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ON ESTIMATES OF SIGN-DEFINITE SOLUTIONS OF LINEAR
EQUATIONS WITH DELAY

(Reported on February 18, 2002)
Let R = (—o00,00),R4 = [0,00),A ={(¢,8) : t > s > 0}.
Consider the equation

(Lx)(t) =0, t>7 (T€Ry), ey

where
(La)(t) = &(t) — aa(t) + Y _ bran, (8),
k=1

T =
hie 0, if hi(t) <73

m

ac€R, by e Ry, b= Z bg; hy : [1,00) = R, k = 1,...,m, are given Lebesgue mea-
k=1

surable on R functions such that hg(¢) < ¢ for almost all t, 0 < wo = m’?x(vrai sup(t —

t
hg(t)) < oo.
By a solution of the equation (1) we mean a function z : [1,00) — R, which is
absolutely continuous on every finite interval [7,T] and satisfies (1) almost everywhere.
As it is known [1], the Cauchy problem for the equation (1) is uniquely solvable and
the solution can be expressed in the form

a(t) = C@t,m)z(r) (t2>7). (2)

If the initial point 7 in the equation (1) is an arbitrary one, then (1) becomes a family
of equations with all the solutions described by the equality (2). Under this approach C
becomes a function of two variables, ¢t and 7, from A into R; it is a common practice to
call it the Cauchy function of the equation (1). The equality (2) implies that the Cauchy
function as the function of the first argument satisfies the equation (1) with C(r,7) = 1.
Let us point out another useful property of the Cauchy function: for every (¢,s) € A,
the estimate

C(t,9)] < ellel+96=) ®)

holds.

The Cauchy function is the main subject of this paper, therefore it would be more
convenient to express the definition of stability in terms of the properties of the Cauchy
function.

Definition. We say that the equation (1) is a) uniformly stable, if there exists a
K > 0 such that |C(¢,s)| < K for all (¢,s) € A; and b) exponentially stable, if there exist
constants K > 0 and v > 0 such that the estimate

C(t,5)| < Ke™ 7= (1)
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holds for all (z,s) € A.

In the paper [2] some tests of the uniform and exponential stability for the equation
(1) are obtained (Theorems 9, 10). Below we show that in the case of the positive Cauchy
function these results can be refined by expressing the parameters K and -« in terms of
the coefficients of the original equation.

Consider the Cauchy problem

{ W(t) = au(t) — bu(t — r(t)), t€ Ry,
1

H

(5)
where a < b. Let uo be a solution of the problem (5) with the delay r = ro(¢) defined by

the equality:
t if te[0
oty =40 I telul,
w, if t€[w,00); w = const>0.

Let us denote L = sup{t € R4 : do(s) < 0,Vs < t}. Note that we allow L to be
equal +o0; in such case we deal with the class of equations (5) with the solutions steadily
decreasing over Ry . To this particular situation, the most attention is given in the paper.

Let us construct the solution of (5) on [0,w]. It is easy to see that do(t) = a(1 — g)
et < 0Vt € [0,w]. Hence w < L < co.

Define the function r* as follows: r*(t) = ro(t),Vt € Ry for L = oo; r*(t) = ro(t),Vt €
[0, L] for L < oo; and r*(t + L) = r*(¢).

The equation (5) with the delay r = r*(¢) will be called the test-equation. Denote by
u the solution of the test-equation, with the initial condition «(0) = 1, and by U(t, s) the
Cauchy function for the test-equation.

We outline some properties of the test-equation.

Lemma 1. If L < oo, then u(t + L) = u(t)u(L) YVt € Ry; in particular, u(nL) =
u™(L).

Proof. Tt is clear that the function z(¢) = u(t + L) satisfies the test-equation. Due to the
representation (2) we have

u(t + L) = 2(t) = u(t)z(0) = u(t)u(L). O
Lemma 2. If L < co, then u(L) < 0.

Proof. Assume the contrary: u(L) = uo(L) > 0. In this case, it follows from the equation
(5) that uo(L — w) < fuo(L) < uo(L), which contradicts the definition of L. O

Lemma 3. The following statements are equivalent:
a) U(t,s) > 0V(t,s) € A;

b) L = oo;

c) bw < e®w—l,

Proof. a) = b) holds by Lemma 2. The implications b) = ¢) and ¢) = a) are established
in the works [3, 4].
Introduce the notation

Dy = {(aw,bw) taw < bw < e aw < 1} , D1 = {(aw,bw) thw > e aw < 1} .
Lemma 4. Let (awo,bwo) € Do. Then there ezists w > wo such that (aw,bw) €Dy .

Proof. Consider the ray P = {a = a7, = br,7 > wo}. It is clear that for a < b the
intersection point of P and the curve 8 = e®~! lies in the domain where o < 1, and after
this point the ray lies above this curve. Hence there exists a point (aw,bw) € P such that
aw < 1,bw > e**~1 ie. (aw,bw) € D1. O
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Theorem 1. If (awo,bwo) € Do, then the test-equation is exponentially stable and
its Cauchy function is positive.

Proof. The function U(t, s) is positive by Lemma 3. The exponential stability is pro-
vided by Lemmas 1 and 4, the properties of U(¢, s) [5], and the theorem on continuous
dependence of solution to (5) on delay [6]. O

Lemma 5 ([2, 3]). Assume that L < co and s € R4,0 < ¢t — hy(t) < w for almost
allt € Ry and all k = 1,m. If, for some to > s+ n(L + w),n > 2, the inequalities
C(t0,8) > 0,Ct(to,s) > 0 are fulfilled, then there exists a point t1 > s + (n — 1)(L + w)
such that

Clto,s) = C(t1, s)u(L). (6)

Next, we investigate the equation (1). As it will be shown in the sequel, the properties
of the test-equation define the behavior of the solution of (1) in many respects. For
instance, the assumptions of Theorem 1 provide positiveness of the Cauchy function as
well as exponential stability of the equation (1).

Theorem 2. If the Cauchy function of (1) is positive for all (t,s) € A, then there
exists an | > 0 such that the function C(.,s) is steadily decreasing at allt > s + 1.

Proof. Lemma 4 and the definition of wp imply the existence of an w > wop such that
t — hy(t) < w, (aw,bw) € D;. Due to Lemma 3 L < oco. Suppose that, for some
to > s+ 2(L + w), the inequality C¢(%o,s) > 0 holds. Then due to Lemma 5 there exists
a point ¢; > s+ L+ w such that the equality (6), where according to Lemma 2, (L) < 0,
is satisfied. Hence C(¢1,s) < 0, and we have a contradiction with the theorem condition.

For the practicality of Theorem 2 it is desirable to obtain conditions of positiveness
of the Cauchy function of the equation (1) in terms of the coefficients of the original
problem. It is easy with the following result of [4]. O

Lemma 6 ([4]). The Cauchy function of the equation (1) is positive on A, if and
only if there exists a function v, absolutely continuous on every finite segment [0,T,
such that v(t) > 0 and (Lv)(t) <0 Vi€ Ry.

Theorem 3. If (awo,bwo) € Dg. Then the following estimates of the Cauchy func-
tion of (1) hold:
0< Ct,s) < Kele=DE=9)  y(g 5) € A,

Proof. We use Lemma 6 to prove the positiveness of C(t,s). Let us put v(t) = e~ > 0,
where a = —wgl In bwg > 0. Due to the definitions of wg, the set Dy, and the choice of a

m
we have: (Lv)(t) = —e " **(a+a— Y bpex(t—h(t)y < wgle_"‘t(l — awo — Inbwo) < 0.
k=1
Therefore, the Cauchy function is positive on A, and due to Theorem 2 it is steadily
decreasing in ¢ for ¢t > s + 1.
Denote lo =1 + wo.
As it was mentioned before, the function C(-,s) satisfies the equation

m

Cit, 5) = aC(t,s) = bC(t,8) + Y bu(C(t,8) — C(hu (1), 9)),
k=1

which, due to the Cauchy formula [1], for ¢ > s+ is equivalent to the integral equation

C(t, s) = ele= 0=l (5 4 Iy, s) +
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t

N / @D N b (O(r, 5) - Clhi(r), 9))dr.
k=1

s+ip

Since T > hg(T), the inequality C(r,s) > C(hg(7), s) holds for all k = 1, m.
Hence, with the estimate (3) we obtain:

C(t, s) < e@=DE=3=10) 05 4 1o, 5) < e(lal—a+2)ogla=b)t=2) [

For completeness let us investigate the behavior of the Cauchy function of the equation
(1) on the boundary of Dy (in case awo = bwo).

Theorem 4. If awo = bwo < 1, then the estimates for the Cauchy function of the
equation (1) hold:
0<Ct,8) <K V(s)€EA.

Proof. By Theorem 3 and continuous dependence of the solution of (1) on the coeffi-
cients [6] the Cauchy function C(¢,s) is nonnegative for all (¢, s) € A. The boundedness
of C(t,s) in (¢, s) is established in [7]. O

Remark. The estimate awo < 1 in Theorems 3, 4 is the best possible. The following
example shows it.

Example. #t)=z(t) —x(t—1), te R4, 7
(@(r) =7, 7e€(-1,0]). ®

It is easy to check by the direct substitution that the solution of (7) is the function
z(¢) = ¢, which is not bounded on R ; hence (see [8], Lemma 6.6.2) the equation (7) can
be neither exponentially nor even uniformly stable.
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