strictly increasing on By;
* aﬁqv _ ahq"fj—”
v — ap.. ,
v=20,...,m; ], if hy; is strictly decreasing on B,,.
By means of the set I”, in the way described in Section 4, construct the
set of points t” ,v=20,.. ,m”,
teor =t <t < ... < t;’;m?f_l) < t;’jmgf =t,, (120)

such that the condition

“ﬁ;’}’ — hy < h(t]) < “ﬁ;’]’.’ + hy, v=0,...,mf,



132 A. N. Rumyantsev

holds. Next put

By = [tQ(V D i), v=1,...,m{; -1,

s Yig

a(mi;—1)
B?.m;‘zj — [tz] ’ 7tq)7 q <m+ 17
Y [Q( —1 , I, ¢g=m+1,
and denote by xj;(-) the characteristic function of B[, v = 1,...,m{.

Construct h;(-) by the following rule

m+1

=Y ZX &) R, teo,T. (121)
g=1 v=1
It is easy to see that the function h{; is computable over the partition (120).
Below we suppose that ¢f € Dl[ ,0, o7 € D}[T,h%],i=0,...,n—1,
and define the constants h}, hy by the equalities

* 0 . apy
i = in () o = min i (a0 i (0~ )
1<i<n;

h, = ogglsag(—l {bij}a bi; = max{tér[ur; {hi;()}, 0<m§x { hi; + hv}}.
1<j<n;

Approximate the functions ¢?, ¢7 by polynomials *¢?, *¢7 with rational
coefficients and with rational error bounds {3¢7, {¢7}. {§¢7, T}

By > |s(h) — 2|, e > [de — oy

v

b
L3[Rz .0]

Soy > 16T(T) - e (D, 1ot > |6 - odr

L3[T,h2]

Write the PBVP approximating the problem (119):

L) () =y @) + 33 s O BE@] = f@),  (122)
=0 j=1
() (8, €£<0,
¥ (e) = {%(5), cSp el
Ay = a,.

Here £ : WSP[0,T](m) — Ly[0,T] is a computable operator.
Construction of the solution of the approximate problem. Denote by
Xij (,+) and x;(-,-) the characteristic functions of the sets

{(t,s) € [0,T] x [0,T]: 0<s< hy(t) <T}
and (123)
{(t,s) € [0,T] x [0,T]: 0<s<hy(t)<T},
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respectively, i =0,...,n — 1, j = 1,...,n;. The superposition y(® [hi; ()] is
representable in the form

T
_ n—i—1
y(l) z] = /Xz] tn _SZ_ 1)‘ y(n)( )ds +
0
+ [1 = xi;(¢,0)] @ilhiz (8)] +
m+1n—1 (t—t_l) E—i
+ Z ZXU (t, g l)am(q 1)+k+1 W, (124)
g=1 k=i :
V[hi; ()], hij(t) <0,
¢ilhi;(t)] = 0, 0< hiy(t) <T,

©F[hi;@®)], he () > T,

i=0,...,n—1; 7 =1,...,n; Define the functions K(-,-) and K,(-,-) by
the equalities

n—1 n;
K(tas) = Zzpij(tas)Xij(tas)a (125)
=0 j=1
n—1 n;
Kaltis) = 33 w5t (), i =10 m,
i=0 j=1
t—s n—i—1
pij(t,s) = —Pij(t)ﬁ,
t—s n—i—1
py;(t,s) = —P?j(t)ﬁ,

(t,s) € [0,T] x [0,T]. Using both the representation (124) and definitions
(125), write the problem (119) in the integral form

(I -K)z]@®) = g¢(t), te[0,T], (126)

T
CIL 1
K:L)0,T] - L,[0,T], (Kz)( /IC s)ds,
0

where z(-) = y(™(-) and the function g(-) is defined by

n—1 n;
Zzpz] 1 - Xz](t 0)] ¢z[ z]( )] -
i=0 j=1
n—1 n; m+1n—1
=D D pi® DD Xt tg-1) Cm(g—1)k41 X
=0 j=1 =1 k=i
_ k—i
« G te)™ g . (127)

(k—d)!
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Analogously, write the problem (122) in the form

(I - Ko) 2] (1) = ga(t), t€[0,T], (128)
T
where K, : L,;[0,T] = L[0,T], / Ka(t s)ds and the func-
tion g4(+) is defined by ’
n—1 n;
9a(t) = fa(®) = DD w0 [1 — x§(2,0)] #3[hg; ()] —
=0 j=1
n—1 n; ’ m+1n—1
=D P Y D Xt te) X
=0 j=1 ¢=1 k=i

o (t — tq_l)k—i
am(q—1)+k+1 W,
“GS[hgs ()], hy(E) <0
¢;’L [h’?j (t)] =40, 0< h?j (t) <T,

“of [he; (1)), hg(t) > T.

t € [0,T), (129)

For the function X;‘j(-, -}, there takes place the representation

m+1 ™

Xz] t S = Z ZX adq" ( )7 (130)

g=1 v=1
(t,s) € [0,T] x [0,T], with
agiv _ RV i 2R € 0,77,
K 0, otherwise,

i=0,...,n—1; 5 =1,...,n;. Using (130), we represent K(-,-) defined by

(125) in the form
m+ ni
=2 > D Pt
=1 ¢{=0 j=1 7=0

* [((nl)::l—ﬂ; i ;)'T xij (¢ )] X [STX[O,adg]'f] (3)] ’ (131)

(t,5) € [0,T] x [0, T7.

”nl n—i—1

Define the numbers ¢g5, g =1,...,m+1,i=0,...,n—1, by

ni 'LJ

Cqi —ZZ n—1i)(n—i-1).

j=lv=1
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Relate to the set of five (g« , ix, jx, Vx, T+) & new index 6, defined by

gx—1n—1 ix—1

=D D it Zcqﬂ

g=1 i=0

Je—1
+ZZ n—i)n—-i-1) +
=1 v=1
1/*—1
+Z n—f)(n—i—-1) + . + 1L
=1

In its turn, relate to a value of @ the set of five (qg, s, jg, vs, T9) by the
following algorithm:

a) the cycle of computing gs:
g =1
n—1

2) in the case 8 < Z Cqei 80 t0 4), otherwise go to 3);
- =0
3)9=06- Zcqei, gs = gs + 1, then go to 2);
=0
4) end;
b) the cycle of computing ig:
1) ig = 0;
2) in the case 8 < ¢q,4, g0 t0 4), otherwise go to 3);
3) 0 =0 — cgys,, 19 = 19 + 1, then go to 2);
4) end;
c¢) the cycle of computing js:
1) jo =1;
a6
tele

1
2) in the case 8 < Z §(n —1ig)(n—ig — 1) go to 4), otherwise

v=1
go to 3);
g:je 1
3) 6=0- > (n—ip)(n—is—1),3js = jo+ 1, then go to 2);
v=1 2
4) end;
def 260
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Kaol-,-) in the form

’Ca(ta S) = zm:uﬁ (t) Vg (3)7 (t,S) € [OaT] x [OaT]a (132)
=1

(_1)T9+1 tn—ig—l—‘rg

ug(t) = *pis;, (t)

vg(s) = STQX[O’ad?e'fe] (s)-

tele

doVe
(n —ig — L — g)l Xiode ®),

Thus the equation (128) is an integral Fredholm equation of the second kind
with a degenerate kernel. The solution z, of (128) is representable in the
form

[]=

za(t) = Ug (t)")/g + ga(t)7 te [OaT]a (133)

i3
Il

1

where the constants v € R! are to be found by solving the linear algebraic
system

Ay = 6. (134)
T
Here v = {vs}y-1, B = {Bo}se1, Bo = /vg(s)ga(s)ds, M X Mm-matrix A is
0

defined by

(

T
1 - /ua(s)vg(s)ds, o =280,
A= {)‘Go}grja:p Ags = { 0

uq(s)ve(s) ds, o # 0.

Ot —

\

Let A be invertible (i.e. PBVP (122) is uniquely solvable). Denote W =
A™Y W = {wgo}y y=i - Now 9 are defined by

[
o ngaﬂa, 6=1,...,m. (135)

o=1
A norm estimate of the resolvent operator. In the case where A is
invertible, there exists the resolvent operator R, : L;[0,T] — L;[0,T],

[I + R,) = [I — K,]™". Hence the solution z, to (128) can be written in the
form

za(t) = [(I + Ra) g0] (), ¢ €10,T], (136)
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with

—n

(Raga) (1) = [ Ralt,s)ga(s)ds, t€ By, (137)

f:ug t) M, v (), (t,s) € [0,T] x [0,T1.

lo=1

MS"’

i3
I

This implies

< 138
£,00,1] ~ - (138)

1Rall g0, 130017 < [|IRaCo9) gy pom]
Constructing an estimate of ||g — ga||z1[0,77- Using the relationships

(127), (129), write the representation of g(t) — g,(¢), £ € [0,T:

m—+1

a(t) — ga(t) = D [f(&) — f2®)] -

=1

n—1 n; ij n—1
5555 S o - )] »
=0 j=1 ¢=0v=1 k=4

X Qmgtkt1 Xij(t, tg) +
1
+0pE (1) 0%y (s (B tg) — X5 (1)) +

1
+ ap;I]-i- () (Cmgrhd1 — Cmgrnir) X552, tq)} X

(¢+D)v 4 (t =ty
x ng (t )Tqi)! -

n—1 n; m+1m3]’n 1
335353 { 5s(®) = 0] 11— x5 (.0)]

=0 j=1 ¢=1 v=1 k=4

x ¢i[hi; (1)] + *pf;(t) ([1 = X5 (2, 0)] @i hi; (2)] —

— [T = xi;(5,0)]¢f [h?j(t)]>} x

(t - tq—l)k_i

x xi; (t) o) (139)

Using the results of Section 5, by the representation (139) we obtain the
estimate

llg _ga”Ll o1l < Gu, (140)
»[0,7]



138 A. N. Rumyantsev

where
def A1
g = > fi+
=1
n—1 n; m n-—1
1
+ > vpft max 'yIx
" N A 1<v<mi,
=0 j=1 ¢=0 k=i - -
a v
X (lamq+k+1| + amq+k+1) +
+1 a 2,9V
+ |[*p¥ ‘ lo% prpyr| max 2yl +
R IR 1<vsmy; Y
+1 v 3.9V
+ ||*pi; ‘ Algrppr max Syl 5 x
R IR B § e

(tq-i-l - tq)k_i
R e T

n—1 n; m+1n—1

P IIIOIPD {”p% Jmax, A+
=7 ="

i=0 j=1 g=1 k=i
k—1i
5 q'f} (tg —tg—1)""

* RN G e TR

pi]

a (Iji‘l‘

ax
L;lz[tq—lytq] 1SVSm?j

the constants "fyfj", o = 1,2,3, are calculated analogously to g”fyfj, o =
1,2,3 (see (92), (93), (94), (95)), and the constants 7}, ¢ = 4,5 are
calculated analogously to ?,”fyfj, o = 4,5, (see (96), (97), (98), (99), (100),
(101), (102)).

Constructing an estimate of || K — Ka||£1[o,11—L2[0,7]- Define the op-
erator Ka: L3[0,T] — L}[0,T] by Kan = K — K,. There takes place the
representation

T
(Kaz) (1) = / Ka(t,s)z(s)ds, te€[0,T], (141)
0
Ka(t,s) = — X_: Z {pii (t,8)x1,s — B3t 8)xE )
=0 j=1

(t,5) € [0, x [0, T].

Using the way of constructing the estimate (110), by definition (141) we
obtain the estimate

IKallzsjo,m—r1j0,r) < G5 b0 2 PP (142)

where §;; are defined analogously to 5% (see (111), (112), (113)).
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The study of the original problem for the solvability and constructing an
error bound. Let the approximate problem (122) be uniquely solvable and
the condition

1
1+ 0o

hold, where g¢ is defined by (138), and &y is defined by (142). In this case
the estimate

b <

(143)

1
1Kl <
BT S T Rl

1=1310,7]

takes place. This implies, due to the invertible operator theorem, the in-
vertibility of (I — K) as well as the existence of the resolvent operator
R: L;[0,T] = L}[0,T], (I + R) = (I — K)™', providing the representation
of the solution z to (126):

z@)=[I+R)g](®), tel0,T]. (144)
Next, we have
Z(t) —za(t) = [(I+ Ra) (9 — 9a] (t) + [(R— Ra) (90)] (2),
t € [0,T]. As the estimate

8o (1+ 00)?
IR = Rally 011523011 < 1— 8 (1+ )

holds, we obtain conclusively
Iz = 2allL1jo,rp < 205

where the rational z, is defined by

8o (1+ 00)*
zy 2 (1+00)gv + {HgaHL;[o,T] +gv} T— 00 (1 00) (145)
The solution y, to (122) is defined by
t m
(-1 () = / za(8)ds + ol + 3 a1 (0,
0 =1
(146)

t m
D) = / g ()ds + atyy + 3 A Xie ) 8,
0

g=1
j=n-2,...,0, tel0,T],
therewith the estimate

Iy = Yallw sz myo,1p < Yo
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holds, where y is the exact solution to (119) and the rational y, is defined
by the inequality

Yo 2 2o + |lawllgmntn - (147)
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