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NONCLASSICAL BIHARMONIC BOUNDARY VALUE

PROBLEMS DESCRIBING BENDING OF FINITE

AND INFINITE PLATES WITH INCLUSIONS



Abstract. Contact problems of the theory of elasticity on bending of
finite and infinite, isotropic or anisotropic plates with an elastic inclusion of
variable bending rigidity are considered. The problems are reduced to an
integro-differential equation with a variable coefficient. When the coefficient
turns to zero of higher order at the ends of the interval of integration, the
equation is out of the framework of cases already studied. Such equations
are studied, exact or approximate solutions are obtained, the bahaviour of
unknown contact stresses at the ends of the line of contact is established.
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Introduction

The contact problems on interaction of thin-shelled elements (stringers
or inclisions) of various geometric forms with massive deformable bodies
belong to the at present extensive field of the theory of contact and mixed
problems of mechanics of deformable rigid bodies. Interest in such type of
problems is motivated by the fact that the investigations in this area will
make it possible to solve a number of questions connected with problems
of engineering industry, shipbuilding, as well as with designing aircraft and
other thin-shelled constructions.

Stringers and inclusions, like stamps and cuts, concentrate stresses, there-
fore it is of great theoretic and practic importance to investigate the influ-
ence exerted by the inclusion on the stress-strained state of deformable bod-
ies, to study questions on the concentration of stresses in such problems and
to elaborate methods for their lowering. Taking into account thin-shellness
in different assumptions and theories, we arrive at new statements of the
contact problem of deformable bodies which substantially differ from those
of classical contact problems of elasticity, and, as a result, there arises a class
of new problems of solid mechanics with displaced boundary conditions.

A vast number of works are devoted to problems of bending of plates
with thin inclusions differing by the conditions imposed on the inclusion
(see, e.g., [1–5]). The problems are reduced to systems of integral equations
whose the characteristic part has in general the form

1∫

−1

(t− τ)2

2

[a sgn(t− τ)

2
+

b

πi
ln

1

|t− τ |
]
ϕ(τ)dτ = f(t), |t| < 1. (0.1)

A solution of this equation is sought in a class of functions with non-
integrable singularities by using the method of regularization of diverging
integrals [6]. The exact solution of the equation is constructed by means
of the method of analytic functions [7], while an approximate solution is
constructed by the method of orthogonal polynomials.

In the problems we consider, the inclusions either are thin, absolutely
rigid elements or elements with constant bending rigidity.

The distinctive feature of the investigation carried out in the present
paper is that we have managed to establish the dependence of the ba-
haviour of contact stresses on the law of variation of bending rigidity of
the inclusion. In our statement the problems are reduced to the solution of
integro-differential equation whose characteristic part is the Prandtl integro-
differential equation which under certain conditions has been studied in
[8–11].

1. Bending of a Circular Plate

We consider the problem on bending of a circular plate of unit radius,
supported along the segment: y = 0 , |x| < a (a < 1) by a thin elastic
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inclusion of variable bending rigidity. A normal load of constant intensity
q is applied to the plate, and the inclusion is free of the load.

Introduce the notation: Ω = {(x, y)|x2+y2 < 1}, Γ = ∂Ω, S = Ω\(−a, a).
It is required to find contact interaction stresses between the inclusion and
the plate. The problem posed is equivalent to the finding of a solution of
nonhomogeneous biharmonic equation

D∆∆ω(x, y) = q, (x, y) ∈ S, (1.1)

satisfying the boundary conditions

ω = 0,
∂ω

∂n
= 0, (x, y) ∈ Γ, (1.2)

and also the conditions

〈ω〉 = 〈ω′y〉 = 〈My〉 = 0, 〈Ny〉 = µ(x), |x| < a, |y| = 0 (1.3)

imposed on the inclusion.
We use here the notation: 〈f〉 = f(x,−0) − f(x,+0), f(x,−0) ≡ f−,

f(x,+0) ≡ f+, ω is the plate deflection, D is cylindrical rigidity of the
plate, ω′y, My and Ny are, respectively, the angle of rotation, the bend-
ing moment and the generalized transversal force in the plate, µ(x) is an
unknown contact stress of interaction between the inclusion and the plate
(note that µ(x) ≡ 0 for |x| > a), and n is the normal external to Γ.

Assuming the ends of the plate to be free, for the plate deflection ω0(x)
we obtain the following conditions:

d2

dx2
D0(x)

d2ω0(x)

dx2
= −µ(x), |x| < a, (1.4)

D0(x)ω
′′
0 (x)|x=±a = 0,

[
D0(x)ω

′′
0 (x)

]′∣∣
x=±a

= 0, (1.5)

where D0(x) =
E0(x)h3

0(x)
12 is the bending rigidity of the inclusion, E0(x) is

the elasticity modulus of its material and h0(x) is its thickness.
The conditions (1.5) are equivalent to the usual statical conditions of

equilibrium of the inclusion:

a∫

−a

µ(t)dt = 0,

a∫

−a

tµ(t)dt = 0. (1.6)

On the interval [−a, a] of contact between the inclusion and the plate the
condition

ω(x, 0) = ω0(x) (1.7)

must be satisfied.
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A solution of the boundary value problem (1.1)–(1.5) will be sought in
the Banach space W (Ω) of the functions ω(x, y) satisfying the conditions
(1.2) and having summable second derivatives with the norm

‖ω‖W =

(∫∫

Ω

[
(∆ω)2 − 2(1− σ)

(∂2ω

∂x2

∂2ω

∂y2
−

( ∂2ω

∂x∂y

)2)]
dΩ

)1/2

,

where σ are the Poisson coefficients, 0 < σ < 1
2 .

From the mechanical point of view, this space describes a class of deflec-
tion functions for which the potential energy of the plate bending is positive
and finite.

Theorem 1. If the above-formulated problem (1.1)–(1.5) has a solution,

then the solution is unique.

Indeed, suppose that the problem admits two solutions. Let ω0
1(x, y) be

the plate deflection corresponding to the first of the solutions and ω0
2(x, y)

to the second one. We make up the “difference” of these solutions, i.e., we
put

ω0(x, y) = ω0
1(x, y)− ω0

2(x, y).

It is obvious that ω0(x, y) satisfies the basic equations when the external
forces are absent, i.e., q ≡ 0.

By Ostrogradsky-Green’s formula we have
∫∫

S′

(Xn′u+ Yn′v + Zn′ω)ds =

=

∫∫∫

V

[λ(exx+eyy+ezz)
2+2µ(e2xx+e

2
yy+e

2
zz+2e2xy+2e2xz+2e2yz)]dxdydz, (1.8)

where Xn′ , Yn′ , Zn′ are the components of the stress vector acting on the
surface S′ with the normal n′, u, v, ω are the displacement components, exx,
eyy, . . . , eyz are the deformation components, λ, µ are the Lamé parameters,
and V is the domain occupied by the plate.

Under the conditions of our problem, using formulas (1.4)–(1.7) for the
“difference” of two solutions, the potential energy of deformation accumu-
lated in the system “plate-inclusion” can be represented in the form

h/2∫

−h/2

dz

a∫

−a

〈Zn〉ω0(x, 0)dx = h

a∫

−a

〈Ny〉ω0(x, 0)dx =

= h

a∫

−a

µ(x)ω0(x, 0)dx = h

a∫

−a

ω0(x, 0)d

( x∫

−a

µ(t)dt

)
=
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= hω0(x, 0)

( x∫

−a

µ(t)dt

)∣∣∣
a

−a
− h

a∫

−a

ω′0(x, 0)

( x∫

−a

µ(t)dt

)
dx =

= −h
a∫

−a

ω′0(x, 0)d

( x∫

−a

dt

t∫

−a

µ(τ)dτ

)
=

= −hω′0(x, 0)

( x∫

−a

dt

t∫

−a

µ(τ)dτ

)∣∣∣
a

−a
−

−h
a∫

−a

ω′′0
2
(x, 0)D0(x)dx = −h

a∫

−a

ω′′0
2
(x, 0)D0(x)dx,

where h is the plate thickness.
The potential energy of deformation in the formula (1.8) is the positive

square form of the components of deformation, and therefore from the last
representation we conclude that ω′′0 (x, 0) = 0, |x| < a. In its turn it means
that in the absence of external forces

µ(x) = 0, |x| < a. (1.9)

As is known, for any biharmonic function satisfying certain conditions of
regularization in the vicinity of L of the domain S, the formula

∫∫

S

{
(∆ω0)

2 − (1− σ)
[∂2ω0

∂x2

∂2ω0

∂y2
−

( ∂2ω0

∂x∂y

)2]}
dxdy+

+

∫

L

(
ω0Nω0 −

dω0

dn
Mω0

)
ds = 0 (1.10)

is valid, where

Mω0 = σ∆ω0 + (1− σ)
[
cos2 θ

∂2ω0

∂x2
+ sin2 θ

∂2ω0

∂y2
+ sin 2θ

∂2ω0

∂x∂y

]
,

Nω0 =
d∆ω0

dn
+ (1− σ)

d

ds

[
cos 2θ

∂2ω0

∂x∂y
+

1

2
sin 2θ

(∂2ω0

∂x2
− ∂2ω0

∂y2

)]

θ is the angle formed by n and the ox-axis, L = Γ ∪ [−a, a].
With regard for the conditions (1.2), transforming the integral

a∫

−a

(
ω+

0 N
+ω0 −

dω+
0

dn
M+ω0 − ω−0 N

−ω0 +
dω−0
dn

M−ω0

)
dx =

=

a∫

−a

[
(ω+

0 − ω−0 )N+ω0 + ω−0 (N+ω0 −N−ω0)−
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−Mω+
0

(dω+
0

dy
− dω−0

dy

)
− dω−0

dy
(M+ω0 −Mω−0 )

]
dx,

and taking into account the conditions (1.3) and (1.9), we conclude that the
last integral in the formula (1.10) is equal to zero.

Since the expression

(∆ω0)
2 − (1− σ)

[∂2ω0

∂x2

∂2ω0

∂y2
−

( ∂2ω0

∂x∂y

)2]
=

=
(∂2ω0

∂x2

)2

+
(∂2ω0

∂y2

)2

+ (1 + σ)
∂2ω0

∂x2

∂2ω0

∂y2
+ (1− σ)

( ∂2ω0

∂x∂y

)2

represents the positive definite square form of the second derivatives of the
function ω0(x, y), it follows from (1.10) that all the second partial derivatives
of the function ω0(x, y) are equal to zero, and hence ω0(x, y) is the linear
function of its arguments, but as far as ω0 = dω0

dn = 0 on Γ, we can easily
see that ω0(x, y) = 0 everywhere on S, and hence everywhere in Ω.

Thus the uniqueness theorem for the above-formulated problem is proved.
The general solution of the equation (1.1) can be represented as

ω(x, y) = ω1(x, y) + ω2(x, y),

where ω1(x, y) is the partial solution, for example, ω1(x, y) = q
64D (x4 +

2x2y2 + y4), and ω2(x, y) satisfies the biharmonic equation ∆∆ω2(x, y) = 0
with inhomogeneous boundary conditions

ω2 = −ω1,
∂ω2

∂n
= −∂ω1

∂n
, (x, y) ∈ Γ. (1.11)

A solution of the biharmonic equation is representable by the well known
Goursat formula

ω2(x, y) = 2 Re[zϕ(z) + χ(z)], (1.12)

where ϕ(z) and χ(z) are functions of the complex variable z = x + iy,
holomorphic in S. For the bending moments Mx and My, the twisting
moment Hxy and for the cutting forces Nx and Ny, we have the formulas

My −Mx + 2iHxy = 4(1− σ)D[zϕ′′(z) + ψ′(z)],

Mx +My = −8(1 + σ)DReϕ′(z),

Nx − iNy = −8Dϕ′′(z),

(1.13)

where ψ(z) = χ′(z).
Let us introduce into consideration a new function Ω0(z) by the equality

Ω0(z) = zϕ′(z) + ψ(z).

Then on the basis of the formula (1.12), the formula

∂ω2

∂x
+ i

∂ω2

∂y
= ϕ(z) + Ω0(z) + (z − z)ϕ′(z)
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is valid.
From the first two conditions (1.3) we get

[ϕ(t)− Ω0(t)]
− − [ϕ(t)− Ω0(t)]

+ = 0, t ∈ (−a, a),

whence

ϕ(z)− Ω0(z) = F01(z), z ∈ Ω, (1.14)

where F01(z) is holomorphic in the domain Ω.
Substituting the expression for the function ψ(z) from the last equality

into (1.13), we can write

My =2(1−σ)DRe[ϕ′(z)−ϕ′(z)−(z−z)ϕ′′(z)−F ′01(z)]−4(1+σ)DReϕ′(z),

Ny =8D Imϕ′′(z).

From the last two conditions (1.3), we have

[ϕ′′(t) + ϕ′′(t)]− − [ϕ′′(t) + ϕ′′(t)]+ = 0,

[ϕ′′(t)− ϕ′′(t)]− − [ϕ′′(t)− ϕ′′(t)]+ =
iµ(t)

4D
, |t| < a.

Summing up the above conditions, we obtain

ϕ′′
+
(t)− ϕ′′

−
(t) = − iµ(t)

8D
, |t| < a. (1.15)

The function µ(t) may have non-integrable singularities on the segment
[−a, a]. Taking into account the proof given in [7] on the transfer of the
results of the monograph [15] to the regularized values of diverging integrals
[6], the solution of the boundary value problem (1.15) is given by the formula

ϕ′′(z) = − 1

16πD

a∫

−a

µ(t)dt

t− z
+ F02(z), z ∈ Ω, (1.16)

where F02(z) is a function holomorphic in Ω.
Then on the basis of the formulas (1.14) and (1.16), the functions ϕ(z)

and ψ(z) are represented as follows:

ϕ(z) = − 1

16πD

a∫

−a

(t− z) ln(t− z)µ(t)dt+ F1(z),

ψ(z) = − 1

16πD

a∫

−a

t ln(t− z)µ(t)dt+ F2(z), z ∈ Ω,
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where F1(z) and F2(z) are holomorphic in Ω functions to be defined. To
define these functions, on the boundary of the circle we obtain by virtue of
(1.11) the following boundary value problem:

F1(t) + tF ′1(t) + F2(t) = −f1(t)− tf ′1(t)− f2(t)−
∂ω1

∂x
− i

∂ω1

∂y
, (1.17)

where f1(z) = − 1
16πD

∫ a

−a(t− z) ln(t− z)µ(t)dt, f2(z) = − 1
16πD

∫ a

−a t ln(t−
z)µ(t)dt are analytic functions in the plane cut on the segment [−a, a].

Multiplying the equality (1.17) by 1
2πi

dt
t−z , where z ∈ Ω, and integrating

with respect to Γ, we get

1

2πi

∫

Γ

F1(t)dt

t− z
+

1

2πi

∫

Γ

tF ′1(t)dt

t− z
+

1

2πi

∫

Γ

F2(t)dt

t− z
=

= − 1

2πi

∫

Γ

f1(t)dt

t− z
− 1

2πi

∫

Γ

tf ′1(t)dt

t− z
− 1

2πi

∫

Γ

f2(t)dt

t− z
−

− 1

2πi

∫

Γ

g(t)dt

t− z
, where g(t) =

∂ω1

∂x
+ i

∂ω1

∂y
=

q

16D
t, t ∈ Γ. (1.18)

Consider now the decomposition of the functions F1(z) and F2(z) and
write out only its first three terms

F1(z) =a0 + a1z + a2z
2 + · · · ,

F2(z) =a′0 + a′1z + a′2z
2 + · · · .

Consequently, by the Cauchy formula [15], the first integral in the left-hand
side of (1.18) is equal to F1(z), while the second and the third ones are equal
to a1z + 2a2 and a′2, respectively. Since the function f1(z) is holomorphic

outside of Γ, and the functions tf ′1(t) and f2(t) are the boundary values of

the functions zf ′1

(
1
z

)
and f2

(
1
z

)
, holomorphic in Γ, from (18) we finally

obtain

F1(z) + a1z + 2a2 + a′0 = −zf ′1
(1

z

)
− f2

(1

z

)
− q

16D
z. (1.19)

Passing to conjugate values in (1.17), similarly to the previous reasoning,
we have

a0 +
F ′1(z)− a1

z
+ F2(z) = −f1

(1

z

)
. (1.20)

Regarding the constants appearing in the formulas (1.19)–(1.20), we note
that

a0 + 2a2 + a′0 = 0,
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a1 + a1 = − 1

16πD

a∫

−a

t2µ(t)dt− q

16D
,

2a2 =
1

16πD

a∫

−a

t3µ(t)dt.

The above formulas show that if the function µ(t) is found, then the con-
stants a2 and Re a1 are defined, and therefore the function ϕ(z), as it was
to be expected, is defined to within the expression Ciz + γ, where C and γ
are arbitrary constants C being real and γ being comples, and the function
ψ(z) is defined to within a complex constant γ ′.

From (1.19) and (1.20) we define the unknown functions F1(z) and F2(z):

F1(z) = −a1z − 2a2 − a′0 − zf
′
1

(1

z

)
− f2

(1

z

)
− q

16D
z,

F2(z) = −a0 +
a1 + a1

z
− f1

(1

z

)
− 1

z
f
′
1

(1

z

)
−

− 1

z2
f
′′
1

(1

z

)
− 1

z3
f
′
2

(1

z

)
+

q

16D

1

z
.

It is obvious that ∂ω2(x,0)
∂x = Re[ϕ(x) + xϕ′(x) + ψ(x)], where from we can

get

∂2ω2(x, 0)

∂x2
= Re[f ′1(x) + f

′
1(x) + xf

′′
1(x) + f

′
2(x)]+

+ Re[F ′1(x) + F
′
1(x) + xF

′′
1 (x) + F

′
2(x)] =

=
1

8πD

a∫

−a

ln |t− x|µ(t)dt − x

16πD

a∫

−a

µ(t)dt

t− x
+

1

16πD

a∫

−a

tµ(t)dt

t− x
+

+2 Re[−a1 − f
′
1

( 1

x

)
+

1

x
f
′′
1

(1

x

)
+

1

x2
f
′
2

( 1

x

)
− q

16D
x]−

−Re
[ 1

x2
f
′′′
1

( 1

x

)
+

2

x2
f2

(1

x

)
+

1

x3
f
′′
2

( 1

x

)]
+

+ Re
[
− a1 + a1

x2
+

1

x3
f
′′
1

(1

x

)
+

+
1

x4
f
′′′
1

(1

x

)
+

3

x4
f
′
2

( 1

x

)
+

1

x5
f
′′
2

(1

x

)
− q

16D

1

x2

]
. (1.21)

Taking into account that f1(x) and f2(x) are real functions of real variables,
using the conditions (1.6), then performing the transformations

−2f ′1

(1

x

)
+

2

x
f ′′1

( 1

x

)
− 1

x2
f ′′′1

( 1

x

)
+

1

x3
f ′′1

(1

x

)
+

1

x4
f ′′′1

(1

x

)
=

= − 1

8πD

a∫

−a

ln
∣∣∣t− 1

x

∣∣∣µ(t)dt−
( 2

x
+

1

x3

) 1

16πD

a∫

−a

µ(t)dt

t− 1
x

+
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+
( 1

x2
− 1

x4

) 1

16πD

a∫

−a

µ(t)dt

(t− 1
x )2

=

= − 1

8πD

a∫

−a

ln |tx− 1|µ(t)dt− (2x2 + 1)

16πD

a∫

−a

t2µ(t)dt

tx− 1
+

+
3(x2 − 1)

16πD

a∫

−a

t2µ(t)dt

(tx− 1)2
− x3 − x

8πD

a∫

−a

t3µ(t)dt

(tx− 1)2
;

1

x3
f ′′2

( 1

x

)
=

1

16πDx3

a∫

−a

tµ(t)dt

(t− 1
x)2

=

=
1

16πDx

a∫

−a

tµ(t)dt

(tx − 1)2
=

1

16πDx

a∫

−a

( 1

(tx− 1)2
− 1

)
tµ(t)dt =

=
1

8πD

a∫

−a

t2µ(t)dt

(tx− 1)2
− x

16πD

∫
t3µ(t)dt

(tx− 1)2
;

−a1 + a1 + q
16D

x2
+

3

x4
f ′2

( 1

x

)
+

1

x5
f ′′2

( 1

x

)
=

=
1

16πD

{
1

x2

a∫

−a

t2µ(t)dt+
3

x3

a∫

−a

tµ(t)dt

tx− 1
+

1

x3

a∫

−a

tµ(t)dt

(tx− 1)2

}
=

=
1

16πD

a∫

−a

t4µ(t)dt

(tx− 1)2
,

and substituting in (1.21), we obtain

∂2ω2(x, 0)

∂x2
=

1

8πD

a∫

−a

ln |t− x|µ(t)dt− 1

8πD

a∫

−a

ln |tx− 1|µ(t)dt−

−2x2 − 1

16πD

a∫

−a

t2µ(t)dt

tx− 1
+

3x2 − 1

16πD

a∫

−a

t2µ(t)dt

(tx− 1)2
+

+
x− 2x3

16πD

a∫

−a

t3µ(t)dt

(tx− 1)2
+

1

16πD

a∫

−a

t4µ(t)dt

(tx− 1)2
− 2 Re a1 −

q

8D
.
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With regard for the contact condition (1.7), the differential equation (1.4)
for the inclusion bending takes the form

1

8πD

[ a∫

−a

ln |t− x|µ(t)dt −
a∫

−a

ln |tx− 1|µ(t)dt− 2x2 − 1

2

a∫

−a

t2µ(t)dt

tx− 1
+

+
3x2 − 1

2

a∫

−a

t2µ(t)dt

(tx− 1)2
+
x− 2x3

2

a∫

−a

t3µ(t)dt

(tx− 1)2
+

1

2

a∫

−a

t4µ(t)dt

(tx− 1)2

]
−

− q

8D
− 2 Re a1 = − 1

D0(x)

x∫

−a

dt

t∫

−a

µ(τ)dτ.

Introducing the notation λ(x) ≡
∫ x

−a
dt

∫ t

−a
µ(τ)dτ , we arrive at the inte-

gral differential equation

λ1(x) −
D0(x)

8πD

a∫

−a

λ′1(t)dt

t− x
+

+
D0(x)

8πD

a∫

−a

R1(x, t)λ1(t)dt = f1D0(x), |x| < a, (1.22)

where

R1(x, t) = −∂
◦
R(t, x)

∂t
,

◦
R(t, x) =

x

xt− 1
+

(2x2 − 1)t2x

2(tx− 1)2
+

+
2(3x2 − 1)t− (x − 2x3)(t3x− 3t2)− 2t3(tx− 2)

2(tx− 1)3
− 2t,

f1 =
q

16D

provided

λ1(±a) = 0, λ′1(±a) = 0. (1.23)

2. Bending of a Rectangular Plate

Consider a rectangular (|x| < c
2 , 0 ≤ y ≤ b) hinged supporteel plate

with an inclusion along the segment: y = b
2 , |x| < a (2a < c), which

causes discontinuity of principal quantities in the general case. But from
the symmetry of the problem with respect to the straight line y = b

2 and
from the assumption that the inclusion shifts vertically under the action of
the load q(x), it follows that the conditions (1.3) are fulfilled. To simplify
our reasoning, we assume that the deflection of the plate ω(x, y) caused by
bending of the inclusion is even with respect to x.
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Then the function ω, satisfying the equation D∆∆ω(x, y) = 0 for y 6= b
2

and the boundary condition

ω = Mx = 0 for x = ± c
2
,

ω = My = 0 for y = 0, b
(2.1)

can be represented in the form

ω(x, y) =
∞∑

k=1,3,...

cosαkxYk(y), αk =
πk

c
, (2.2)

where

Yk(y) = Ak shαky + αkBky chαky, 0 ≤ y <
b

2
,

Yk(y) = Ck shαk(b− y) +Dkαk(b− y) chαk(b− y),
b

2
< y ≤ b.

(2.3)

The deflection of the inclusion ω0(x) satisfies the conditions

d2

dx2
D0(x)

d2ω0(x)

dx2
= q(x) − µ(x), |x| < a,

D0(x)ω
′′
0 (x)|x=±a = 0, [D0(x)ω

′′
0 (x)]′|x=±a = 0,

(2.4)

and the equations of equilibrium of the inclusion are of the form

a∫

−a

(µ(t)− q(t))dt = 0,

a∫

−a

t(µ(t) − q(t))dt = 0. (2.5)

Realization of the conditions (1.3) leads to the fact that the constants
Ak, Bk, Ck, Dk are expressed through µ(x), and we obtain that Ak = Ck,
Bk = Dk and

∞∑

k=1,3,...

cosαkx
[
αk ch

αkb

2
Ak +

(
αk ch

αkb

2
+
α2

kb

2
sh
αkb

2

)
Bk

]
= 0,

∞∑

k=1,3,...

cosαkx
[
α3

k ch
αkb

2
Ak +

(
3α3

k ch
αkb

2
+
α4

kb

2
sh
αkb

2

)
Bk

]
=

1

2D
µ(x).

The above equalities result in a system of equations with respect to the
coefficients Ak and Bk:

αk ch
αkb

2
Ak +

(
αk ch

αkb

2
+
α2

kb

2
sh
αkb

2

)
Bk = 0,

α3
k ch

αkb

2
Ak +

(
3α3

k ch
αkb

2
+
α4

kb

2
sh
αkb

2

)
Bk =

1

2Dc

a∫

−a

µ(ζ) cosαkζdζ.



104

Solving this system, we find that

Ak = −ch αkb
2 + αkb

2 sh αkb
2

2α3
k ch2 αkb

2

· 1

2Dc

a∫

−a

µ(ζ) cosαkζdζ,

Bk = − 1

2α3
k ch αkb

2

· 1

2Dc

a∫

−a

µ(ζ) cosαkζdζ.

Substituting now these expressions in the representation (2.2), the limit-
ing value of the function ω(x, y) for y = b

2 takes the form

ω
(
x,
b

2

)
=

=

∞∑

k=1,3,...

cosαkx
{ (− ch αkb

2 − αkb
2 sh αkb

2 ) sh αkb
2 + αkb

2 ch2 αkb
2

2α3
k ch2 αkb

2

}
×

× 1

2cD

a∫

−a

µ(ζ) cosαkζdζ =
1

2cD

∞∑

k=1,3,...

a∫

−a

cosαk(x− ζ)

α3
k

ρkµ(ζ)dζ, (2.6)

where ρk = thαkb
2 − αkb

2 ch2 αkb

2

.

In (2.6) we separate the principal part of the obtained integral operator,
for which we take into account the asymptotics ρk = 1 + O(αke

−αk), and
use the formula

∞∑

k=1,3,...

cos kt

k3
= − t

2

4
ln

1

|t| +B0(t), |t| < π, (2.7)

where B0(t) = − t2

4

(
3
2 + ln 2

)
+

∞∑
k=1,3,...

1
k3 +

∞∑
n=1

22n−1−1
(2n+2)! Bnt

2n+2, and Bn

are Bernoulli numbers.
Taking now (2.7) into account, the formula (2.6) takes the form

ω
(
x,
b

2

)
= − 1

2πD

a∫

−a

(x − ζ)2

4
ln

1

|x− ζ|µ(ζ)dζ +

a∫

−a

◦
R2(x, ζ)µ(ζ)dζ, (2.8)

where
◦
R2(x, ζ) = 1

2DcB0(x − ζ) + 1
2Dc

∑∞
1,3,...

cos αk(x−ζ)
α3

k

(ρk − 1) is an in-

finitely differentiable kernel. Note that variation of the boundary val-
ues as well as of the shape of the plate itself leads to the variation of
◦
R2(x, ζ) only. In the case of an infinite plate strengthened by an elas-
tic inclusion along the line y = 0, |x| < a and loaded at infinity by
the bending moment M∞

x = M , M∞
y = 0, the above-formulated con-

tact problem is solved by the methods of the theory of analytic functions,
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and as a result the limiting value of the function ∂2ω(x,y)
∂x has the form

∂2ω(x, b
2 )

∂x2 = − 1
8πD

∫ a

−a(t− x) ln |t− x|µ(t)dt− M
4D(1−σ2) [16].

Realizing of the contact condition between the inclusion and the plate, by

integrating (2.4) twice and introducing the notation λ2(x)=
∫ x

−a
dt

∫ t

−a
(q(τ)−

µ(τ))dτ , we get the following integro-differential equation

λ2(x) −
D0(x)

4πD

a∫

−a

λ′2(t)dt

t− x
+

+D0(x)

a∫

−a

R2(x, t)λ2(t)dt = f2(x)D0(x), |x| < a, (2.9)

where

f2(x) =

a∫

−a

[ ◦
R′′2(x, ζ)− 1

8πD

(
2 ln

1

|x− ζ|+3
)]
q(ζ)dζ, R2(x, t) =

◦
R′′·2 (x, t),

and the prime denotes the derivative with respect to the first variable, while
the point the derivative with respect to the second variable.

The unknown function must satisfy the conditions

λ2(±a) = 0, λ′2(±a) = 0. (2.10)

The uniqueness theorem for the above-posed problem is proved in the
same way as the corresponding theorem in the previous section.

Remark. The problem for an infinite plate is reduced to the integro-
differential equation of Prandtl [16].

3. Solution of the Characteristic Equation

Solution of the integral equations (1.22)–(1.23) and (2.9)–(2.10) allows
one to define the jump of crosscutting forces along the segment of the inclu-
sion. This function µ(x) may be of a class of functions with nonintegrable
singularities at the ends of the contact interval. This singularity may at
least be of the type O((a2−x2)−

3
2 ) as x→ ±a; note that the second deriva-

tives of the deflection ω(x, y) behave as r−
1
2 when approaching at the points

x = ±a, y = 0, and the energy integral converges like the improper which
this makes it possible to investigate the question on the uniqueness of a
solution of the problems under consideration.

The characteristic equation corresponding to the integral equations (1.22)
and (2.9) is the Prandtl integro-differential equation in that principal case
when the coefficient of the singular operator turns to zero of higher order
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at the ends of the interval of integration:

λ(x) −D0(x)
λ0

π

a∫

−a

λ′(t)dt

t− x
= D0(x)g(x), |x| < a, (3.1)

provided

λ(±a) = λ′(±a) = 0, (3.2)

where D0(x) = d0(a
2 − x2)n+ 1

2 , d0 = const > 0, λ0 = const > 0, n is a
nonnegative integer, g(x) is the given even function on the interval [−a, a]
satisfying the Hölder condition, and λ(x) is the unknown function from
the same class, though its derivative may have an integrable singularity of
integrable of the interval, i.e., λ′(x) = O(a2 −x2)−α, 0 ≤ α < 1 as x→ ±a.

Consider the Cauchy type integral

φ(z) =
1

2πi

a∫

−a

λ(t)dt

t− z
(∗)

with the density λ(x) which, obviously, represents the function holomorphic
everywhere on the plane, except for the segment [−a, a]. Passing to the limit,
on the basis of the well-known properties of Cauchy type integrals [15] we
obtain

λ(x) = φ+(x)− φ−(x),
a∫

−a

λ′(t)dt

t− x
= πi[φ′+(x) + φ′−(x)],

(3.3)

where φ+(x) and φ−(x) are the limiting values of the function φ(z) defined
in the neighborhood of the segment [−a, a], when the point z approaches
the point x of that segment respectively from the upper and the lower half-
plane.

The function D0(z) is holomorphic in the plane cut along the segment
[−a, a]. It should be noted that in the sequel underD0(z) it will be ment
the branch of the function which satisfies the condition

D0+(x) = −D0−(x) ≡ D0(x) > 0, |x| < a.

Then by virtue of (3.3), the equation (3.1) can be represented in the form

[
φ′+(x) +

i

λ0D0+(x)
φ+(x)

]
+

[
φ′−(x) +

i

λ0D0−(x)
φ−(x)

]
=
g(x)i

λ0
. (3.4)

If we introduce a new function

F (z) =
[
φ′(z) +

i

λ0D0(z)
φ(z)

]√
a2 − z2, (3.5)
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then the equation (3.4) will take the form

F+(x)− F−(x) =
i
√
a2 − x2g(x)

λ0
. (3.6)

Note that by introducing the multiplier χ(z) =
√
a2 − z2 we pass from the

Riemann problem (3.4) with the coefficient G(t) = −1 to the jump problem

(3.6). This multiplier is connected with the factorization G(t) = χ+(t)
χ−(t) .

The function F (z), given by the formula (3.5), is holomorphic everywhere
on the plane, cut at the segment [−a, a], except for the points z = ±a,
where it has the poles of the multiplicity n; it vanishes at infinity and is
continuously extendable to the interior points of the segment both from the
upper and from the lower half-plane. Then the solution of the boundary
value problem (3.6) is given by the formula

F (z) =
1

2πλ0

a∫

−a

g(t)
√
a2 − t2

t− z
dt+

n∑

k=1

Ak

( 1

(a− z)k
− 1

(a+ z)k

)
, (3.7)

where Ak (k = 1, 2, . . . , n) are arbitrary constants to be defined.
The solution of the first order differential equation (3.5) with respect to

the function φ(z) is given by the formula

φ(z) = e−iQ(z)

[
φ(0) +

z∫

0

F (t)eiQ(z)

√
a2 − t2

dt

]
, (3.8)

where the function F (z) is representable in the form (3.7), Q(z)= 1
λ0

∫ z

0
dt

D0(t) .

The formula (3.8) can be transformed by integration by parts as follows:

φ(z)=−iλ0A(z)+e−iQ(z)

[
φ(0)+

λ0i

a
F (0)D0(0)+λ0i

z∫

0

A′(t)eiQ(t)dt

]
, (3.9)

where A(z) = d0F (z)(a2 − z2)n.
The points z = ±a are transcendental branch points of the finite order

for the solution of the homogeneous differential equation which corresponds
to the equation (3.5). If we divide the neighbourhood of these points into
segments by rays ImQ(z) = 0, then the values of the function e−iQ(z) in
each of these segments will coincide with the corresponding values of one of
the branches.

Lemma 1. The number of rays in the neighbourhood of the points z = ±a
at which ImQ(z) = 0, is equal to 2n− 1.
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Proof. In the neighbourhood of the point z = −a the function Q(z) is
represented in the form

Q(z) =
1

λ0

z∫

0

∑∞
k=0 bk(t+ a)k

(t+ a)n+ 1
2

dt =
1

λ0

z∫

0

∞∑

k=0

bk

(t+ a)n+ 1
2−k

dt =

= − 1

λ0

∞∑

k=0

bk

(n− 1
2 − k)

[ 1

(z + a)n− 1
2−k

− 1

an− 1
2−k

]
,

where the coefficients of expansion in power series bk are real numbers, and
moreover, b0 > 0.

If we assume that z + a = ρeiα, where ρ = |z + a|, α = arg(z + a), then
we obtain

Q(z) = − b0e
iα(n− 1

2 )

λ0(n− 1
2 )ρn− 1

2

[1 + ρ(p+ iq)].

In the sequel we will not use the expressions p and q, therefore they are not
written out here. We can choose the number ρ such that 1 + ρp > 0, and
then from the equality ImQ(z) = 0 we have

(1+ρp) sin
(
n− 1

2

)
α−ρq cos

(
n− 1

2

)
α = 0, i.e., tg

(
n− 1

2

)
α =

ρq

1 + ρp
,

which yields that α→ 2kπ
2n−1 , k = 1, 2, . . . , 2n− 1 as ρ→ 0.

Urder our assumptions it is obvious that −z−a = ρei(α−π), therefore for
the point z = a we analogously get α = π + 2kπ

2n−1 , which was to be proved.

Thus, as z → −a along one of the rays ImQ(z) = 0 which makes with the
ox-axis the angle α0, then −z → a along the ray for which the corresponding
angle is equal to π + α0 (see Fig. I, n = 2).

The number of sectors where ImQ(z) > 0 can be defined by solving the

inequality sin
(
n− 1

2

)
α > 0, which yields

2π(2j − 2)

2n− 1
< α <

2π(2j − 1)

2n− 1
, j = 1, 2, . . . , n,
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i.e., the number of such sectors is equal to n, and of those with ImQ(z) < 0
is equal to n− 1.

As z → ±a, in the sectors, where ImQ(z) < 0, the expression in the
brackets in the formula (3.9) tends to infinity, and the solution of the ho-
mogeneous equation corresponding to the equation (3.5), e−iQ(z), vanishes.

Revealing indeterminacy, we find that

lim
z→±a

{φ(z) + iλ0A(z)} =

= lim
z→±a

{φ(0) + λ0i
a F (0)D0(0) + λ0i

∫ z

0
A′(t)eiQ(t)dt

eiQ(z)

}
=

= lim
z→±a

λ0iA
′(z)eiQ(z)

iQ′(z)eiQ(z)
= λ2

0 lim
z→±a

D0(z)A
′(z) = 0,

i.e., φ(z) + iλ0A(z) = O
(
(a2 − z2)n+ 1

2

)
as z → ±a,

and hence taking into account the formula (3.7), we get

φ(z) = O(1), as z → ±a. (3.10)

In the sectors, where ImQ(z) > 0 as z → −a, from the condition of
tending to zero of the expression inthe brackets in (3.9) we obtain the fol-
lowing system of linear algebraic equations for determining the constants
Ak (k = 1, 2, . . . , n)

lim
|z+a|→0

{
φ(0) +

λ0i

a
F (0)D0(0) + λ0i

z∫

0

A′(t)eiQ(t)dt

}
= 0 (3.11)

2π(2j − 2)

2n− 1
≤ arg(z + a) ≤ 2π(2j − 1)

2n− 1
, j = 1, 2, . . . , n.

This system can be obtained also as |z−a| → 0 in the corresponding sectors.
The determinant of the system differs from zero which follows from the the
uniqueness of the above-posed problem.

The estimate (3.10) is also valid as z → ±a in the sectors, where ImQ(z)>
0. The requirement φ(∞) = 0 allows one to determine the constant φ(0).
If ImQ(z) = 0, by (3.11) we have

lim
z→±a

{φ(z) + iλ0A(z)} =

= lim
z→±a

(a∓ z)
{φ(0) + λ0i

a F (0)D0(0) + λ0i
∫ z

0 A
′(t)eiQ(t)dt

(a∓ z)eiQ(z)

}
=

= lim
z→±a

(a∓ z) lim
z→±a

λ0iA
′(z)eiQ(z)

eiQ(z)[∓1 + (a∓ z)iQ′(z)]
=

= lim
z→±a

(a∓ z) lim
z→±a

λ0d0(a∓ z)n− 1
2 (a± z)n+ 1

2A′(z)

1± iλ0d0(a∓ z)n− 1
2 (a± z)n+ 1

2

=
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= lim
z→±a

(a∓ z)n+ 1
2 l(z) = 0, as l(z) = O(1), z → ±a.

Hence in this case the estimate (3.10) is valid.
By virtue of (3.5), for the boundary values of the function φ(z) we obtain

the following differential equations:

φ′+(x) +
i

λ0D0(x)
φ+(x) =

F+(x)√
a2 − x2

,

φ′−(x)− i

λ0D0(x)
φ−(x) = − F (x)√

a2 − x2
.

Integrating them, we get

φ+(x) =
d0λ0

i
F+(x)(a2 − x2)n+

+e−iQ(x)

[
φ+(0)− d0λ0

i
F+(0)a2n − λ0

i

x∫

0

A′+(t)eiQ(t)dt

]
,

φ−(x) =
d0λ0

i
F−(x)(a2 − x2)n+

+eiQ(x)

[
φ−(0)− d0λ0

i
F−(0)a2n − λ0

i

x∫

0

A′−(t)e−iQ(t)dt

]
,

Q(−x) = −Q(x), |x| < a.

Since the function λ(x) is even, from (∗) we find that φ+(0) = −φ−(0) =

1
2λ(0) and φ(0) = − lim

|z|→∞

z∫
0

F (t)eiQ(t)dt√
a2−t2

, where the integrand is single-valued

and order c
z2 at infinity.

The unknown function λ(x) is representable as

λ(x) = φ+(x) − φ−(x) =
d0λ0

i
(a2 − x2)n[F+(x)− F−(x)]+

+[λ(0)− d0a
2n+1g(0)] cosQ(x) + d0λ0a

2n[F+(0) + F−(0)] sinQ(x)+

+λ0i

x∫

0

[A′+(t)−A′−(t)] cos(Q(t)−Q(x))dt−

−λ0

x∫

0

[A′+(t) +A′−(t)] sin(Q(t)−Q(x))dt =

= d0(a
2 − x2)n+ 1

2 g(x) + [λ(0)− d0a
2n+1g(0)] cosQ(x)−

−
x∫

0

B′
1(t) cos(Q(t)−Q(x))dt− λ0

x∫

0

B′
2(t) sin(Q(t)−Q(x))dt, (3.12)
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where B1(t) = (a2 − t2)n+ 1
2 g(t),

B2(t)=(a2−t2)n

[
1

πλ0

a∫

−a

g(τ)
√
a2 − τ2

τ − t
dτ+

n∑

k=1

Ak

( 1

(a− t)k
− 1

(a+ t)k

)]
. �

Theorem 2. The solution of the integro-differential equation (3.1) rep-

resented by formula (3.12) admits the estimate

λ(x) = O((a2 − x2)n+ 1
2 ) as x→ ±a. (3.13)

Indeed, satisfying the conditions (3.2), in the framework of the previous
lemma and also of the system of algebraic equations (3.11) the equalities

lim
x→±a

[
λ(0)− d0a

2n+1g(0)−
x∫

0

B′
1(t) cosQ(t)dt−

x∫

0

B′
2(t) sinQ(t)dt

]
= 0,

lim
x→±a

[ x∫

0

B′
1(t) sinQ(t)dt−

x∫

0

B′
2(t) cosQ(t)dt

]
= 0

hold.
Integrating by parts, the expression in the left-hand side of the last equal-

ities can be transformed as follows:

λ(0)− d0a
2n+1g(0)−

x∫

0

B′
1(t) cosQ(t)dt+

x∫

0

B′
2(t) sinQ(t)dt =

= λ(0)− d0a
2n+1g(0)− λ0

x∫

0

D0(t)B
′
1(t)d sinQ(t)+

+λ0

x∫

0

D0(t)B
′
2(t)d cosQ(t) = λ(0)− d0a

2n+1g(0)−

−λ0D0(x)B
′
1(x) sinQ(x) + λ0

x∫

0

[D0(t)B
′
1(t)]

′ sinQ(t)dt+

+λ0D0(x)B
′
2(x) cosQ(x)−

−λ0D0(0)B′
2(0)− λ0

x∫

0

[D0(t)B
′
2(t)]

′ cosQ(t)dt,

x∫

0

B′
1(t) sinQ(t)dt−

x∫

0

B′
2(t) cosQ(t)dt =

= −λ0

x∫

0

D0(t)B
′
1(t)d cosQ(t)− λ0

x∫

0

D0(t)B
′
2(t)d sinQ(t) =
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=−λ0D0(x)B
′
1(x) cosQ(x)+λ0D0(0)B′

1(0)+λ0

x∫

0

[D0(t)B
′
1(t)]

′ cosQ(t)dt−

−λ0D0(x)B
′
2(x) sinQ(x) + λ0

x∫

0

[D0(t)B
′
2(t)]

′ sinQ(t)dt.

Substituting these transformations in the formula (3.12), we obtain

λ(x) = d0(a
2 − x2)n+ 1

2 g(x)− B̃2(x)+

+

[
λ(0)−d0a

2n+1g(0) + B̃2(0)−
x∫

0

B̃′
1(t) sinQ(t)dt+

x∫

0

B̃′
2(t) cosQ(t)dt

]
×

× cosQ(x) +

[
B̃1(0) +

x∫

0

B̃′
1(t) cosQ(t)dt+

x∫

0

B̃′
2(t) sinQ(t)dt

]
sinQ(x),

where B̃1(x) = λ0D0(x)B
′
1(x), B̃2(x) = λ0D0(x)B

′
2(x).

Taking into account the expressions of the functions B2(x) and B̃2(x), we
may state that the expressions in the brackets in the latter formula vanish at
the points x = ±a. Performing analogous transformations and introducing

the notation
˜̃
B1(x) = λ0D0(x)B̃

′
1(x) and

˜̃
B2(x) = λ0D0(x)B̃

′
2(x), we obtain

λ(x) = d0(a
2 − x2)n+ 1

2 g(x)− B̃2(x) +
˜̃
B2(x)+

+

[
λ(0)− d0a

2n+1g(0)− B̃2(0) +
˜̃
B2(0)+

+

x∫

0

˜̃
B′

1(t) cosQ(t)dt+

x∫

0

˜̃
B′

2(t) sinQ(t)dt

]
cosQ(x)+

+

[
B̃1(0) +

˜̃
B1(0)−

x∫

0

˜̃
B′

1(t) sinQ(t)dt+

+

x∫

0

˜̃
B′

2(t) cosQ(t)dt

]
sinQ(x). (3.14)

Thus the following relations are valid:

lim
x→±a

µ0 +
∫ x

0

˜̃
B′

1(t) cosQ(t)dt+
∫ x

0

˜̃
B′

2(t) sinQ(t)dt

(a2 − x2)n+ 1
2

=
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= lim
x→±a

˜̃
B′

1(x) cosQ(x) +
˜̃
B′

2(x) sinQ(x)

−(2n+ 1)x(a2 − x2)n− 1
2

= 0,

lim
x→±a

µ1 −
∫ x

0

˜̃
B′

1(t) sinQ(t)dt+
∫ x

0

˜̃
B′

2(t) cosQ(t)dt

(a2 − x2)n+ 1
2

=

(3.15)

= lim
x→±a

− ˜̃
B′

1(x) sinQ(x) +
˜̃
B′

2(x) cosQ(x)

−(2n+ 1)x(a2 − x2)n− 1
2

= 0,

where µ0 = λ(0)− d0a
2n+1g(0)− B̃2(0) +

˜̃
B2(0), µ1 = B̃1(0) +

˜̃
B1(0). The

above relations show that the expressions in the brackets in the formula
(3.13) are infinitely small values as x → ±a, of higher order than (a2 −
x2)n+ 1

2 . With regard for the functions B̃2(x) and
˜̃
B2(x), from (3.14) follows

the validity of our theorem.

Corollary. For the functions λ1(x) and λ2(x) having certain physical

meaning (see Section 1 and Section 2), the following estimates are valid:

λ′(x) = O((a2 − x2)n− 1
2 ), λ′′(x) = O((a2 − x2)n− 3

2 ), as x→ ±a. (3.16)

Indeed, from (3.14) we have

λ′(x) = −d0(2n+ 1)x(a2 − x2)n− 1
2 g(x) + d0(a

2 − x2)n+ 1
2 g′(x)−

−B̃′
2(x) +

˜̃
B′

2(x)−
˜̃
B1′(x)−

−
[
µ0 +

x∫

0

˜̃
B′

1(t) cosQ(t)dt+

x∫

0

˜̃
B′

2(t) sinQ(t)dt

]
sinQ(x)

λ0D0(x)
+

+

[
µ1 −

x∫

0

˜̃
B′

1(t) sinQ(t)dt+

x∫

0

˜̃
B′

2(t) cosQ(t)dt

]
× cosQ(x)

λ0D0(x)
, (3.17)

and (1.15) yields

µ0 +
∫ x

0

˜̃
B′

1(t) cosQ(t)dt+
∫ x

0

˜̃
B′

2(t) sinQ(t)dt

D0(x)
= O((a2 − x2)n− 1

2 ),

µ1−
∫ x

0

˜̃
B′

1(t) sinQ(t)dt+
∫ x

0

˜̃
B′

2(t) cosQ(t)dt

D0(x)
=O((a2 − x2)n− 1

2 ) as x→±a.

Then (3.17) implies that the first estimate in (3.16) is valid.
To obtain the second estimate in (3.16), we have to perform some trans-

formations in (3.17),

λ′(x) = G(x)−
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−
[
µ0 + λ0

x∫

0

D0(t)
˜̃
B′

1(t)d sinQ(t)−λ0

x∫

0

D0(t)
˜̃
B′

2(t)d cosQ(t)

]
sinQ(x)

λ0D0(x)
+

+

[
µ1+λ0

x∫

0

D0(t)
˜̃
B′

1(t)d cosQ(t)+λ0

x∫

0

D0(t)
˜̃
B′

2(t)d sinQ(t)

]
cosQ(x)

λ0D0(x)
=

= G(x) +
˜̃
B′

1(x)−

−
[
µ0 − λ0

˜̃̃
B2(0)−

x∫

0

˜̃̃
B′

1(t) sinQ(t)dt+

x∫

0

˜̃̃
B′

2(t) cosQ(t)dt

]
sinQ(x)

λ0D0(x)
+

+

[
µ1−λ0

˜̃̃
B′

1(0)−
x∫

0

˜̃̃
B′

1(t) cosQ(t)dt−
x∫

0

˜̃̃
B′

2(t) sinQ(t)dt

]
cosQ(x)

λ0D0(x)
.

whereG(x) = −d0(2n+1)x(a2−x2)n− 1
2 g(x)+d0(a

2−x2)n+ 1
2 g′(x)−B̃′

2(x)+

˜̃
B′

2(x)−
˜̃
B′

1(x),
˜̃̃
B1(x) = λ0D0(x)

˜̃
B ′

1(x),
˜̃̃
B2(x) = λ0D0(x)

˜̃
B′

2(x). Then the
function λ′′(x) can be represented as

λ′′(x) = G′(x) +
˜̃
B
′′
1 (x)−

˜̃̃
B′

1(x)

λ0D0(x)
−

−
[
µ0 − λ0

˜̃̃
B2(0)−

x∫

0

˜̃̃
B′

1(t) sinQ(t)dt+

x∫

0

˜̃̃
B′

2(t) cosQ(t)dt

]
×

×cosQ(x)− λ0D
′
0(x) sinQ(x)

λ2
0D

2
0(x)

−

−
[
µ1 − λ0

˜̃̃
B1(0)−

x∫

0

˜̃̃
B′

1(t) cosQ(t)dt−
x∫

0

˜̃̃
B′

2(t) sinQ(t)dt

]
×

× sinQ(x) + λ0D
′
0(x) cosQ(x)

λ2
0D

2
0(x)

.

Here the expressions in the brackets vanish as x → ±a. Taking now into

account the expressions of the functions
˜̃̃
B1(x) and

˜̃̃
B2(x) and uncovering

the indeterminacy, we get

µ0 − λ0

˜̃̃
B2(0)−

∫ x

0

˜̃̃
B′

1(t) sinQ(t)dt+
∫ x

0

˜̃̃
B′

2(t) cosQ(t)dt

D2
0(x)

=

= O
(
(a2 − x2)n− 3

2

)
,

µ1 − λ0

˜̃̃
B1(0)−

∫ x

0

˜̃̃
B′

1(t) cosQ(t)dt−
∫ x

0

˜̃̃
B′

2(t) sinQ(t)dt

D2
0(x)

=
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= O
(
(a2 − x2)n− 3

2

)
as x→ ±a,

which proves the validity of the second estimate in (3.16).

4. Reduction of the Integro-Differential Equations to the

Fredholm Integral Equation of Second Kind

As is shown in Sections 1 and 2, the boundary value problems (1.1)–(1.5)
and (2.1)–(2.5) are reduced to finding a solution of the integro-differential
equations (1.22)–)1.23) and (2.9)–(2.10), respectively. We write them as
follows:

Kλ ≡ Πλ+Rλ = f, (4.1)

where Π is the characteristic part of the operator K, i.e.,

Πλ ≡ λ(x)

D0(x)
− λ0

π

a∫

−a

λ′(t)dt

t− x
, |x| < a,

Rλ ≡
∫ a

−a
R(x, t)λ(t)dt, R(x, t) = R1(x, t), f(x) = f1, λ0 = 1

8D for the

problem (1.1)–(1.5) and R(x, t) = R2(x, t), f(x) = f2(x), λ0 = 1
4D for the

problem (2.1)–(2.5).
Write (4.1) in the form

Πλ = f −Rλ (4.2)

and solve the previous equation as if its right-hand side were a given func-
tion. As is shown in Section 3, the latter equation has a unique solution
representable explicitly for coefficients D0(x) from a sufficiently wide class.

In particular, we can take D0(x) = d0(a
2 − x2)n+ 1

2 , d0 = const, n ≥ 1 is
a natural number, bearing in mind that the method of construction of the
characteristic equation works also in case D0(x) = (a2−x2)n+ 1

2P (x), where
P (x) is a polynomial or a rational function [16]. Moreover, we note that for

n = 0 we can consider D0(x) =
√
a2 − x2d(x), where d(x) is any continuous

function in the segment [−a, a], d(x) > 0. 1

On the basis of the results obtained in the previous section, we have

λ(x) +K∗Rλ = K∗f + λ(0) cosQ(x)+

+

x∫

0

cos(Q(t)−Q(x))√
a2 − t2

n∑

k=1

Ak

( 1

(a− t)k
− 1

(a+ t)k

)
dt, (4.3)

where

K∗f = − 1

λ0

x∫

0

sin(Q(t)−Q(x))f(t)dt+

1
This version will be considered at the end of this section.
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+
1

λ0π

x∫

0

cos(Q(t)−Q(x))√
a2 − t2

[ a∫

−a

f(τ)
√
a2 − τ2

t− τ
dτ

]
dt;

here Ak (k = 1, 2, . . . n) are unknown constants, Q(x) = 1
λ0

∫ x

0
dt

D0(t) .

To the equation (4.3) we join the following system of equations:

lim
|z+a|→0

{
λ0i

a
Fλ(0)D0(0) + λ0i

z∫

0

A′λ(t)eiQ(t)dt

}
=

= lim
|z+a|→0

{
φ(0) +

λ0i

a
D0(0)Ff (0) + λ0i

z∫

0

A′f (t)eiQ(t)dt

}
,

2π(2j − 2)

2n− 1
≤ arg(z + a) ≤ 2π(2j − 1)

2n− 1
, j = 1, 2, . . . , n, (4.4)

where

φ(0) = − lim
|z|→∞

z∫

0

Ff (t)− Fλ(t)√
a2 − t2

eiQ(t)dt, (4.40)

Ff (z) =
1

2πλ0

a∫

−a

f(t)
√
a2 − t2dt

t− z
+

n∑

k=1

Ak

( 1

(a− z)k
− 1

(a+ z)k

)
,

Fλ(z) =
1

2πλ0

a∫

−a

√
a2 − t2

t− z

[ a∫

−a

R(t, s)λ(s)ds

]
dt,

Af (z) = d0(a
2 − z2)nFf (z), Aλ(z) = d0(a

2 − z2)nFλ(z),

λ(0) = 2φ+(0), (4.5)

φ(z) = e−iQ(z)

[
φ(0) +

z∫

0

Ff (t)− Fλ(t)√
a2 − t2

eiQ(t)dt

]
.

Thus the original integro-differential equation (4.1) is equivalent to the
union of the equations (4.3), (4.4) and (4.5). The equation (4.3) is the
Fredholm equation of second kind. It sould be noted, however, that for n ≥ 1
we obtain, besides the Fredholm equation of second kind, some additional
equations (4.4) and (4.5), i.e., a system of linear algebraic equations, but
this is not important because the problem is reduced to the solution of
Fredholm’s equation (4.3). For n = 0, the integro-differential equation (4.3)
is equivalent to a Fredholm equation of second kind only.

The equation (4.3) can be transformed as follows:

λ(x) = d0(a
2 − x2)n+ 1

2 f(x)− d0(a
2 − x2)n+ 1

2

a∫

−a

R(x, s)λ(s)ds+
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+

[
λ(0)− d0a

2n+1f(0)−
x∫

0

◦
B′

1(t) cosQ(t)dt− λ0

x∫

0

◦
B′

2(t) sinQ(t)dt+

+d0a
2n+1

a∫

−a

R(0, s)λ(s)ds+ d0

a∫

−a

R̃(x, s)λ(s)ds+

+
d0

π

a∫

−a

L̃(x, s)λ(s)ds

]
cosQ(x) +

[
−

x∫

0

◦
B′

1(t) sinQ(t)dt+

+λ0

x∫

0

◦
B′

2(t) cosQ(t)dt− d0a
2n

π

a∫

−a

L(0, s)λ(s)ds+

+d0

a∫

−a

˜̃
R(x, s)λ(s)ds − d0

π

a∫

−a

˜̃
L(x, s)λ(s)ds

]
sinQ(x), (4.6)

where

◦
B1(t) = (a2 − t2)n+ 1

2 f(t),

◦
B2(t)=(a2 − t2)n

[
1

πλ0

a∫

−a

f(τ)
√
a2 − τ2

τ − t
dt+

n∑

k=1

Ak

( 1

(a− t)k
− 1

(a+ t)k

)]
,

R̃(x, s) =

x∫

0

[
(a2 − t2)n+ 1

2R(t, s)
]′
t
cosQ(t)dt,

˜̃
R(x, s) =

x∫

0

[
(a2 − t2)n+ 1

2R(t, s)
]′
t
sinQ(t)dt,

L̃(x, s) =

x∫

0

[
(a2 − t2)nL(t, s)

]′
t
sinQ(t)dt,

˜̃
L(x, s) =

x∫

0

[
(a2 − t2)nL(t, s)

]′
t
cosQ(t)dt,

L(t, s) =

a∫

−a

√
a2 − τ2

t− τ
R(τ, s)dτ.

For z = x, x ∈ (−a, a), the system (4.4) shows that the expressions in
the square brackets in (4.6) vanish as x → ±a. Moreover, on the basis of
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the results obtained in Section 3, we

λ(0)− d0a
2n+1f(0)−

x∫

0

◦
B′

1(t) cosQ(t)dt− λ0

x∫

0

◦
B′

2(t) sinQ(t)dt+

+d0a
2n+1

a∫

−a

R(0, s)λ(s)ds+ d0

a∫

−a

R̃(x, s)λ(s)ds+

+
d0

π

a∫

−a

L̃(x, s)λ(s)ds = O
(
(a2 − x2)n+ 1

2

)
,

−
x∫

0

◦
B′

1(t) sinQ(t)dt+ λ0

x∫

0

◦
B′

2(t) cosQ(t)dt− d0a
2n

π

a∫

−a

L(0, s)λ(s)ds+

+d0

a∫

−a

˜̃
R(x, s)λ(s)ds− d0

π

a∫

−a

˜̃
L(x, s)λ(s)ds=O

(
(a2 − x2)n+ 1

2

)
as x→±a.

Thus we have achieved regularization of the initial equation, and what is
very important, the obtained integral equation has the form

λ(x)−d0(a
2 − x2)n+ 1

2

a∫

−a

D(x, t)λ(t)dt=d0(a
2 − x2)n+ 1

2 g̃(x), |x|<a, (4.7)

where

D(x, t) =
[a2n+1R(0, t) + R̃(x, t) + 1

π L̃(x, t)] cosQ(x)

(a2 − x2)n+ 1
2

−

− [a2n

π L(0, t)− ˜̃
R(x, t) + 1

π

˜̃
L(x, t)] sinQ(x)

(a2 − x2)n+ 1
2

g̃(x) = f(x) +
λ(0)− d0a

2n+1f(0)−
∫ x

0

◦
B′

1(t) cosQ(t)dt

d0(a2 − x2)n+ 1
2

cosQ(x)−

−λ0

∫ x

0

◦
B′

2(t) sinQ(t)dt

d0(a2 − x2)n+ 1
2

cosQ(x)+

+
[−

∫ x

0

◦
B′

1(t) sinQ(t)dt+ λ0

∫ x

0

◦
B′

2(t) cosQ(t)dt] sinQ(x)

d0(a2 − x2)n+ 1
2

,

D(x, t) is at least twice differentiable in the square −a ≤ (x, t) ≤ a, while
the function g̃(x) has the same property on the interval [−a, a].
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Corollary. By Fredholm’s alternatives, the integral equation (4.7) with

the system of equations (4.4)–(4.5) has a unique solution satisfying Hölder’s

condition on the segment [−a, a].
Passing to the interval (−1, 1) and replacing x = ay by t = aτ , from (4.6)

we get the equation

λ0(y)− ν0(1− y2)n+ 1
2

1∫

−1

D0(y, τ)λ0(τ)dτ =

= ν0(1− y2)n+ 1
2 g0(y), |y| < 1, (4.8)

in which the following notation is adopted:

λ0(y) ≡ λ(ay), D0(y, τ) ≡ aD(ay, aτ), g0(y) ≡ g̃(ay), ν0 = d0a
2n+1.

Now let us consider the method of reducing the last integral equation
to the equivalent infinite system of linear algebraic equations. Towards
this end, on the basis of the asymptotic behaviour of the solution of the
characteristic equation, we represent the solution in the form of an infinite
series

λ0(y) = (1− y2)n+ 1
2

∞∑

k=0

a2kP
(n+ 1

2 ,n+ 1
2 )

2k (y) (4.9)

with unknown coefficients a2k (k = 1, 2, . . .) from the space of bounded
number sequences, where Pα,α

2k (y) are the Jacobi polynomials.

It is known that P
(α,α)
2k (y) = P

(α,α)
2k (−y) and P

(α,α)
2k+1 (y) = −P (α,α)

2k+1 (−y),
therefore the representation (4.8) yields an even function.

Further, we substitute (4.9) in (4.8), and as a result, we obtain the equal-
ity

(1− y2)n+ 1
2

∞∑

k=0

a2kP
(n+ 1

2 ,n+ 1
2 )

2k (y)−

−ν0(1− y2)n+ 1
2

1∫

−1

D0(y, τ)(1− τ2)n+ 1
2

∞∑

k=0

a2kP
(n+ 1

2 ,n+ 1
2 )

2k (τ)dτ =

= ν0(1− y2)n+ 1
2 g0(y), |y| < 1.

Multiplying both parts by P
(n+ 1

2 ,n+ 1
2 )

2m (y), integrating from −1 to 1 and
taking into account the orthogonality of the Jacobi polynomials [17], we get

1∫

−1

(1− y2)n+ 1
2P

(n+ 1
2 ,n+ 1

2 )

2k (y)P
(n+ 1

2 ,n+ 1
2 )

2m (y)dy =
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=

{
0, m 6= k,

2n+1Γ2(2m+n+ 3
2 )

(2m)!(2m+n+1)Γ(2m+2n+2) , m = k.

Simple operations for determining unknown coefficients a2k result in an
infinite system of linear equations

2n+1Γ2(2m+ n+ 3
2 )

(2m)!(2m+ n+ 1)Γ(2m+ 2n+ 2)
a2m−

−ν0
∞∑

k=0

D2k,2ma2k = g2m, m = 0, 1, . . . , (4.10)

where we have introduced the notation

D2k,2m =

1∫

−1

(1− y2)n+ 1
2P

(n+ 1
2 ,n+ 1

2 )
2m (y)×

×
( 1∫

−1

(1− τ2)n+ 1
2P

(n+ 1
2 ,n+ 1

2 )

2k (τ)D0(y, τ)dτ

)
dy (4.11)

g2m = ν0

1∫

−1

(1− y2)n+ 1
2P

(n+ 1
2 ,n+ 1

2 )
2m (y)g0(y)dy. (4.12)

Using Stirling’s formula for asymptotic behaviour of Gamma-function,
we conclude that

Γ2(2m+ n+ 3
2 )

(2m)!Γ(2m+ 2n+ 2)
→ 1 as m→∞. (4.13)

The interior integral in (4.11) we integrate twice by parts with respect
the to the variable τ and the outer integral twice with respect to the variable
y. Using the Rodrigues formula [17] for the Jacobi polynomials, we get

D2k,2m =
1

24 · 2k(2k − 1)2m(2m− 1)

1∫

−1

(1− y2)n+ 5
2P

(n+ 5
2 ,n+ 5

2 )
2m−2 (y)×

×
( 1∫

−1

(1− τ2)n+ 5
2P

(n+ 5
2 ,n+ 5

2 )

2k−2 (τ)
∂4D0(y, τ)

∂y2∂τ2
dτ

)
dy. (4.14)

Analogously to (4.12), we have

g2m =
ν0

22 · 2m(2m− 1)

1∫

−1

(1− y2)n+ 5
2P

(n+ 5
2 ,n+ 5

2 )
2m−2 (y)

∂2g0(y)

∂y2
dy.
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We will now proceed to the investigation for regularity of the infinite
system (4.10). Towards this end, we rewrite it in the form

a2m − ν0

∞∑

k=0

D̃2k,2ma2m = g̃2m, m = 0, 1, 2, . . . , (4.15)

and introduce the notation

D̃2m,2k =
(2m)!(2m+ n+ 1)Γ(2m+ 2n+ 2)

22n+1Γ2(2m+ n+ 3
2 )

D2m,2k,

g̃2m =
(2m)!(2m+ n+ 1)Γ(2m+ 2n+ 2)

22n+1Γ2(2m+ n+ 3
2 )

g2m.

Taking into account (4.13) and (4.14), for the system (4.5) we obtain

∞∑

k,m=0

D̃2
2m,2k <∞,

∞∑

m=0

g̃2
2m <∞. (4.16)

These estimates allow one to state that the infinite system (4.15) is quasi-
completely regular for any ν0 (|ν0| <∞) [18].

Although under the conditions (4.16) the matrix D = {D2k,2m}∞k,m=0 in
the space l2 defines a linear continuous operator, the existence theorem of
the is, generally speaking, inapplicable here [19], but the investigation of
the system (4.15) under the conditions (4.16) is reduced to that of a finite
system, and this makes it possible to point out the following condition: if the
homogeneous system corresponding to (4.15) has in l2 the unique (obviously,
zero) solution, then the given system (4.15) has a unique solution for any
sequence in the right-hand sides is.

The right-hand side of the system (4.15) can be represented as

g̃2m = g̃f
2m + λ(0)g̃0

2m +

n∑

i=1

g̃i
2mAi, m = 0, 1, 2, . . . .

We denote a solution of the infinite system for the right-hand side equal to

g̃f
2m by af

2m, for that equal to g̃0
2m by a0

2m and for that equal to g̃i
2m by ai

2m.
Then

a2m = af
2m + λ(0)a0

2m +

n∑

i=1

ai
2mAi, m = 0, 1, . . . . (4.17)

Substituting the latter in (4.4), (4.40) and (4.5), we obtain a finite system
of algebraic equations with respect to the constants λ(0), φ(0), Ai (i =
1, . . . , n).

The uniqueness theorem for the above-posed problems and the equiva-
lence between the initial integral differential equation and the infinite system
of linear algebraic equations allows one to make the following
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Conclusion. The homogeneous system of equations corresponding to the

system (4.4), (4.40), (4.5) and (4.15) has in l2 only zero solution, while the

inhomogeneous system has only unique solution.

For the case D0(x) =
√
a2 − x2d(x), where d(x) is any continuous on

[−a, a] function, d(x) > 0, we present another way of reducing integro-
differential equation (4.1) to the Fredholm integral equation of second kind.

Using the well-known Cauchy type inversion formula, from (4.1) we get

λ′(s) = − 1√
a2 − s2

1

πλ0

a∫

−a

√
a2 − t2

t− s

λ(t)

D0(t)
dt+

+
1√

a2 − s2
1

πλ0

a∫

−a

√
a2 − t2

t− s
f(t)dt−

− 1√
a2 − s2

1

πλ0

a∫

−a

√
a2 − t2

t− s
dt

a∫

−a

R(τ, t)λ(τ)dτ +
c√

a2 − s2
, |s| < a

where c is an arbitrary constant. Integrating both parts of the last equality
and taking into account the integral expression

∫
dx√

1− x2(x− t)
= − 1

2
√

1− t2
ln

1− xt+
√

(1− x2)(1− t2)

1− xt−
√

(1− x2)(1− t2)
,

we obtain

λ0(x) = − a

2πλ0

1∫

−1

ln
1− xt+

√
(1− x2)(1− t2)

1− xt−
√

(1− x2)(1− t2)

λ0(t)

D̃0(t)
dt+

+
a

2πλ0

1∫

−1

ln
1− xt+

√
(1− x2)(1− t2)

1− xt−
√

(1− x2)(1− t2)
×

×
[
f0(t)−

1∫

−1

R0(τ, t)λ0(τ)dτ

]
dt+ c arcsinx+ c1,

where λ0(x) = λ(ax), D̃0(x) = D0(ax), f0(x) = f(ax), R0(τ, t) = aR(aτ,
at). If we satisfy the boundary conditions λ0(±1) = 0, we can find that
c1 = c = 0.

Consequently the integro-differential equation (4.1) under the boundary
conditions λ0(±1) = 0 is equivalent to the following Fredholm integral equa-
tion of second kind:

λ0(x) +
a

2πλ0

1∫

−1

L(x, t)

D̃0(t)
λ0(t)dt = r(x), (4.18)
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where

L(x, t) = ln
1− xt+

√
(1− x2)(1− t2)

1− xt−
√

(1− x2)(1− t2)
+

+D̃0(t)

1∫

−1

ln
1− xτ +

√
(1− x2)(1− τ2)

1− xτ −
√

(1− x2)(1− τ2)
R0(t, τ)dτ,

r(x) =
a

2πλ0

1∫

−1

ln
1− xt+

√
(1− x2)(1− t2)

1− xt−
√

(1− x2)(1− t2)
f0(t)dt.

It is obvious that the equation (4.18) can be considered in the space

L2(−1, 1) with the weight 1/D̃0(t), in which it is a quasi-regular integral
equation. According to the well-known results [20], on the basis of Banach’s
fixed point theorem, under the condition λ0 >

a
2π‖L‖, with

‖L‖ =

{ 1∫

−1

1∫

−1

L2(x, t)

D̃0(t)D̃0(x)
dxdt

} 1
2

,

the solution of the equation can be constructed by the method of successive
approximations.

Note that by the method suggested in [10–11] we can obtain a new regular
integral equation, equivalent to the integro-differential equation (4.1).

We will now cite the method of reducing the equation (4.1) to the equiv-
alent system of linear algebraic equations. Towards this end, on the basis
of the equation (3.15) we represent a solution of the equation (4.1) by an
infinite series

λ′(x) =
1√

1− x2

∞∑

m=0

amTm(x), |x| < 1, (4.19)

with unknown coefficients am (n = 0, 1, 2, . . . ).
Satisfying the boundary conditions, the equation (4.19) results in

λ(x) = −
√

1− x2

∞∑

m=1

am

m
Um−1(x), |x| ≤ 1, (4.20)

where Tm(x) and Um−1(x) are Chebyshev’s polynomials of the first and
second Kind, respectively.

Substituting the equations (4.19) and (4.20) in (4.1) and using the rela-
tion

1

π

1∫

−1

Tm(t)dt

(t− x)
√

1− t2
= Um−1(x), |x| < 1,
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we arrive at the equality

− 1

d(x)

∞∑

m=1

am

m
Um−1(x)− λ0

∞∑

m=1

amUm−1(x)−

−
∞∑

m=1

am

m

1∫

−1

R(t, x)
√

1− t2Um−1(t)dt = f(x), |x| < 1.

Now we multiply both parts of the above equality by the function
√

1− x2

Uk−1(x) and integrate from −1 to 1 taking into account the orthogonality
property of Chebyshev’s polynomials of second Kind:

1∫

−1

Um−1(x)Uk−1(x)
√

1− x2dx =

{
0, m 6= k,
π
2 , m = k, k,m = 1, 2, . . . .

Performing simple operations for defining the unknown coefficients an, we
obtain an infinite system of linear equations

ak +
1

λ0

∞∑

m=1

Rkmam +
1

λ0

∞∑

m=1

R′kmam = fk, k = 1, 2, . . . , (4.21)

where

Rmk =
2

πm

1∫

−1

Um−1(x)Uk−1(x)

√
1− x2

d(x)
dx,

R′mk =
2

πm

1∫

−1

√
1− x2Uk−1(x)

( 1∫

−1

R(t, x)
√

1− t2Um−1(t)dt

)
dx,

fk = − 2

πλ0

1∫

−1

√
1− x2Uk−1(x)f(x)dx. (4.22)

Thus integro-differential equation (4.1) under the boundary conditions
λ(±1) = 0 is equivalent to the infinite system (4.21).

It is known that the Chebyshev polynomials form a basis in the space
L2(−1, 1), the series (4.20) converges in the norm of the space L2(−1, 1)
and the corresponding sequences {am} belong to l2 by the Parseval equality
‖λ‖L2(−1,1) = ‖a‖l2 , a = {am}∞m=1.

Thus the following lemma is proved:
If f(x) ∈ L2(−1, 1), then to any solution λ(x) of the equation (4.1) from

the class L2(−1, 1) there corresponds a sequence of numbers {am} from the

class l2 satisfying the infinite system of linear algebraic equations (4.21).
Conversely, if f(x) ∈ L2(1, 1), then to any solution {am} ∈ l2 of system

(4.21) there corresponds a solution λ(x) ∈ L2(−1, 1) of the equation (4.1).
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Theorem 3. If f(x) ∈ L2(−1, 1), then the operators appearing in the

equation (4.21) and acting in l2 are continuous for all values of the param-

eter λ0. The system (4.21) is uniquely solvable in l2.

Proof. Indeed, x = cosQ, from (4.22) we have

Rmk =
2

πm

π∫

0

sinmQ sin kQ

d(cosQ)
dQ =

=
1

πm

π∫

0

cos(m− k)Q

d(cosQ)
dQ− 1

πm

π∫

0

cos(m+ k)Q

d(cosQ)
dQ,

which implies that Rmk = O(m−1) for m = k, and Rmk tends to zero as
k → ∞, m → ∞, with the rate, not less than k−1, m−1, respectively, i.e.,∑∞

m,k=1 R
2
mk <∞, Sk = O(k−1), k →∞, sk ≡

∑∞
m=1 |Rmk|.

Let R′mk = 1
mT

′
mk, where

T ′mk =
2

π

1∫

−1

√
1− x2Uk−1(x)

( 1∫

−1

R(t, x)
√

1− t2Um−1(t)dt

)
dx.

Note that {T ′mk}∞m,k=1 are the Fourier coefficients of the function R(x, t)
quadratically summable in the square −1 ≤ x, t ≤ 1 with respect to the
complete orthogonal system of functions {Uk−1(x)Um−1(t)}∞k,m=1. There-

fore by the Bessel inequality, the double series
∑∞

k,m=1 |T ′km|2 converges,

and hence the series
∑∞

k=1 T
′
k, where T ′k =

∑∞
m=1 |T ′km|2, converges as well.

This implies that at least T ′k = O
(
k−(1+ε)

)
(k →∞, ε > 0).

If we suppose that S′k =
∑∞

m=1 |R′km| =
∑∞

m=1
1
m |T ′km|, then, using the

Cauchy–Buniakovsky inequality, we get

S′k ≤
[ ∞∑

m=1

1

m2

] 1
2
[ ∞∑

m=1

|T ′km|2
] 1

2

=
π√
6

√
T ′k,

and hence S′k = O
(
k−

(1+ε)
2

)
as k →∞.

On the basis of the above-said it follows that the operators appearing in
the equation (4.1) act in l2 and are completely continuous for λ0 ∈ (0,∞).

The free term of that system tends to zero as k → ∞ with the rate not

less than k−
(1+ε)

2 . This circumstance allows one to assert that the infinite
system (4.21) is quasi-completely regular.

Therefore the Hilbert alternative [19] on the solvability of infinite systems
is quite applicable to the system (4.21). Since the solution of the integral
equation corresponding to the system (4.21) does exist and is unique in the
space L2(−1, 1), by our lemma there exists a unique non-trivial solution of
the infinite system (4.21) which belongs to the space l2 and can be found
with any degree of accuracy by the method of successive approximations. �
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Note that in the particular case, when

d(x) = 1, Rkm =

{
1
k , k = m,

0, k 6= m,

system (4.21) takes the form

ak +

∞∑

m=1

R0
kmam = f◦k , k = 1, 2, . . . ,

where R0
km = k

λ0k+1R
′
km, f0

k = λ0kfk

λ0k+1 .

5. Problems for Anisotropic Plates

As is known [21], moments, cross-cutting forces (and hence stresses) in
the theory of elasticity are expressed by deflections of a midsurface w which
satisfies the differential equation of the fourth order

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+

+4D26
∂4w

∂x∂y3
+D22

∂4w

∂y4
= q, (5.1)

where q is the load per unit of area distributed over the exterior surface.
General expression for the function w depends on the roots µ1, µ2, µ1, µ2

of the characteristic equation

D22µ
4 + 4D26µ

3 + 2(D12 + 2D66)µ
2 + 4D16µ+D11 = 0; (5.2)

the constants Dij , by analogy with an isotropic plate, are called rigidities
of an anisotropic plate.

For any elastic homogeneous material, the equation (5.2) has no real
roots. Complex or purely imaginary numbers µ1 = α+ iβ, µ2 = γ + iδ are
called complex parameters of the bending.

General expression for deflections has the form
1) for different complex parameters (µ1 6= µ2):

w = w0 + 2 Re[w1(z1) + w2(z2)]; (5.3)

2) for equal complex parameters (µ1 = µ2):

w = w0 + 2 Re[w1(z1) + z1w2(z1)]. (5.4)

Here w0 is a particular solution of the inhomogeneous equation (5.1) whose
type depends on the distribution of the load q over the surface, w1 and
w2 are arbitrary analytic functions of complex variables z1 = x + µ1y and
z2 = x+ µ2y.
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General expressions for the moments and cross-cutting forces (for the
case µ2 6= µ1) are of the form

Mx =M0
x − 2 Re[p1w

′′
1 (z1) + p2w

′′
2 (z2)],

My =M0
y − 2 Re[q1w

′′
1 (z1) + q2w

′′
2 (z2)],

Hxy =H0
xy − 2 Re[r1w

′′
1 (z1) + r2w

′′
2 (z2)],

Nx =N0
x − 2 Re[µ1s1w

′′′
1 (z1) + µ2s2w

′′′
2 (z2)],

Nx =N0
x + 2 Re[s1w

′′′
1 (z1) + s2w

′′′
2 (z2)],

(5.5)

where M0
x , M0

y , . . . , N
0
y are the moments and cross-cutting forces corre-

sponding to the function w0:

pi =D11 +D12µ
2
i + 2D16µi,

qi =D12 +D22µ
2
i + 2D26µi,

ri =D16 +D26µ
2
i + 2D66µi,

si =
D11

µi
+ 3D16 + (D12 + 2D66)µi +D26µ

2
i ,

si−ri =
pi

µi
, si + ri = −qiµi, i = 1, 2.

The functions w′1(z1) and w′2(z) in the plate bent by forces distributed
over its edge must satisfy a number of conditions, namely:

1) if the region of the plate is simply connected, then the functions w′1(z1)
and w′2(z2) must be holomorphic and single-valued in their domains;

2) if the plate has a hole, but stresses distributed over its edges are
balanced (the principal vector and the principal moment are equal to zero),
then the functions w′1(z1) and w′2(z2) are holomorphic and single-valued in
both regions;

3) if the plate region is bounded by several contours (plate with holes),
and moreover, the principal vector and the principal moment of forces for
at least one of the contour do not equal to zero, then the functions w′1(z1)
and w′2(z2) will be many-valued.

If the plate with holes is infinite, then the case where Mx, My, . . . , Ny

remain bounded in the whole region of the plate is of particular interest.
This requirement leads to some restrictions regarding the character of the
load and the type of the functions w′1(z1) and w′1(z2). If stresses distributed
over the edges of the hole are balanced, then for the moments and cross-
cutting forces to be bounded, it is necessary and sufficient that the functions

w′1(z1) and w′2(z2) outside of the hole to have the form (B+ iC)z1 +
◦
w′1(z1),

(B′ + iC ′)z2 +
◦
w′2(z2), where B, B′, C, C ′ are real numbers,

◦
w1(z1),

◦
w2(z2)

are the functions, holomorphic outside of the hole, including the point at

infinity. Then we can assume that C = 0, and
◦
w′1(∞) and

◦
w′2(∞) are

arbitrary complex constants.
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Thus outside of the hole, i.e., in the neighbourhood of the point at infinity

w′1(z1) = Bz1 +
◦
w′1(z1), w′2(z2) = (B′ + iC ′)z2 +

◦
w′2(z2). (5.6)

The moments at infinity are expressed by B, B′, C ′:

M∞
x = −Re[p1B + p2(B

′ + iC ′)],

M∞
y = −Re[q1B + q2(B

′ + iC ′)],

H∞
xy = −Re[r1B + r2(B

′ + iC ′)], N∞
x = 0, N∞

y = 0.

(5.7)

1. Consider a thin anisotropic unbounded plate reinforced over y = 0,
|x| < a by an elastic inclusion of variable bending rigidity D0(x). Bending
moment M∞

x = M , M∞
y = 0 acts at infinity. It is required to find contact

forces of interaction between the inclusion and the plate.
This problem is equivalent to finding a solution of the homogeneous equa-

tion corresponding to the equation (5.1), with boundary conditions (1.2)–
(1.7) imposed on the inclusion.

By (5.4),

∂w

∂x
= 2 Re[w′1(z1) + w′2(z2)],

∂w

∂y
= 2 Re[µ1w

′
1(z1) + µ2w

′
2(z2)].

By virtue of (5.5), (1.3) yields

〈w′1(x) + w′2(x) + w′1(x) + w′2(x)〉 = 0,

〈µ1w
′
1(x) + µ2w

′
2(x) + µ1w

′
1(x) + µ2w

′
2(x)〉 = 0,

〈q1w′′1 (x) + q2w
′′
2 (x) + q1w

′′
1 (x) + q2w

′′
2 (x)〉 = 0,

(5.8)

〈s1w′′′1 (x) + s2w
′′′
2 (x) + s1w′′′1 (x) + s2w′′′2 (x)〉 = µ(x), |x| < a.

Differentiating the first and the second equality twice, and the third

equality only once, we obtain for the jumps 〈w′′′1 (x)〉, 〈w′′′2 (x)〉, 〈w′′′1 (x)〉,
〈w′′′1 (x)〉 a system of algebraic equations.

If

∆ =

∣∣∣∣∣∣∣∣

1 1 1 1
µ1 µ2 µ1 µ2

q1 q2 q1 q2
s1 s2 s1 s2

∣∣∣∣∣∣∣∣
6= 0,

then by solving this system we obtain

[w′′′1 (x)]− − [w′′′1 (x)]+ = −∆1

∆
µ(x),

[w′′′2 (x)]− − [w′′′2 (x)]+ =
∆2

∆
µ(x),

|x| < a, (5.9)
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where

∆1 =

∣∣∣∣∣∣

1 1 1
µ2 µ1 µ2

q2 q1 q2

∣∣∣∣∣∣
, ∆1 =

∣∣∣∣∣∣

1 1 1
µ1 µ1 µ2

q1 q1 q2

∣∣∣∣∣∣
.

Taking into account that w′′′1 (∞) = 0 and w′′′2 (∞) = 0, solutions of
boundary problems (5.9) can be represented by the formulas

w′′′1 (z1) =
∆1

2πi∆

a∫

−a

µ(t)dt

t− z1
, w′′′2 (z2) = − ∆2

2πi∆

a∫

−a

µ(t)dt

t− z2
,

where z1 and z2 are complex variable varying respectively in the domains
S1 and S2 cut along the segment (−a, a).

By the conditions (1.6), w′′1 (z1) and w′′2 (z2) are represented as

w′′1 (z1) = − ∆1

2πi∆

a∫

−a

ln(t− z1)µ(t)dt+B,

w′′2 (z2) =
∆2

2πi∆

a∫

−a

ln(t− z2)µ(t)dt + (B′ + iC ′).

(5.10)

The constants B, B′ and C ′ are defined from the system

(p1 + p1)B+p2B1 + p2B1 = −M,

(q1 + q1)B+q2B1 + q2B1 = 0,

(r1 + r1)B+r2B1 + r2B1 = 0, B1 = B′ + iC ′.

Realizing the contact condition between the inclusion and the plate and

taking into account (5.10) and the fact that ∂2w(x,0)
∂x2 = 2 Re[w′′1 (x)+w′′2 (x)],

we see that the condition (1.4) takes the form

d2

dx2
D0(x)

[
λ0

π

a∫

−a

ln |t− x|µ(t)dt + (B +B′)

]
= −µ(x), |x| < 1,

where λ0 = Im ∆1−∆2

∆ .
Integrating the last equation twice and introducing the notation λ(x) =∫ x

−a dt
∫ τ

−a µ(τ)dτ , we arrive at the equation

λ(x) − D0(x)λ0

π

a∫

−a

λ′(t)dt

t− x
= −(B +B′)D0(x), |x| < a, (5.11)

under the condition

λ(±a) = 0 and λ′(±a) = 0. (5.12)
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2. Consider now an infinite elastic plate with general anisotropy, having
a circular hole of unit radius and strenghtened over: y = 0, −c < x < −b,
b < x < c, b > 1 by an elastic inclusion of variable bending rigidity. The hole
contour is rigidly clamped and the bending moment M∞

x = M , M∞
y = 0

acts at infinity. It is required to find contact stresses of interaction between
the inclusion and the plate.

Just in the same way as in the previous problem, the above-posed problem
is equivalent to finding a solution of the homogeneous problem (5.1) with the
boundary conditions (1.2)–(1.7) imposed on the inclusion and the conditions

w = 0,
∂w

∂n
= 0 on γ (5.13)

on the boundary of the hole, where γ is the boundary of the unit circle.
If S is the region of the plate, then the regions with varying functions

w1(z1) and w2(z2) will be S1 and S2 which are obtained from S by the
so-called affine transformation: x1 = x + αy, y1 = βy and x2 = x + γy,
y2 = δy respectively, where α + iβ = µ1, γ + iδ = µ2 (µ1 6= µ2). Then we
can represent complex variables z1 and z2 in the form

z1 =x+ µ1y =
z + z

2
+ µ1

z − z

2i
=

1− iµ1

2

(
z +

1 + µ1i

1− µ1i
z
)
,

z2 =x+ µ2y =
1− iµ2

2

(
z +

1 + µ2i

1− µ2i
z
)
.

(5.14)

Satisfying boundary conditions (1.3) on the interval (−c,−b)∪ (b, c), the
solution of boundary problem (5.9) for −c < x < −b, b < x < c is given by
the formulas

w′1(z1) =
∆1

2πi∆

∫

l

(t− z1) ln(t− z1)µ(t)dt+ Bz1 + F1(z1),

w′2(z2) = − ∆1

2πi∆

∫

l

(t− z2) ln(t− z2)µ(t)dt+B1z2 + F2(z2),

(5.15)

l ≡ (−c,−b) ∪ (b, c),

where F1(z1) and F2(z2) are analytic functions in the regions S1 and S2,
respectively.

On the basis of (5.14), the conditions (5.13) on γ can be written as

2 Re
[
F1

(
R1

(
σ +

m1

σ

))
+ F2

(
R2

(
σ +

m2

σ

))]
=

= −2 Re
[
f1

(
R1

(
σ +

m1

σ

))
+ f2

(
R2

(
σ +

m2

σ

))
+

+BR1

(
σ +

m1

σ

)
+B1R2

(
σ +

m2

σ

)]
,

2 Re
[
µ1F1

(
R1

(
σ +

m1

σ

))
+ µ2F2

(
R2

(
σ +

m2

σ

))]
=
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−2 Re
[
µ1f1

(
R1

(
σ +

m1

σ

))
+ µ2f2

(
R2

(
σ +

m2

σ

))
+

+µ1BR1

(
σ +

m1

σ

)
+ µ2B1R2

(
σ +

m2

σ

)]
,

where we have introduced the following notation:

Rk =
1− iµk

2
, mk =

1 + iµk

1− iµk
, k = 1, 2, |σ| = 1,

f1(z1) =
∆1

2πi∆

∫

l

(t− z1) ln |t− z1|µ(t)dt,

f2(z2) = − ∆2

2πi∆

∫

l

(t− z2) ln |t− z2|µ(t)dt.

Using the notation
◦
F k(σ) ≡ Fk

(
Rk

(
σ + mk

σ

))
,
◦
fk(σ) ≡ fk

(
Rk

(
σ +

mk

σ

))
, k = 1, 2, we rewrite the latter conditions as follows:

◦
F 1(σ) +

◦
F 2(σ) +

◦
F 1(σ) +

◦
F 2(σ) =

= −
◦
f1(σ)−

◦
f2(σ)−

◦
f1(σ) −

◦
f2(σ)−

−BR1

(
σ +

m1

σ

)
−B1R2

(
σ +

m2

σ

)
−

−BR1

( 1

σ
+m1σ

)
−B1R2

( 1

σ
+m2σ

)
,

µ1

◦
F 1(σ) + µ2

◦
F 2(σ) + µ1

◦
F 1(σ) + µ2

◦
F 2(σ) =

= µ1

◦
f1(σ)− µ2

◦
f2(σ)−

−µ1

◦
f1(σ) − µ2

◦
f2(σ)− µ1BR1

(
σ +

m1

σ

)
− µ2B1R2

(
σ +

m2

σ

)
−

−µ1BR1

( 1

σ
+m1σ

)
− µ2B1R2

( 1

σ
+m2σ

)
.

(5.16)

Bearing in mind the fact that the function
◦
F k(σ) of the point on the

circumference γ must represent the values of a function
◦
F k(ζ) holomorphic

outside of γ (k = 1; 2), on the basis of the Cauchy formula for an infinite
domain we have

1

2πi

∫

γ

◦
F k(σ)dσ

σ − ζ
= −

◦
F k(ζ),

1

2πi

∫

γ

◦
F k(σ)dσ

σ − ζ
= 0,

where ζ is an arbitrary point outside of γ.
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Moreover, the functions
◦
fk(σ) are the boundary values of the functions

◦
fk(ζ), holomorphic in γ, and the functions

◦
fk(σ) are the boundary values

of the functions
◦
fk

(
1/ζ

)
holomorphic outside of γ. Consequently, we have

1

2πi

∫

γ

◦
fk(σ)dσ

σ − ζ
= 0,

1

2πi

∫

γ

◦
fk(σ)dσ

σ − ζ
= −

◦
fk

(1

ζ

)
;

the function ζ+ mk

ζ is holomorphic in γ, except the point ζ = 0, where it has

a pole with the principal part mk

ζ and the function 1
ζ +mkζ is holomorphic

outside of γ, except the point ζ = ∞, where it is of the type mkζ +O
(

1
ζ

)
.

Thus we have

1

2πi

∫

γ

(σ + mk

σ )dσ

σ − ζ
= −mk

ζ
,

1

2πi

∫

γ

( 1
σ +mkσ)

σ − ζ
= −1

ζ
−mkζ +mkζ = −1

ζ
.

As a result, from (5.16) we get

−
◦
F 1(ζ)−

◦
F 2(ζ) =

◦
f1

(1

ζ

)
+

◦
f2

(1

ζ

)
+

Γ1

ζ
,

−µ1

◦
F 1(ζ)− µ2

◦
F 2(ζ) = µ1

◦
f1

(1

ζ

)
+ µ2

◦
f2

(1

ζ

)
+

Γ2

ζ
,

(5.17)

where

Γ1 = BR1m1 +B1R2m2 +BR1 +B1R2,

Γ2 = µ1BR1m1 + µ2B1R2m2 + µ1BR1 + µ2B1R2.

From (5.17) we have

◦
F 1(ζ) = −

◦
f1

(1

ζ

)
+

Γ2 − µ2Γ1

µ2 − µ1
· 1

ζ
,

◦
F 2(ζ) = −

◦
f2

(1

ζ

)
+
µ1Γ1 − Γ2

µ2 − µ1
· 1

ζ
,
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and hence

F1(z1) =

=
∆1

2πi∆

∫

l

(
t− 2R1

z1+
√
z2
1−4R2

1m1

)
ln

∣∣∣t− 2R1

z1+
√
z2
1−4R2

1m1

∣∣∣µ(t)dt+

+
Γ2 − µ2Γ1

µ2 − µ1
· 2R1

z1 +
√
z2
1 − 4R2

1m1

,

F2(z2) =

=− ∆2

2πi∆

∫

l

(
t− 2R2

z2+
√
z2
2−4R2

2m2

)
ln

∣∣∣t− 2R2

z2+
√
z2
2−4R2

2m2

∣∣∣µ(t)dt+

+
µ1Γ1 − Γ2

µ2 − µ1
· 2R2

z2 +
√
z2
2 − 4R2

2m2

.

(5.18)

Taking into account (1.6), (5.15) and (5.18) for µ1 = iβ, µ2 = iδ, by (5.3)
we have

∂2w(x, 0)

∂x2
= w′′1 (x) + w′′2 (x) + w′′1 (x)+, w′′2 (x) =

= − Im
∆1 −∆2

π∆

∫

l

ln |t− x|µ(t)dt− 1 + β

π
Im

∆1

∆
×

× 1√
x2 − 1 + β2(x +

√
x2 − 1 + β2)

×
∫

l

ln
∣∣∣t− 1 + β

x+
√
x2 − 1 + β2

∣∣∣µ(t)dt+

+
1 + δ

π
Im

∆2

∆
· 1√

x2 − 1 + δ2(x+
√
x2 − 1 + δ2)

×

×
∫

l

ln
∣∣∣t− 1 + δ

x+
√
x2 − 1 + δ2

∣∣∣µ(t)dt+

+
l1√

x2 − 1 + β2(x+
√
x2 − 1 + β2)

+

+
l2√

x2 − 1 + δ2(x+
√
x2 − 1 + δ2)

+ 2B + 2B′,

where

l1 = (1 + β)
[B(1 + β)(β + δ)

δ − β
+

2B′(1 + δ)δ

δ − β
−B(1− β)

]
,

l2 = (1 + δ)
[
B′(δ − 1) +

2Bβ(1 + β)

β − δ
+
B′(1 + δ)(β + δ)

β − δ

]
.
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By the contact condition of between the inclusion and the plate, we obtain
the following integral equation:

κ1

π

∫

l

ln |t− x|λ′′(t)dt+
κ2

π
β(x)

∫

l

ln
∣∣∣t− 1 + β

x+
√
x2 − 1 + β2

∣∣∣λ′′(t)dt+

+
κ3

π
δ(x)

∫

l

ln
∣∣∣t− 1 + δ

x+
√
x2 − 1 + δ2

∣∣∣λ′′(t)dt+

+
λ(x)

D0(x)
= f(x), x ∈ [−c,−b] ∪ [b, c], b > 1,

where we have introduced the notation

κ1 = − Im
∆1 −∆2

∆
, κ2 = −(1 + β) Im

∆1

∆
, κ2 = (1 + δ) Im

∆2

∆
,

β(x) =
1√

x2 − 1 + β2(x+
√
x2 − 1 + β2)

,

δ(x) =
1√

x2 − 1 + δ2(x+
√
x2 − 1 + δ2)

.

λ(x)≡





x∫

b

dt

t∫

b

µ(τ)dτ, x ∈ [b, c],

f(x) = −l1β(x) − l2δ(x) − 2B − 2B′,
−b∫

x

dt

−b∫

t

µ(τ)dτ, x ∈ [−c,−b].

Introducing dimensionless coordinates ζ = x
c , η = t

c and dimensionless
values, we can transform the above equation into the integro-differential
equation

−
◦
κ1

π

( −ρ∫

−1

+

1∫

ρ

) ◦
λ′(η)dη

η − ζ
−

◦
κ2

π

◦
β(ζ)

( −ρ∫

−1

+

1∫

ρ

) ◦
λ′(η)dη

η − 1+β

c2(ζ+
√

ζ2−γ1)

−

−
◦
κ3

◦
δ(ζ)

π

( −ρ∫

−1

+

1∫

ρ

) ◦
λ′(η)dη

η − 1+δ

c2(ζ+
√

ζ2−γ2)

=

=

◦
λ(ζ)
◦
D(ζ)

+
◦
f(ζ), ζ ∈ (−1,−ρ) ∪ (ρ, 1), (5.19)

whose solution according to (1.6) must satisfy the boundary conditions

λ(±ρ) = 0, λ(±1) = 0, λ′(±ρ) = 0, λ′(±1) = 0. (5.20)
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Here ρ = b
c ,

◦
κi =

κi

c
(i = 1, 2, 3), γ1 =

1− β2

c2
, γ2 =

1− δ2

c2
,

◦
λ(ζ) ≡ λ(cζ),

◦
D(ζ) ≡ D(cζ),

◦
f(ζ) = f(cζ),

◦
β(ζ) = β(cζ),

◦
δ(ζ) ≡ δ(cζ),

◦
λ(−ζ) =

◦
λ(ζ),

◦
D(−ζ) =

◦
D(ζ),

◦
f(−ζ) =

◦
f(ζ).

Now the last equation, from two symmetrical segments we will transfer to
the segment [−1, 1]. To this end, by means of the evenness of the functions
appearing in that equation, we first transform them to the segment [ρ, 1]
and then pass to new variables using the formulas

s =
2ζ2 − ρ2 − 1

1− ρ2
, v =

2η2 − ρ2 − 1

1− ρ2
, ρ ≤ ζ, η ≤ 1, −1 ≤ s, v ≤ 1.

After simple calculations, (5.19) transforms into the equation

κ̃1

π

1∫

−1

ψ′(v)dv

v − s
−

−κ̃2β̃(s)

1∫

−1

ψ′(v)dv

c4(d1v + d2)(
√
d1s+ d2 +

√
d1s+ d2 − γ1)2 − (1 + β)2

−

−κ̃3δ̃(s)

1∫

−1

ψ′(v)dv

c4(d1v + d2)(
√
d1s+ d2 +

√
d1s+ d2 − γ2)2 − (1 + δ)2

=

=
ψ(s)

D̃(s)
+ f̃(s), |s| < 1, (5.21)

where

κ̃1 = −
◦
κ1

d1
, κ̃2 =

2
◦
κ2c

2(1 + β)

π
, κ̃3 =

2
◦
κ3c

2(1 + δ)

π
,

β̃(s) =
◦
β
(√

d1s+ d2

)(
1 +

√
1− γ1

d1s+ d2

)
,

δ̃(s) =
◦
δ
(√

d1s+ d2

)(
1 +

√
1− γ2

d1s+ d2

)
,

D̃(s) =
◦
D

(√
d1s+ d2

)√
d1s+ d2, f̃(s) =

◦
f(s)√
d1s+ d2

,

ψ(s) =
◦
λ
(√

d1s+ d2

)
, d1 =

1− ρ2

2
, d2 =

1 + ρ2

2
.
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Thus we have obtained the equation (5.21) with the same structure as
that of equation (1.22), and now boundary conditions (5.20) take the form

ψ(±1) = 0, ψ′(±1) = 0. (5.22)

The techniques analogous to that presented in the foregoing section al-
lows one to reduce integro-differential equations (5.21)-(5.22) to the Fred-
holm integral equation of second kind. On the other hand, this equation is
equivalent to an infinite system of algebraic equations. Thus we have

ψ′(s) =
1√

1− s2

∞∑

k=0

bkTk(s), |s| < 1,

and for the determination of unknown coefficients bk we get an infinite
system of linear equations

bm +

∞∑

k=1

Qmkbk +

∞∑

k=1

Q′
mkbk = gm, m = 1, 2, . . . , (5.23)

where

Qmk =
1

kκ̃1

1∫

−1

(1− s2)Um−1(s)Uk−1(s)
◦
D(
√
d1s+ d2)

√
d1s+ d2

ds,

Q′
mk =

1

κ̃1k

1∫

−1

√
1− s2Um−1(s)

( 1∫

−1

Q(s, v)
√

1− v2Uk−1(v)dv

)
ds,

gm =
1

κ̃1

1∫

−1

√
1− s2Um−1(s)f̃(s)ds,

Q(s, v) = − κ̃2c
4d1β̃(s)(

√
d1s+ d2 +

√
d1s+ d2 − γ1)

[c4(d1v + d2)(
√
d1s+ d2 +

√
d1s+ d2 − γ1)2 − (1 + β)2]2

−

− κ̃3c
4d1δ̃(s)(

√
d1s+ d2 +

√
d1s+ d2 − γ2)

[c4(d1v + d2)(
√
d1s+ d2 +

√
d1s+ d2 − γ2)2 − (1 + δ)2]2

.

We now pass to the investigation of regularity of the infinite system
(5.23). Towards this end, in the integral expression for the kernel Qmk we
put s = cosQ:

Qmk =
1

kκ̃1

π∫

0

sinmQ sin kQ sinQdQ
◦
D(
√
d1 cosQ+ d2)

√
d1 cosQ+ d2

=

=
1

4κ̃1k
(Nm+k−1 +Nm−k+1 −Nm−k−1 −Nm+k+1), (5.24)
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where Np =
∫ π

0
sin pQdQ

◦

D(
√

d1 cos Q+d2)
√

d1 cos Q+d2

, p is any integer (N0 = 0).

Integrating by parts, we easily get |Np| < A
|p| , A = const. Compose now

the sums sm =
∑∞

k=1 |Qmk|. On the basis of (5.24) we find that

sm ≤ A

κ̃1

[ ∞∑

k=1

1

k(m+ k − 1)
+

∞∑

k=1

1

k(m+ k + 1)
+

m−2∑

k=1

1

k(m− k − 1)
+

+
∞∑

k=m

1

k(k −m+ 1)
+

m∑

k=1

1

k(m− k + 1)
+

∞∑

k=m+2

1

k(k −m− 1)

]
. (5.25)

Since

∞∑

k=1

1

k(k +m)
=

1

m

[
c+ lnm+

1

2m
− l(m)

]
,

m−1∑

k=1

1

k(m− k)
=

2

m

[
c+ ln(m− 1) +

1

2(m− 1)
− l(m− 1)

]
,

∞∑

k=m+1

1

k(k −m)
=

1

m

[
c+ lnm+

1

2m
− l(m)

]
,

l(m) =
1

m

∞∑

q=2

Aq

(m+ 1) . . . (m+ q − 1)
, m = 1, 2, . . . , (5.26)

and all the sums appearing in (5.25) are of the type (5.26), we have sm =

O
(

1
m1−ε

)
as m → ∞ (c is the well-known Euler constant, the coefficients

Aq = 1
q

∫ 1

0 x(1 − x)(2 − x) . . . (q − 1 − x)dx, q = 2, 3, . . . ). Hence we can

assert that
∑∞

m,k=1 |Qmk|2 <∞.

Let Q′
mk = 1

kT
′
mk, where

T ′mk =
1

κ̃1

1∫

−1

√
1− s2Um−1(s)

( 1∫

−1

Q(s, v)
√

1− v2Uk−1(v)dv

)
ds.

As is easily seen, {T ′mk}∞k,m=1 are the Fourier coefficients of quadratically
summable in the square −1 ≤ s, v ≤ 1 function over a whole orthog-
onal system of functions {Um−1(s)Uk−1(v)}∞m,k=1, and hence the series∑∞

m,k=1 |T ′mk|2 <∞-converges.

On the other hand, s′m =
∑∞

k=1 |Q′
mk| ≤

[ ∑∞
k=1

1
k2

] 1
2
[ ∑∞

k=1 |T ′mk|2
] 1

2

=
π√
6

√
Tm, where Tm =

∑∞
k=1 |T ′mk|2 and the series

∑∞
m=1 Tm converges. This

at least yields

s′m = O
( 1

m
1+ε
2

)
, m→∞.
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The free term of the system (5.23) tends to zero with the same rate. This
fact allows one to state that the infinite system (5.23) is quasi-completely
regular.

When the inclusion rigidity varies by the law D0(ζ)=
√

(1−ζ2)(ζ2−ρ2),
the coefficient Qmk of the system (5.23) is expressed by

Qmk =
1

κ̃1k

π∫

0

sinmQ sin kQdQ√
d1 cosQ+ d2

=

=
1

2κ̃1k

π∫

0

cos(m− k)QdQ√
d1 cosQ+ d2

− 1

2κ̃1k

π∫

0

cos(m+ k)QdQ√
d1 cosQ+ d2

.

Thus we conclude that for m = k, Qmk = O(k−1) (k → ∞), for m 6= k
it tends to zero with the rate, not less than k−1, m−1, (k → ∞,m → ∞)
and hence the series

∑∞
m,k |Qmk|2 converges and the system remains quasi-

completely regular.
The above-obtained results make it possible to draw the following con-

clusions:
1. Problems of a contact between finite or infinite, isotropic or anisotropic

plates and an elastic inclusion are reduced to the integral differential equa-
tions with Prandtl type characteristic part.

2. The solution of the characteristic equation for the coefficient of singular

operator D0(x) = d(a2 − x2)n+ 1
2 (d = const, n ≥ 0 is a natural number) is

obtained effectively and the estimate λ(x) = O
(
(a2 − x2)n+ 1

2

)
as x → ±a

holds (for the right-hand side f(x) = O
(
(a2 − x2)n+ 1

2

)
(x→ ±a).

3. The above-obtained integral differential equations of the types (1.22),
(2.9) and (5.21) are equivalent under certain boundary conditions to the
Fredholm integral equation of second kind on the one hand, and to the
infinite quasi-regular system of linear algebraic equations on the other hand.

4. On the basis of the uniqueness of contact problems the obtained
integral equations have solutions in the corresponding spaces.

5. Under conditions of variable rigidity of the inclusion, or more pre-
cisely, if the rigidity function vanishes at the ends of the contact line, the
question reduces to the integral equations whose characteristic part is the
Prandtl equation with the “degenerated” (vanishing at the ends of the in-
terval) coefficient. For higher degree of degeneration the equation goes out
of the framework of the cases already studied. For such a coefficient, from
a sufficiently wide class of functions we have managed to investigate the
obtained equations, to get exact or approximate solutions and to estimate
behaviour of unknown contact stresses at the ends of the contact line.
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