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BOUNDARY VALUE PROBLEMS

IN DOMAINS WITH PEAKS



Abstra
t. We obtain 
riteria of solvability of the Diri
hlet and the

Neumann boundary value problems (BVPs) for the Lapla
ian in 2D do-

mains with angular points and peaks on the boundary. We start with the


orre
t formulation of BVPs and modify it for domains with outward peaks

(
lassi
al 
onditions are in
orre
t). Boundary integral equations (BIEs),

obtained by the indire
t potential method, turn out to be equivalent to the


orresponding BVPs only when inward peaks are absent. BIEs on bound-

ary 
urve with angular points are investigated in di�erent weighted fun
tion

spa
es. If boundary 
urve has a 
usp, 
orresponding to an inward or an

outward peak, equations are non-Fredholm in usual spa
es and we should

impose restri
tions on the right-hand sides. The 
onditions are de�ned

with the Cesaro-type integrals. We 
onsider also equivalent redu
tion to

boundary pseudo-di�erential equations (BPsDEs) of orders�1 by the dire
t

potential method. Cru
ial role in our investigations of BVPs and of 
orre-

sponding BIEs, PsDOs belongs to the equivalent redu
tion of BVPs to the

Riemann{Hilbert problem for analyti
 fun
tions on the unit disk. The

latter problem 
an be investigated thoroughly, even when peaks are present

and equations have non-
losed image by invoking results on 
onvolution

equations with vanishing symbols.
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Introdu
tion

Let 


+

� C be a bounded domain in the 
omplex plane with a pie
ewise-

smooth boundary � = �


+

and 


�

= C n


+

be the 
omplementary outer

domain. Let t

j

2 �, j = 1; : : : ; n, be all knots on the boundary � = �


+

with the angles �


j

, 0 � 


j

� 2, j = 1; : : : ; n. Boundary 
urve might


ontain 
usps 


j

= 0; 2 
orresponding to an outward (for 


j

= 0) and an

inward (for 


j

= 2) peaks of the domain 


+

. By ~�(t) = (�

1

(t); �

2

(t)) we

denote the outer unit normal ve
tor to � (with respe
t to 


+

).

As a model we 
onsider the Diri
hlet u

�

(t) = g(t) (and the Neumann

�

~�(t)

u

�

(t) = f(t), t 2 �) BVPs for harmoni
 fun
tions

�u(x) = 0 ; x 2 


�

(0.1)

and look for the solution, as 
ommon, in the Sobolev spa
e

u 2W

1

2

(


+

) or u 2W

1

2;lo


(


�

) ; u(x) = O(1) ; as jxj ! 1 : (0.2)

Applying the potential method, based on the Green formula and its


onsequen
e-representation of solution by layer potentials, invoking the

Plemelji formulae (see x 1) we get boundary integral equations (BIEs)

of logarithmi
 potential

�

1

2

'(t) +

1

2�

Z

�

�

~�(�)

log jt� � j'(�)jd� j = g(t) ; (0.3)

�

1

2

 (t) +

1

2�

Z

�

�

~�(t)

log jt� � j (�)jd� j = f(t) ; t 2 �; (0.4)

whi
h are 
onjugate to ea
h-other (the indire
t method; see [Ma1℄). It

is rather a 
lassi
al result, that (0.3) and (0.4) are Fredholm equations

provided � is smooth and the redu
tion of BVPs to the 
orresponding BIEs

(0.3) and (0.4) is equivalent.

When � has angular points, equations (0.3) and (0.4) have �xed singu-

larities in the kernels (i.e., they areMellin 
onvolution equations) and are

Fredholm ex
ept some dis
rete values of parameters of spa
es they are

treated in (see Theorems 1.23, 1.24 and 
f. [Du1, Du3, Ma1℄). It is impor-

tant that in both mentioned 
ases equivalen
e of BVPs with 
orresponding

BIEs still hold.

Pie
ewise-smooth domains without peaks are parti
ular 
ases of Lips-


hitz domains and BVPs for se
ond order equations in su
h domains were

thoroughly investigated re
ently (mostly in the Hilbert spa
es L

2

and W

1

2

)

even for domains in R

n

, n > 2. For details of these profound investigations

as well as for exhaustive survey of vast literature in this �eld we re
ommend

re
ent publi
ations [Ke1, MMP1, MMT1, MT1℄.

Situation 
hanges 
ompletely if domain 


�

has peaks. There arise three

prin
ipal problems.
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� If a single outward peak o

urs 
onstraints (0.2) be
ome in
orre
t.

Namely, if we look for solution of BVP in the Sobolev spa
eW

1

p

(


+

)

for arbitrary �xed value of p 2 (1;1), there exists a 
ompa
t domain




2
+3

� C

+

with outward peak at 0 2 �


2
+3

in the �rst quadrant

R

+

+iR

+

� C of the 
omplex plane su
h that the analyti
 fun
tion z




,

z 2 
, with arbitrary 0 < 
 <1 belongs to the spa
eW

1

p

(


2
+3

) (de-

tails see below in Example 1.2). Therefore a 
lassi
al solution to BVP

u 2 W

1

2

(


+

) might have non-integrable singularity on the boundary

and it is ne
essary to 
hange 
onstraints on harmoni
 fun
tions in

the domain. Moreover, due to 
ompli
ated relations between tra
es

of fun
tions on di�erent fa
es of outward peaks (see, e.g., [Ia1℄) it is

almost impossible to investigate 
orresponding BIEs.

� If a single inward peak o

urs, equivalen
e of BVPs (0.1), (0.2) with

the 
orresponding BIEs (0.3), (0.4) fail 
ompletely. Su
h redu
tion is


onne
ted with a representation of harmoni
 fun
tion of the Smirnov


lass by the Cau
hy integral with real valued density. This turned

out to be possible if and only if the Riemann{Hilbert BVPs for

analyti
 fun
tions is surje
tive in the same Smirnov spa
e but for the


omplementary domain (see Lemmata 1.1 and 1.13). If the domain

has an inward peak, the 
omplementary domain has an outward peak

and the Riemann{Hilbert BVP is not normally solvable (see Lemma

1.11).

� If a single peak (outward or inward) o

urs solvability property of BIEs

(0.3) and (0.4) 
hange dramati
ally: symbols of these 
onvolution-type

equations vanish and equations 
an not be Fredholm in any L

p

(�)

or any other spa
e with weight or without (see [MS1℄{[MS8℄ and x 1.6

below). For the spa
e of 
ontinuous fun
tions this was noti
ed already

by J.Radon [Ra1℄.

We start with investigations of 
orre
t formulation of the BVPs. Namely,

we look for solutions in the weighted Smirnov{Lebesgue spa
e e

p

(


�

; �)

(see x 1.2) of harmoni
 fun
tions written as the real part of analyti
 fun
tions

represented by the Cau
hy integrals with densities in the Lebesgue spa
es

with weight L

p

(�; �) (plus 
onstanta for the unbounded domain 


�

). The


hoi
e of 
onstraints is justi�ed in the following sense: looking for solutions

in more narrow Smirnov{Sobolev spa
e u 2 w

1

2

2

(


�

) is the same as the


ommon (
lassi
al) 
onstraint u 2 W

1

2

(


�

) provided the domain 


�

has

no outward peaks (see Lemma 1.2). Moreover, to raise 
exibility of the

method we suggest to look for solutions in some other Smirnov spa
es:

weighted Smirnov{Sobolev w

s

p

(


�

; �), 0 � s � 1, Smirnov{H

�

older

h

0

m+�

(


�

; �) et
. (see x 1.2).

If the boundary 
urve has 
usps (i.e., the domain has peaks) equations

(0.3) and (0.4) have non-
losed images. Same is true for the Diri
hlet

and the Neumann BVPs for (0.1) when inward peaks are present. Maz'ya
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and V.Solov'ev in [MS1℄{[MS4℄ suggested to study BIEs (0.3), (0.4) di-

re
tly. Namely, they have found 
onditions on the right-hand sides whi
h

ensure existen
e of solutions and have established properties (smoothness,

asymptoti
) of su
h solutions. The method is based on the 
orresponding

results for boundary value problems in domains with peaks, obtained with

the help of 
onformal mappings (see [Wa1, Wa2℄ for properties of su
h 
on-

formal mappings). In more re
ent investigations [MS5℄{[MS8℄ for 
urves

with 
usps of order � 2 R

+

they have found pairs of Bana
h spa
es where

BIEs (0.3), (0.4) are surje
tive.

Di�erent approa
h (transformation of the underlying domain whi
h

maintains the stru
ture of BVPs) was exploited in [RST1, RST2℄. The

authors obtained solvability results for BVPs in domains with spe
ial 
usps

when the right-hand sides and solutions are in spe
ial weighted spa
es.

Essential role in our investigations play an equivalent redu
tion of the

Diri
hlet and the Neumann BVPs for (0.1) to the Riemann{Hilbert

BVPs for analyti
 fun
tions on the unit 
ir
umferen
e, using the 
onformal

mapping. Namely, we apply the approa
h exposed in [Mu1, Ch. III℄ and


ontributed by I.Vekua in [Ve1℄. Obtained BVPs are redu
ed further to

equivalent Cau
hy singular integral equations on the unit 
ir
umferen
e.

The same method was applyed by G.Khuskivadze and V.Paatashvi

li. Namely, they look for solutions of BVPs in the Smirnov{Lebesgue spa
e

e

p

(


�

), 1 < p <1. Although the motivation for the 
hoi
e of 
onstraints,

ensuring equivalent redu
tion to the Riemann{Hilbert problem, was 
lear

justi�
ation for the 
hange of 
onditions in [KKP1℄ is missing.

For the investigation of the Cau
hy singular integral equations on the

unit 
ir
umferen
e, whi
h arise as an equivalent equation, we apply lo
aliza-

tion to 2� 2 systems of 
onvolution equations on the real semi-axes. Lo
al

representatives at 
usps have vanishing symbols and, by applying results

on 
onvolution equations with vanishing symbols of integer order (see [Pr1,

x 5.2℄ and x 3.1 below), we des
ribe the image spa
e by Cesaro-type inte-

grals and �nd the 
riteria for the data whi
h ensures unique solvability of

the Diri
hlet and the Neumann BVPs for (0.1).

Further we prove equivalen
e of BVPs and of 
orresponding BIEs (0.3)

and (0.4) if inward peaks are absent (see Theorems 1.12 and 1.14). If the

boundary 
urve has no 
usps, obtained BIEs are parti
ular 
ases of gen-

eral equations studied in x 4 by invoking results from [DLS1℄. They are

Fredholm with rare ex
eptions for the parameters of the spa
e. Although

su
h investigations were 
arried out earlier (see survey in [Ma1℄) some re-

sults of the present paper are new: we prove boundedness of harmoni


(the double and the single) layer potentials and obtain 
riteria for Fred-

holm property of equations (0.3) and (0.4) in the spa
es of 
ontinuous and

pie
ewise-
ontinuous fun
tions C(�;{) and PC(�;{) (in some 
ases also

in PC

1

(�;{); see x 1.7) with exponential weight {(t) =

n

Y

j=1

jt � 


j

j

�

j

; 0 �
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�

j

< 1.

If inward peaks are present equivalen
e with BVPs fail (see Lemma 1.13)

and equations (0.3), (0.4) are investigated by lo
alization. The lo
alization

enables repla
ement of inward peaks by outward ones (see x 5.4). Solvability


riteria of equations (0.3) and (0.4) are summarized in Theorems 1.23 and

1.24, whi
h are proved in x 5.4.

Let T

ow

, T

iw

be the dis
rete sets of all outward, all inward peaks and

T

pk

= T

ow

[ T

iw

be the set of all peaks of 


+

. We de�ne the spa
es

L

p

(�; �; T

ow

); L

p

(�; �; T

iw

) � L

p

(�; �; T

pk

) � L

p

(�; �) ;

with the help of theCesaro integrals (see (1.76)), where �(t) =

n

Y

j=1

jt�


j

j

�

j

,

�

1

p

< �

j

< 1 �

1

p

, 1 < p < 1. It is proved that equations (0.3) and

(0.4) are Fredholm between spa
es L

p

(�; �) �! L

p

(�; �; T

pk

) provided

the 
onditions

1

p

+ �

j

6= min

n

1




j

;

1

2�


j

o

holds for all t

j

62 T

pk

. Moreover, if

the inequalities

1

p

+�

j

< min

n

1




j

;

1

2�


j

o

hold, the mappings are isomorphi
.

As for solvability of the Diri
hlet BVP for 


+

(for 


�

) it suÆ
es to

restri
t the data g 2 L

p

(�; �; T

ow

) (respe
tively, g 2 L

p

(�; �; T

iw

)) and the

solution is unique provided

1

p

+ �

j

< min

n

1




j

;

1

2�


j

o

for all t

j

62 T

pk

(note,

that inward peaks of 


�

have no impa
t on the 
orresponding Diri
hlet

BVP). Similar holds for the Neumann BVPs.

In Lemma 1.22 we formulate suÆ
ient 
onditions for the in
lusion ' 2

L

p

(�; �; T

iw

), whi
h involves the 
onformal mapping �(z) : 


+

�! D

1

of the domain 


+

onto the unit disk D

1

= f� 2 C : j�j = 1g. It is

possible to write more transparent and expli
it 
ondition, but for these we

need asymptoti
 behaviour of the 
onformal mapping �(z) in the vi
inity of

an outward peak. This we leave for a forth
oming paper.

In our investigations we apply the Cisotti formula, whi
h represents

the derivative of the 
onformal mapping ! : D

1

! 


+

(see [LS1, Ch. III,

x 1, n

o

. 44, Example 5℄):

!

0

(z) = !

0

(0) exp

2

6

4

1

�

Z

j� j=1

�(�)d�

� � z

�

1

�

Z

j� j=1

�(�)

d�

�

3

7

5

; z 2 D

1

: (0.5)

Here �(�) := arg~�(!(�))�arg� and arg~�(!(�)) stands for the argument of

the outer unit normal ve
tor to the 
urve � = �


+

at the point � = e

i#

2

�

1

:= �D

1

. The formula was redis
overed in [PK1℄ for a pie
ewise-smooth

boundary (see also [KKP1℄). We return to the 
lassi
al approa
h in [LS1℄)

whi
h is, above all, very simple and prove the Cisotti formula (0.5) in x 5.1

for a domain with re
ti�able Jordan boundary.
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Although the 
onformal mapping is parti
ipating impli
itly, representa-

tion (0.5) simpli�es proofs of some 
lassi
al theorems on 
onformal map-

pings

1)

(see [KKP1, Ch. III℄ and x 5.1 for the proofs of Lindel

�

of's, Kel-

logg's,Wars
hawsky's theorems). Moreover, using the Cisotti formula

we generalize the Kellogg theorem for the Zygmund spa
e (see Theorem

5.9).

In [Po1, Theorem 3.15℄ the Cisotti formula is redis
overed for a so-
alled

regulated domain, i.e., for a domain for whi
h the in
lination �(t), t 2 �

of the tangent ve
tor to the boundary has limits �(t� 0) everywere on the

boundary t 2 �.

G.Khuskivadze and V.Paatashvili had applied formula (0.5) to �nd

dis
ontinuities of the 
oeÆ
ient, but the obtained Riemann{Hilbert prob-

lems they have found \non-solvable in L

p

(�) spa
es in general" when out-

ward 
usps are present (see [KKP1, Ch. IY℄) and have written suÆ
ient


ondition of solvability as well as expli
it formula for solutions provided the

solvability 
onditions hold.

Applying the representation of solution by layer potentials and the di-

re
t method we obtain boundary pseudo-di�erential equation

1

2�

Z

�

log jt� � j'(�)jd� j = g

�

(t) ; t 2 � ; (0.6)

g

�

(t) := �

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log jt� � jg(�)jd� j ;

of order �1 for the Diri
hlet problem for the Lapla
ian (0.1) and the

boundary pseudo-di�erential equation

1

2�

Z

�

�

~�(t)

�

~�(�)

log jt� � j'(�)jd� j = f

�

(t) ; t 2 � ; (0.7)

f

�

(t) :=

1

2

f(t) +

1

2�

Z

�

�

~�(t)

log jt� � jf(�)jd� j ;

of order +1 for the Neumann problem. We 
an formulate 
riteria of solv-

ability of equations (0.6) and (0.7) based on full equivalen
e with 
orre-

sponding BVPs (see Theorems 1.19, 1.20).

All prin
ipal theorems on solvability of boundary value problems and

boundary integral equations are formulated in x 1.7. Some of them are

proved later, mostly in x 5.

A
knowledgments: the authors thank I.Graham (University of Bath)

and S.Chandler{Wilde (Brunel University, London) for many en
ourag-

ing dis
ussions on the subje
t during the �rst authors visit to these univer-

sities.

1)

See [Ga1℄ for a survey on appli
ation of linear and non-linear integral equations in


onformal mappings.
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1 Boundary value problems

In the present se
tion we formulate the Diri
hlet and the Neumann

boundary value problems for the Lapla
ian in domains with angular points

and peaks; dis
uss their equivalent redu
tion to boundary integral equations

(the dire
t potential method), to boundary pseudo-di�erential equations

(the indire
t potential method) and to singular integral equations on the

unit 
ir
umferen
e (Muskhelishvili{Vekua method); we expose prop-

erties of harmoni
 potentials appearing in the method and formulate all

prin
ipal results.

1.1 Spa
es

We start by rigorous de�nitions of domains and spa
es whi
h are ne
essary

for our 
onsiderations.

Let � be a 
losed, oriented, simple (i.e., without self-interse
tion), pie
e-

wise-Ljapunov 
urve on the 
omplex plane C , 
ir
umventing a domain 


+

and having knots at t

1

; : : : ; t

n

2 �, i.e.,

� =

n

[

j=1

�

j

; �

j

=

!

t

j

t

j+1

; t

n+1

:= t

1

; j = 1; : : : ; n ; (1.1)

�

t

1

t

j

0

t

n

q

q

q

q

q

q

q

t

k




+




k

= 2




n




j

= 0




n

t

2


�




2




1

z

=

A

A

AU

�

�

�

�*

-

t

~�(t)

t

0

(s)

Re z

#

t

Fig. 1
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here �

j

are ��smooth, � > 1, oriented 
urves 
onne
ting knots t

j

and

t

j+1

. Let �


j

be the angle at t

j

between �

j�1

and �

j

, measured from




+

; 0 � 


j

� 2; j = 1; : : : ; n: When 


j

= 0 or 


j

= 2 the domain 


+

has an outward or an inward peak, respe
tively or, what is the same, the

boundary 
urve � has a 
usp (see Fig. 1).

We use the following standard notation for spa
es.

Write C

m

(�) for the spa
e of fun
tions '(t); t 2 � with 
ontinuous

derivatives up to the order m

�

k

t

' 2 C(�) ; k = 0; 1; : : : ;m ; �

t

:=

d

dt

; m 2 N

0

:= f0; 1; : : :g:

Let us note that invariant (with respe
t to a parametrisation of the

underlying 
urve �) de�nition of the spa
e C

m

(�) 
an be provided i� � is

m-smooth. Therefore for pie
ewise-smooth 
urves (with angular points or


usps) we 
an de�ne only C(�) := C

0

(�).

Write H

�

(�) for the spa
e of H

�

older 
ontinuous fun
tions  (t); t 2 �

with the following �nite norm

k 

�

�

H

�

(�)k := k 

�

�

C(�)k+ sup

t

1

6=t

2

j (t

2

)�  (t

1

)j

jt

2

� t

1

j

�

; 1 < � � 1 :

Write PC(�) for the spa
e of fun
tions '(t) whi
h are 
ontinuous on

ea
h 
losed ar
 between knots t

1

; : : : ; t

n

and might have jumps at these

knots.

Write PC

m

(�) for the spa
e of fun
tions ' 2 C

m�1

(�) whi
h have

pie
ewise-
ontinuous last derivative �

m

t

' 2 PC(�) with possible jumps at

knots t

1

; : : : ; t

n

.

Both, the spa
es C

m

(�) and PC

m

(�) are endowed with the uniform

norm

k'

�

�

PC

m

(�)k :=

m

X

k=1

sup

�

j�

k

'(t)j : t 2 �

	

;

whi
h makes them into Bana
h spa
es.

Let

�(t) =

n

Y

j=1

jt� t

j

j

�

j

(1.2)

be a weight fun
tion and C

m

(�; �) � PC

m

(�; �) denote the weighted spa
es

of fun
tions:

C

m

(�; �) :=

�

' 2 C

m�1

(�) : ��

m

' 2 C(�)

	

;

PC

m

(�; �) :=

�

' 2 C

m�1

(�) : ��

m

' 2 PC(�)

	

:

These spa
es both 
an be endowed with the weighted norm k'

�

�

PC

m

(�; �)k=

k'

�

�

C

m�1

(�))k+ k��

m

'

�

�

PC(�))k.
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We write C(�), PC(�; �) et
. when m = 0.

Write H

0

m+�

(�; �), 0 < � < 1, m = 0; 1; : : :, for the weighted fun
tion

spa
e

H

0

m+�

(�; �) :=

�

' 2 C

m�1

(�) : e'

(m)

:= ��

m

' 2 H

�

(�);

e'

(m)

(t

1

) = : : : = e'

(m)

(t

n

) = 0

	

;

k'

�

�

H

0

m+�

(�; �)k := k'

�

�

C

m�1

(�)k+ k��

m

'

�

�

H

�

(�)k ;

provided � n ft

1

; : : : ; t

n

g is C

m+�

-smooth, while � itself is PC

m�1

-smooth.

Note, that for pie
ewise-smooth 
urve � de�nition is 
orre
t only for m =

0; 1.

Write L

p

(�; �) for the weighted Lebesgue spa
e endowed with the norm

k'

�

�

L

p

(�; �)k :=

0

�

Z

�

j�(t)'(t)j

p

jdtj

1

A

1

p

:

Write W

m

p

(�; �) for the Sobolev spa
e

W

m

p

(�; �) :=

�

' : '; �

k

' 2 L

p

(�; �); k = 0; : : : ;m

	

;

k'

�

�

W

m

p

(�; �)k :=

m

P

k=0

k�

k

'

�

�

L

p

(�; �)k :

Write W

s

p

(�; �), s 2 R, for the weighted Sobolev{Slobodetski spa
e

whi
h for s � 0 
an be de�ned by the 
omplex interpolation (see [Tr1℄)

between the spa
es W

m

p

(�; �) and W

0

p

(�; �) := L

p

(�; �) (s � m 2 N, while

for negative s < 0 
an be de�ned as the dual spa
e to W

�s

p

0

(�; �

�1

), p

0

:=

p=(p� 1).

Sin
e multipli
ation by a pie
ewise-
ontinuous fun
tion is a bounded

operator in W

s

p;lo


(R) only for s < 1=p, the spa
e W

s

p

(�; �) on pie
ewise-

smooth 
urve � 
an be de�ned 
orre
tly only for jsj < 1 + 1=p.

Write E

p

(


+

; �) for the Smirnov{Lebesgue spa
e of analyti
 fun
tions:

if ! : D

1

! 


+

denotes the 
onformal mapping of the unit disk D

1

:=

f� 2 C : j�j < 1g onto the domain 


+

, the norm of  2 E

p

(


+

; �) is de�ned

as follows

k 

�

�

E

p

(


+

; �)k := sup

0<r<1

0

�

Z

�

(r)

j�(�) (�)j

p

d�

1

A

1

p

;

where �

(r)

:= fz = !(�) : j�j = rg are the images of the 
on
entri
 
ir
um-

feren
es of the radius r.

Similarly is de�ned the Smirnov{Lebesgue spa
e E

p

(


�

; �) for the

outer domain 


�

.



11

An equivalent de�nition of the Smirnov{Lebesgue spa
es E

p

(


�

; �) is

the following: u 2 E

p

(


�

; �) i� u(z) is represented by the Cau
hy integral

as follows

�(z) = 


0

+ C

�

'(z) ; 


0

= 
onst ; ' 2 L

p

(�; �) ;

C

�

'(z) :=

1

2�i

Z

�

'(�)d�

� � z

; z 2 


�

(1.3)

(
f. [Pv1℄ and [Go1, Ch.X, x 5℄). In parti
ular, for the 
ompa
t domain




+

� C representation (1.3) 
an be written also as follows �(z) = C

�

'

0

(z),

'

0

(t) = 


0

+ '(t), t 2 �, while for 


�

we have 


0

= �(1).

Taking the advantage of the last de�nition we will introdu
e the following

new spa
es, suited for our purposes.

WriteW

s

p

(


�

; �) for the weighted Smirnov{Sobolev spa
e of fun
tions

�(z) represented as in (1.3) with a density ' 2 W

s

p

(�; �). Note, that the

restri
tion for pie
ewise-smooth 
ontour � is jsj < 1 +

1

p

.

WriteW

1

p

(


�

; �) for the spa
e of fun
tions �(z) whi
h belong to E

p

(


�

; �)

together with their derivatives �; �� 2 E

p

(


�

; �). This is easy to 
he
k with

a partial integration.

Due to Theorem 1.8 proved below, we get W

s

2

(


�

) � W

s+

1

2

2;lo


(


�

). If

outward peaks are absent 0 < 


j

� 1, the following inverse is also true:

tra
es of fun
tions from W

s+

1

2

2;lo


(


�

) belong to W

s

2

(�). In 
ase of outward

peaks the last assertion fails as shown in Example 1.3 (see also [Ia1℄). Note

that formulated theorem on tra
es remain valid even in the presen
e of

inward peaks (with interior angle 2�).

Write H

0

m+�

(


�

; �), C

m

(


�

; �) and PC

m

(


�

; �) for the weighted Smir-

nov{H

�

older et
. spa
es of fun
tions �(z) represented as in (1.3) with a

density ' in appropriate spa
es H

0

m+�

(�; �), in C

m

(�; �) (with the restri
-

tion m � 1 for a pie
ewise-smooth 
ontour �) or in PC

m

(�; �), respe
tively

(with the restri
tion m � 2 for a pie
ewise-smooth 
ontour �).

Write e

p

(


�

; �) = w

0

p

(


�

; �), w

s

p

(


�

; �), h

0

m+�

(


�

; �), 


m

(


�

; �) and

p


m

(


�

; �) is used for the spa
es of harmoni
 fun
tions represented as real

u(z) = Re �(z) (or the imaginary u(z) = Im �(z) parts of fun
tions �(z)

from E

p

(


�

; �) = W

0

p

(


�

; �), W

s

p

(


�

; �), H

0

m+�

(


�

; �), C

m

(


�

; �) and,

respe
tively, from PC

m

(


�

; �). We use e

p

(


�

et
 for the spa
e e

p

(


�

; 1)

et
.

It is important to have representations of fun
tions (1.3) with a pure real

or a pure imaginary density '(t). Next lemma provides the 
ondition for

su
h representation. Similar 
onsiderations 
an be found in [Mu1, xx 62{66℄.

Lemma 1.1 Let X(�) be one of the following spa
es: W

s

p

(�; �), H

0

m+�

(�; �),

C

m

(�; �) or PC

m

(�; �) and X (


�

){the 
orresponding Smirnov spa
e

W

s

p

(�; �), H

0

m+�

(�; �) et
.
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The fun
tion � 2 X (


�

) 
an be represented by the Cau
hy integral

as in (1.3) with a pure real ' = Re ' 2 X(�) or a pure imaginary ' =

i Im ' 2 X(�) density if and only if the Riemann{Hilbert problem for

the 
omplementary domain 


�

= C n


�

Re	

�

(t) = g(t); t 2 � ; g 2 X(�) ; 	(z)! 0 as jzj ! 1

is surje
tive, i.e., has solution for all right-hand sides in X (


�

).

For the domain 


+

the same 
onditions provide the representation �(z)=

C

�

'

0

(z), z 2 


+

with a real valued density '

0

= Re'

0

.

We postpone the proof of the formulated Lemma until Subse
tion 2.3.

Let us 
on
lude this subse
tion by the following agreements whi
h we

will hold on in the sequel.

I. X

s

(�; �) (or more simple X(�)) is used to denote the spa
es W

s

p

(�; �),

H

0

s

(�; �) C

s

(�; �) or PC

s

(�; �), where the weight fun
tion �(t) is de-

�ned in (1.2) and X

s

(


�

; �), x

s

(


�

; �){for the 
orresponding Smir-

nov spa
es of analyti
 and harmoni
 fun
tions.

For the parameters there hold the following 
onstraints:

jsj � 1 ; �

1

p

< �

j

< 1�

1

p

; 1 < p <1 for W

s

p

(�; �) ;

�

m+ s ; m=0; 1 ; 0<s<1 ;

s < �

j

< s+ 1 ; � n ft

1

; : : : ; t

n

g2C

m+s

for H

0

s

(�; �) ; (1.4)

s=m 2 N

0

; 0 < �

j

< 1 for PC

m

(�; �)

and for C

m

(�; �)

for j = 0; : : : ; n. Conditions (1.4) are ne
essary and suÆ
ient for

boundedness of the Cau
hy singular integral operator

S

�

'(t) =

1

�i

Z

�

'(�)d�

� � t

; t 2 � (1.5)

(the integral in (1.5) is understood in the Cau
hy mean value sense)

in the spa
es W

m

p

(�; �) ([GK1, Go2, Kh1, Kh2℄ and H

0

m+�

(�; �) (see

[Du1, Du6, Du7, GK1℄) and of operators with �xed singularities in the

kernel (see x 3.2) in all four spa
es W

m

p

(�; �), H

0

m+�

(�; �), C

m

(�; �)

and in PC

m

(�; �) (see [Du1℄ and x 3.2 below; S

�

is not bounded in

C

m

(�; �) and in PC

m

(�; �)).

II. For a spa
e with weight W

m

p

(�; �), H

0

m+�

(�; �) or PC

m

(�; �), if not

otherwise stated, the weight fun
tion is de�ned in (1.1) and the expo-

nents satisfy the appropriate 
onditions (1.4).
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1.2 Boundary value problems

For a real valued harmoni
 fun
tion

�u(x) = 0 ; x 2 


�

; (1.6)

we 
onsider the Diri
hlet

u

�

(t) = g(t) ; g 2 X

s

(�; �) ; 0 � s � 1 ; t 2 � ; (1.7)

and the Neumann

(�

~�(t)

u)

�

(t) = f(t) ; f 2 X

s�1

(�; �) ; 0 � s � 1 ; t 2 �; (1.8)

boundary value problems, with some real valued data

2)

Im g(t)� Im f(t)�

0, where �

~�(t)

:= �

1

(t)�

t

1

+ �

2

(t)�

t

2

, t = (t

1

; t

2

) 2 � denotes the normal

derivative. We hold on the agreement about spa
es and weights made in


on
lusion of x 1.1.

We look for solutions of problem (1.6), (1.7) (of (1.6), (1.8)) in the

Smirnov 
lass

u 2 x

s

(


�

; �) ; 0 � s � 1 : (1.9)

Let us note that by de�nition of the Smirnov 
lass a fun
tion u 2

x

s

(


�

; �) automati
ally possesses a �nite limit at the in�nity: u(x) = O(1)

for x 2 


�

as jxj ! 1 (see (1.3)).

Next Lemma and example are a 
ertain justi�
ation of the 
hoi
e of


onstraints (1.9) instead of (0.2) whi
h is 
ommon for domains with a Lip-

s
hitz boundary (see [Ke1, Ma1, MT1℄).

Lemma 1.2 If (0.2) holds, 


�

has no outward peak and u(z) is a harmoni


fun
tion (i.e., u(z) solves (1.6)). Then

u 2 w

1

2

2

(


�

) : (1.10)

Vi
e versa, u 2 w

1

2

2

(


�

) � e

2

(


�

) implies (0.2) and u(z) is a harmoni


fun
tion, also for domains 


�

with outward peaks.

We postpone the proof of the formulated Lemma until Subse
tion 2.3.

Next example shows that under 
onstraints (0.2) solution u(x) of BVPs

(1.6), (1.7) and (1.6), (1.8) might have non-integrable tra
e u

+

(t) on the

boundary � = �


+

as soon as 


�

has a single outward peak.

Example 1.3 Let 0 < � <1, 
 > 0 and




+

�

:=

�

x

1

+ ix

2

: 0 � x

1

� 1 ; 0 � x

2

� x

�+1

1

	

: (1.11)

2)

If we admit 
omplex-valued data Im g 6� 0 in (1.6) and Im f 6� 0 in (1.8) but then

we have to look for a 
omplex-valued solution u = u

r

+ iu

i

, u

r

; u

i

2 x

s

(


�

; �) in (1.9).
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Then, 
hoosing the bran
h of the analyti
 fun
tion '




(z) := z

�


appropri-

ately, for the harmoni
 fun
tion '




(z) := Re z

�


we get �'




= 0 in 





and '




2W

1

p

(


+

�

) provided � � (
 + 1)p > �2.

In parti
ular, '




2W

1

2

(


+

2
+3

).

In fa
t,

k'




�

�

W

1

p

(


+

�

)k

p

=

1

Z

0

dx

1

x

�+1

1

Z

0

h

(x

2

1

+ x

2

2

)

�




2

p

+ 
(x

2

1

+ x

2

2

)

�


+1

2

p

i

dx

2

� C

1

1

Z

0

dx

1

x

�+1

1

Z

0

(x

1

+ x

2

)

�(
+1)p

dx

2

= C

2

1

Z

0

x

�(
+1)p+1

1

dx

1

�

x

�

1

Z

0

(1 + t)

�(
+1)p

dt � C

3

1

Z

0

x

��(
+1)p+1

1

dx

1

= C

4

<1 :

1.3 Representation of solutions and layer potentials

Applying the Gauss formula on divergen
e (on \partial integration")

Z




�

�

j

u(y)v(y)dy =

Z




�

u(y)�

j

v(y)dy �

I

�

�

j

(�)u(�)v(�)d� ; (1.12)

we readily obtain two well-known Green formulae

Z




�

�u(y)v(y)dy =

2

X

j=1

Z




�

�

j

u(y)�

j

v(y)dy �

I

�

�

~�(�)

u(�)v(�)d� ; (1.13)

Z




�

h

�u(y)v(y)� u(y)�v(y)

i

dy =

I

�

h

�

~�(�)

u(�)v(�)

�u(�)�

~�(�)

v(�)

i

d� ; u; v 2 C

1


om

(


�

) : (1.14)

Invoking the fundamental solution of equation (1.6)

F

�

(z) :=

1

2�

log jzj ; �F

�

(z) = Æ(z) ; z 2 R

2

;

where Æ is Kroneker's delta fun
tion, we 
an easily derive from (1.14) the

following representation formula for a harmoni
 fun
tion u(x) whi
h meets


ondition (1.9)

�

+

(x)u(x) =W

�

u

+

(x)� V

�

(�

~�

u)

+

(x) ;

�

�

(x)u(x) = u

1

�W

�

u

�

(x) + V

�

(�

~�

u)

�

(x) ;

x 2 R

2

n � = 


�

[ 


+

(1.15)
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(see [Ma1, Ch.1, x 1.2℄), where u

1

=
onst, �

�

is the 
hara
teristi
 fun
tion

of the domain 


�

and

W

�

'(x) =

1

2�

Z

�

'(�)�

~�(�)

log j� � xjds ; ds = jd� j ;

V

�

'(x) =

1

2�

Z

�

'(�) log j� � xjds ; x 2 


�

;

(1.16)

are the double and the single layer potentials (known as the harmoni
 or

the logarithmi
 potentials as well).

Let us note, that 
onstants are in
luded into the 
lass of harmoni
 fun
-

tions in unbounded domains 


�

(see (1.3) and the se
ond formulae in (1.15))

only in 2-dimensional 
ase (see, e.g., [Ma1, p.216℄, [Vl1, p.333℄).

For the dire
t values of harmoni
 potentials (1.16) on � we use the

notation W

�;0

and V

�;�1

where the additional subs
ript indi
es indi
ate

the order of these operators, treated as pseudo-di�erential operators on the

manifold � (see Theorem 1.5 below). A

ording this rule we have also

S

�

:= C

�;0

(see (1.3) and (1.5)).

Lemma 1.4 The following holds:

W

�;0

'(t)=

1

4

(S

�

+ VS

�

V)'(t) =

1

4�i

Z

�

'(�)d log

� � t

� � t

=

1

4�i

Z

�

'(�)

�

d�

� � t

�

d�

� � t

�

; (1.17)

W

�

�;0

'(t)=

1

4

�

hS

�

h+ VhS

�

hV

�

'(t)

=

1

4�i

Z

�

'(�)

"

h(t)

h(�)

d�

� � t

�

h(t)

h(�)

d�

� � t

#

; (1.18)

�

t

V

�;�1

'(t)=

i

4

(S

�

� VS

�

V)'(t)

=

1

4�

Z

�

'(�)

�

d�

� � t

+

d�

� � t

�

; t 2 � ; (1.19)

where

V'(t) := '(t) ; h(t) := ie

i#

t

(1.20)

and #

t

denotes the in
lination to the abs
issa axes of the outer unit normal

ve
tor ~�(t) (t 2 � n ft

1

; : : : ; t

n

g; see Fig. 1).

Proof (see [Mu1, x x 12,14℄). Let us 
onsider the natural parametrisation

of the 
urve � by the ar
 length parameter

�(s) : [0; `℄ �! � ; �(0) = �(`) :
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Easy to as
ertain that if the derivative �

0

(s) exists, 
oin
ides with the unit

tangent ve
tor to �. We have

~�(�) = (
os#

�

; sin#

�

) ;

d� =

�


os

�

�

2

+ #

�

�

+ i sin

�

�

2

+ #

�

��

jd� j = h(�)ds (1.21)

(see Fig. 1 and (1.20)). Therefore

1

2�

�

~�(�)

[log j� � tj℄ds =

1

2�j� � tj

�

dj� � tj

dRe �


os#

�

+

dj� � tj

d Im �

sin#

�

�

ds

=

Re (� � t) 
os#

�

+ Im (� � t) sin#

�

2�j� � tj

2

ds =

�(� � t)d� + (� � t)d�

4�i

=

1

4�i

�

d�

� � t

�

d�

� � t

�

=

1

4�i

d

�

log

� � t

� � t

;

whi
h gives (1.17).

Formula (1.18) follows from (1.17) sin
e the adjoint operator S

�

�

to S

�

in (1.5) with respe
t to the sesquilinear form

h';  i :=

Z

�

'(�) (�)jd� j

reads

S

�

�

= VhS

�

h

�1

V = h

�1

VS

�

VhI : (1.22)

In fa
t, sin
e d� = h(�)jd� j and h(�) = h

�1

(�) (see (1.20), (1.21)), we get

hS

�

';  i :=

Z

�

S

�

'(�) (�)jd� j =

Z

�

S

�

'(�)h(�) (�)d�

= �

Z

�

'(t)S

�

h(�) (�)dt =

Z

�

'(t)V(S

�

Vh )(t)h(t)jdtj

=

Z

�

'(t)Vh(t)(S

�

h

�1

V )(t)jdtj:

To prove formula (1.19) we pro
eed as follows:

�

t

V

�;�1

'(t) =

1

2�

Z

�

'(�)�

�

log j� � tjds

=

1

2�

Z

�

'(�)

�Re (� � t) sin#

�

+ Im (� � t) 
os#

�

j� � tj

2

ds

=

1

2�

Z

�

'(�)

Re (� � t) Re d� + Im (� � t) Im d�

j� � tj

2

=

1

4�

Z

�

'(�)

�

d�

� � t

+

d�

� � t

�

:
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Next two theorems deal with boundedness properties of layer potentials.

They are based on Lemma 1.4 and justify 
onstraints (1.4) on the weight

fun
tion �(t).

Theorem 1.5 W

�;0

is bounded in the spa
es W

s

p

(�; �) for 0 � s � 1 and

in H

0

m+�

(�; �) for m = 0; 1.

The operator W

�

�;0

is bounded in the spa
es W

s

p

(�; �) for �1 � s � 0

and in H

0

�

(�; �).

V

�;�1

is bounded from L

p

(�; �) to W

1

p

(�; �) and from H

0

�

(�; �) to

H

0

1+�

(�; �).

Theorem 1.6 The operator W

�;0

is bounded in C(�; �) and in PC

m

(�; �)

for m = 0; 1.

The operator W

�

�;0

is bounded in PC(�; �).

We postpone the proofs of the formulated theorems until Subse
tion 2.3.

Here we will prove the following 
orollary.

Corollary 1.7 Let �(t) be de�ned by (1.2) and (1.4). If � is smooth (
on-

tains no 
usps and no angular points 


1

= � � � = 


n

= 1) operators W

�;0

and W

�

�;0

have weak singular kernels and are 
ompa
t in the spa
es L

p

(�; �)

and PC(�; �).

Operator W

�;0

is 
ompa
t also in spa
es W

s

p

(�; �) for �1 � s � 1, in

C(�; �) and in PC

1

(�; �).

Proof. It suÆ
es to prove 
ompa
tness of W

�;0

, sin
e W

�

�;0

is the adjoint

operator and would have weak singular kernel if W

�;0

has.

If � = R or � � R then K

1

=W

�;0

= 0 as it is 
lear from representations

(1.17) and (1.18).

If � = �

1

:= f� 2 C : j�j = 1g is the unit 
ir
umferen
e then #

t

�

#; h(t) = e

i#

and � = e

i#

; t = e

i�

(0 � #; � � 2�) inserted into (1.17) gives

K

1

=W

�

1

;0

'(�) =

1

4�

2�

Z

0

'(#)d# ; (1.23)

therefore W

�

1

;0

is one dimensional and 
ompa
t.

If � is arbitrary smooth 
urve and ! : � ! �

0

is a 
orresponding

di�eomorphism where either �

0

� R or �

0

= �

1

, then

W

�;0

= K

!

�K

�

!

+ !

�1

�

K

1

!

�

;

K

!

:= !

�1

�

S

�

!

�

� S

�

; !

�

'(t) = '(!(t)) ; t 2 � ;

with !

�1

: � ! �

0

standing for the inverse di�eomorphism and K

�

!

{for

the adjoint to K

!

. the integral operator K

!

has a weak singular kernel

(see [DLS1, x 3.5℄ or [Kh1, GK1℄). As for K

1

, either K

1

= 0 or it is a one

dimensional operator (see (1.23)).
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To a

omplish boundedness properties of potential operators and their

dire
t values on the 
urve we formulate the next result. For a general

assertion (layer potentials for partial di�erential operators with variable


oeÆ
ient and arbitrary order in R

n

, provided they have a fundamental

solution) we quote [Du10, Theorem 3.2℄ (for Lips
hitz domains see also

[MMP1, MMT1, MT1℄).

Theorem 1.8 Let s 2 R and the boundary � = �


�

be m-smooth, where

m 2 N

0

, m � jsj.

The potential operators

3)

C

�

: W

s

2

(�) �!W

s+

1

2

2;
om

(


�

) ;

W

�

: W

s

2

(�) �!W

s+

1

2

2;
om

(


�

) ;

V

�

: W

s

2

(�) �!W

s+

3

2

2;
om

(


�

)

(1.24)

(see (1.3) and (1.16)) are bounded

4)

.

In parti
ular, if � is pie
ewise-smooth we should restri
t �1 � s � 1.

Proof. For a smooth � = �


�

see [Du10, Theorem 3.2℄.

Let � have knots t

1

; : : : ; t

n

(see (Fig. 1) and 
onsider C

�

'(z). The

operator C

�

is of the lo
al type, i.e., if

v

1

2 C

1

0

(


+

) ; v

2

2 L

1

(�) ; supp v

1

\ supp v

2

= ; ;

then v

1

C

�

v

2

' 2 C

1

0

(C ). Therefore it suÆ
es to establish 
ontinuity (1.24)

for vC

�

uI , where v 2 C

1

0

(


+

), u 2 C(�) are 
ut-o� fun
tions, equal 1 in

some small neighbourhood of a knot t

j

and vanishing outside another one;

in parti
ular, v(t

k

) = u(t

k

) = 0 for j 6= k.

We 
an suppose that

' = '

1

+ '

2

; '

k

:= u

k

' 2 W

s

2

(�) ; u

k

:= �

k

u ; k = 1; 2 ;

where �

1

(t) and �

2

(t) are 
hara
teristi
 fun
tions of the left and right neigh-

bourhoods of t

j

2 � and [�

1

(t) + �

1

(t)℄u(t) = u(t). Sin
e �

k

(t), k = 1; 2

have dis
ontinuities at t

j

, for the 
laimed in
lusions '

k

2 W

s

2

(�) we need

'(t

j

) = 0 if s �

1

2

. The latter 
an be provided sin
e (C

�

1)(z) � 1 for

z 2 


+

and

C

�

'(z) = C

�

'

0

(z) + '(t

j

) :

Thus,

v(z)C

�

u'(z)=u(z)C

�

'

1

(z)+u(z)C

�

'

2

(z)=u(z)C

�

1

'

1

(z)+u(z)C

�

2

'

2

(z);

3)

For a 
ompa
t domain we de�ne W

�

2;
om

(


�

) = W

�

2

(


�

).

4)

We have formulated only a parti
ular result{the 
ase p = 2. The general result for

1 < p < 1 in [Du10℄ states boundedness between the Bessel potential and the Besov

spa
es.
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where �

1

and �

2

are smooth and 
losed 
ontours whi
h have in 
ommon

either only the point ft

j

g when 


j

< 1, or two points (one of them ft

j

g)

when 1 < 


j

< 2, or some ar
 �

0

=

�

t

j

z

o

when 


j

= 2. We 
an assume

'

k

2W

s

2

(�

k

) extending fun
tions to �

k

n (�\�

k

) by 0 (k = 1; 2). As noted

above, due to smoothness of �

k

we get vC

�

k

'

k

2 W

s+

1

2

2

(


+

k

), where 


+

k

is

the inner domain for �

k

, k = 1; 2. On the other hand,

supp v \


+

= 


1

[ 


2

; 


k

:= ( supp v \


+

) \ 


+

k

; k = 1; 2 :

Then vC

�

'

k

= vC

�

k

'

k

2 W

s+

1

2

2

(


1

[ �

2

) sin
e on the 
ommon boundary




1

\ 


2

= �

1

\ �

2

� 


+

[ ft

j

g, ex
ept t

j

, fun
tions are C

1

smooth.

Therefore, vC

�

u' = vC

�

'

1

+ vC

�

'

2

2 W

s+

1

2

2

(


+

).

The in
lusion vC

�

u' 2 W

s+

1

2

2;
om

(


�

) and other results in (1.24) are

proved similarly.

To pro
eed further we need the Plemelji formulae (the jump relations)

for layer potentials, whi
h we formulate next.

Let � 2 C(


�

). By �

�

(t); t 2 � = �


�

is denoted, as usual, non-

tangential boundary values �

�

(t) = lim

z2


�

; z!t

�(z).

Lemma 1.9 Let 1 < p < 1, �1 � s � 1 and ' 2 W

s

p

(�; �), where �(t) is

de�ned in (1.2), (1.4). Then

(W

�

')

�

(t) = �

1

2

'(t) +W

�;0

'(t) ; (�

~�

V

�

')

�

(t) = �

1

2

'(t) +W

�

�;0

'(t) ;

(�

~�

W

�

')

+

(t) = (�

~�

W

�

')

�

(t) ; (C

�

')

�

(t) = �

1

2

'(t) +

1

2

S

�

'(t) ; (1.25)

for almost all t 2 � (for all t 2 � n ft

1

; : : : ; t

n

g provided s >

1

2

or ' 2

H

0

�

(�; �)).

Proof. The proof 
an be found e.g. in [Mu1, x x 15,16℄) (see the survey

[Ma1℄). See also [MT1, Appendix C℄ for the 
ase of Lips
hitz domains and

[Du10, x 6.4℄ for mu
h more general operators.

If � is a 
ompa
t 
urve and ' 2 L

1

(�) then

W

�

'(x) = O

�

1

jxj

�

as jxj ! 1 : (1.26)

As for the single layer potential,

V

�

'(x) = O(1) as jxj ! 1 i�

Z

�

'(�)jd� j = 0 (1.27)

and then

V

�

'(x) = o(1) as jxj ! 1 : (1.28)
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In fa
t,

V

�

'(x) =

Z

�

'(�) log

r

jxj

jd� j+ log jxj

Z

�

'(�)jd� j

= o(1) + log jxj

Z

�

'(�)jd� j as jxj ! 1 :

and (1.27), (1.28) follow.

If

Z

�

(�

~�(�)

u)

�

(�)jd� j = 0; (1.29)

then in (1.15) we have

u

1

= u(1) =W

�

u

�

(0)� V

�

(�

~�

u)

�

(0) : (1.30)

In fa
t, the �rst equality u

1

= u(1) follows from (1.15), and (1.26){

(1.28) sin
e (1.29) holds.

Passing to the limit x ! t 2 �, x 2 


�

, in the representation formula

(1.15) and applying the appropriate Plemelji formulae (1.25) we �nd:

u

�

(t) = u

1

+

1

2

u

�

(t)�W

�

u

�

(t) + V

�

(�

~�

u)

�

(t) ; t 2 � :

The obtained formula 
an be rewritten as follows

u

1

=

1

2

u

�

(t) +W

�

u

�

(t)� V

�

(�

~�

u)

�

(t) ; t 2 � :

Therefore, the tra
e of the harmoni
 fun
tion

w(x) =W

�

u

�

(x) � V

�

(�

~�

u)

�

(x) ; x 2 


+

;

on the boundary � = �


+

w

+

(t) =

1

2

u

�

(t) +W

�

u

�

(t)� V

�

(�

~�

u)

�

(t) = u

1

; t 2 � :

(see the appropriate Plemelji formulae (1.25)) is 
onstant. This implies

w(x) �=
onst for the entire domain x 2 


+

and, therefore, u

1

= w(0) =

W

�

u

�

(0)� V

�

(�

~�

u)

�

(0).

The integral W

�

1(x) is known as the Gaussian integral and 
an be

written expli
itly:

W

�

1(x) =

1

2�

Z

�

�

~�(�)

log j� � xjjd� j =

8

<

:

1 if x 2 


+

;

0 if x 2 


�

;

1

2

if x 2 �

(1.31)

(see [Ma1, Chapter I, x 1.1℄).
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Remark 1.10 The homogeneous equation

�

1

2

r+W

�

�;0

r = 0 ; (1.32)

has a unique linearly independent solution r

0

6� 0 in L

2

(�) su
h that

V

�

r

0

(x) � 1 ;

Z

�

r

0

(�)jd� j � 1 ;

V

�

r

0

(x) = O (log jxj) for x 2 


�

as jxj ! 1 :

(1.33)

The solution r

0

2 W

1

1

(�) is known as the Robin fun
tion (or the density

of the Robin potential; see [Ma1, x 2.2℄).

The homogeneous equation

�

1

2

 (t) +W

�;0

 (t) = 0

has, due to (1.31), the solution  (t) � 1, whi
h is a unique linearly inde-

pendent solution of this equation in L

2

(�) (see [Ma1, x 2.2℄).

Lemma 1.11 The Riemann{Hilbert problem

Re 	

�

(t) = g(t) ; t 2 �; (1.34)

has a solution 	 2 E

p

(


�

; �) for all right-hand sides g 2 L

p

(�; �) (i.e., is

surje
tive under asserted 
onditions) if and only if:

i:

1

p

+ �

j

6=

8

>

<

>

:

1




j

for 


+

;

1

2� 


j

for 


�

;

(1.35)

ii: the domain has no inward peaks:

(

0 � 


j

< 2 for 


+

;

0 < 


j

� 2 for 


�

(1.36)

for all j = 1; : : : ; n.

Moreover, (1.34) is Fredholm if and only if (1.36) holds and then the

index of the 
orresponding operator reads

Ind A =

X

(

1

p

+�

j

)




j

>1

1 for 


+

;

Ind A =

X

(

1

p

+�

j

)

(1�


j

)>1

1 for 


�

:

Proof. The proof will be given in x 5.2.
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1.4 Redu
tion to boundary integral equations (the in-

dire
t method)

Theorem 1.12 Let 
onditions (1.35) and (1.36) hold for the 
omplemen-

tary domain 


�

. A harmoni
 fun
tion u 2 e

p

(


�

; �) solves the Diri
hlet

problem (1.6), (1.7) if and only if

u(x) = �

�

(x)g

0

+W

�

'

�

(x) ; x 2 


�

; (1.37)

where

g

0

:=

Z

�

g(�)r

0

(�)jd� j ; (1.38)

r

0

(�) is the Robin fun
tion (see Remark 1.10) and '

�

= Re '

�

2 L

p

(�; �)

is some real valued solution of the 
orresponding boundary integral equation

(written separately for the domains 


+

and 


�

, respe
tively)

A

+

'

+

(t) :=

1

2

'

+

(t) +W

�;0

'

+

(t) = g(t) ; t 2 � ; (1.39)

A

�

'

�

(t) := �

1

2

'

�

(t) +W

�;0

'

�

(t) = g(t)� g

0

; t 2 � : (1.40)

Proof. Easy to as
ertain that formulae (1.17) and (1.19) hold for the


orresponding potential operators as well

W

�

'(z) =

1

2

(C

�

+ VC

�

V)'(z) = Re [C

�

Re'(z)℄ + iRe [C

�

Im'(z)℄ ;

�

z

V

�

'(z) =

i

2

(C

�

� VC

�

V)'(z) = � Im (C

�

Re')(z) + i Im (C

�

Im')(z)

= Re (C

�

iRe')(z)� iRe (C

�

i Im')(z); ; z 2 


�

(1.41)

(see (1.3)).

Conditions (1.35), (1.36) provide representation of a solution u 2

e

p

(


�

; �), by the real part of the Cau
hy integral with a real valued density

u(x) = �

�

(x)g

0

+ Re [C

�

'

�

(x)℄ ; ' 2 L

p

(


�

; �) ; x 2 


�

(see Lemmata 1.1, 1.13 and 1.11) and, due to (1.41) the latter 
an be rewrit-

ten in the form (1.37).

Passing to the limit x ! t 2 �, x 2 


�

in the representation formula

(1.37), applying the appropriate Plemelji formulae (1.25) and inserting

u

�

(t) = g(t) we get equations (1.39) for the density '

+

and (1.40) for the

density '

�

, respe
tively.

The 
onstant u(1) in (1.37) is 
hosen in the form (1.38) to justify the

orthogonality 
ondition

Z

�

[g(�)� g

0

℄r

0

(�)jd� j =

Z

�

g(�)r

0

(�)jd� j � g

0

= 0 (1.42)
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(see (1.33)) whi
h is ne
essary and suÆ
ient for the existen
e of the solution

of equation (1.40) provided the equation is Fredholm (see x 1.6, Theorem

1.23).

Vi
e versa, let '

+

; '

�

+ 


0

2 L

p

(�; �), 


0

=
onst, be solutions of (1.39),

(1.40), respe
tively (we remind, that homogeneous equation (1.40) has 
on-

stants as solutions; see Remark 1.10); let u(1) = g

0

=
onst be de�ned by

(1.38). u(x) in (1.37) solves equation (1.6); passing to the limit x! t 2 �,

x 2 


�

and invoking the appropriate Plemelji formulae (1.25) due to

equalities (1.39), (1.40) we get

u

+

(t) =

1

2

'

+

(t) +W

�;0

'

+

= g(t) ; t 2 � ;

u

�

(t) = �

�

(t)g

0

� [(W

�

'

�

+ 


0

)(x)℄

�

= �

�

(t)g

0

� [(W

�

'

�

)(x)℄

�

= �

�

(t)g

0

�

1

2

'

�

(t) +W

�;0

'

�

= g(t) ; t 2 �

sin
e (W

�




0

)(x) � 0 for x 2 


�

(see Remark 1.10) and the boundary


ondition (1.7) holds.

Let us note that representation (1.37) (and, later, a similar one (1.43))


an not be used if inward peak is present. Namely, there holds the following.

Lemma 1.13 The fun
tion u 2 e

p

(


�

; �) (u 2 w

s

p

(


�

)) 
an be represented

by the double layer potential (1.37) with a density ' 2 L

p

(�; �) (in W

s

p

(�))

if and only if the Riemann{Hilbert problem for the 
omplementary domain




�

(1.34) is surje
tive (see Lemma 1.11).

Proof. The proof follows from Lemma 1.11. In fa
t, let �(z) = u(z) +

iv(z), � 2 E

p

(


�

; �) (� 2 W

s

p

(


�

; �)) be the analyti
 fun
tion in the same

domain 


�

. Sin
e, due to (1.41), W

�

=

1

2

(C

�

+ VC

�

V), representation

(1.37) follows if the representation of the analyti
 fun
tion �(z) by the

Cau
hy integral (1.3) with a pure real ' = Re ' density in L

p

(�; �) (in

W

s

p

(�)) holds.

Vi
e versa, let ' = Re' and u = W

�

' = ReC

�

'; sin
e � = u + iv is

de�ned by u(z) uniquelly modulo a pure imaginary aditive 
onstant i


0

, we

�nd �(z) = i


0

+ C

�

'(z) (
f. (1.3)) with the same density ' = Re'.

Theorem 1.14 Let 
onditions (1.35) and (1.36) hold for the 
omplemen-

tary domain 


�

. A harmoni
 fun
tion u 2 e

p

(


�

; �) solves the Neumann

problem (1.6), (1.8) if and only if

u(x) = 


0

+ V

�

 

�

(x) ; x 2 


�

;

Z

�

 

�

(�)jd� j = 0 ;

(1.43)
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where  

�

2 w

�1

p

(�; �) are solutions of equations (written separately for the

domains 


+

and 


�

, respe
tively)

B

+

 

+

(t) := �

1

2

 

+

(t) +W

�

�;0

 

+

(t) = f(t) ; t 2 � ; (1.44)

B

�

 

�

(t) :=

1

2

 

�

(t) +W

�

�;0

 

�

(t) = f(t) ; t 2 � ; (1.45)

and 


0

is arbitrary 
onstant.

Proof. Sin
e solution belongs to the Smirnov spa
e u 2 e

p

(


�

; �) and


onditions of Lemmata 1.1, 1.11 hold, we have the following representation

u(x) = 


0

+ Im

�

C

�

 

0

�

(x)

�

; Im  

0

�

= 0 ;  

0

�

2 L

p

(�; �) ; x 2 


�

(see (1.3)). Due to (1.41) the latter 
an be rewritten in the form (1.43)

u = Im C

�

 

0

�

= i�

z

V

�

 

0

�

= V

�

[�

�

 

1

�

℄ = V

�

 

�

;  

�

:= �

t

 

1

�

= i�

t

 

0

�

and  

�

2 w

�1

p

(�; �) sin
e  

0

�

2 e

p

(�; �).

Applying the normal derivative �

~�(x)

to the representation (1.43), pass-

ing to the limit x ! t 2 �, x 2 


�

with the help of appropriate Plemelji

formulae (1.25) and inserting u

�

= g we get equations (1.44) for the density

 

+

(t) and (1.45) for the density  

�

, respe
tively.

The se
ond 
ondition in (1.43) provides u(x) = 


0

+ o(1) for x 2 


�

as

jxj ! 1 (see (1.26), (1.28)).

Vi
e versa, let  

�

2 w

�1

p

(�; �) be solutions of (1.44), (1.45). Then u(x)

in (1.43) solves equation (1.6) and has the asymptoti
 u(x) = 


0

+ o(1)

as jxj ! 1. Applying the normal derivative �

~�(x)

, passing to the limit

x! t 2 �, x 2 


�

and invoking the appropriate Plemelji formulae (1.25)

due to equalities (1.44), (1.45) we get

(�

~�

u)

�

(t) = �

1

2

 

�

(t) +W

�

�;0

 

�

= f(t) ; t 2 �;

and the boundary 
ondition (1.8) holds as well.

Lemma 1.15 The homogeneous Diri
hlet BVP (1.6), (1.7) with g = 0

and u 2 w

1

2

2

(


�

) has a unique solution.

The homogeneous Neumann BVP (1.6), (1.8) with f = 0 and u 2

w

1

2

2

(


�

) has only a 
onstant solution u(x) � 
onst .

Proof. The proof is based on the Green formula (1.13) and is standard.

In fa
t, if u 2 w

1

2

2

(


�

) then on the boundary u

�

2W

1

2

2

(�). Due to Theorem

1.8 this yields u 2 W

1

2

(


�

) and �

x

j

u 2 L

2

(


�

), �u 2 W

�1

2

(


�

), j = 1; 2.
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Now if �u(x) = 0 in 


�

and u

�

(t) = 0 on � (see (1.6), (1.7)) by assuming

v(x) = u(x) in (1.13) we get

2

X

j=1

j�

j

u(x)j

2

� 0 for x 2 


�

:

Therefore u(x) =
onst on entire domain and sin
e u(t) = 0 on the boundary,

u(x) = 0 everywhere.

For the Neumann BVP (1.6), (1.8) the proof is similar.

1.5 Redu
tion to Cau
hy singular integral equations

on the 
ir
umferen
e

In the present subse
tion we redu
e theDiri
hlet (1.6), (1.7) and theNeu-

mann (1.6), (1.7) BVPs to Riemann{Hilbert BVPs for analyti
 fun
tions

on the unit 
ir
umferen
e �

1

or, what is equivalent, to Cau
hy singular

integral equations (SIEs) on �

1

. Theorems on the Fredholm and the solv-

ability properties for the obtained SIEs will be formulated in x 1.6.

The method goes ba
k to N.Muskhelishvili (see [Mu1, Ch. III℄) and

I.Vekua [Ve1℄; they investigated BVPs in H

�

older spa
es when domain

has smooth boundary (see [Mu1, x x 41,43,75℄) and for domains with �nite

number of 
uts (see [Mu1, x 109℄). In [Kh1℄ B.Khvedelidze treated similar

problems in the Lebesgue spa
es and in [KKP1, Ch. IV℄ the method was

applied to the same BVPs on domains with angular points and 
usps in the

Smirnov{Lebesgue spa
e e

p

(


�

) without weight. For the weighted spa
e

see [Me1℄.

Let 


�

, t

1

: : : ; t

j

2 � = �


�

be as in x 1.1 and

! : D

1

�! 


�

; !(�

j

) = t

j

; j = 1; : : : ; n; (1.46)

be a 
onformal mapping of the unit disk

D

1

= D

+

1

:= fz 2 C : jzj < 1g

onto the domain 


�

(!(0) = 0; !

0

(0) = 1 for the domain 


+

and !(0) =

1; !

0

(0) = 1 for the domain 


�

; see x 5 for further details). By �(x) we

denote the inverse mapping

� : 


�

�! D

1

; �(!(z)) � z ; !(�(x)) � x : (1.47)

Then

!

0

(�(z)) = [�

0

(z)℄

�1

;

�(0) = 0; �

0

(0) = 1 for 


+

;

�(1) = 0; �

0

(1) = 1 for 


�

:
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Let D

�

1

:= fz 2 C : jzj > 1g be the domain outer to the unit disk

D

1

= D

+

1

and

�

0

(z) :=

n

Y

j=1

(z � t

j

)

�

j

for z 2 


+

� C (1.48)

denote the analyti
 fun
tion in the domain 


+

, whi
h is the extension of

the weight fun
tion; namely, �

0

(x) is analyti
 in the 
omplex plane C 
ut

along some 
urves 
onne
ting knots t

1

; : : : ; t

n

2 �


�

with in�nity and do

not 
rossing the domain 


+

.

Theorem 1.16 A harmoni
 fun
tion u 2 e

p

(


�

; �) solves the Diri
hlet

problem (1.6), (1.7) if and only if

u(x) = Re

2

6

4

[�

0

(x)℄

1

p

2��

0

(x)

8

>

<

>

:

Z

j� j=1

'(�)d�

� � �(x)

�

i

2

�

Z

��

'(e

i#

)d#

9

>

=

>

;

3

7

5

(1.49)

for x 2 


�

,. where �(x) is the 
onformal mapping from (1.47). ' = Re ' 2

L

p

(�

1

) in (1.49) is a real-valued solutions of the following singular integral

equation on the unit 
ir
umferen
e

A'(�) := P

+

�

1

'(�) +G(�)P

�

�

1

'(�) +

G(�) � 1

2

K' = g

0

(�) ; � 2 �

1

;

K' :=

1

2�

�

Z

��

'(e

i#

)d# ; P

�

�

1

:=

1

2

(I � S

�

1

) ; (1.50)

where the 
oeÆ
ient G 2 PC(�

1

) (see x 5:2) and the right-hand side g

0

2

L

p

(�

1

) are de�ned as follows:

G(�) := �

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

;

g

0

(�) := �2i�

0

(!(�))[!

0

(�)℄

1

p

g(!(�)) ; � 2 �

1

:

(1.51)

The solution has the following asymptoti
 at in�nity

u(1) = Re

2

4

(2�)

�1

n

Y

j=1

(�t)

�

j

�

Z

��

'(e

i#

)d#

3

5

: (1.52)

Proof. The Diri
hlet problem (1.6), (1.7) 
an be written as follows

Re [	

�

(t)℄ = g(t) ; t 2 �

1

;

u(x) = Re 	(x) ; 	 2 E

p

(


�

; �

0

) ; x 2 


�

:

(1.53)
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Then for the analyti
 fun
tion

�(z) :=

8

>

>

>

>

<

>

>

>

>

:

�

0

(!(z))[!

0

(z)℄

1

p

	(!(z)) for jzj < 1 ;

�

0

�

!

�

1

z

��

"

!

0

�

1

z

�

#

1

p

	

�

!

�

1

z

��

for jzj > 1

(1.54)

(see [Mu1, x 39℄ and [KKP1, Ch. IV, x 1℄), where �

0

(x) is de�ned in (1.48),

boundary 
ondition (1.53) a
quires the form

Re [	

�

(!(�))℄ =

1

2

"

�

+

(�)

�

0

(!(�))[!

0

(�)℄

1

p

+

�

�

(�)

�

0

(!(�))[!

0

(�)℄

1

p

#

= g(!(�)) ;

whi
h 
an also be written as follows

�

+

(�) �G(�)�

�

(�) = g

0

(�) ; � 2 �

1

; (1.55)

with G(�) and g

0

(�) de�ned in (1.51). Sin
e � 2 E

p

(D

�

1

) \ E

p

(D

+

1

) it is

represented by the Cau
hy integral

�(z) = �

�




+

(z)

2

Ki'+ C

�

1

i'(z) = �

�




+

(z)

2�

�

Z

��

'(e

i#

)d#

+

1

2�

Z

j� j=1

'(�)d�

� � z

(1.56)

for all jzj 6= 1 with a pure imaginary density i', ' 2 L

p

(�

1

). If we apply

the Plemelji formulae for the Cau
hy integral (1.25) we get

�

�

(�) = �

i

2

�

�




+

(z)K'� '(�) + S

�

1

'(�)

�

= �

i�




+

(z)

2

K'� iP

�

�

1

'(�)

for � 2 �

1

and inserting this into (1.55) we get equation (1.50) for the

density ' 2 L

p

(�

1

).

Let us remind that we need only the real-valued solution ' = Re ' of

(1.50). To this end let us 
he
k that if  2 L

p

(�

1

) is a solution, than  is

a solution as well. In fa
t, applying the relations

� =

1

�

; � =

1

�

; d� =

d�

�

2

;

d�

�

= id# for � = e

i#

; j�j = 1; �� < # < �

we �nd that

G(�) = G

�1

(�) ; g

0

(�) = G

�1

(�)g

0

(�) ; g = g ;

P

�

�

1

 (�) =

1

2

 (�) �

1

2�i

Z

j� j=1

 (�)d�

� � �

=

1

2

 (�)�

1

2�i

Z

j� j=1

�

�

 (�)d�

� � �

= P

�

�

1

 (�) �

1

2�i

Z

j� j=1

 (�)

d�

�

= P

�

�

1

 (�) �K : (1.57)
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Now, if  2 L

p

(�

1

) is a solution of equation (1.50), taking the 
omplex


onjugate and invoking (1.57) we get the same equality for  :

G(�)A'(�) := P

+

�

1

 (�) +G(�)P

�

�

1

 (�) +

G(�) � 1

2

K = g

0

(�) ; � 2 �

1

:

Therefore, the real-valued fun
tion  := Re  =

1

2

( +  ) is a solution we

look for.

With a solution 'Re ' of (1.50) at hand we �nd �(z) from (1.56), but

the latter might have the following symmetry property

�

�

(z) := �

�

1

z

�

= �(z) ; z 2 


+

[


�

;

originating from the de�nition (1.54). This property is proved similarly to

(1.57):

�(z) = �

�

1

z

�

=

i

2

K'+

1

2�

Z

j� j=1

'(�)d�

� �

1

z

=

i

2

K'+

1

2�

Z

j� j=1

z

�

'(�)d�

� � z

= �

i

2

K'+

1

2�

Z

j� j=1

'(�)d�

� � z

= �

i

2

K'+ iC

�

1

'(z) = �(z) : (1.58)

Inserting �(z) in (1.54) we �nd �rst 	(x) and afterwards u = Re 	.

The result is written in (1.49).

Vi
e versa, if '(�) is a solutions of (1.58) we easily as
ertain that 	(z)

found in (1.56) and (1.54) solves BVP (1.53) and u(x) (see (1.49)) solves

BVP (1.6), (1.7).

Asymptoti
 (1.52) results from (1.47){(1.49) and from the following

asymptoti
 of the weight fun
tion

�

0

�

!

�

1

z

��

=

n

Y

j=1

(�t)

��

j

+O(jzj

�1

) as jzj ! 1 :

Theorem 1.17 A harmoni
 fun
tion u 2 w

1

p

(


�

; �) solves the Neumann

problem (1.6), (1.8) if and only if

u(x) = 


0

+ Re

8

>

<

>

:

x

Z

x

0

[�

0

(y)℄

1

p

2��

0

(y)

Z

j� j=1

 

�

(�)d�

� � �(y)

dy

9

>

=

>

;

; (1.59)

u(x) = 


0

+ Re

8

>

<

>

:

x

Z

x

0

[�

0

(y)℄

1

p

2��

0

(y)

2

6

4

Z

j� j=1

 

+

(�)d�

� � �(y)

�

i

2

�

Z

��

 

+

(e

i#

)d#

3

7

5

dy

9

>

=

>

;
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for x 2 


�

and x 2 


+

, respe
tively; x

0

2 


�

is some �xed point, 


0

2 R

is a real 
onstant and �(x) is the 
onformal mapping from (1.46).  

�

=

Re  

�

2 L

p

(�

1

) are real-valued solutions of the following singular integral

equations on the unit 
ir
umferen
e

B

�

 

�

(�) :=

8

>

>

<

>

>

:

P

+

�

1

 

�

(�) + F (�)P

�

�

1

 

�

(�) = f

0

(�) ; � 2 �

1

;

K 

�

=

1

2�

�

Z

��

 

�

(e

i#

)d# = 0 ;

(1.60)

B

+

 

+

(�) := P

+

�

1

 

+

(�) + F (�)P

�

�

1

 

+

(�) +

F (�)� 1

2

K 

+

= f

0

(�) :

The 
oeÆ
ient F 2 PC(�

1

) (see x 5:2) and the right-hand side f

0

2 L

p

(�

1

)

are de�ned as follows:

F (�) :=

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

�1

;

f

0

(�) := �2i�

0

(!(�))[!

0

(�)℄

1

p

f(!(�)) ; � 2 �

1

:

(1.61)

Proof. The Neumann problem (1.6), (1.8) 
an be written as follows (see

[Mu1, x x 74,75℄)

Re

�

e

i#

t

(	

0

)

�

(t)

�

= f(t) ; t 2 �

1

;

u(x) = Re 	(x) ; 	 2 W

1

p

(


�

; �

0

) x 2 


�

;

(1.62)

where #(�) = #

t

denotes the in
lination of the outer unit normal ve
tor ~�(t)

to the abs
issa axes at t = !(�) 2 �nft

1

; : : : ; t

n

g (see Fig. 1). In fa
t, sin
e

	 = u+ iv 2 W

1

p

(


�

; �

0

) ; 	

0

:=

�u

�x

� i

�u

�y

2 E

p

(


�

; �

0

) ; (1.63)

�

~�(t)

u(t) = 
os#

t

�u

�x

+ sin#

t

�u

�y

; 
os#

t

+ i sin#

t

= e

i#

t

(see (1.21)), we get

Re

�

e

i#

t

(	

0

)

�

(t)

�

= 
os#

t

�

�u

�x

�

�

+ sin#

t

�

�u

�y

�

�

= (�

~�(t)

u)

�

(t)

and (1.62) follows.

Similarly to (1.54) (see also [Mu1, x 39℄ and [KKP1, Ch. IV, x 2℄) for the

analyti
 fun
tion

�(z) :=

8

>

>

>

>

<

>

>

>

>

:

�

0

(!(z))[!

0

(z)℄

1

p

	

0

(!(z)) for jzj < 1;

�

0

�

!

�

1

z

��

"

!

0

�

1

z

�

#

1

p

	

0

�

!

�

1

z

��

for jzj > 1;

(1.64)
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whi
h belongs to the spa
e E

p

(D

+

1

), we get the following BVP:

�

+

(�) � F (�)�

�

(�) = f

0

(�) ; � 2 �

1

; (1.65)

where f

0

(�) is de�ned in (1.61) and

F (�) := �e

�2#(�)i

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

= e

�2�(�)i

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

with �(�) = #(�) +

�

2

denoting the in
lination of the tangent to � ve
tor

to the abs
issa axes at t = !(�) 2 � n ft

1

; : : : ; t

n

g (see Fig. 1). Let us

re
all that !

0

(z) has an angular (i.e., non-tangential) boundary limits

^

! for

almost all � 2 �

1

and

!

0

(�) = e

�(�)i

j!

0

(�)j (1.66)

(see, e.g., [Go1, p.p. 405{411℄ and [Ks1, Ch. I, II℄). Therefore

e

�2�(�)i

=

 

!

0

(�)

!

0

(�)

!

�1

and by inserting this into the foregoing formula we get F (�) as written in

(1.61). In (1.64), (1.65) � 2 E

p

(D

+

1

) and, therefore, it 
an be represented

by the Cau
hy integral with a pure imaginary density for the problems in

the domains 


+

and 


�

, respe
tively (
f. (1.56))

�(z) := �

i

2

K 

+

+ iC

�

1

 

+

(x) = �

i

4�

�

Z

��

 

+

(e

i#

)d#+

1

2�

Z

j� j=1

 

+

(�)d�

� � z

;

�(z) := iC

�

1

 

�

(x) = �

1

2�

Z

j� j=1

 

�

(�)d�

� � z

;  

�

= Re  

�

2 L

p

(�

1

) (1.67)

for all jzj 6= 1 be
ause for the domain 


�

we should require in addition (see

the 
ondition in (1.60))

K 

�

=

1

2�

�

Z

��

 

�

(e

i#

)d# = 0 :

To justify the latter we remind that 	 2 W

1

p

(


�

; �

0

) and, due to represen-

tation (1.3) the derivative should vanish at the in�nity 	

0

(1) = 0; therefore

(see (1.64), (1.67))

�

Z

��

 

�

(e

i#

)d# = 2��(0) = 2��

0

(!(0))[!

0

(0)℄

1

p

	

0

(!(0)) = 0
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be
ause !(0) =1 (see (1.46){(1.47)).

Let us note that �(z) in (1.67) has the symmetry property �

�

(z) =

�(z)(
f. (1.58)).

Sin
e we need only real-valued solutions  

�

= Re  

�

of (1.60), we


he
k, based on the properties similar to (1.57) that along with  

�

equa-

tions (1.60) have solutions  

�

. Therefore the real-valued solutions  

�

=

Re  

�

=

1

2

( 

�

+  

�

) are those we look for.

Vi
e versa, if  

�

= Re  

�

are real-valued solutions of (1.59), (1.60),

we �nd easily that �(z), de�ned in (1.65) solves BVP (1.67), whi
h implies

that u(x) in (1.59) solves BVP (1.6), (1.8).

Remark 1.18 Similar resulta about equivalent redu
tion of the Diri
h-

let (1.6), (1.7) and the Neumann (1.6), (1.8) BVPs to BIEs (1.50) and

(1.60) 
an be 
arried out in the spa
es of 
ontinuous C(


�

; �) and pie
ewise-


ontinuous PC(


�

; �) fun
tions. Transition to the unit disk is 
lear and

smooth, but is senseless be
ause the Cau
hy SIO is unbounded in these

spa
es, even on the unit 
ir
umferen
e.

Solvability results we possess e.g. for the H

�

older spa
es with weight

h

0

�

(D

1

; �) on the unit disk (see x 4), but transformation of the Riemann{

Hilbert problem for 


+

to the unit disk (similar to (1.53){(1.59)) is not

implemented so far.

1.6 Redu
tion to boundary pseudo-di�erential equa-

tions (the dire
t method)

Theorem 1.19 Let X

s

(�; �) stand for one of the following spa
es: W

s

p

(�; �)

with 0 � s � 1 or for H

0

�+1

(�; �), PC

1

(�; �). x

s

(


�

; �) is used for the


orresponding Smirnov spa
e of harmoni
 fun
tions. �(t) is de�ned in

(1.2) and inequalities (1.4) hold.

A harmoni
 fun
tion u 2 x

s

(


�

; �) solves the Diri
hlet problem (1.6),

(1.7) if and only if

u(x) = �

�

(x)[W

�

g(0)� V

�

'

�

(0)℄�W

�

g(x)� V

�

'

�

(x) ; (1.68)

where ' 2 X

s�1

(�; �) is a solution of the following pseudo-di�erential equa-

tion of order �1 (written separately for the domains 


+

and 


�

, respe
ti-

vely)

V

�;�1

'

+

(t) :=

1

2�

Z

�

log jt� � j'

+

(�)jd� j = g

+

(t) ; t 2 �; (1.69)

8

>

>

>

>

<

>

>

>

>

:

V

�;�1

'

�

(t) :=

1

2�

Z

�

log

�

�

�

�

t� �

�

�

�

�

�

'

�

(�)jd� j = g

�

(t) ; t 2 � ;

Z

�

'

�

(�)jd� j = 0

(1.70)
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and

g

+

(t) := �

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log jt� � jg(�)jd� j ; t 2 � ;

g

�

(t) :=

1

2

g(t)�

1

2�

Z

�

�

~�(�)

log

�

�

�

�

t� �

�

�

�

�

�

g(�)jd� j ; t 2 � :

Proof. Solution u(x) of the the Diri
hlet problem (1.6), (1.7) has the

form (1.68) (see (1.15) and (1.30)). Taking the tra
e on � from 


�

, invoking

the Plemelji formulae (1.25), inserting u

�

(t) = g(t) from (1.7) and 
hoos-

ing the fun
tion '

�

(t) := (�

~�(t)

u)

�

(t) for an unknown, we get equations

(1.69) and the �rst equation in (1.70), be
ause

W

�

'(x)�W

�

'(0) =

1

2�

Z

�

�

~�(�)

log

�

�

�

�

x� �

�

�

�

�

�

'(�)jd� j ;

V

�

'(x) � V

�

'(0) =

1

2�

Z

�

log

�

�

�

�

x� �

�

�

�

�

�

'(�)jd� j ; x 2 


�

:

The se
ond equation in system (1.70) is ne
essary for boundedness of solu-

tion (1.68) at in�nity (see (1.27), (1.28)).

Vi
e versa, if u(x) is written in the form (1.68), it is obviously harmoni


and u 2 x

s

(


�

; �). In fa
t, '

�

= Re '

�

2 X

s�1

(�; �) and, due to (1.41),

u(x) = �

�

(x)u(1)�W

�

g(x)�V

�

'

�

(x)=�

�

(x)u(1)+ ReC

�

[�g�i'

�

℄(x):

Further, u(x) has �nite limit u(1) = W

�

g(0)� V

�

'

�

(0) at in�nity and it

remains to 
he
k the boundary 
ondition (1.7). To this end it suÆ
es to take

the tra
e in (1.68), applying the Plemelji formulae (1.25), and remember

that equations (1.69) and (1.70) hold. We easily get:

u

�

(x) = �

�

(x)[W

�

g(0)� V

�

'

�

(x)℄ +

1

2

g(t)

�W

�;0

g(t)� V

�

'

�

(t) = g(t):

Theorem 1.20 Let X

s

(�; �) stand for one of the following spa
es: W

s

p

(�; �)

with 0 � s � 1 or for H

0

�+1

(�; �), PC

1

(�; �). x

s

(


�

; �) is used for the


orresponding Smirnov spa
e of harmoni
 fun
tions. �(t) is de�ned in

(1.2) and inequalities (1.4) hold.

A harmoni
 fun
tion u 2 x

s

(


�

; �) solves the Neumann problem (1.6),

(1.8) if and only if

u(x) = C

0

�W

�

 

�

(x) � V

�

f(x) ; (1.71)
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where C

0

is arbitrary 
onstant,  2 X

s

(�; �) is a solution of the following

pseudo-di�erential equation of order +1

D

�;+1

 

�

(t) :=

1

2�

Z

�

�

~�(t)

�

~�(�)

log jt� � j 

�

(�)jd� j = f

�

(t); t 2 �; (1.72)

and

f

�

(t) := �

1

2

f(t) +

1

2�

Z

�

�

~�(t)

log jt� � jf(�)jd� j ; t 2 � :

For the outer domain problem 


�

the data f(t) should meet the addi-

tional 
onstraint

Z

�

f(�)jd� j = 0 : (1.73)

Proof. Solution u(x) of the the Neumann problem (1.6), (1.8) has the form

(1.71) (see (1.15)) and to be bounded in the outer domain 
ondition (1.73)

should hold (see (1.27), (1.28)). Taking the tra
e on � from 


�

, invoking

the Plemelji formulae (1.25), inserting (�

~�(t)

u)

�

(t) = f(t) from (1.8) and

anoun
eing  

�

(t) := u

�

(t) as an unknown fun
tion, we get equations (1.72).

Vi
e versa, if u(x) is written in the form (1.71), it is obviously harmoni


and u 2 x

s

(


�

; �). In fa
t,  

�

= Re  

�

2 X

s

(�; �) and, due to (1.41),

u(x) = C

0

�W

�

 

�

(x) � V

�

f(x) = C

0

+ ReC

�

[� 

�

(x)� if ℄(x) :

Further, u(x) has �nite limit u(1) = C

0

at in�nity (see (1.73) and re
all

(1.27), (1.28)). It remains to 
he
k the boundary 
ondition (1.8). To this

end it suÆ
es to take the tra
e in (1.71), applying the Plemelji formulae

(1.25), and remember that equations (1.72) hold. We easily get:

(�

~�(t)

u)

�

(x) = �D

�;+1

 

�

(t) +

1

2

g(t)� V

�

f(t) = f(t) :

1.7 Statement of the prin
ipal results

In the present subse
tion we formulate prin
ipal results on BIEs (1.39),

(1.40), (1.44), (1.45), (1.50), (1.60) (see Theorems 1.26 and 1.29), whi
h we

prove later in x 5.3{x5.4. We also formulate (and prove) their immediate


onsequen
es-solvability results for 
orresponding BVPs (see Theorems 1.28

and 1.30). Theorems are formulated separately for the 
ase of absen
e of


usps be
ause in su
h a 
ase equations 
an be studied dire
tly and not only

the weighted Lebesgue spa
e L

p

(�; �), but in the weighted spa
es of 
on-

tinuous, pie
ewise-
ontinuous and H

�

older fun
tions. Moreover, equations

are Fredholm in usual spa
es, in 
ontrast to the 
ase of 
usps, when we
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have to introdu
e spe
ial image spa
es to make operators Fredholm. The

approa
hes to the 
ases are substantially di�erent (
f. x 5.3 and x 5.4).

Before formulating theorems on solvability of boundary integral equa-

tions and boundary value problems let us re
all [DNS1, Lemma 19℄ whi
h

will be quoted later and whi
h is useful in establishing additional smooth-

ness properties of solutions to BVPs (e.g., H

�

older 
ontinuity with weight).

A pair of Bana
h spa
es fX

0

;X

1

g embedded in some topologi
al spa
e

E is 
alled an interpolation pair. For su
h a pair we 
an introdu
e the

following two spa
es X

min

= X

0

\ X

1

and X

max

= X

0

+X

1

:=

�

x 2 E : x =

x

0

+x

1

; x

j

2 X

j

; j = 0; 1

	

; X

min

and X

max

be
ome Bana
h spa
es if they

are endowed with the norms

kxjX

min

k = max

�

kxjX

0

k; kxjX

1

k

	

;

kxjX

max

k = inf

�

kx

0

jX

0

k+ kx

1

jX

1

k : x = x

0

+ x

1

; x

j

2 X

j

; j = 0; 1

	

;

respe
tively.

Besides, we have the 
ontinuous embedding

X

min

� X

0

; X

1

� X

max

:

For any interpolation pairs fX

0

;X

1

g and fY

0

;Y

1

g the spa
e

L(fX

0

X

1

g; fY

0

Y

1

g) 
onsists of all linear operators from X

max

into Y

max

whose restri
tions to X

j

belong to L(X

j

;Y

j

) (j = 0; 1). The notation

L(X;Y) is used for the spa
e of all linear bounded operators A : X! Y.

Lemma 1.21 (see [DNS1, Lemma 19℄). Assume fX

0

;X

1

g and fY

0

;Y

1

g

are interpolation pairs and the embedding X

min

� X

max

, Y

min

� Y

max

to

be dense. Let an operator A 2 L(X

0

;Y

0

) \ L(X

1

;Y

1

) have a 
ommon regu-

larizer: R 2 L(Y

0

;X

0

) \ L(Y

1

;X

1

) and RA� I 2 L(X

0

X

0

) \ L(X

1

;X

1

) be


ompa
t. Then

A : X

min

! Y

min

; A : X

max

! Y

max

are Fredholm operators and

Ind

X

min

!Y

min

A = Ind

X

max

!Y

max

A = Ind

X

j

!X

j

A; j = 0; 1:

If y 2 Y

j

, then any solution x 2 X

max

of the equation Ax = y belongs

to X

j

. In parti
ular,

Ker

X

min

A = Ker

X

j

A = Ker

X

max

A ; j = 0; 1:

Let

T := ft

1

; : : : t

n

g ; T

pk

:= T

ow

[ T

iw

;

T

ow

:= ft

j

2 T : 


j

= 0g ; T

iw

:= ft

j

2 T : 


j

= 2g

(1.74)
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be the 
olle
tions of all knots, of all peaks, of all outward and all inward

peaks on �.

Let us de�ne the following Cesaro-type mean value integral on the


ontour � (
f. (1.90))

V

t

j

'(t) := (
)

Z

^

t

j

t

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�)� �(t

j

)

(1.75)

= lim

�!t

j

Z

^

� t

log

�(�)��(t

j

)

�(�)��(t

j

)

log

�(t)��(t

j

)

�(�)��(t

j

)

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�) � �(t

j

)

;

where � is the 
onformal mapping from (1.47). Obviously,

V

t

j

'(t) :=

Z

^

t

j

t

�

�(t)

�(�)

�

1

p

�

�(�) � �(t

j

)

�(t)� �(t

j

)

�

1

p

�(�)

�(t)

'(�)�

0

(�)d�

�(�) � �(t

j

)

if the latter (usual) integral exists.

Let t

j

2 T

pk

be a peak and t 2 �. The points

t = !(�) and t

�

t

j

:= !(�(t)�

2

j

) ; !(�

j

) = t

j

are the images of equidistant points j�(t) � �

j

j = j�(t)�

2

j

� �

j

j on the unit


ir
umferen
e under the 
onformal mapping (1.46). Points t 2 � and t

�

t

j

2 �

are on di�erent sides from the outward peak t

j

2

!

t

�

t

j

t . Let �

t

j

� � be,

similarly to �

1�

j

� �

1

, a suÆ
iently small �xed neighbourhood of t

j

2 �

su
h that �

t

k

\ �

t

j

= ; (and, therefore, t

k

62 �

t

j

) for k 6= j. Let �

t

j

=

�

�

t

j

[ �

+

t

j

be the de
omposition of the neighbourhood of t

j

into the semi-


losed left and right neighbourhoods and �

t

j

be the 
hara
teristi
 fun
tion

of �

t

j

. We de�ne the spa
e

L

p

(�; �; T

pk

) :=

n

' 2 L

p

(�; �) :

e

V

t

j

' 2 L

p

(�; �) ; t

j

2 T

pk

o

; (1.76)

e

V

t

j

' := V

t

j

'

�

t

j

; '

�

t

j

(t) := "

j

'(t)� '(!(�(t)�

2

j

)); ; "

j

:= e

�

p

(


j

�1)i

;

k'

�

�

L

p

(�; �; T

pk

)k :=k'

�

�

L

p

(�; �)k+

P

t

j

2T

pk

k

e

V

t

j

�

t

j

'

�

�

L

p

(�

+

t

j

; (t� t

j

)

�

j

)k

and

5)

"

j

= e

�

�

p

i

for t

j

2 T

ow

, "

j

= e

�

p

i

for t

j

2 T

iw

. Similarly is de�ned

the spa
e L

p

(�; �; T

ow

) � L

p

(�; �; T

pk

).

5)

Non-equal rights of left and right neighbourhoods and di�eren
es for outward and

inward peaks in the de�nition of the spa
e L

p

(�; �; T

pk

) are explained in Remark 5.12.



36

Lemma 1.22 Let � be a pie
ewise-Ljapunov 
urve. If  2 L

p

(�; �) and

log[�(t) � �(t

j

)℄ 

�

t

j

2 L

p

(�; �) for all t

j

2 T

pk

, then  2 L

p

(�; �; T

pk

).

Let a 2 L

1

(�) and

a(t) = a(t

j

) +O

�

j log[�(t)� �(t

j

)℄j

�1

�

(1.77)

for all t

j

2 T

pk

as t! t

j

. Then the operators

aI : L

p

(�; �; T

pk

) �! L

p

(�; �; T

pk

) ;

[a� a

0

(t)℄I : L

p

(�; �) �! L

p

(�; �; T

pk

)

(1.78)

are bounded, where a

0

(t) :=

P

t

j

2T

pk

a(t

j

)�

j

(t) and �

j

(t) denotes the 
hara
-

teristi
 fun
tion of �

t

j

.

Proof. The proof is an easy 
onsequen
e of Lemmata 1.25 and 1.27.

Note, that if � has no 
usps, 0 < 


j

< 2 for all j = 11; : : : ; n, than

log[�(t)� �(t

j

)℄ � log[t� t

j

℄ ; t 2 �

(see Corollary 5.10). For a 
urve with 
usps this is not valid any more.

Theorem 1.23 Let T

pk

= ; and X

m

(�; �) be one of the following spa
es

W

m

p

(�; �), H

0

�+m

(�; �), C

m

(�; �) or PC(�; �), m = 0; 1.

Equations (1.39) and (1.40) are Fredholm in the spa
e X

m

(�; �) if and

only if

�

j

6=

(




0

j

if m = 0 ;

1� 


0

j

if m = 1 ;




0

j

:= min

�

1




j

;

1

2� 


j

�

for all j = 1; : : : ; n, where

�

j

:=

8

>

>

<

>

>

:

1

p

+ �

j

for X

m

(�; �) =W

m

p

(�; �) ;

�

j

for PC

m

(�; �) ; C(�; �);

�

j

� �

j

for H

0

�+m

(�; �) :

(1.79)

If T

pk

6= ; or �

j

= 


0

j

when m = 0, �

j

= 1� 


0

j

when m = 1, then the

operators A

�

in (1.39), (1.40) have non-
losed images in W

m

p

(�; �).

Equations (1.39) and (1.40) with ' 2 L

p

(�; �), g 2 L

p

(�; �; T

pk

) are

Fredholm, i.e., the operators

A

�

: L

p

(�; �)! L

p

(�; �; T

pk

) (1.80)

are bounded and are Fredholm if and only if �

j

6= 


0

j

for all t

j

62 T

pk

;

the following formulae hold for the index, kernel and 
okernel in the spa
e



37

X

m

(�; �) when T

pk

= ; or in the pairs (1.80) when T

pk

6= ;

Ind

X

0

(�;�)

A

�

=

X

t

j

62T

pk

�

j

>


0

j

1 ; Ind

X

1

(�;�)

A

�

= �

X

t

j

2T

�

j

<1�


0

j

1 ; (1.81)

dim

X

0

(�;�)

Ker A

�

= "

�

+ Ind

X

0

(�;�)

A

�

; dim Coker

X

0

(�;�)

A

�

= "

�

;

dim Ker

X

1

(�;�)

A

�

= "

�

; dim Coker

X

1

(�;�)

A

�

= "

�

� Ind

X

1

(��)

A

�

with "

+

= 0 and "

�

= 1.

In parti
ular, if

0 < �

j

< 


0

j

for all t

j

62 T

pk

; (1.82)

then equations (1.39) and (1.40) have solutions for all right-hand sides g(t)

in L

p

(�; �; T

pk

) (in C(�; �) and in

6)

H

0

�

(�; �) when T

pk

= ;), while for

T

pk

= ; ; 1� 


0

j

< �

j

< 1 for all t

j

2 T (1.83)

they have solutions in W

1

p

(�; �), in PC

1

(�; �) and in H

0

�+1

(�; �) for the

right hand sides in the same spa
es. Equation (1.39) has a unique solution

in these spa
es, while homogeneous equation (1.40), g(t) � 0 has a single

linearly independent solution '

�

(t) � 1.

Proof. The proof is postponed to x 5.4.

Theorem 1.24 Let T

pk

= ; and X

m

(�; �) be either W

m

p

(�; �) (m = 0;�1)

or H

0

�

(�; �).

Equations (1.44) and (1.45) are Fredholm in X(�; �) if and only if

�

j

6=

(

1� 


0

j

for L

p

(�; �); H

0

�

(�; �) ;




0

j

for W

�1

p

(�; �) ;




0

j

:= min

�

1




j

;

1

2� 


j

�

for all j = 1; : : : ; n, where �

j

is de�ned in (1.79).

If either T

pk

6= ; or �

j

= 


0

j

when m = 0, �

j

= 1� 


0

j

when m = 1 then

the operators B

�

in (1.44), (1.45) have non-
losed images in W

m

p

(�; �).

Equations (1.44) and (1.45) with  2 L

p

(�; �), f 2 L

p

(�; �; T

pk

) are

Fredholm, i.e., the operators

B

�

: L

p

(�; �)! L

p

(�; �; T

pk

) (1.84)

are bounded and are Fredholm if and only if �

j

6= 1 � 


0

j

for all t

j

62 T

pk

;

the following formulae hold for the index, kernel and 
okernel in the spa
e

6)

Absen
e of additional solvability 
ondition for equation (1.40) under 
onstraints

(1.82) and (1.83), whi
h are inevitable sin
e dim CokerA

�

= 1 (see Remark 1.10),

is due to the spe
ial right-hand side g(t) � g

0

, whi
h already satis�es the orthogonality


ondition (1.42).
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X

m

(�; �) when T

pk

= ; or in the pairs (1.84) when T

pk

6= ;

Ind

X

0

(�;�)

B

�

=

X

t

j

62T

pk

�

j

>1�


0

j

1 ; (1.85)

Ind

X

1

(�;�)

B

�

= �

X

t

j

2T

�

j

<


0

j

1 ; (1.86)

dim Ker

X

0

(�;�)

B

�

="

�

+ Ind

X

0

(�;�)

B

�

; dim Coker

X

0

(�;�)

B

�

="

�

;

dim Ker

X

�1

(�;�)

B

�

= "

�

; dim Coker

X

�1

(�;�)

B

�

= "

�

� Ind

X

�1

(�;�)

B

�

;

where "

+

= 0 and "

�

= 1.

In parti
ular, if

0 < �

j

< 1� 


0

j

for all t

j

62 T

pk

; (1.87)

then equation (1.45) has solution for all right-hand sides f(t) in L

p

(�; �; T

pk

)

(in H

0

�

(�; �) when T

pk

= ;), if and only if (1.73) holds. If

T

pk

= ; ; 


0

j

< �

j

< 1 for all t

j

2 T (1.88)

then, again, equation (1.45) has a solution for all right-hand sides f(t) in

W

�1

p

(�; �), while equation (1.44) has a solution if and only if 
ondition

(1.73) holds.

Equation (1.45) has a unique solution in these spa
es, while homogeneous

equation (1.44), f(t) � 0 has a single linearly independent solution  

�

= r

0

(see Remark 1.10).

Proof. For the 
ases T

pk

= ; and W

m

p

(�; �) (m = 0;�1) the proof fol-

lows from the foregoing Theorem 1.23 be
ause equations (1.39), (1.40) in

W

m

p

(�; �) (m = 0; 1) and equations (1.45), (1.44) in W

�m

p

0

(�; �

�

1) are pair-

wise 
onjugate.

As for equations (1.44) and (1.45) in the H

�

older spa
es H

0

�

(�; �) and

the 
ase T

pk

6= ; (see (1.84)), the assertion is proved word to word as

Theorem 1.23 (see x 5.4).

Let

� := f�

1

; : : : ; �

n

g � �

1

; �

pk

:= �

ow

[ �

iw

; (1.89)

�

ow

:= f�

j

= f!

�1

(t

j

) : t

j

2 T

ow

g ;

�

iw

:= f�

j

= f!

�1

(t

j

) : t

j

2 T

iw

g

be the images on the unit 
ir
umferen
e of the dis
rete sets T , T

pk

, T

ow

T

iw

(see (1.74)) under the inverse 
onformal mapping !

�1

(�) in (1.46){(1.47).
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We de�ne the following Cesaro-type mean value integral

V

�

j

'(�) := (
)

Z

^

�

j

�

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

:= lim

�!�

j

�

log

� � �

j

� � �

j

�

�1

Z

^

� �

d�

�� �

j

Z

^

��

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

= lim

�!�

j

Z

^

� �

log

���

j

���

j

log

���

j

���

j

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

: (1.90)

Obviously,

V

�

j

'(�) :=

Z

^

�

j

�

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

(1.91)

if the latter (usual) integral exist (
f. (3.4), (3.5)).

Let us �x a neighbourhood �

1�

j

� �

1

of �

j

2 �

1

su
h that �

1�

k

\�

1�

j

= ;

(whi
h implies �

k

62 �

1�

j

) for k 6= j and de
ompose �

1�

j

into the left and the

right neighbourhoods �

1�

j

= �

�

1�

j

[ �

+

1�

j

. �

�

j

be the 
hara
teristi
 fun
tion

of �

1�

j

. We de�ne the spa
e (see (1.89))

L

p

(�

1

;�

ow

) :=

n

' 2 L

p

(�

1

) :

e

V

�

j

' 2 L

p

(�

+

1�

j

) ; �

j

2 �

ow

o

; (1.92)

e

V

�

j

' := V

�

j

'

�

�

j

; '

�

�

j

(�) := e

�

�

p

i

'(�) � '(��

2

j

) ;

k'

�

�

L

p

(�

1

;�

ow

)k := k'

�

�

L

p

(�

1

)k+

P

�

j

2�

ow

k

e

V

�

j

�

�

j

'

�

�

L

p

(�

+

1�

j

)k :

Below, in Lemma 1.22, there is given a suÆ
ient 
ondition for the in
lu-

sion ' 2 L

p

(�

1

;�

ow

) and for the boundedness of a multipli
ation operator

aI).

Let us note, that if � 2 �

�

1�

j

, then the point ��

2

j

belongs to the di�erent

half-neighbourhood ��

2

j

2 �

�

1�

j

(i.e., points are on di�erent sides of �

j

2

�

1�

j

), but are equidistant from �

j

: j� � �

j

j = j��

2

j

� �

j

j.

Lemma 1.25 If  2 L

p

(�

1

) and log(� � �

j

) 

�

�

j

2 L

p

(�

1

) for all �

j

2 �

pk

,

then  2 L

p

(�

1

;�

pk

).

Let a 2 L

1

(�

1

) and

a(�) = a(�

j

) +O

�

j log(� � �

j

)j

�1

�

for all �

j

2 �

pk

as � ! �

j

:

Then the operators

aI : L

p

(�

1

;�

pk

) �! L

p

(�

1

;�

pk

) ;

[a� a

0

(�)℄I : L

p

(�

1

) �! L

p

(�

1

;�

pk

)
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are bounded, where a

0

(�) :=

P

�

j

2�

pk

a(�

j

)�

j

(�) and �

j

(�) denotes the 
har-

a
teristi
 fun
tion of �

�

j

.

The proof will be given later at the end of x 3.3.

Theorem 1.26 The operator

A : L

p

(�

1

) �! L

p

(�

1

;�

ow

) ; (1.93)

where A is de�ned in (1.50), is bounded and is Fredholm (i.e., equation

(1.50) is Fredholm if g

0

2 L

p

(�

1

;�

ow

) and we look for a solution ' 2

L

p

(�

1

)) if and only if

�

j

:=

�

1

p

+ �

j

�




j

6= 1 for all �

j

62 �

ow

: (1.94)

If 
onditions (1.94) hold,

Ind A =

X

�

j

62�

ow

�

j

>1

1 ;

dim Ker A = Ind A ; dim Coker A = 0 ;

(1.95)

Proof. The proof is postponed to x 5.3.

Let (
f. (1.64))

Z

!

'(�) := �(!(�))[!

0

(�)℄

1

p

'(!(�)) : (1.96)

Lemma 1.27 Z

!

de�nes an isomorphism of spa
es

Z

!

: L

p

(�; �) �! L

p

(�

1

) ;

: L

p

(�; �; T

ow

) �! L

p

(�

1

;�

ow

);

: L

p

(�; �; T

pk

) �! L

p

(�

1

;�

pk

)

(1.97)

and the inverse operator reads

Z

�1

!

 (t) := �

�1

(t)[(!

�1

)

0

(t)℄

1

p

 (!

�1

(t)) : (1.98)

The Cesaro-type operators V

t

j

in (1.75),

e

V

t

j

in (1.76) and V

�

j

in (1.90),

e

V

�

j

in (1.92) are related as follows

Z

!

�

t

j

V

t

j

�

t

j

Z

�1

!

= V

�

j

; Z

!

�

t

j

e

V

t

j

�

t

j

Z

�1

!

=

e

V

�

j

: (1.99)

Proof. The proof is dire
t and follows from the de�nitions.
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Theorem 1.28 The Diri
hlet problem (1.6), (1.7) with

u 2 e

p

(


+

; �) and g 2 L

p

(�; �; T

ow

) (1.100)

is Fredholm if and only if the 
onditions

�

j

:=

�

1

p

+ �

j

�




j

6= 1 for all �

j

62 T

iw

: (1.101)

hold. If this is the 
ase, the problem has solution for ea
h right hand-side

in (1.100) and the homogeneous problem has exa
tly

{ :=

X

�

j

>1

1 (1.102)

solutions (i.e., the index of the 
orresponding operator is {). In parti
ular,

if 
onditions

�

j

= �

0

j

:=

�

1

p

+ �

j

�




j

< 1 for all �

j

62 T

iw

(1.103)

hold, the problem has a unique solution.

Moreover, if T

ow

= ; the Diri
hlet problem (1.6), (1.7) with

u 2 w

1

p

(


+

; �) and g 2 W

1

p

(�; �) ; �

1

j

:=

�

1

p

+ �

j

� 1

�




j

;

u 2 p


m

(


+

; �) and g 2 PC

m

(�; �) ;

�

m

j

:= (�

j

�m)


j

; m = 0; 1 ;

u 2 
(


+

; �) and g 2 C(�; �) ; �

0

j

:= �

j




j

;

u 2 h

0

�+m

(


+

; �) and g 2 H

0

�+m

(�; �) ;

�

m

j

:= (�

j

� �

j

�m)


j

; m = 0; 1;

(1.104)

is Fredholm if and only if the 
ondition

�

m

j

6= (�1)

m

(1.105)

holds for all j = 1; : : : ; n. If this is the 
ase, the problem has the following

index

Ind A :=

X

j�

m

j

j>1

(�1)

m

: (1.106)

and either the kernel (when Ind A � 0) or the 
okernel (when Ind A � 0) is

trivial. For Ind A = 0 both kernel and 
okernel are trivial and the problem

has a unique solution for all right-hand sides (see (1.103)).

The same holds for the domain 


�

with the obvious repla
ements: T

ow

by T

iw

and 


j

by 1� 


j

.
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Proof. The �rst part of the theorem (1.100){(1.103) follows from Theorems

1.16 and 1.26.

The se
ond half of the theorem, when T

ow

= ;, follows from equivalen
e

of the Diri
hlet problem and of the 
orresponding singular integral equa-

tion (1.39){(1.40) in appropriate spa
e, whi
h 
an be proved as in Theorem

1.12, and from appropriate assertions on singular integral equations in x 4.

Theorem 1.29 The operator

B

+

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (1.107)

(see (1.60)) is bounded and is Fredholm (i.e., equation (1.60) is Fred-

holm if f

0

2 L

p

(�

1

;�

ow

) and we look for a solution ' 2 L

p

(�

1

)) if and

only if the 
onditions

�

j

:=

�

1�

1

p

� �

j

�




j

6= 1 for all t

j

62 T

ow

: (1.108)

hold. If 
onditions (1.107) hold,

Ind B

+

= �1 +

X

�

j

62�

ow

�

j

>1

1 ;

dim Ker B

+

= Ind B

+

; dim Coker B = 1

+

:

(1.109)

Proof. The proof follows word in word the proof of Theorem 1.26 (see x 5.3)

with obvious modi�
ations (in
luding substitution of

1

p

by

1

p

� 1, as seen

from (1.51) and (1.61)). The only di�eren
e whi
h we have found worth

explaining is the appearan
e of \�1" and \1" in the index formulae (1.106):

the se
ond 
ondition in (1.60) obviously in
reases dim Coker B

+

by 1 and

diminishes Ind B

+

also by 1.

Theorem 1.30 The Neumann problem (1.6), (1.8) for 


+

has solutions

u(x) + 


0

, where 


0

=
onst is arbitrary and, u 2 w

1

p

(


+

; �) for f 2

L

p

(�; �; T

ow

) if and only if 
onditions (1.108) hold and the solution is unique

modulo a 
onstant if �

j

< 1 for t

j

62 T

ow

. The index of the problem is given

by the formula

Ind B

+

:= 1 +

X

�

j

>1

1: (1.110)

If T

ow

= ; the Neumann problem (1.6), (1.8) 


+

with

u 2 p


1

(


+

; �) and g 2 PC

m

(�; �) ; �

j

:= (1� �

j

)


j

;

u 2 h

0

�+1

(


+

; �) and g 2 H

0

�+1

(�; �) ;

�

j

:= (1� �

j

+ �

j

)


j

; m = 0; 1

(1.111)
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is Fredholm if and only if the 
ondition �

j

6= 1 holds for all j = 1; : : : ; n. If

this is the 
ase, the problem has the same index (1.110).

The same holds for the domain 


�

with the obvious repla
ements: T

ow

by T

iw

and 


j

by 1� 


j

.

Proof. The �rst part of the theorem (1.110) follows from Theorems 1.17

and 1.29.

The se
ond half of the theorem, when T

ow

= ;, follows from equivalen
e

of the Neumann problem to the 
orresponding singular integral equation

(1.43){(1.44) in appropriate spa
e, whi
h 
an be proved as in Theorem 1.14,

and from appropriate assertions on singular integral equations in x 4.

Remark 1.31 Fredholm and solvability properties of pseudodi�erential

equations (1.69), (1.70), (1.72) 
an easily be derived from Theorems 1.28

and 1.30 (see Theorems 1.19 and 1.20). To save the spa
e we leave this to

readers.

2 Convolutions with ellipti
 symbols

2.1 Boundedness properties

C

1

0

(R) denotes the Fre
het spa
e of all in�nitely di�erentiable fun
tions

on R := (�1;1) with 
ompa
t supports supp ' and D

0

(R) { the dual

spa
e of distributions.

The 
onvolution operator W

0

a

with a symbol a 2 L

1

(R) is de�ned as

follows

W

0

a

' := F

�1

aF' ; ' 2 C

1

0

(R); (2.1)

where

F'(�)=

Z

R

e

i�x

'(x)dx and

F

�1

 (x)=(2�)

�n

Z

R

e

�ix�

 (�)d�; x; � 2 R

n

; (2.2)

are the Fourier transforms.

M

p

(R) denotes, as usual (see [Du1, Hr1℄, the 
lass of Fourier L

p

-

multipliers, i.e., the 
lass of all those symbols a(�) 2 L

1

(R) for whi
h

the operator W

0

a

admits a bounded extension

W

0

a

: L

p

(R) ! L

p

(R) (2.3)

for all 1 < p <1 (see [BS1, Du1, RS1℄).

In parti
ular, if symbol a(�) has: one of the following properties:
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i. bounded total variation a 2 V

1

(R) (B.Ste
hkin theorem),

ii. if

a 2 C

1

(R n f0g) ; ja(t)j �M

0

<1 ; jta

0

(t)j �M

0

<1 (2.4)

(J.Mar
inkievi
z theorem),

iii. belongs to the Wiener algebra

a 2W (R) := fa(�) = 
+Fk(�) : k 2 L

1

(R)g ;

then a 2 M

p

(R). Moreover, in the 
ase (iii.) W

0

a

is written as an integral


onvolution

W

0

a

'(x) = 
'(x) +

1

Z

�1

k(x� y)'(y)dy ;

while in general 
ase 
onvolution has distributional kernel (see [Du1, Hr1,

St1℄ for details).

Let

_

R and

�

R denote one point and two point 
ompa
ti�
ations of the

real axes

_

R := R [ f1g ; or

�

R := R [ f�1g

respe
tively and PC(

_

R) denote the spa
e of all pie
ewise-
ontinuous fun
-

tions on

_

R, i.e., the spa
e of all fun
tions a(�) on R whi
h have �nite limits

a(� � 0) for all � 2

_

R. The spa
e PC(

_

R) 
oin
ides with the 
losure of

all pie
ewise-
onstant fun
tions on

_

R with respe
t to the uniform norm

(in L

1

(

_

R); see [Du1℄). Let PC

p

(

_

R) be the same 
losure of all pie
ewise-


onstant fun
tions with respe
t to the multiplier norm ka

�

�

M

p

(R)k := kW

0

a

�

�

L(L

p

(R))k. Then

PC

2

(

_

R) = PC(

_

R) ; V

1

(R);W (R) �

\

1<p<1

PC

p

(

_

R) :

For a matrix symbol a 2 PC

N�N

p

(

_

R) invertibility 
riteria of the operator

W

0

a

in L

p

(R) spa
e reads

inf

�2R

j det a(�)j > 0 ; (2.5)

whi
h yields a

�1

2 PC

N�N

p

(

_

R) and the inverse operator is W

0

a

�1

(see [Du1,

Hr1℄ for these and other properties of multipliers).

Moreover, we 
an take 1 � p � 1 and involve new spa
es. Namely

W

0

a

has bounded extensions in the following spa
es of smooth fun
tions:

C

m

0

(

_

R), C

m

(

_

R), C

m

0

(

�

R) for all m = 0; 1; : : : (see [Kr1℄). These spa
es are

de�ned as follows.

Let X be either one point or two point 
ompa
ti�
ations of the real

axes and C

m

(X) denote the Bana
h spa
e of 
ontinuous fun
tions on the
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ompa
t Hausdorff set X, whi
h have 
ontinuous derivatives up to the

order m and is endowed with the appropriate uniform norm

k'k =

m

X

k=0

sup

t2R

�

�

�

�

�

d

k

dt

k

'

�

(t)

�

�

�

�

(C

m

(X) is even a Bana
h algebra with pointwise multipli
ation). Note,

that a fun
tion ' 2 C

m

(

_

R) and its derivatives have equal limits at in�nity

(d

k

=dt

k

)'(1) = (d

k

=dt

k

)'(�1) while fun
tion ' 2 C

m

(

�

R) might have two

di�erent limits (d

k

=dt

k

) (�1) for all k = 0; 1; : : : ;m.

C

m

0

(

_

R) denotes the subspa
e (the sub-algebra) of C

m

(

_

R) of those fun
-

tions '(x) whi
h vanish at in�nity with all derivatives up to the order m:

C

m

0

(

_

R) :=

�

' 2 C

m

(

_

R) : '(1) = � � � =

�

d

m

dt

m

'

�

(1) = 0

�

:

Let

W

a

' := r

+

W

0

a

`

0

' ; ' 2 C

1

0

(R

+

) ; (2.6)

where r

+

denotes the restri
tion to R

+

from R, while `

0

{the right inverse to

r

+

whi
h extends fun
tions by 0 from R

+

to R. Let L

p

(R

+

; �); �(x) � 0,

denote the weighted Lebesgue spa
e endowed with the standard norm

k'

�

�

L

p

(R

+

; �)k := k�'

�

�

L

p

(R

+

)k.

Lemma 2.1 (see [Du1, S
1℄). Let a 2 V

1

(R) and

1 < p <1 ; �

1

p

< �; 
 < 1�

1

p

: (2.7)

Then

W

a

: L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

) (2.8)

is 
ontinuous.

Let � 2 R and

L

h�i

1

(R) :=

8

<

:

L

1

(R

+

) \ L

1

(R

�

; (1� x)

��

) for � < 0 ;

L

1

(R

�

) \ L

1

(R

+

; (1 + x)

�

) for � > 0 ;

where R

�

:= (�1; 0℄. Let further

W

�

(R) :=

n

a(�) = 
+Fk(�) : 
 = 
onst ; k2L

1

(R; (1 + jxj)

j�j

)

o

; (2.9)

W

h�i

1

(R) :=

n

a(�) = 
+Fk(�) : 
 = 
onst ; k 2 L

h�i

1

(R)

o

(2.10)
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and endow them with the appropriate norms

ka

�

�

W

�

(R)k := j
j+ kk

�

�

L

1

(R; (1 + jxj)

j�j

)k for � � > 0 ;

ka

�

�

W

h�i

(R)k := j
j+ kk

�

�

L

h�i

1

(R)k = j
j+ kk

�

�

L

1

(R

�

)k

+kk

�

�

L

1

(R

�

; (1 + jxj)

j�j

)k for � � > 0

provided a(�) = 
+Fk(�). Obviously, W

�

(R) �W

h�i

(R).

Let C(

_

R

+

) denote the restri
tion of the spa
e C(

_

R) to the semi-axes

R

+

and C(

_

R

+

; (1 + x)

�

) denote the weighted spa
e of fun
tions '(x) on

the semi-axes R

+

for whi
h (1 + x)

�

'(x) belong to C(

_

R

+

).The spa
e is

endowed with the appropriate weighted norm k'

�

�

C(

_

R

+

; (1+x)

�

)k := k(1+

x)

�

'(x)

�

�

C(

_

R

+

)k.

Lemma 2.2 Let a 2 W

h�i

(R) and � 2 R. Then the operator

W

a

: C(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) (2.11)

is 
ontinuous

7)

and

lim

x!1

(1 + x)

�

W

a

'(x) = a(0) lim

x!1

(1 + x)

�

'(x) ; (2.12)

kW

a

�

�

C(

_

R

+

; (1 + x)

�

k � ka

�

�

W

h�i

(R)k : (2.13)

Proof. For a(�) = 
 we have W

a

= 
I and the assertion is trivial. Thus,

we 
an take a = Fk; k 2 L

h�i

1

(R).

The integral

W

0

a

=

1

Z

�1

k(x� y)'(y)dy =

1

Z

�1

k(y)'(x � y)dy

is 
ontinuous fun
tion for a 
ontinuous ' 2 C(

_

R

+

; (1 + x)

�

) and we should


he
k only (2.12){(2.13).

Obviously,

kW

a

�

�

C(

_

R

+

; (1 + x)

�

)k � K

�

;

K

�

= sup

x2R

+

1

Z

0

�

1 + x

1 + y

�

�

jk(x� y)jdy :

(2.14)

If � < 0, applying the inequality

1 + x � (1 + jx� yj)(1 + y) ; x; y 2 R

+

; (2.15)

7)

See similar assertions in [GF1, Pr1, PS1℄.
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we pro
eed as follows

K

�

� sup

x>0

2

4

x

Z

0

�

1 + x

1 + y

�

�

jk(x� y)jdy +

1

Z

x

�

1 + y

1 + x

�

��

jk(x� y)jdy

3

5

� sup

x>0

2

4

1

Z

0

jk(x� y)jdy +

1

Z

x

(1 + jx� yj)

��

jk(x� y)jdy

3

5

�

1

Z

0

jk(t)jdt +

0

Z

�1

(1 + jtj)

��

jk(t)jdt = ka

�

�

W

h�i

(R)k :

Now let � > 0. Similarly to the foregoing 
ase we �nd (see (2.14) and

(2.15))

K

�

� sup

x>0

2

4

x

Z

0

�

(1 + x

1 + y

�

�

jk(x� y)jdy +

1

Z

x

�

(1 + x

1 + y

�

�

jk(x� y)jdy

3

5

� sup

x>0

2

4

x

Z

0

(1 + jx� yj)

�

jk(x� y)jdy +

1

Z

x

jk(x� y)jdy

3

5

� sup

x>0

2

4

x

Z

0

(1 + t)

�

jk(t)jdt+

0

Z

�1

jk(t)jdt

3

5

= ka

�

�

W

�

(R)k :

To prove (2.12) (for arbitrary � 2 R) we represent

'

�

(x) := (1 + x)

�

'(x) = '

�

(1) + '

0

�

(x) ; '

0

�

(1) = 0

and suppose that both '

0

�

(x) and k(t) have 
ompa
t supports

supp'

0

�

� [0; 


1

℄ ; supp k � [�


2

; 


2

℄ :

Sin
e su
h fun
tions are dense in appropriate spa
es, this does not restri
ts

generality. Then

lim

x!1

(1 + x)

�

W

a

'(x) = lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)'

�

(y)dy

= lim

x!1




1

Z

0

�

1 + x

1 + y

�

�

k(x� y)'

0

�

(y)dy

+'

�

(1) lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)dy = a(0)'

�

(1) ;
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sin
e

k(x� y)'

0

�

(y) = 0 if x � 


1

+ 


2

;

lim

x!1

1

Z

0

�

1 + x

1 + y

�

�

k(x� y)dy = lim

x!1




2

Z

�


2

�

1 + x

1 + x� t

�

�

k(t)dt

=




2

Z

�


1

k(t)dt =

1

Z

�1

k(t)dt = a(0) :

This a

omplishes the proof.

2.2 Fredholm properties

Lemma 2.3 Let � 2 R. Then W

�

(R) �W

0

(R) = W (R) � C(

_

R) is an in-

verse 
losed Bana
h algebra in C(

_

R), whi
h reads: the element a 2 W

�

(R)

is invertible if and only if it is invertible in C(

_

R), i.e., i� inf

�2R

ja(�)j > 0,

and then a

�1

2W

�

(R).

Proof. The proof see in [GRS1, x 18℄.

Let for a matrix-fun
tion a = [a

jk

℄

N�N

with entries a

jk

2 A use the

same notation a 2 A.

Lemma 2.4 Let � 2 R and a matrix-fun
tion a 2 W

�

(R) be ellipti


inf

�2R

j det a(�)j > 0 : (2.16)

Then a(�) has the following fa
torization

a(�) = a

�

(�) diag

��

�� i

�+ i

�

{

1

; : : : ;

�

�� i

�+ i

�

{

N

�

a

+

(�) (2.17)

where the matrix-fun
tions a

�

�

2 W

�

(R) and a

�

+

2 W

�

(R) have uniformly

bounded analyti
 extensions a

�

�

(� � i�) and a

�

+

(� + i�) in the lower and

upper � > 0 
omplex half-planes, respe
tively. The integers {

1

; : : : ;{

N

are

known as the partial indi
es of the fa
torization (2.17).

Proof. For the algebra W (R) = W

0

(R) the proof is well-known (see, e.g.,

[GF1℄) and we follow the same s
heme: if all rational fun
tions are dense in

W

�

(R) (a rationally dense algebra) and the Hilbert transform

S

R

'(x) =

1

�i

1

Z

�1

'(y)dy

y � x

= �W

0

sign�

'(x) ; x 2 R (2.18)
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(see [Du1, Lemma 1.35℄) is bounded there (a de
omposable algebra), then

a

ording to the general theorem proved in [BG1℄ (see also [CG1, GF1℄) all

invertible elements of W

�

(R) would possess fa
torization (2.17). Invertibil-

ity of a 2 W

�

(R) under 
ondition (2.16) is provided by Lemma 2.3.

Rational density of W

�

(R) follows sin
e the Laguerre polynomials are

dense in L

1

(R; (1 + jxj)

j�j

) (see, e.g., [GF1, x 8℄).

W

�

(R) is a de
omposable be
ause FS

R

F

�1

 (�) = � sign � (�) (see

(2.18)) is a bounded operator in L

h�i

1

(R) andW

�

(R) = 
onst +FL

1

(R; (1+

jxj)

j�j

)) (see (2.8)).

Let us 
onsider a = 
+Fk 2W

�

(R) and the 
orresponding equation

W

0

a

'(x) = 
 '(x) +

1

Z

�1

k(x� y)'(y)dy = f(x) ; x 2 R

+

(2.19)

(
f. (2.5)).

Theorem 2.5 Equation (2.19) in the spa
e C(

_

R

+

; (1 + x)

�

), � 2 R is

Fredholm if and only if the symbol a(�) is ellipti
 (see (2.16)). If this

is the 
ase, then

Ind W

a

= � ind a :

If, in addition, (2.19) is a s
alar equation N = 1, then:

i. equation (2.19) is uniquely solvable for all f 2 C(

_

R

+

; (1+x)

�

) provided

ind a = 0;

ii. if { = ind a < 0 equation (2.19) has a solution ' 2 C(

_

R

+

; (1 + x)

�

)

for all f 2 C(

_

R

+

; (1 + x)

�

) and the homogeneous equation f = 0 has

exa
tly �{ linearly independent solutions;

iii. if { = ind a > 0 equation (2.19) has a solution ' 2 C(

_

R

+

; (1 + x)

�

)

only for those right-hand sides f 2 C(

_

R

+

; (1 + x)

�

) for whi
h

1

Z

0

f(y)g

j

(y)dy = 0 ; j = 1; : : : ;{ ;

where g

1

; : : : ; g

{

are all solutions to the dual homogeneous equation


 g(x) +

1

Z

�1

k(y � x)g(y)dy = 0 (2.20)

in the dual spa
e C(

_

R

+

; (1 + x)

��

).

If the solution exists it is unique.



50

Proof. The proof is standard and based on Lemmata 2.3, 2.4 (see [Du1,

GF1, GK1, Kr1℄ for similar proofs, ex
ept the last 
laim).

Con
erning the last 
laim{we repla
ed the adjoint spa
e C

�

(

_

R

+

; (1+x)

�

)

by the dual one C(

_

R

+

; (1+ x)

��

); this is possible sin
e the equation (2.20)

has the same solutions in these two spa
es (see [Du5℄ for a similar assertion).

The last 
laim follows also from Lemma 1.21. whi
h states that equation

has the same solutions in two spa
es B

1

� B

2

provided the embedding is

dense and the equation has a 
ommon regularizer in B

1

and inB

2

.

Now let a 2 V

1

(R); thenW

a


an be written as integral 
onvolution (2.19)

only 
onventionally{the kernel k(t) is a distribution. If a(�) possesses a

single jump, operator W

a

is not bounded in C(

_

R

+

; (1 + x)

�

) be
ause the

Hilbert transform (2.18) is not bounded in these spa
e.

Thus, we should 
onsider equation (2.19) with a 2 PC

p

(R)in the Le-

besgue spa
e L

p

(R

+

; x

�

(1 + x)


��

) with weight under 
onditions (2.7).

With equation (2.19) we asso
iate the symbol

a

!

(�; �) :=

1 + 
oth�[i�(�) + �℄

2

a(�� 0)

+

1� 
oth�[i�(�) + �℄

2

a(�+ 0) ; � 2

_

R ; � 2 R ; (2.21)

where (note, that a 2 PC

p

(R) has limits a(�� 0); � 2

_

R in
luding in�nity

a(1� 0) := a(�1)). ! := (p; �; 
) reminds the spa
e and

�(�) :=

8

>

>

>

>

<

>

>

>

>

:

1

p

; if � 6= 0;1 ;

1

p

+ �; if � = 0;

1

p

+ 
; if � =1 :

Theorem 2.6 Let a 2 PC

p

(R); the weight �(t) be de�ned by (1.2) and

satisfy appropriate (namely the �rst) 
ondition in (1.4).

Equation (2.32) is Fredholm in the spa
e L

p

(R

+

; x

�

(1+x)


��

) if and

only if the symbol a

!

(�; �) is ellipti


inf

�2

_

R; �2R

j det a

!

(�; �)j > 0 :

If this is the 
ase, then

Ind W

a

= �

1

2�i

1

X

j=1

�

[arg a(�)℄

�2[�

j

;�

j+1

℄

+ [arg a

!

(�

j

; �)℄

�2R

	

; (2.22)

where f�

j

g

1

j=1

�

_

R denotes the set of all points where a 2 V

1

(R) has jumps
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a(�

j

� 0) 6= a(�

j

+ 0) and

8)

[arg g(t)℄

t2I

denotes the in
rement of any


ontinuous bran
h of arg g(t) as t ranges through I in the positive dire
tion.

If, in addition, (2.19) is a s
alar equation N = 1, then:

i. equation (2.19) is unuquelly solvable for all f 2 L

p

(R

+

; x

�

(1+x)


��

)

provided Ind W

a

= 0;

ii. if { = Ind W

a

> 0 (2.19) has a solution ' 2 L

p

(R

+

; x

�

(1 + x)


��

)

for all f 2 L

p

(R

+

; x

�

(1+x)


��

) and the homogeneous equation f = 0

has exa
tly { linearly independent solutions;

iii. if { = ind W

a

< 0 (2.19) has a solution ' 2 L

p

(R

+

; x

�

(1 + x)


��

)

only for those right-hand sides f 2 L

p

(R

+

; x

�

(1 + x)


��

) for whi
h

1

Z

0

f(y)g

j

(y)dy = 0 ; j = 1; : : : ;�{ ;

where g

1

; : : : ; g

�{

are all solutions of the dual homogeneous equation


 g(x) +

1

Z

�1

k(y � x)g(y)dy = 0 (2.23)

in the dual spa
e L

p

0

(R

+

; x

��

(1 + x)

�
+�

) with p

0

:=

p

p� 1

.

If solution exists it is unique.

Proof. For the proof we quote [Du1℄ (the 
ase � = 
 = 0) and [S
1℄ (the


ase � 6= 0; � 6= 0).

2.3 Some proofs

Proof of Lemma 1.1. Let, for de�niteness, 
onsider the domain 


+

. Sin
e

� 2 X (


+

) we have

�(z) = 


0

+

1

2�i

Z

�

�

+

0

(�)d�

� � z

; z 2 


+

;

where �

+

0

2 X(�) is the tra
e of �

0

(z) := �(z)� 


0

on � from 


+

. On the

other hand

�(z) = 


0

+

1

2�i

Z

�

'(�)d�

� � z

; z 2 


+

;

8)

The set f�

j

g

1

j=1

is at most 
ountable and the sum in (2.22) is 
onvergent (see, e.g.,

[Du1℄).
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for some ' 2 X(�) (see (1.3)) and we get

Z

�

�

+

0

(�)� '(�)

� � z

d� � 0 ; z 2 


+

:

The obtained equality means

�

+

0

(t)� '(t) = 	

�

(t) ; t 2 � ; (2.24)

where 	 2 X (


�

); therefore,

	(z) = �C

�

'(z) := �

1

2�i

Z

�

'(�)d�

� � z

; z 2 


�

;

and 	(z)! 0 as jzj ! 1, sin
e C

�

�

+

0

(z) � 0 for z 2 


�

. In fa
t, P

+

�

�

+

0

=

�

+

0

yields P

�

�

�

+

0

= 0 (we remind that P

�

�

+ P

+

�

= I ; see (1.50)). On the

other hand, due to the Plemelji formula for C

�

' in (1.25) (C

�

�

+

0

)

�

=

P

�

�

�

+

0

= 0 and the analyti
 fun
tion C

�

�

+

0

(z), z 2 


�

vanishing on the

boundary vanishes everywhere in 


�

.

(2.24) 
an be written as follows

Re (�i	

�

)(t) = Im 	

+

(t) = Im �

+

0

(t) ; t 2 �

if '(t) = Re '(t) = Re �

+

0

(t)� Re 	

�

(t) is pure real and

Re 	

�

(t) = Re �

+

0

(t) ; t 2 �;

if '(t) = i Im '(t) = i Im �

+

0

(t) � i Im 	

�

(t) is pure imaginary. Sin
e

�

+

0

(t) is known, solvability of the obtained Riemann{Hilbert problems is

equivalent to the 
laimed representations.

Proof of Lemma 1.2. If (0.2) holds and 


�

has no outward peak (T

ow

=

;), u

�

2 W

1

2

2

(�) due to theorem on tra
es (see, e.g., [Tr1℄)). Although

�

~�

u 2 W

0

2;
om

(


�

), we 
an not 
laim (�

~�

u)

�

2 W

�

1

2

2

(�) be
ause the tra
e

does not exists. But u is harmoni
 �u(z) = 0 in 


�

and from the Green

formula (1.13) we get

I

�

�

~�(�)

u(�)v(�)d� = �

2

X

j=1

Z




�

�

j

u(y)�

j

v(y)dy : (2.25)

Taking arbitrary v 2 W

1

2;
om

(


�

), whi
h implies v

�

2 W

1

2

2

(�) due to theo-

rem on tra
es, by duality of spa
es from (2.25) follows (�

~�

u)

�

2 W

�

1

2

2

(�).
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Sin
e u(z) is a harmoni
 fun
tion, due to representation formula (1.15)

u(z) = Re u(z) = �

�

(z)u(1)�W

�

u

�

(z)� V

�

(�

~�

u)

�

(x)

= �

�

(z)u(1)�W

�

u

�

(z)� Re (�

z

V

�

)v

�

(z) (2.26)

= �

�

(z)u(1) + Re (C

�

u

�

)(z) ; u

�

(t) := �u

�

(t) + iRe v

�

(t) ;

v

�

(t) :=

Z

^


t

(�

~�(�)

u)

�

(�)d� ; z 2 


�

; t 2 � :

From (2.26) we get the in
lusion into the Smirnov 
lass u 2 w

1

2

2

(


�

) with

the 
omplex valued density u

�

2 W

1

2

2

(�) be
ause u

�

; v

�

2W

1

2

2

(�).

Vi
e versa, u 2 w

1

2

2

(


�

), also for 


�

with peaks, implies the represen-

tation

u(z) = u(1) + Re C

�

'(z) ; z 2 


�

; ' 2 W

1

2

2

(�) :

Then u(z) is harmoni
 in 


�

and u(z) = u(1)+O((1+ jzj)

�1

) as jzj ! 1

and, due to Theorem 1.8, u 2 W

1

2

(


�

).

Proof of Theorem 1.5. The �rst and the se
ond 
laims for s = m = 0

follows from representations (1.17), (1.18) and boundedness of the singular

integral operator S

�

(see (1.5)) in L

p

(�; �) (see, e.g., [GK1, Kh1, Pr1℄) and

in H

0

�

(�; �) (see [Du6, Du7℄ and also [Du3, Du5℄).

The operators

W

(k)

�;0

'(t) :=

1

4

�

S

�

+ Vh

k

S

�

h

�k

V

�

'(t)

=

1

4�i

Z

�

'(�)

"

d�

� � t

�

h

k

(t)

h

k

(�)

d�

� � t

#

(2.27)

are bounded in L

p

(�; �) and in H

0

�

(�; �) by the same reason.

For a 
losed 
ontour �

t

S

�

' = S

�

�

t

' and we get

�

t

W

�;0

' :=

1

4

�

�

t

S

�

+ V

dt

dt

�

t

S

�

V

�

'

=

1

4

�

S

�

+ Vh

2

S

�

h

�2

V

�

�

t

' =W

(2)

�;0

�

t

' (2.28)

(
f. (1.17){(1.21), (1.26)); therefore W

�;0

is bounded in W

1

p

(�; �) and in

H

0

1+�

(�; �). By interpolation (see [Tr1℄) we get boundedness of W

�;0

in

W

s

p

(�; �) for 0 � s � 1.

Sin
e the operator W

�

�;0

is adjoint to W

�;0

, it is automati
ally bounded

in adjoint spa
e W

s

p

(�; �) (see, e.g., [Tr1℄) to W

�s

p

0

(�; �) for �1 � s � 0 and

p

0

:= p=(p� 1).
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Let us prove the last 
laim.

V

�

has a weak singular kernel and, therefore,

kV

�

'

�

�

L

p

(�; �)k � C

1

k'

�

�

L

p

(�; �)k ;

on the other hand, due to (1.19),

k�

t

V

�

'

�

�

L

p

(�; �)k = k(S

�

+ VS

�

V)'

�

�

L

p

(�; �)k � C

2

k'

�

�

L

p

(�; �)k :

and we get the �nal estimate

kV

�

'

�

�

W

1

p

(�; �)k = kV

�

'

�

�

L

p

(�; �)k+ k�

t

V

�

'

�

�

L

p

(�; �)k :

Similarly for the H

�

older spa
es H

0

�

(�; �)! H

0

1+�

(�; �).

Proof of Theorem 1.6. It suÆ
es to show that W

(k)

�;0

are bounded in

PC(�; �) for even k = 0; 2; : : : and W

(0)

�;0

= W

�;0

is bounded in C(�; �). In

fa
t, h

�

I are bounded in PC(�; �) and boundedness of W

�

�;0

in PC(�; �)

follows sin
e

W

�

�;0

= �hW

(2)

�;0

hI

(
f. (1.18), (2.27)). By virtue of (1.22) we get

kW

�;0

'

�

�

PC

1

(�; �)k=kW

�;0

'

�

�

C(�; �)k+ k�

t

W

�;0

'

�

�

PC(�; �)k ;

=kW

�;0

'

�

�

C(�; �)k+ kW

(2)

�;0

�

t

'

�

�

PC(�; �)k :

whi
h means boundedness of W

�;0

in PC

1

(�; �).

Integral operator K with a weak singular kernel

jk(t; �)j � Cjt� � j

��1

; 0 < � � 1 ; t; � 2 �; (2.29)

is bounded (moreover, is 
ompa
t) in spa
es C(�; �) and in PC(�; �).

In fa
t, this is easy to as
ertain for �(t) � 1. For �(t) 6� 1 we have to

prove that K

1

:= �K�

�1

I �K is 
ompa
t in C(�) and in PC(�).

The kernel k

1

(t; �) of K

1

has the following estimate

jk

1

(t; �)j = j�(t)� �(�)j

k(t; �)

�(�)

� C

g

�

(t; �)

�(�)

jt� � j

��1

;

here g

�

(t; �) = jt � � j

Æ

j

when both t and � are 
lose to the knot t

j

; j =

1; : : : ; n and g

�

(t; �) = jt� � j otherwise. Thus, k

1

(t; �) is weak singular and


ompa
tness (in C(�) and in PC(�)) follows.

Let �

0

be another Ljapunov 
ontour and ! : � ! �

0

be a di�eomor-

phism with analyti
 
ontinuation in some neighbourhood of 
uspidal wedge

U

j

� 


+

(outward peak of 


+

) of 
usps 


j

with 


j

= 0. Then the operator

K

!

:= !

�1

�

S

�

!

�

� S

�

; !

�

'(t) = '(!(t)) ; t 2 � ; (2.30)
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where !

�1

: � ! �

0

is the inverse di�eomorphism, has a weak singular

kernel (2.29) (see [DLS1, x 3.5℄ and [Kh1, GK1℄).

Due to representations (1.17){(1.19), (2.27) and to boundedness of op-

erator K

!

in C(�; �) and in PC(�; �) (see (2.29) and further) the 
ontour �


an be repla
ed by another one �

0

for whi
h we 
an �nd a di�eomorphism

! : �! �

0

with lo
al analyti
 
ontinuation in the vi
inity of 
usps.

-

�

�

�

�

�

�

�

�

��

- -q q

�


j

t

j

�

+

j

�

�

j

�

+

j

�

+

j

t

j

t

j

�

�

j

�

�

j

0 < 


j

< 2 


j

= 0 


j

= 2

Fig. 2

Due to this we 
an suppose �

j

has re
tilinear parts �

+

j

and �

�

j+1

in

some neighbourhoods of the endpoints t

j

and t

j+1

ex
ept 
usps; for a 
usp




j

= 0; 2 the right neighbourhood �

+

j

� �

j

is re
tilinear in the vi
inity

of t

j

, while the left neighbourhood �

�

j

� �

j�1

is not (we remind, that

ft

j

g = �

j�1

S

�

j

; see Fig. 2). Let

�

0

j

= �

�

j

[

�

+

j

; �

0

=

n

[

j=1

�

0

j

; �

0

= � n �

0

: (2.31)

Let v

0

2 C

1

(�) be a 
ut-o� fun
tion with supp v

0

� �

0

and v

0

(t) = 1

in some neighbourhoods of all knots t

1

; : : : ; t

n

. Then

W

(k)

�;0

= (1� v

0

)W

(k)

�;0

+ v

0

W

(k)

�

0

;0

+ v

0

W

(k)

�

0

;0

: (2.32)

�

0

is free of knots t

1

; : : : ; t

n

and operators (1 � v

0

)W

(k)

�;0

, v

0

W

(k)

�

0

;0

have

weak singular kernels. In fa
t, kernels of these operators read

k

2

(t; �)= [1� v

0

(t)℄k

0

(t; �) ;

k

3

(t; �)=v

0

(t)�

0

(t)k

0

(t; �) ; t; � 2 � ;

where �

0

(t) is the 
hara
teristi
 fun
tion of �

0

and

k

0

(t; �)=

1

�i

"

1

� � t

�

h

k

(t)

h

k

(�)

1

� � t

d�

d�

#

=

1

�i

�

1

� � t

�

1

� � t

d�

d�

�

�

h

k

(t)� h

k

(�)

h

k

(�)(� � t)

d�

d�

: (2.33)
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k

0

(t; �) = k

1

(t; �) = 0 if t; � 62 �

0

; therefore we 
an suppose t; � 2 �

0

be
ause otherwise k

2

(t; �) and k

2

(t; �) are bounded. �

0


onsists of n disjoint

smooth ar
s and k

0

(t; �) is the kernel ofW

(k)

�;0

= S

�

�Vh

k

S

�

h

�k

V ; therefore

we 
an apply a di�eomorphism ! : �

0

! �

R

� R whi
h transforms �

0

to

the �nite union of intervals on the real axes. Sin
e !

�1

�

W

(k)

�

0

;0

!

�

di�ers from

W

(k)

�

R

;0

by a 
ompa
t operator with weak singular kernel, we 
an 
onsider

W

(k)

�

R

;0

. But the �rst summand in representation (2.33) of the kernel of

operator W

(k)

�

R

;0

vanishes

1

� � t

�

1

� � t

d�

d�

= 0 ; t; � 2 �

R

� R ;

while the se
ond summand is weak singular, be
ause the fun
tion h

k

(!

�1

(t))

is C

1+�

-
ontinuous.

Thus, we have to 
onsider only operator v

0

W

(k)

�

0

;0

in (2.32). This 
an be

simpli�ed further and we need to treat only operators W

(k)

�

0

j

;0

, be
ause the

di�eren
e

T

0

= v

0

2

4

W

(k)

�

0

;0

�

n

X

j=1

W

(k)

�

0

j

;0

3

5

is 
ompa
t (has a bounded kernel).

Let 0 < 


j

< 2. Without loss of generality we 
an suppose that

�

0

j

= �

�

j

[

�

+

j

; �

+

j

= (0; 1℄ ; �

�

j

=

�

e

i


j

x : 0 � x � 1

	

:

Consider the transformation

Z




j

;Æ

j

'(x) :=

�

e

�Æ

j

x

'(e

�x

)

e

�Æ

j

xi

'(e

�


j

�x

)

�

; x 2 R

+

; (2.34)

and its inverse

Z

�1




j

;Æ

j

�

 

1

 

2

�

(t) = �

0

+

(t)t

�Æ

j

 

1

(� log t)

+�

0

�

(t)e

�


j

Æ

j

i

t

�Æ

j

 

2

(�


j

� log t) ; t 2 �

0

j

;

where �

0

+

and �

0

�

are the 
hara
teristi
 fun
tions of �

+

j

and �

�

j

, respe
tively.

Z




j

;Æ

j

arranges the isomorphism of the spa
e PC(�

0

j

; t

Æ

j

) = PC(�

0

j

; �)

with the ve
tor-spa
e [C(

_

R

+

)℄

2

= C(

_

R

+

) � C(

_

R

+

) (see x 1.1). The trans-

formed operator a
quires the form

Z




j

;Æ

j

W

(k)

�

0

j

;0

Z

�1




j

;Æ

j

=

"

0 W

a

+




j

;Æ

j

;k

W

a

�




j

;Æ

j

;k

0

#

;
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where

W

a

�




j

;Æ

j

;k

'(x) =

1

Z

0

k

�




j

;Æ

j

;k

(x � y)'(y)dy ;

a

�




j

;Æ

j

;k

(�) :=F

t!�

h

k

�




j

;Æ

j

;k

(t)

i

; �; x 2 R ;

k

�




j

;Æ

j

;k

(t) = �

e

��


j

k�Æ

j

t

sin�


j

+ e

�(Æ

j

+1)t

sin�


j

2�(1� 2e

�t


os�


j

+ e

�2t

)

:=

e

�Æ

j

t

4�i

�

1

1� e

��


j

i�t

�

e

��


j

ki

1� e

�


j

i�t

�

:

Obviously,

k

�




j

;Æ

j

;k

2 L

1

(R) i� 0 < Æ

j

< 1 (2.35)

and, due to Lemma 2.2, the transformed operator Z




j

;Æ

j

W

(k)

�

0

j

;0

Z

�1




j

;Æ

j

is

bounded in [C(

_

R

+

)℄

2

be
ause 0 < 


j

< 2 ; 0 < Æ

j

< 1.

Now let 


j

= 0; 2. We 
an suppose without loss of generality that t

k

= 0

and

�

+

j

= J = (0; 1℄ � R

+

;

�

�

j

= fz

j

(x) = x+ ig

j

(x) : 0 � x � 1g ;

g

j

2 C

1+�

(J ) ; g

j

(0) = g

0

j

(0) = 0 ; g

j

(x) � 0 ;

h(z

j

(x)) = 1 + ig

j

(x) ; h(x) = 1 ; x 2 J (see (2.21)) :

The transformation

B

j

'(x) =

�

'(x)

'(z

j

(x))

�

; z

j

(x) = x+ ig

j

(x) ; x 2 J ; (2.36)

arranges the isomorphism

B : PC(�

0

j

; jtj

Æ

j

) �! [C(J ; jtj

Æ

j

)℄

2

and

B

j

W

(k)

�

j

;0

B

�1

j

=

�

0 �

e

V

ig

j

V

ig

j

0

�

+

�

0 T

12

T

21

T

22

�

;

where

T

12

=

e

N

�ig

j

[(1� ig

0

j

)

�k

� 1℄ ; T

12

= [(1� ig

0

j

)

k

� 1℄N

�ig

j

;
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T

21

=�K

z

j

�(1� ig

0

j

)

k

K

z

j

(1� ig

0

j

)

�k

I + (1� ig

0

j

)

k

S

J

(1� ig

0

j

)

�k

I�S

J

;

V

ig

j

N

ig

j

�N

�ig

j

;

e

V

ig

j

=

e

N

ig

j

(1 + ig

0

j

)I �

e

N

�ig

j

(1� ig

0

j

)I ;

N

�ig

j

1

�i

1

Z

0

'(y)dy

y � x� ig

j

(x)

;

e

N

�ig

j

=

1

�i

1

Z

0

'(y)dy

y � x� ig

j

(y)

and K

z

j

is de�ned in (2.30) (z

j

(x) see in (2.36)). Operators T

12

; T

21

; T

22

all have weak singular kernels and there is left to prove boundedness of

operators V

ig

j

and

e

V

ig

j

only.

It is easy to as
ertain that

v(x) := V

ig

j

1(x)=�

2g

j

(x)

�

1

Z

0

dy

(y � x)

2

+ g

2

j

(x)

=

1

�i

log

[x+ ig

j

(x)℄[1� x+ ig

j

(x)℄

[x� ig

j

(x)℄[1� x� ig

j

(x)℄

;

ev(x) :=

e

V

ig

j

1(x)=

1

�i

1� x+ ig

j

(x)

1� x� ig

j

(x)

; x 2 J ;

and v; ev 2 C(J ). Fun
tions

V

ig

j

'(x)=V

ig

j

['(y)� '(x)℄ + '(x)v(x) ;

e

V

ig

j

'(x)=

e

V

ig

j

['(y)� '(x)℄ + '(x)ev(x)

are 
ontinuous provided ' 2 C

1

(J ). On the other hand we get

�

�

V

ig

j

'(x)

�

�

=

2g

j

(x)

�

�

�

�

�

�

�

1

Z

0

'(y)dy

(y � x)

2

+ g

2

j

(x)

�

�

�

�

�

�

�

k'

�

�

C(J )k

�

�

�

�

�

�

�

1

Z

0

�

1

y � x+ ig

j

(x)

�

1

y � x� ig

j

(x)

�

dy

�

�

�

�

�

�

=

k'

�

�

C(J )k

�

jv(x)j ;

�

�

�

e

V

ig

j

'(x)

�

�

�

=

2

�

�

�

�

�

�

�

1

Z

0

(y � x)g

0

j

(y)� g

j

(y)

(y � x)

2

+ g

2

j

(y)

'(y)dy

�

�

�

�

�

�
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�

2

�

k'

�

�

C(J )k

(

�

�

�

�

�

1

Z

0

[(y � x)g

0

j

(y)� g

j

(y)℄[g

2

j

(x)� g

2

j

(y)℄

[(y � x)

2

+ g

2

j

(y)℄[(y � x)

2

+ g

2

j

(x)℄

dy

+g

2

j

(x)

1

Z

0

(y � x)g

0

j

(y)� g

j

(y)

(y � x)

2

+ g

2

j

(x)

dy

�

�

�

�

�

)

� k'

�

�

C(J )k

�

(1 + kg

0

j

�

�

C(J )k)

2

kg

0

j

�

�

C(J )k

+kg

j

�

�

C(J )k(kg

0

j

�

�

C(J )k+ kg

0

j

�

�

C(J )k)

�

�

�

�

�

�

�

1

�

1

Z

0

2ig

j

(x)dy

(y � x)

2

+ g

2

j

(x)

�

�

�

�

�

�

= C

g

j

k'

�

�

C(J )kjv(x)j ;

C

g

j

=

�

(1 + kg

0

j

�

�

C(J )k)

2

kg

0

j

�

�

C(J )k

+kg

j

�

�

C(J )k(kg

0

j

�

�

C(J )k+ kg

0

j

�

�

C(J )k)

�

:

Obtained inequalities prove that V

ig

j

and

e

V

ig

j


an be extended as 
ontinuous

operators from C

1

(J ) �! C(J ) to C(J ) �! C(J ).

3 Equations with non-ellipti
 symbols

3.1 Convolutions on R

+

Let �; 
 and p be as in (2.7) and the symbol a 2 PC

p

(R) be non-ellipti


(vanishing at 0):

a(�) =

�

�� i

a

(�)

(�) ; a

(�)

2 PC

p

(R) ; inf

�2R

j det a

(�)

(�)j > 0 : (3.1)

Then equation (2.19) is not Fredholm in L

p

(R

+

; x

�

(1 + x)


��

) due

to Theorem 2.6. Namely the image of the operator Im W

a

is not 
losed in

L

p

(R

+

; x

�

(1 + x)


��

) (see [Du4, x 4℄).

In the present se
tion, similarly to [Pr1, x 5.2℄, we de�ne the spa
es

!

L

p

(R

+

; x

�

(1 + x)


��

) and

 

L

p

(R

+

; x

�

(1 + x)


��

) su
h that the operators

W

a

: L

p

(R

+

; x

�

(1 + x)


��

) �!

!

L

p

(R

+

; x

�

(1 + x)


��

) ; (3.2)

W

a

:

 

L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

) (3.3)

would be Fredholm.
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Let

U

0

'(x) :=

x

Z

0

'(y)dy ; V

1

'(x) := (
)

1

Z

x

'(y)dy ; (3.4)

where (
)

1

Z

x

denotes the Cesaro mean value

(
)

1

Z

x

'(y)dy := lim

t!1

1

t� x

t

Z

x

d�

�

Z

x

'(y)dy = lim

t!1

t

Z

x

t� y

t� x

'(y)dy (3.5)

whi
h 
oin
ides with the usual Lebesgue (or the Riemann) integral if the

latter exists. The operator V

1

in (3.5) is equivalent to the Cesaro-type

operators

e

V

�

j

in (1.90) and

e

V

t

j

in (1.75) modulo isomorphism of spa
es (see

Lemmata 1.27 and 3.8).

Let

!

L

p

(R

+

; x

�

(1 + x)


��

) :=

�

' : ';V

1

' 2 L

p

(R

+

; x

�

(1 + x)


��

)

	

; (3.6)

 

L

p

(R

+

; x

�

(1 + x)


��

) :=

�

 + U

0

' : ';  2 L

p

(R

+

; x

�

(1 + x)


��

)

	

:

On de�ning the norms

k'

�

�

!

L

p

(R

+

; x

�

(1 + x)


��

)k := k'

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k

+kV

1

'

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k ;

k'+ U

0

 

�

�

 

L

p

(R

+

; x

�

(1 + x)


��

)k := k'

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k

+k 

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k

we make

!

L

p

(R

+

; x

�

(1 + x)


��

) and

 

L

p

(R

+

; x

�

(1 + x)


��

) into Bana
h

spa
es.

The embedding

C

1

0

(R

+

) �

!

L

p

(R

+

; x

�

(1 + x)


��

) � L

p

(R

+

; x

�

(1 + x)


��

)

�

 

L

p

(R

+

; x

�

(1 + x)


��

) (3.7)

are dense and follow from de�nitions.

Let

G

�

:=W

g

�

; g

�

:=

�

�� i

: (3.8)
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Then

G

�

'(x) = '(x) �

1

Z

x

e

x�y

'(y)dy ; G

+

'(x) = '(x) �

x

Z

0

e

y�x

'(y)dy (3.9)

and we 
an give equivalent des
ription of spa
es (3.6) in form of the following

lemma (see [Pr1, x 5.2℄ for a similar assertion).

Lemma 3.1 The following de�nitions of spa
es are equivalent:

!

L

p

(R

+

; x

�

(1 + x)


��

) :=

�

G

�

' : ' 2 L

p

(R

+

; x

�

(1 + x)


��

)

	

= Im

L

p

(R

+

;x

�

(1+x)


��

)

G

�

;

 

L

p

(R

+

; x

�

(1 + x)


��

) :=

�

' : G

+

' 2 L

p

(R

+

; x

�

(1 + x)


��

)

	

= Im

L

p

(R

+

;x

�

(1+x)


��

)

G

�1

+

:

Proof. It suÆ
es to prove that

k 

�

�

!

L

p

(R

+

; x

�

(1 + x)


��

)k

0

:= kG

�1

�

 

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k ; (3.10)

k'

�

�

 

L

p

(R

+

; x

�

(1 + x)


��

)k

0

:= kG

+

'

�

�

L

p

(R

+

; x

�

(1 + x)


��

)k (3.11)

de�ne equivalent norms. To 
he
k this let us prove that the operators

W

g

�1

�

 = G

�1

�

 =  + V

1

 ; W

g

�1

+

 = G

�1

+

 =  + U

0

 (3.12)

represent inverses to G

�

and to G

+

, respe
tively. Let us 
he
k G

�

(I +

V

1

)' = ', be
ause all other 
ases are similar.

Due to the density of embedding (3.7) we have to 
he
k the 
laimed

equality only for ' 2 C

1

0

(R

+

). Then

V

1

'(x) =

1

Z

x

'(y)dy

and integrating by parts we �nd

G

�

(I + V

1

)'(x) = '(x) +

1

Z

x

'(s)ds � e

�x

1

Z

x

e

�y

'(y)dy

�e

�x

1

Z

x

e

�y

dy

1

Z

0

'(s)ds = '(x) :
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By the de�nition of ' 2

 

L

p

(R

+

; x

�

(1+x)


��

) we get G

�1

�

' = '+V

1

' 2

L

p

(R

+

; x

�

(1 + x)


��

); therefore the mappings

G

�

: L

p

(R

+

; x

�

(1 + x)


��

) �!

!

L

p

(R

+

; x

�

(1 + x)


��

) ;

G

�1

�

:

!

L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

)

are one-to-one and 
ontinuous. Equivalen
e of the norm in

!

L

p

(R

+

; x

�

(1 +

x)


��

) and of the norm in (3.10) follows from the Bana
h theorem.

As we already know

G

+

('+ U

0

') = G

+

G

�1

+

' = ' ;

on the other hand ' 2 L

p

(R

+

; x

�

(1+x)


��

) implies G

+

' 2 L

p

(R

+

; x

�

(1+

x)


��

) (see (3.8), (3.9)) and therefore G

+

U

0

' = G

+

(' + U

0

') � G

+

' =

'� G

+

' 2 L

p

(R

+

; x

�

(1 + x)


��

). Thus, the mappings

G

+

:

!

L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

) ;

G

�1

+

: L

p

(R

+

; x

�

(1 + x)


��

) �!

!

L

p

(R

+

; x

�

(1 + x)


��

)

are one-to-one and 
ontinuous. Equivalen
e of the norms in (3.11) and of

this in

 

L

p

(R

+

; x

�

(1 + x)


��

) follows from the Bana
h theorem.

Corollary 3.2 The spa
es

!

L

p

(R

+

; x

�

(1 + x)


��

) and

 

L

p

0

(R

+

; x

��

(1 +

x)

�
+�

), where p

0

=

p

p� 1

, are dual.

Proof. The operators

W

g

�

= G

�

: L

p

(R

+

; x

�

(1 + x)


��

) �!

!

L

p

(R

+

; x

�

(1 + x)


��

) ;

W

g

+

= G

+

:

 

L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

)

(3.13)

de�ne isomorphisms (see Lemma 3.1) and they are dual (
onjugate) W

�

g

�

=

W

g

�

. The 
laimed result follows sin
e the spa
es L

p

(R

+

; x

�

(1+x)


��

) and

L

p

0

(R

+

; x

��

(1 + x)

�
+�

) are dual as well.

Lemma 3.3 The embedding

L

p

(R

+

; x

�

(1 + x)

1+
��

) �

!

L

p

(R

+

; x

�

(1 + x)


��

) � L

p

(R

+

; x

�

(1 + x)


��

)

�

 

L

p

(R

+

; x

�

(1 + x)


��

) � L

p

(R

+

; x

�

(1 + x)

�1+
��

) (3.14)

are 
ontinuous and dense.
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Proof (see [Pr1, Ch. 5, Theorem 2.3℄). We have to prove only the �rst and

the last embedding (see (3.7)).

Density of embedding follow from the density of C

1

0

(R

+

) in all these

spa
es.

First we 
he
k the embedding in (3.14). Obviously,

L

p

(R

+

; x

�

(1 + x)

1+
��

) = L

p

([0; 1℄; x

�

)

�

+ L

p

([1;1); (1 + x)

1+


) ;

!

L

p

(R

+

; x

�

(1 + x)


��

) = L

p

([0; 1℄; x

�

)

�

+ L

p

([1;1); (1 + x)




)

and it suÆ
es to prove the embedding

L

p

([1;1); (1 + x)

1+


) �

!

L

p

([1;1); (1 + x)




) : (3.15)

If we prove the inequality

kV

1

'

�

�

L

p

([1;1); (1 + x)




)k � 


1

k'

�

�

L

p

([1;1); (1 + x)

1+


) ; (3.16)

due to the norm de�nition in

!

L

p

([1;1); (1 + x)




) (see (3.6)) there will

follow the embedding (3.15).

Invoking the H

�

older inequality we pro
eed as follows

jV

1

'(x)j =

�

�

�

�

�

�

1

Z

x

'(y)dy

�

�

�

�

�

�

�

0

�

1

Z

x

y

�(1+
)p

0

dy

1

A

1

p

0

0

�

1

Z

x

�

�

y

1+


'(y)

�

�

p

dy

1

A

1

p

�

1

(1 + 
)p

0

� 1

k'

�

�

L

p

([1;1); (1 + x)

1+


)k ;

sin
e �p

0

(1 + 
) < �1 (see (2.7)). Thus, V

1

'(x) exists as an ordinary

Lebesgue integral for arbitrary ' 2 L

p

([1;1); (1 + x)

1+


).

For the fun
tion

f(s; t) := t j'(st)j ; s; t 2 [1;1);

we have

1

Z

1

f(s; t)ds =

1

Z

t

j'(y)dyj � jV

1

'(x)j ;

8

<

:

1

Z

1

[t




f(s; t)℄

p

dt

9

=

;

1

p

= t

1

p

�
�1

8

<

:

1

Z

t

�

�

y

1+


'(y)

�

�

p

9

=

;

1

p

dy :

The latter equalities, inserted in the following well-known inequality

8

<

:

1

Z

1

2

4

1

Z

1

t




f(s; t)ds

3

5

p

dt

9

=

;

1

p

�

1

Z

1

8

<

:

1

Z

1

[t




f(s; t)℄

p

dt

9

=

;

1

p

ds
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(see [HLP1, Theorem 202℄) yield

kV

1

'

�

�

L

p

([1;1); (1 + x)




)k � 2




1

Z

1

s

�

1

p

�
�1

8

<

:

1

Z

1

�

�

y

1+


'(y)

�

�

p

dy

9

=

;

1

p

dt

�

2




1

p

+ 


k'

�

�

L

p

([1;1); (1 + x)

1+


)k

sin
e �

1

p

� 
 < 0 (see (2.7)).

Thus, (3.16) is proved and implies 
ontinuity of the �rst embedding in

(3.14).

The se
ond embedding in (3.14) follows by density. In fa
t, as we already

proved the embedding

L

p

0

(R

+

; x

��

(1 + x)

1�
+�

) �

!

L

p

0

(R

+

; x

��

(1 + x)

�
+�

)

is 
ontinuous and dense. The spa
es are re
exive and the embedding of the

dual spa
es

 

L

p

(R

+

; x

�

(1 + x)


��

) � L

p

(R

+

; x

�

(1 + x)

�1+
��

)

are 
ontinuous and dense as well.

Corollary 3.4 Let a 2 C(

_

R

+

); then

aI 2 L

�

!

L

p

(R

+

; x

�

(1 + x)


��

)

�

; aI 2 L

�

 

L

p

(R

+

; x

�

(1 + x)


��

)

�

;

provided

ja(x) � a(1)j �M(1 + x))

�1

; x 2 R

+

M <1 :

Proof. It suÆ
es to represent

a' = [a� a(1)℄'+ a(1)'

and apply Lemma 3.3 to the �rst summand, be
ause the se
ond summand,

multipli
ation by a 
onstant, is obviously 
ontinuous operator.

Theorem 3.5 Let a(�) be given by (3.1) and (1.4) hold. Then operators

(3.2) and (3.3) are 
ontinuous.

Operators (3.2) and (3.3) are Fredholm or are invertible if and only if

the 
orresponding operators

W

a

(�)

: L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

) ; (3.17)

W

a

(+)

: L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; x

�

(1 + x)


��

) ; (3.18)

a

(+)

(�) :=

�+ i

�

a(�)
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are Fredholm or are invertible, respe
tively.

The pairs of operators (3.2) and (3.17), (3.3) and (3.18) have the kernels

and 
okernels of equal dimension and equal indi
es.

Proof (see [Pr1, x 5.2.3℄ for a similar proof). Let b; d 2 V

1

(R) and either

b(�) has a bounded analyti
 
ontinuation b(� � i�) in the lower half-plane

� > 0 or d(�) has a bounded analyti
 
ontinuation d(� + i�) in the upper

half-plane � > 0; then

W

bd

=W

b

W

d

(3.19)

(see[Du1, GF1℄). Sin
e

a(�) =

�

�� i

a

(�)

(�) =

�

�+ i

a

(+)

(�)

(see (3.1), (3.17) and (3.18)), we get

W

a

= G

�

W

a

(�)

= G

+

W

a

(+)

(3.20)

(see (3.8) and (3.19)).

All 
laimed assertions follow from (3.20) sin
e the operators

G

�

: L

p

(R

+

; x

�

(1 + x)


��

) �!

!

L

p

(R

+

; (1 + x)


�al

) ;

G

+

:

 

L

p

(R

+

; x

�

(1 + x)


��

) �! L

p

(R

+

; (1 + x)


�al

)

establish isomorphism (see Lemma (3.1)).

Remark 3.6 De�ning the spa
es

!

C

(

_

R

+

; (1 + x)

�

) :=

n

' : ';V

1

' 2 C(

_

R

+

; (1 + x)

�

)

o

;

 

C

(

_

R

+

; (1 + x)

�

) :=

n

 + U

0

' : ';  2 C(

_

R

+

; (1 + x)

�

)

o

;

for � 2 R and taking in (3.1) a; a

(�)

2W

�

(R), full analogies of Lemma 3.1

and of Theorem 3.5 
an be proved for the 
onvolution operators

W

a

: C(

_

R

+

; (1 + x)

�

) �!

!

C

(

_

R

+

; (1 + x)

�

) ;

W

a

:

 

C

(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) :

As for the analogies of Lemma 3.3 and Corollary 3.4 we easily �nd that


ontinuity

[g � g(1)℄I : C(

_

R

+

; (1 + x)

�

) �!

!

C

(

_

R

+

; (1 + x)

�

) ;

[g � g(1)℄I :

 

C

(

_

R

+

; (1 + x)

�

) �! C(

_

R

+

; (1 + x)

�

) ;

gI 2 L

�

!

C

(

_

R

+

; (1 + x)

�

)

�

; gI 2 L

�

 

C

(

_

R

+

; (1 + x)

�

)

�
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follows if

g 2 C(

_

R) ; jg(x)� g(1)j �M(1 + x))

�1�"

; x 2 R

+

; M <1 :

3.2 Convolutions on R

Let a 2 PC

p

(R) be non-ellipti
, namely, as in (3.1). Then operator W

0

a

is

not Fredholm in L

p

(R) and, moreover, has non-
losed image Im W

0

a

(see

[Du4, x 4℄).

Let us 
onsider the operators

V

1

'(x) := (
)

1

Z

x

'(y)dy= lim

t!1

1

t� x

t

Z

x

d�

�

Z

x

'(z)dz= lim

t!1

t

Z

x

t� y

t� x

'(y)dy;

V

�1

'(t) := (
)

t

Z

�1

'(y)dy ; F

0

' :=

1

Z

�1

'(�)d� ; t 2 R ; (3.21)

where the integrals with pre�x (
) are understood in the Cesaro mean value

sense and they 
onvert into an usual Lebesgue (or a Riemann) integral if

the latter exist. We de�ne the spa
e

!

L

p

(R) := f' 2 L

p

(R) : V

1

2 L

p

(R)g

= f' 2 L

p

(R) : V

�1

2 L

p

(R); F

0

' = 0g (3.22)

and endow it with the norm

k'

�

�

!

L

p

(R)k := k'

�

�

L

p

(R)k + kV

1

'

�

�

L

p

(R)k :

To justify the se
ond de�nition in (3.22) let us prove that the 
onditions

V

�1

' 2 L

p

(R) ; F

0

' = 0

follow from the prin
ipal 
ondition V

1

' 2 L

p

(R). In fa
t, the in
lusion

V

�1

' 2 L

p

(R) follows from the prin
ipal 
ondition and from F

0

' = 0,

sin
e

V

�1

'(t) = F

0

'� V

1

'(t) = �V

1

'(t) :

Thus, we have to prove only F

0

' = 0. Sin
e

F

0

' = lim

t!�1

V

1

'(t) ;

V

1

' 2 L

p

(R) is absolutely 
ontinuous with derivative (V

1

') = ' 2 L

p

(R),

we get the result.

The embedding

f' 2 C

1

0

(R) : F

0

' = 0g �

!

L

p

(R)
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is dense.

Let us prove that the 
onvolution operator

G

�

:=W

0

g

�

: L

p

(R) �!

!

L

p

(R) ; g

�

(�) :=

�

�� i

: (3.23)

with vanishing symbol is bounded and, moreover, de�nes an isomorphism

with the inverse operator written as follows

(W

0

g

�

)

�1

=W

g

�1

�

= I + V

1

:

!

L

p

(R) �! L

p

(R) (3.24)

(
f. Lemma 3.1). In fa
t, by de�nition (3.21) operator (3.24) is bounded

and, due to obvious equality W

0

g

W

0

h

= W

0

gh

(see (2.1)) W

g

�1

�

is the inverse

from the right to W

0

g

�

:

W

0

g

�

W

g

�1

�

=W

0

g

�

g

�1

�

= I :

Let us prove that operator (3.23) is bounded. A

ording to the de�nition

(3.22) it suÆ
es to prove that

V

1

W

0

g

�

' 2 L

p

(R) provided ' 2 L

p

(R) :

Sin
e

W

0

g

�

'(t) = '(t) �

1

Z

x

e

t��

'(�)d� ;

we pro
eed as follows

V

1

W

0

g

�

'(t) = V

1

'(t)� (
)

1

Z

t

d�

1

Z

�

e

��y

'(y)dy

= V

1

'(t)�(
)

1

Z

t

'(y)dy

y

Z

t

e

��y

dy=V

1

'(t)�(
)

1

Z

t

(1� e

��y

)'(y)dy

= (
)

1

Z

t

e

��y

'(y)dy = '(t)�W

0

g

�

'(t) (3.25)

and get the in
lusion V

1

W

0

g

�

' 2 L

p

(R) be
ause ', W

0

g

�

' 2 L

p

(R). More-

over, (3.25) 
an also be written as follows

(I + V

1

)W

0

g

�

' = ' ;

whi
h means, due to (3.24), W

0

g

�1

�

W

0

g

�

= I and W

0

g

�

is invertible from the

left.
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Similarly to (3.14) is proved that the embeddings

f' 2 L

p

(R; 1 + jxj) : F

0

' = 0g �

!

L

p

(R) � L

p

(R; (1 + jxj)

�1

)

are 
ontinuous and dense.

If g 2 L

1

(

_

R) has the estimate

jg(x)� g(1)j �M(1 + jxj))

�1

; x 2 R ; M <1 ; (3.26)

the following multipli
ation operators are bounded

[g � g(1)I : L

p

(R) �!

!

L

p

(R) ; gI :

!

L

p

(R) �!

!

L

p

(R) : (3.27)

Theorem 3.7 Let a(�) be as in (3.1). Operator W

0

a

: L

p

(R) �!

!

L

p

(R)

is Fredholm if and only if W

0

a

(�)

is Fredholm in the spa
e L

p

(R), whi
h

reads

inf

�2R

ja

(�)

(�)j > 0 (3.28)

(see (2.5)). If (3.28) holds, (a

(�)

)

�1

2 PC

N�N

p

(

_

R) and the inverse is

(W

0

a

)

�1

:=W

0

(a

(�)

)

�1

(I + V

1

) :

!

L

p

(R) �! L

p

(R) : (3.29)

Proof. Due to (3.24), (3.24) the proof 
an immediately be redu
ed to the

investigation of the operator W

0

a

(�)

in the spa
e L

p

(R). In this 
ase the

Fredholm 
riteria is known (see (2.5)).

3.3 Cesaro-type operators

We remind that �

1

:= f� 2 C : j�j = 1g is the unit 
ir
umferen
e,

� := f�

1

; : : : ; �

n

g � �

1

is the 
onformal image of all knots of � and �

ow

is the subset of � (
onformal image of all outward peaks of �; see (1.74){

(1.92)); �

1�

j

= �

�

1�

j

[�

+

1�

j

is a �xed neighbourhood of �

j

(see (1.74){(1.92)).

We use L

p

(�

1

; f�

j

g) for the spa
e L

p

(�

1

;�

ow

) when �

ow

= f�

j

g 
onsists of

a single knot.

For a Bana
h spa
e X by X

n

we denote the spa
es of ve
tor{elements

	 = ( 

1

; : : : ;  

n

) with 
omponents  

j

2 X. Let

L

2

p

(R; f1g) :=

n

� = ('

1

; '

2

) 2 L

2

p

(R) :

e

V

1

� 2 L

p

(R

+

)

o

; (3.30)

e

V

1

� :=

�

e

2�

p

i

V

1

�V

1

0 0

��

'

1

'

2

�

= V

1

[e

�

�

p

i

'

1

� '

2

℄

(see (3.4) for V

1

) denote the subset of L

2

p

(R) with the appropriate norm

k�

�

�

L

2

p

(R; f1g)k := k�

�

�

L

p

(R)k + k

e

V

1

�

�

�

L

p

(R

+

)k :



69

Lemma 3.8 There exists an isomorphism of spa
es

Z

p�

j

: L

p

(�

1

) �! L

2

p

(R) ;

Z

p�

j

: L

p

(�

1

; f�

j

g) �! L

2

p

(R; f1g) ;

(3.31)

su
h that the Cesaro-type operators

e

V

�

j

in (1.90) and

e

V

1

in (3.4) are

equivalent

Z

p�

j

e

V

�

j

Z

�1

p�

j

= g

j

e

V

1

h

j

I = g

j

e

V

1

+R

j

; (3.32)

where the fun
tions g

�1

j

, h

�1

j

2 C

1

(

_

R) are non-vanishing

g

j

(x) :=

�

1� ie

�x

1 + e

�2x

�

1

p

; h

j

(x) :=

(1 + e

�2x

)

1

p

(1� ie

�x

)

1+

1

p

and the operator R

j

: L

p

(R) ! L

p

(R) is bounded.

Proof. The transformations

Z

�

j

'(x) := j{

0

�

j

(x)j

1

p

'({

�

j

(x)) = 2

1

p

(x

2

+ 1)

1

p

'

�

��

j

x� i

x+ i

�

;

Z

p

 (�) :=

�

e

�

�

p

 (e

��

); e

�

�

p

 (�e

��

)

�

; x; � 2 R;

(3.33)

where the �rst one is based on the Kelly transformation

{

�

j

(x) := ��

j

x� i

x+ i

: R �! �

1

; {

�

j

(0) = �

j

;

establish isometri
 isomorphisms

Z

�

j

: L

p

(�

1

)! L

p

(R) ; kZ

�

j

'

�

�

L

p

(R)k = k'

�

�

L

p

(�

1

)k ;

Z

p

: L

p

(R) ! L

2

p

(R) ; kZ

p

 

�

�

L

2

p

(R)k = k 

�

�

L

p

(R)k

(3.34)

and have the following inverses

Z

�1

�

j

 (�) := j({

�1

�

j

)

0

(x)j

1

p

 ({

�1

�

j

(x)) = j� + �

j

j

�

2

p

 

�

�i

� � �

j

� + �

j

�

; (3.35)

Z

�1

p

�(x) := �

�

(x)(�x)

�

1

p

'

2

(� log(�x)) + �

+

(x)x

�

1

p

'

1

(� log x) ;

where � = ('

1

; '

2

)

>

and �

�

(x) are the 
hara
teristi
 fun
tions of R

�

� R.

The transformation

Z

p�

j

:= Z

p

Z

�

j

(3.36)

establishes the �rst of 
laimed isomorphisms in (3.31).

To prove that Z

p�

j

arranges the se
ond isomorphisms in (3.31) as well,

let us 
onsider the following intermediate spa
e

L

2

p

(R; f0g) :=

n

 2 L

p

(R) :

e

V

0

 2 L

p

(R

+

)

o

; (3.37)

e

V

0

 (x) := V

0

[e

�

�

p

i

 (x)�  (�x)℄ ;



70

where the operator V

0

is de�ned by the Cesaro-type mean value integral

(
f. (3.5)):

V

0

 (x) := (
)

x

Z

0

�

y

x

�

1

p

 (y)

dy

y

= lim

z!0

h

log

x

z

i

�1

x

Z

z

d�

�

x

Z

�

�

y

x

�

1

p

 (y)

dy

y

= lim

z!0

x

Z

z

log

y

z

log

x

z

�

y

x

�

1

p

 (y)

dy

y

: (3.38)

It is easy to verify dire
tly the following 
onne
tion

Z

p

e

V

0

Z

�1

p

=

e

V

1

(3.39)

(see (3.34)). Moreover, Z

p

establishes isometri
 isomorphisms

Z

p

: L

p

(R; f0g) ! L

2

p

(R; f1g) ;

kZ

p

 

�

�

L

2

p

(R; f1g)k = k 

�

�

L

p

(R; f0g)k :

(3.40)

Therefore, to justify the se
ond isomorphism in (3.31) we just need to verify

Z

�

j

V

�

j

Z

�1

�

j

= g

0

V

0

h

0

I ; (3.41)

where g

�1

0

; h

�1

0

2 C

1

(R) are non-vanishing fun
tions

g

0

(x) :=

�

1� ix

1 + x

2

�

1

p

; h

0

(x) :=

(1 + x

2

)

1

p

(1� ix)

1+

1

p

be
ause applying equivalen
e (3.39) to equality (3.41) we immeadiately get

(3.32).

Let us 
onsider the following operators

V

1

�

j

'(�) := lim

�!�

j

�

log

(� � �

j

)(� + �

j

)

(� � �

j

)(� + �

j

)

�

�1

Z

^

� �

d�

�� �

j

Z

^

��

�

� � �

j

� � �

j

�

1

p

�'(�)

d�

� � �

j

= lim

�!�

j

Z

^

� �

log

���

j

���

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

;

V

2

�

j

'(�) := lim

�!�

j

Z

^

� �

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

and prove that

V

�

j

= V

1

�

j

= V

2

�

j

: (3.42)
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In fa
t,

(V

�

j

� V

1

�

j

)'(�) := lim

�!�

j

log

�+�

j

�+�

j

log

���

j

���

j

+ log

�+�

j

�+�

j

V

�

j

'(�) = 0 ;

be
ause, for a �xed � 2 �

1�

j

,

�

�

�

�

log

� + �

j

� + �

j

�

�

�

�

�M

0

<1 and lim

�!�

j

log

�+�

j

�+�

j

log

���

j

���

j

+ log

�+�

j

�+�

j

= 0 :

For the di�eren
e V

2

�

j

� V

1

�

j

we have

(V

2

�

j

� V

1

�

j

)'(�) = lim

�!�

j

Z

^

� �

log

�+�

j

�+�

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

�

� � �

j

� � �

j

�

1

p

'(�)

d�

� � �

j

: (3.43)

If log

2

(� � �

j

)'(�) belongs to L

p

(�

1�

j

) integrand in (3.43) is absolutely

integrable and we 
an drug the limit inside; on the other hand

lim

�!�

j

log

�+�

j

�+�

j

log

(���

j

)(�+�

j

)

(���

j

)(�+�

j

)

= 0

for all �xed � 2

�

� � . Therefore, with above 
onstraints on '(�) we get

(V

2

�

j

� V

1

�

j

)'(�) = lim

�!�

j

V

1

�

j

v

j

'(�) = 0 ; v

j

(�; �) :=

log

�+�

j

�+�

j

log

���

j

���

j

:

Sin
e the above taken fun
tions are dense in the spa
e L

p

(�

1j

; f�

j

g), equality

V

2

�

j

' = V

1

�

j

' holds for all ' 2 L

p

(�

1j

; f�

j

g).

Due to (3.42) all three operators V

�

j

, V

1

�

j

and V

2

�

j

de�ne the same spa
e

L

p

(�

1

; f�

j

g) (
f. (1.92)). Therefore, to prove the se
ond isomorphism in

(3.31) we use the operator V

2

�

j

instead of V

�

j

. We pro
eed as follows:

(Z

�

j

�

�

j

V

2

�

j

Z

�1

�

j

 )(x)= lim

{

�

j

(z)!�

j

�

�

�

{

0

�

j

(x)

�

�

�

1

p

Z

!

{

�

j

(z){

�

j

(x)

log

(���

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)(�+�

j

)

log

({

�

j

(x)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(x)+�

j

)

�

�

� � �

j

{

�

j

(x)� �

j

�

1

p

�

�

�

({

�1

�

j

)

0

(�)

�

�

�

1

p

 ({

�1

�

j

(�))

d�

� � �

j

;
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inserting � = {

�

j

(y), d� = {

0

�

j

(y)dy and taking into a

ount the equalities

({

�1

�

j

)

0

({

�

j

(y)) = [{

0

�

j

(y)℄

�1

;

{

�

j

(x) � �

j

{

�

j

(x) + �

j

= ix ;

{

�

j

(x)� �

j

=

�2�

j

x

x+ i

; {

0

�

j

(x) =

�2i�

j

(x + i)

2

; (3.44)

we 
ontinue as follows

(Z

�

j

�

�

j

V

2

�

j

Z

�1

�

j

 )(x) = lim

z!0

x

Z

z

log

({

�

j

(y)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(y)+�

j

)

log

({

�

j

(x)��

j

)({

�

j

(z)+�

j

)

({

�

j

(z)��

j

)({

�

j

(x)+�

j

)

�

{

�

j

(y)� �

j

{

�

j

(x)� �

j

�

1

p

�

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

 (y)

{

0

�

j

(y)dy

{

�

j

(y)� �

j

= lim

z!0

g

0

(x)

x

Z

z

log

y

z

log

x

z

�

y

x

�

1

p

h

0

(y) (y)

dy

y

= g

0

V

0

h

0

 (x) ; g

0

(x) :=

�

1� ix

1 + x

2

�

1

p

; h

0

(x) :=

(1 + x

2

)

1

p

(1� ix)

1+

1

p

and we get (3.41).

Boundedness of

R

j

:= g

j

e

V

1

[h

j

� 1℄I : L

2

(R) �! L

2

(R)

follows sin
e h

j

(x) � 1 = h

j

(x) � h

j

(+1) = O

�

e

�

x

p

�

as x ! +1 whi
h

yields the boundedness [h

j

� 1℄I : L

2

(R) !

!

L

2

(R) (see (3.27)).

Proof of Lemma 1.27. Let us apply the isomorphism Z

p�

j

, de�ned in

(3.31), (3.33). Then '; log(� � �

j

)' 2 L

p

(�

1�

j

) for all �

j

2 �

ow

imply

Z

p�

j

' 2 L

2

p

(R

+

); (Z

p�

j

log(� � �

j

)')(x)=log

�

��

j

e

�x

e

�x

+ i

�

(Z

p�

j

')(x)

=

�

�x+ log

��

j

e

�x

+ i

�

(Z

p�

j

')(x) 2 L

2

p

(R

+

)

(see (3.33)); due to Lemma 3.3 Z

p�

j

' 2

!

L

2

p

(R

+

). Applying the inverse iso-

morphism Z

�1

p�

j

(see (3.31), (3.35)) we �nd ' = Z

�1

p�

j

Z

p�

j

' 2

!

L

2

p

(�

1�

j

; f�

j

g).

The remainder 
laims of the Lemma (see (1.98)) follow from the proved

part as Corollary 3.4 from Lemma 3.3.

Remark 3.9 Due to the above established isomorphism (3.40) and to Corol-

lary 3.4 if a fun
tion g(x) has the property

g 2 C(J ); g(x)� g(0) = O((1� log x)

�1

) ; J := (�
; 
) � R (3.45)
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the following multipli
ation operators (see (3.37))

gI : L

p

(J ; f0g) �! L

p

(J ; f0g) ;

[g � g(0)℄I : L

p

(J ) �! L

p

(J ; f0g)

are bounded.

3.4 Equations on the 
ir
umferen
e (example)

Let �

1

, � := f�

1

; : : : ; �

n

g � �

1

, �

ow

� �, �

1�

j

and �

�

1�

j

be the same as in

x 3.3.

We us 
onsider, as an example, the following operator with �xed singu-

larities at � in the kernel

A

�

'(�) = '(�)

+

n

P

j=1

�

+

�

j

(�)

�

j

�

j

�

R

�

+

1�

j

�

���

j

���

j

�




j

'(�)d�

�

2

j

��t

; � 2 �

1

; (3.46)

where �

+

�

j

(t) is the 
hara
teristi
 fun
tion of the ar
 �

+

1�

j

� �

1�

j

� �

1

and

�

j

=

8

>

>

>

>

<

>

>

>

>

:

sin�

�

1

p

+ 


j

�

for � 2 �

ow

;

sin�

�

1

p

+ 


0

j

�

for � 62 �

ow

;

(3.47)

�

1

p

< 


j

< 1�

1

p

; � 2 �

ow

;

�

1

p

< 


0

k

6= 


k

< 1�

1

p

; � 62 �

ow

: (3.48)

Theorem 3.10 Let 
onditions (3.47) and (3.48) hold. Then the operator

A

�

: L

p

(�

1

)! L

p

(�

1

;�

ow

) ; 1 < p <1 (3.49)

is Fredholm provided

1

p

+ 


j

6=

1

2

for all j = 1; : : : ; n (3.50)

and then

dim Ker A

�

=

X

�

j

>0

�

j

; dim Coker A

�

= �

X

�

j

<0

�

j

; (3.51)
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where

�

j

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 for

1

2

<

1

p

+ 


j

< 1 ; �

j

2 �

ow

;

0 for 


j

2 (


0

j

; 1� 


0

j

) ; �

j

62 �

ow

;

�1 for 0 <

1

p

+ 


j

<

1

2

; �

j

2 �

ow

;

1 for 


j

> maxf


0

j

; 1� 


0

j

g ; �

j

62 �

ow

;

�1 for 


j

< minf


0

j

; 1� 


0

j

g ; j = m+ 1; : : : ; n :

(3.52)

In parti
ular, A

�

in (3.49) is invertible provided

1

2

<

1

p

+ 


j

< 1 for all � 2 �

ow

and 


j

2 (


0

j

; 1� 


0

j

) for all � 62 �

ow

: (3.53)

Proof. Note that sin
e �

+

1�

k

\ �

+

1�

j

= ; for k 6= j, we have

A

�

=

n

Q

j=1

A

�

j

;

A

�

j

:= '(�) + �

+

�

j

(�)

�

j

�

j

�

Z

�

+

1�

j

�

� � �

j

� � �

j

�




j

'(�)d�

�

2

j

� �t

; � 2 �

1

: (3.54)

Therefore it suÆ
es to prove the Theorem for a single knot � = f�

j

g.

We will apply the isomorphisms of spa
es

Z

�

j

: L

p

(�

+

1�

j

) �! L

p

(I) ;

e

Z

p

: L

p

(I) �! L

p

(R

+

) ;

(3.55)

where I = [0; 1℄ and Z

�

j

is de�ned in (3.33), while

e

Z

p

'(x) := e

�

x

p

'(e

�x

) : (3.56)

We have assumed, without loss of generality, that

�

+

1�

j

=

�

e

i#

�

j

: 0 < # < �

	

is the half-
ir
umferen
e; otherwise we will use another Kelly transforma-

tion

{

�

j

(x) := ��

j

x� i 
ot

#

j

2

x+ i 
ot

#

j

2

: I = [0; 1℄ �! �

+

1�

j

=

!

�

j

(�

j

e

i#

j

)� �

1

while de�ning the isomorphism Z

�

j

in (3.33). The operators Z

�

j

and

e

Z

p

,

besides (3.55) and similarly to (3.31), (3.40), establish the following isomor-

phisms

Z

�

j

: L

p

(�

+

1�

j

; f�

j

g) �! L

p

(I; f0g) ;

e

Z

p

: L

p

(I; f0g) �!

!

L

p

(R

+

) :

(3.57)
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Lifting the operator (3.54) to the equivalent operator �rst by the iso-

morphism Z

�

j

, we get, by applying (3.44),

e

B

�

j

 (x) := (Z

�

j

A

�

j

Z

�1

�

j

 )(x)= (x)+

�

j

�

j

�

�

�

{

0

�

j

(x)

�

�

�

1

p

�

Z

�

1�

j

�

{

�

j

(x)� �

j

� � �

j

�




j

�

�

�

�

({

�1

�

j

)

0

(�)

�

�

�

1

p

 ({

�1

�

j

(�))

d�

�

2

j

� �{

�

j

(x)

=  (x) +

�

j

�

j

�

1

Z

0

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

�

{

�

j

(x)� �

j

{

�

j

(y)� �

j

�




j

{

0

�

j

(y) (y)dy

�

2

j

� {

�

j

(y){

�

j

(x)

=  (x)�

�

j

�

1

Z

0

�

x

y

�




j

�

x+ i

y + i

�

1�


j

�

x

2

+ 1

y

2

+ 1

�

1

p

 (y)dy

y + x

=g

j

B

�

j

g

�1

j

 (x)

for x 2 I, where

g

j

(x) :=

(x+ i)

1�


j

(1 + x

2

)

1

p

; B

�

j

 (x) :=  (x) �

�

j

�

1

Z

0

�

x

y

�




j

 (y)dy

y + x

(3.58)

and g

�

j

2 C

1

(I) satisfy 
ondition (3.45). Therefore we 
an deta
h invertible

operators g

�1

j

I and study the equivalent operators

B

�

j

: L

p

(I) �! L

p

(I; f0g) for �

j

2 �

ow

;

B

�

j

: L

p

(I) �! L

p

(I) for �

j

62 �

ow

:

The operator B

�

j


an be lifted further, now by Z

p

, to the following equiva-

lent operator

W

B

�

j

= Z

p

B

�

j

Z

�1

p

: L

p

(R

+

) �!

~

L

p

(R

+

) for �

j

2 �

ow

;

W

B

�

j

= Z

1

B

�

j

Z

�1

1

: L

p

(R

+

) �! L

p

(R

+

) for �

j

62 �

ow

(3.59)

(see (3.56)), whi
h turn out to be 
onvolutions. In fa
t,

(Z

1

B

�

j

Z

�1

1

')(x) = '(x) �

�

j

�

1

Z

0

e

�

x

p

�

e

�x

y

�




j

z

�

1

p

'(� log z)dz

z + e

�x

= '(x)�

�

j

�

1

Z

0

e

(y�x)

(

1

p

+


j

)

'(y)dy

1 + e

y�x

=W

B

�

j

'(x) ;

where

B

�

j

(�) := 1�

�

j

�

F

t!�

"

e

�

(

1

p

+


j

)

t

1 + e

�t

#

= 1�

�

j

i

sinh�

h�

1

p

+ 


j

�

i+ �

i
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= 1�

�

j

sin�

�

1

p

+ 


j

� i�

�

; � 2 R ; j = 0; : : : ; n (3.60)

(see [Du1, Ch. II, x 1℄).

First let �

j

62 �

ow

; then (see (3.47))

B

�

j

(�) := 1�

sin�

�

1

p

+ 


0

j

�

sin�

�

1

p

+ 


j

� i�

�

; � 2 R ; 


0

j

6= 


j

:

From the property B

�

j

(�) = B

�

j

(��) we easily 
on
lude that B

�

j

(�) = 0

implies � = 0 and, due to 
onditions (3.48),

inf

�2R

jB

�

j

(�)j > 0 for �

j

62 �

ow

:

Sin
e B

�

j

(�) depends 
ontinuously on the parameter �

j

:=

1

p

+ 


j

, 0 <

�

j

< 1, the index indB

�

j

might have at most 3 di�erent values. For 


j

2

(


0

j

; 1� 


0

j

) we apply the homotopy

B

j;�

(�) := 1� �

sin�

�

1

p

+ 


0

j

�

sin�

�

1

p

+ 


j

� i�

�

6= 0 for � 2

_

R ; 0 � � � 1 ;

sin
e B

j;�

(�) 6= 0 for all � 2

_

R and � 2 [0; 1℄ we 
on
lude ind B

�

j

=

ind B

j;1

= ind B

j;0

= 0.

For 


j

< minf


0

j

; 1 � 


0

j

g and for 


j

> maxf


0

j

; 1 � 


0

j

g it is suÆ
ient

to 
al
ulate the index only for one value of parameters in ea
h 
ase. The

images of the test fun
tions on the 
omplex plane are plotted on Fig. 5 in

the Appendix with the arrows showing the orientation of the image when

the argument � ranges through R from �1 to 1.

Finally we get

ind B

�

j

=

8

<

:

1 if 


j

< minf


0

j

; 1� 


0

j

g ;

0 if 


j

2 (


0

j

; 1� 


0

j

) ;

�1 if 


j

> maxf


0

j

; 1� 


0

j

g ;

(3.61)

for �

j

62 �

ow

(
f. [Du1, Du3℄).

Next let �

j

2 �

ow

. Then (see (3.47))

B

�

j

(�) := 1�

sin�

�

1

p

+ 


j

�

sin�

�

1

p

+ 


j

� i�

�

=

�

�� i

B

0

j

(�)

and

B

0

j

(0) = lim

�!0

�� i

�

B

0

j

(�) = �iB

0

j

(0)

= �� 
ot�

�

1

p

+ 


j

�

6= 0 i�

1

p

+ 


j

6=

1

2

:
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Therefore,

inf

�2R

jB

0

j

(�)j > 0 i�

1

p

+ 


j

6=

1

2

; �

j

2 �

ow

: (3.62)

Further we �nd easily that ind B

0

j

might have at most two di�erent values,

B

0

j

(�1) = 1, �B

0

j

(0) > 0 for �

�

1

p

+ 


j

�

1

2

�

> 0 and � Im B

0

j

(�) > 0 for

�� > 0. The images of the test fun
tions on the 
omplex plane are plotted

on Fig. 6 in Appendix with the arrows showing the orientation of the image

when the argument � ranges through R from �1 to 1. These tests show

that

ind B

0

j

=

�

1 if 0 <

1

p

+ 


j

<

1

2

;

0 if

1

2

<

1

p

+ 


j

< 1 for �

j

2 �

ow

:

A

ording to Theorems 2.5 and 3.5 we get: the operator W

B

�

j

in (3.59)

is Fredholm i� 
onditions (3.48) and (3.50) hold (see (3.51) and (3.62))

and Ind W

B

�

j

= � ind B

0

j

= �

j

for �

j

2 �

ow

(see (3.61)), Ind W

B

�

j

=

� ind B

�

j

= �

j

for �

j

62 �

ow

(see (3.61)), where �

j

is de�ned in (3.52).

4 Ellipti
 boundary integral equations

Let � be as in x 1.1, the weight fun
tion �(t) be de�ned in (1.2).

For our purposes we need to de�ne the order of 
usp: �

j

> 0 is 
alled

the order of a 
usp t

j

2 � if there exists q

j

6= 0 su
h that

arg

�

�

(t

j

; r)� t

j

�

+

(t

j

; r)� t

j

= q

j

r

�

j

+ o (r

�

j

) as r ! 0;

where �

�

(t

j

; r) 2 �

j�1

and �

+

(t

j

; r) 2 �

j

are equidistant points j�

�

(t

j

; r)�

t

j

j = r (see Fig. 3).

`

`

`

`

`

`

`

`

`

`

`
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a

a

a

a

a
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q
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q
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x

+

x

�

x

+

x

�

xx

t

j

t

j

�

+

�

�

�

�

�

+

�

j�1

�

j

�

j�1

�

j

r

r

Fig. 3
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The obvious equivalent 
ondition is

�

�

(t

j

; r)� �

+

(t

j

; r) = q

j

r

1+�

j

+ o

�

r

1+�

j

�

as r ! 0 :

Further equivalent de�nitions of the order 
an be found in [DLS1℄.

Throughout this se
tion we assume the orders of 
usps are all equal 1

if 


j

= 0 or 


j

= 2 ; then �

j

= �(t

j

) = 1 (4.1)

for all j = 1; : : : ; n

(see (3.2)) and will investigate the following integral equations:

A

0

' = a

0

'+ a

1

S

�

+ a

2

W

�;0

'+ a

3

W

�

�;0

'+ a

4

�

t

V

�

' = f (4.2)

with N � N matrix 
oeÆ
ients a

0

, a

1

, a

2

, a

3

, a

4

2 PC

N�N

(�) (a

0

, a

1

,

a

2

, a

3

, a

4

2 PH

N�N

�

(�)) in the ve
tor spa
e L

N

p

(�; �) (in the ve
tor spa
e

(H

0

�

)

N

(�; �), respe
tively, provided � has no 
usps 0 < 


j

< 2, j = 1; : : : ; n)

A

1

' = a

0

'+ a

1

W

�;0

'+ a

2

W

�

�;0

' = f ; a

0

; a

1

; a

2

2 PC

N�N

(�) (4.3)

in the ve
tor spa
es L

N

p

(�; �) and PC

N

(�; �),

B

0

' = b

0

'+ b

1

W

�;0

' = g ; b

0

; b

1

2 (PC

1

)

N�N

(�) � C

N�N

(�) (4.4)

in the ve
tor spa
es (W

1

)

N

p

(�; �), C

N

(�; �), (PC

1

)

N

(�; �) and in

(H

0

)

N

�+1

(�; �) (in the latter 
ase 
usps are absent and 
oeÆ
ients belong

to PH

N�N

�

(�)).

Due to Theorems 1.5 and 1.6 respe
tive 
onditions in (1.4) ensure bound-

edness of operators A

0

; A

1

; B

0

in spa
es listed above.

4.1 Equation (4.2) in the spa
es L

N

p

(�; �) and H

0

�

(�; �)

Let X(�) denote the spa
e L

N

p

(�; �) or, if 
usps are absent, the spa
e

H

0

�

(�; �) and appropriate 
ondition in (1.4) hold. Symbol of equation (4.2)

in the spa
e X(�) reads as follows

(A

0

)

X(�)

:= ea

0

+ ea

1

S

X(�)

+ ea

2

W

X(�)

+ ea

3

W

�

X(�)

+ ea

4

(�

t

V )

X(�)

; (4.5)

where

ea :=

"

a(t+ 0) 0

0 a(t� 0)

#

; a 2 PC

N�N

(�) ; t 2 � ;

W

X(�)

(t; �; �) :=

1

4

h

S

X(�)

(t; �; �) + S

X(�)

(t;��;��)

i

; �; � 2 R ;
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(�

t

V )

X(�)

(t; �; �) :=

i

4

h

S

X(�)

(t; �; �)� S

X(�)

(t;��;��)

i

;

W

�

X(�)

(t; �; �) := �

1

4

h

e

h

�1

(t)S

X(�)

(t; �; �)

e

h(t) +

e

h(t)S

X(�)

(t;��;��)

e

h

�1

(t)

i

e

h(t) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

"

1 0

0 1

#

if t 6= t

1

; : : : ; t

n

;

"

1 0

0 e

�(


j

�1)i

#

if t = t

j

; j = 1 : : : ; n ;

S

X(�)

(t; �; �) :=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

2

6

6

4


oth�(i�

t

+ �) �

e

�(


t

�1)(i�

t

+�)

sinh�(i�

t

+ �)

e

�(1�


t

)(i�

t

+�)

sinh�(i�

t

+ �)

� 
oth�(i�

t

+ �)

3

7

7

5

if 0 < 


t

< 2 ;

(


j

� 1)

"

� sign � 2�

�

(�)e

2�

2�

+

(�)e

�2�

sign�

#

if t = t

j

; 


t

= 


j

= 0; 2 ; � 6= 0 ;

(


j

�1)

"

� 
oth�(i�

t

+ �) 1+
oth�(i�

t

+ �)

1�
oth�(i�

t

+ �) � 
oth�(i�

t

+ �)

#

if t = t

j

; 


t

= 


j

= 0; 2; � = 0 ;

(4.6)

�

t

:=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

p

if t 6= t

1

; : : : ; t

n

; X(�) = L

p

(�; �) ;

1

2

if t 6= t

1

; : : : ; t

n

; X(�) = H

0

�

(�; �) ;

1

p

+ �

t

if t = t

j

; X(�) = L

p

(�; �) ;

�

j

� � if t = t

j

; X(�) = H

0

�

(�; �) ;




t

:=

(

1 if t 6= t

1

; : : : ; t

n

;




j

if t = t

j

;

�

�

(�) :=

1

2

(1 + sign �) :

Due to 
onstraints (1.4) 0 < �

t

< 1 for all t 2 � and the symbol

(A

0

)

X(�)

(t; �; �) represents pie
ewise-
ontinuous uniformly bounded fun
-

tion of all variables.

Although h(t

j

� 0) = h(t

j

+ 0)e

�(


j

�1)i

(see (1.20)), we have dropped

the fa
tor h(t

j

+ 0) for t = t

j

and the fa
tor h(t) for t 6= t

1

; : : : ; t

n

in
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the de�nition of the symbol matrix

e

h(t) above sin
e it 
an
els out in the


ombined symbol (A

0

)

X(�)

(t; �; �). In fa
t,

e

h(t) and

e

h

�1

(t) enter the symbol

(A

0

)

X(�)

(t; �; �) only as the 
ombination

e

h

�1

(t)S

X(�)

e

h(t) and the 
onstant

fa
tors h

�1

(t

j

+ 0), h(t

j

+ 0) 
an
el out.

Theorem 4.1 Let X(�) = L

N

p

(�; �) or, if � has no 
usps, X(�) =

(H

0

�

)

N

(�; �)). Equation (4.2) is Fredholm in the spa
e X(�) if and only

if

inf

t2�; �;�2R

�

�

det (A

0

)

X(�)

(t; �; �)

�

�

> 0 : (4.7)

If 
ondition (4.7) holds, then

Ind A

0

= �

1

2�

�

arg det (A

0

)

X(�)

(t;+1; 0)

�

�

�

n

X

j=1

1

2�

n

�

arg det (A

0

)

X(�)

(t

j

; �; 0)

�

Rnf0g

+

�

arg det (A

0

)

X(�)

(t

j

; 0; �)

�

R

o

: (4.8)

Proof. Due to Lemma 3.1

A

0

= a

0

I + a

1

S

�

+

a

2

4

(S

�

+ VS

�

V) +

a

3

4

(S

�

�

+ VS

�

�

V) +

a

4

4

(S

�

� VS

�

V)

and the 
laimed result follows from [DLS1, Theorem 1.1℄ for the 
ase X(�) =

L

N

p

(�; �) and from [Du6, Du7℄ for the 
ase X(�) = (H

0

�

)

N

(�; �) (when 
usps

are absent) if we take into a

ount the following:

I. The symbol of operator A

0

de�ned in [DLS1℄ and in [Du8℄ (see also

[Du3, Du5℄) has a blo
k-diagonal form

2

4

(A

0

)

X(�)

(t; �; �) 0

0 (A

0

)

X(�)

(t;��;��)

3

5

and it suÆ
es to 
onsider only the �rst blo
k as a symbol of A

0

. Due

to this 
hange we should multiply the index formula by fa
tor

1

2

.

Let us note that symbol would be a full matrix-fun
tion if the 
orre-

sponding operator 
ontains terms VS

�

; VaI; aV or S

�

V .

II. The dual operator W

�

�;0

to W

�;0

is de�ned in (3.9) and the symbol

for it is 
omposed a

ording to the usual rule (see (4.5)) with

e

h(t)

denoting the symbol of hI (see (3.7) for h(t)).
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III. If B(t; �; �) is the symbol of B, the symbol of B

0

= VBV reads as

follows

B

0

(t; �; �) = B(t;��;��) (4.9)

(see [DLS1, x 1℄).

Corollary 4.2 For the operator

A

0

= a

0

I+a

1

S

�

= (a

o

+a

1

)(P

+

+GP

�

); P

�

:=

1

2

(I�S

�

); G :=

a

o

� a

1

a

o

+ a

1

;

following 
onditions are equivalent to (4.7):

(i) inf

t2�

ja

0

(t)� a

1

(t)j > 0;

(ii

0

) �2��

t

j

< arg

G(t

j

� 0)

G(t

j

+ 0)

< 2�(1 � �

t

j

), j = 1; : : : ; n, where �

t

j

is

de�ned in (4.6);

(ii

00

) (equivalent to ii') G(t) has the representation

G(t) = G

0

(t)

n

Y

j=1

(t� z

0

)

�

j

t

j

; G

o

2 C(�

1

) ;

z

0

2 


+

; ��

t

j

< �

j

< 1� �

t

j

; j = 1; : : : ; n

and (t� z

0

)

�

j

t

j

has the jump only at the point t

j

2 �.

If 
onditions (i) and (ii') (or (i) and (ii")) hold,

Ind A = ind G

0

:

4.2 Equation (4.3) in the spa
es L

N

p

(�; �) and PC

N

(�; �)

Although equation (4.3) is a parti
ular 
ase of equation (4.2), in this 
ase

we 
an de�ne substantially simpler symbol and 
onsider equations also in

the spa
e PC

N

(�; �).

Let X(�) denote either L

N

p

(�; �) or PC

N

(�; �) and (1.4) hold.

Symbol of equation (4.3) in the spa
e X(�) reads as follows

(A

1

)

X(�)

(t; �) :=

"

a

0

(t+ 0) A

+

(t; �)

A

�

(t; �) a

0

(t� 0)

#

; (4.10)
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where

A

�

(t; �) := a

1

(t� 0)w

X(�)

(t; �) + a

2

(t� 0)w

�

X(�)

(t; �) ; t 2 �; � 2 R ;

w

X(�)

(t; �) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if t 6= t

1

; : : : ; t

n

;

sinh�(1� 


j

)(i�

j

+ �)

sinh�(i�

j

+ �)

if t = t

j

; 0 < 


j

< 2 ;




j

� 1

2

e

�j�j

if t = t

j

; 


j

= 0; 2 ;

w

�

X(�)

(t; �) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if t 6= t

1

; : : : ; t

n

;

sinh�(1� 


j

)[(�

j

+ 1)i+ �℄

sinh�(i�

j

+ �)

if t = t

j

; 0 < 


j

< 2 ;




j

� 1

2

e

�j�j

if t = t

j

; 


j

= 0; 2 ;

�

j

:=

8

>

<

>

:

1

p

+ �

j

if X(�) = L

N

p

(�; �) ;

�

j

if X(�) = PC

N

(�; �) :

Sin
e 0 < �

j

< 1; j = 1; : : : ; n (see (1.4)) the symbol (A

1

)

X(�)

(t; �) is a


orre
tly de�ned 2N � 2N matrix-fun
tion, is 
ontinuous and

(A

1

)

X(�)

(t

j

;�1) = (A

1

)

X(�)

(t

j

;+1) = diag fa

0

(t

j

� 0); a

0

(t

j

+ 0)g :

Theorem 4.3 Let X(�) denote either L

N

p

(�; �) or PC

N

(�; �) and (1.4)

hold.

Equation (4.3) is Fredholm in X(�) if and only if

inf

t2�; �2R

�

�

det (A

1

)

X(�)

(t; �)

�

�

> 0 : (4.11)

If 
ondition (4.11) holds, then

Ind A

1

=

n

X

j=1

1

2�

�

arg det (A

1

)

X(�)

(t

j

; �)

�

R

: (4.12)

Remark 4.4 It is easy to as
ertain that 
ondition (4.11) for a 
usp t

j

(with




j

= 0; 2) reads as follows

a

0

(t

j

�0)a

0

(t

j

+0)�[a

1

(t

j

�0)+a

2

(t

j

�0)℄[a

1

(t

j

+0)+a

2

(t

j

+0)℄e

��

6= 0; �2R;
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or, equivalently,

�

a

0

(t

j

� 0)a

0

(t

j

+ 0)

[a

1

(t

j

� 0) + a

2

(t

j

� 0)℄[a

1

(t

j

+ 0) + a

2

(t

j

+ 0)℄

�

> 1 :

Proof of Theorem 4.3. For X(�) = L

N

p

(�; �) the proof 
an be derived

from Theorem 4.1 (see (4.36) how to get symbol (4.10) from (4.6)). We

expose independent proof to 
over the 
ase X(�) = PC

N

(�; �) whi
h is not


overed by Theorem 4.1.

We suppose, as in the proof of Theorem 1.6 in x 2.3, that � has re
tilinear

parts �

�

j

; �

+

j

in some neighbourhood of all knots t

1

; : : : ; t

n

ex
ept 
usps;

for a 
usp 


j

= 0; 2 the right neighbourhood �

+

j

is re
tilinear, while the

left one �

�

j

is not (
f. (2.31) and Fig. 2). Su
h 
hanges of the 
ontour �


ause a 
ompa
t perturbation of equation (4.3) and does not in
uen
e the

Fredholm properties as well as the index of equation (see [DLS1℄).

Next we noti
e that operators W

�

0

;0

and W

�

�

0

;0

are 
ompa
t due to

Corollary (1.6) sin
e �

0

has no angular points and 
usps.

Applying the \ma
ro lo
alization", des
ribed in [DLS1, Theorem 1.1,

x 3.2℄, we �nd that A

1

is Fredholm in X(�) i� det a

0

(t) 6= 0 for t 2

� n ft

1

; : : : ; t

n

g and operators

A

1;�

0

j

= a

0;j

I + a

1;j

W

�

0

j

;0

+ a

2;j

W

�

�

0

j

;0

; �

0

j

= �

�

j

[ �

+

j

; (4.13)

a

k;j

(t) :=

8

<

:

a

k

(t

j

� 0) if t 2 �

�

j

;

a

k

(t

j

+ 0) if t 2 �

+

j

; k = 0; 1; 2

are Fredholm in X(�

0

j

) for all j = 1; : : : ; n; for the index we have

Ind A

1

=

n

X

j=1

Ind A

1;�

0

j

: (4.14)

First let us 
onsider the spa
e X(�) = L

N

p

(�; �) and 0 < 


j

< 2; without

loss of generality t

j

= 0.

The transformation Z




j

;�

j

with �

j

:=

1

p

+�

j

has the inverse Z

�1




j

;�

j

(see

(2.34)) and arranges an isomorphism

Z




j

;�

j

: L

N

p

(�

0

j

; jtj

�

j

) �! L

2N

p

(R

+

) : (4.15)

Obviously,

Z




j

;�

j

A

1;�

0

j

Z

�1




j

;�

j

=

"

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

#
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+

1

2

"

a

1

(t

j

+ 0) 0

0 a

1

(t

j

� 0)

#

2

4

0 N

0




j

�N

0

�


j

N

0




j

�N

0

�


j

0

3

5

+

1

2

"

a

2

(t

j

+ 0) 0

0 a

2

(t

j

� 0)

#

�

2

4

0 e

��(


j

�1)i

N

0




j

�e

�(


j

�1)i

N

0

�


j

e

��(


j

�1)i

N

0




j

�e

�(


j

�1)i

N

0

�


j

0

3

5

;

where

N

0

�


j

'(x) :=

1

2�i

1

Z

0

e

�(x�y)�

j

'(y)dy

1� e

�(x�y)��


j

i

(4.16)

(see (4.6) where the symbols of hI , S

�

and of VS

�

V is possible to pi
k up).

Thus, we get a 
onvolution operator

Z




j

;�

j

A

1;�

0

j

Z

�1




j

;�

j

=W

(A

1

)

X(�)

(t

j

;�)

: L

2N

p

(R

+

) �! L

2N

p

(R

+

) (4.17)

(
f. (2.6)) with the symbol (A

1

)

X(�)

(t

j

; �) de�ned in (4.10). In fa
t, N

0

�


j

in (4.16) are 
onvolutions with the symbols

N

0

�


j

(�) :=

1

2�i

1

Z

�1

e

i�y��

j

y

dy

1� e

�y��


j

i

=

1

2�i

1

Z

0

t

�

j

�i��1

dt

1� e

��


j

i

t

(4.18)

=

e

��(1�


j

)(�

j

�i�)

sinh�(i�

j

+ �)

=

e

��(1�


j

)�

t

j

i

sinh�(i�

j

+ �)

; �

j

=

1

p

+ �

j

; � 2 R ;

sin
e �� < � � �


j

< � (see [GR1, 3.194.4℄). Thus, N

0

�


j

= W

N

0

�


j

and

from (4.18) we get (4.17).

From (4.17) and from Theorem 2.6 follows: A

1;�

j

is Fredholm i�

inf

�

�

det (A

1

)

X(�)

(t

j

; �)

�

�

> 0 ; � 2 R (4.19)

and, for 0 < 


j

< 2

Ind A

1;�

j

= � ind det (A

1

)

X(�)

(t

j

; �) : (4.20)

Now let 


j

= 0 or 


j

= 2. Then �

+

j

= [0; 1℄ and, due to 
ondition

(4.1) �

�

j


an be taken as the quarter part of the 
ir
umferen
e 
entered at

z

0

=

1�


j

2

i, starting at z

1

=

i

2

+

1�


j

2

i and terminating at z

2

= 0 (see Fig.

4).



85

0 0

1

2

+

i

2

q q

q

q

q

q

1

2

�

i

2

z

0

z

0

�

�

j

�

�

j

�

+

j

�

+

j




j

= 2




j

= 0

- �

Fig. 4

The transformations

Z

0

'(x) :=

2

6

6

6

4

1

x+ 1

'

�

1

x+ 1

�

1

x� i+ 1

'

�

1

x� i+ 1

�

3

7

7

7

5

if 


j

= 0 ;

Z

2

'(x) :=

2

6

6

6

4

1

x+ 1

'

�

1

x+ 1

�

1

x+ i+ 1

'

�

1

x+ i+ 1

�

3

7

7

7

5

if 


j

= 2 ; x 2 R

+

; (4.21)

de�ne isomorphisms

Z




j

: L

N

p

(�

0

j

; jtj

�

j

) �! L

2N

p

(R

+

; (1 + x)

e�

j

) ; e�

j

:= p� �

j

� 2 (4.22)

and their inverses read

Z

�1

0

2

4

 

1

 

2

3

5

(t) = �

0

+

(t)

1

t

 

1

(t� 1) + �

0

�

(t)

1

t

 

2

(

1

t

+ i� 1) ;

Z

�1

2

2

4

 

1

 

2

3

5

(t) = �

0

+

(t)

1

t

 

1

(t� 1) + �

0

�

(t)

1

t

 

2

(

1

t

� i� 1) ;

where �

0

+

and �

0

�

are the 
hara
teristi
 fun
tions of �

+

j

and �

�

j

, respe
tively.

Obviously 1 < e�

j

< p� 1 and

Z




j

A

1;�

0

j

Z

�1




j

=

2

4

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

3

5
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+




j

� 1

2

2

4

a

1

(t

j

+ 0) + a

2

(t

j

+ 0) 0

0 a

1

(t

j

� 0) + a

2

(t

j

� 0)

3

5

�

2

4

0 N

i

�N

�i

N

i

�N

�i

0

3

5

;

where

N

�i

'(x) :=

1

2�i

1

Z

0

'(y)dy

y � x� i

=W

N

�i

'(x) (4.23)

are 
onvolutions with the symbols

N

�i

(�) :=

1

2�i

1

Z

�1

e

i�y

dy

�i� y

= ��

�

(�)e

��

; (4.24)

�

�

(�) :=

1

2

(1� sign�) ; � 2 R :

Therefore,

Z




j

A

1;�

j

Z

�1




j

=

2

4

a

0

(t

j

+ 0) 0

0 a

0

(t

j

� 0)

3

5

+




j

� 1

2

2

4

a

1

(t

j

+ 0) + a

2

(t

j

+ 0) 0

0 a

1

(t

j

� 0) + a

2

(t

j

� 0)

3

5

�

2

4

0 W

N

i

�N

�i

W

N

i

�N

�i

0

3

5

=W

(A

1

)

X(�)

(t

j

;�)

and, due to Theorem 2.6, A

1;


j

is Fredholm i� (4.19) holds; the index

formula (4.20) remains valid for 


j

= 0; 2.

Now let X(�) = PC

N

(�; �).

For 0 < 


j

< 2 we 
onsider the transformation Z




j

;Æ

j

, de�ned in (3.20).

Similarly to (4.15){(4.18) we �nd that

Z




j

;Æ

j

: C

N

(�

0

j

; jtj

Æ

j

) �! C

2N

(

_

R

+

)

de�nes an isomorphism and

Z




j

;Æ

j

A

1;�

0

j

Z

�1




j

;Æ

j

=W

(A

1

)

X(�)

(t

j

;�)
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is a Fredholm operator in the spa
e C

2N

(

_

R

+

) i�

inf

�

�

det (A

1

)

PC(�;�)

(t

j

; �)

�

�

> 0 ; � 2 R (4.25)

and

Ind A

1;�

0

j

= �

�

arg det (A

1

)

PC(�;�)

(t

j

; �)

�

R

; (4.26)

provided 0 < 


j

< 2.

For 


j

= 0 and 


j

= 2 (see Fig. 4) the transformation

Z




j

: PC

N

(�

0

j

; jtj

Æ

j

) �! C

2N

(

_

R

+

; (1 + x)

�Æ

j

+1

) ; �

0

j

= �

�

j

[ �

+

j

;

de�ned in (4.21), arranges an isomorphism and

Z




j

A

1;�

0

j

Z

�1




j

=W

(A

1

)

PC(�;�)

(t

j

;�)

is Fredholm in the spa
e PC

2N

(

_

R

+

; (1+x)

�Æ

j

+1

) i� 
ondition (4.25) holds

(see Theorem 2.6); again the index is de�ned by (4.26).

Remark 4.5 If S

X

(�)(t; �) is the symbol of S

�

(see (4.5), (4.6), (4.10)),

the symbol of VS

�

V is S

X(�)

(t;��). We know the symbol of aI for a 2

PC

N�N

(�) (X(�) = L

N

p

(�; �) or X(�) = PC

N

(�; �)). Therefore we 
an


ompose the symbol of equation

a

0

'+ a

1

W

�;0

'+ a

2

W

�

�;0

'+

M

X

k=1

a

2+k

W

(k)

�;0

' = f ; (4.27)

a

0

; : : : ; a

2+M

2 PC

N�N

(�)

and prove Theorem 4.3 for equation (4.27).

4.3 Equation (4.4) in the spa
es (W

1

p

)

N

(�; �),

(H

0

�+1

)

N

(�; �), C

N

(�; �) and (PC

1

)

N

(�; �)

Let X(�) denote one of the spa
es mentioned in the headline.

To equation (4.4) in the spa
e X(�) with smooth matrix 
oeÆ
ients we

assign the symbol

(B

0

)

X(�)

(t; �) :=

2

4

b

0

(t) b

1

(t)e

��(1�


j

)i

w

X(�)

(t; �)

b

1

(t)e

�(1�


j

)i

w

X(�)

(t; �) b

0

(t)

3

5

; (4.28)

where

w

X(�)

(t; �) =

8

<

:

0 if t 6= t

1

; : : : ; t

n

;




j

� 1

2

e

�j�j

if t = t

j

; 


j

= 0; 2



88

and w

X(�)

(t

j

; �) has following values for the di�erent spa
es X(�):

w

W

1

p

(�;�)

(t

j

; �) =

sinh�(1� 


j

)

�

i

p

+ �

j

i� i+ �

�

2 sinh�

�

i

p

+ �

j

i+ �

�

;

w

H

0

�+1

(�;�)

(t

j

; �) =

sinh�(1� 


j

) (�

j

i� �i� i+ �)

2 sinh�

�

i

p

+ �

j

i+ �

�

;

w

PC

1

(�;�)

(t

j

; �) =

sinh�(1� 


j

)(�

j

i� i+ �)

2 sinh�(�

j

i+ �)

;

w

C(�;�)

(t

j

; �) =

sinh�(1� 


j

)(�

j

i+ �)

2 sinh�(�

j

i+ �)

:

Due to 
onditions (1.4) the symbol (B

0

)

X(�)

(t; �) is 
orre
tly de�ned, i.e.,

is a pie
ewise-
ontinuous and uniformly bounded fun
tion of all variables.

Theorem 4.6 Let X(�) denote one of the following spa
es (W

1

p

)

N

(�; �),

(H

0

�+1

)

N

(�; �) (if 
usps are absent), (PC

1

)

N

(�; �) or C

N

(�; �) and 
ondi-

tions (1.4) hold.

Equation (4.4) is Fredholm in the spa
e X(�) if and only if

9)

inf

t2�; �2R

�

�

det (B

0

)

X(�)

(t; �)

�

�

> 0 : (4.29)

If 
ondition (4.29) holds, then (
f. (4.12))

Ind B

0

= �

n

X

j=1

1

2�

�

arg det (B

0

)

X(�)

(t

j

; �)

�

R

: (4.30)

Proof. For the spa
e X(�) = C

N

(�; �) the proof is verbatim the 
ase

X(�) = PC

N

(�; �), exposed in Theorem 4.3.

Let

g(s) : [0; `℄ �! � ; r(t) := g

�1

(t) : � �! [0; `℄ ; g(r(t)) � t

be some parametrisation of � and the inverse to the parametrisation. The

operator

�

1

�

'(t) := �

t

'(t) + r

0

(t)

2�i

`

['(t)� '(t

n

)℄ + '(t

n

)e

�

2�i

`

r(t)

= �

s

'

0

(s) +

2�i

`

['

0

(s)� '

0

(0)℄ + '

0

(0)e

�

2�i

`

s

; (4.31)

s = r(t) ; '

0

(s) = '(g(s)) ; 0 � s � ` ; t 2 �

9)

An equivalent 
ondition for a 
usp see in Remark 4.4.
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(see [Du3, x 2.2℄) de�nes an isomorphism of spa
es

�

1

�

: (W

1

p

)

N

(�; �) �! L

N

p

(�; �) : (4.32)

and the inverse operator reads

�

�1

�

 (t) := e

�

2�i

`

r(t)

Z

t

n

t

e

2�i

`

r(�)

 (�)d�

+

1

`

h

1� r(t)e

�

2�i

`

r(t)

i

Z

�

e

2�i

`

r(�)

 (�)d� : (4.33)

Namely,

�

�1

�

�

1

�

 =  ;  2 L

N

p

(�; �) ; �

1

�

�

�1

�

' = ' ; ' 2 (W

1

p

)

N

(�; �)

and

�

1

�

= �

t

+R ; �

t

;R : (W

1

p

)

N

(�; �) �! L

N

p

(�; �) ;

where R is a 
ompa
t operator.

Then the equation

B

1

 := �

1

�

B

0

�

�1

�

 = u ; (4.34)

u;  2 L

N

p

(�; �) ;  := �

1

�

' ; u = �

1

�

f

is equivalent to (4.3). Sin
e

�

t

�

�1

�

= I +K ; K : L

N

p

(�; �) �! L

N

p

(�; �)

where K is a 
ompa
t operator, applying (2.27). we get

B

1

= (�

t

+R)(a

0

I + a

1

W

�;0

)�

�1

�

= a

0

I + a

1

W

(2)

�;0

+ T

= a

0

I + a

1

[S

�

+ h

�2

VS

�

Vh

2

I ℄ + T ; (4.35)

T = (a

0

0

I + a

0

1

W

�;0

)�

�1

�

+R(a

0

I + a

1

W

�;0

)�

�1

�

+(a

0

I + a

1

W

(2)

�;0

)K : L

N

p

(�; �) �! L

N

p

(�; �) :

T is a 
ompa
t operator be
ause �

�1

�

, R and K are 
ompa
t in L

N

p

(�; �).

Symbol of the operatorB

1

in L

N

p

(�; �), a

ording to (4.6) and to Remark

4.5, reads

(B

1

)

L

p

(�;�)

(t; �) :=

"

b

0

(t) 0

0 b

0

(t)

#

if t 6= t

1

; : : : ; t

n

;
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while for the knots t = t

j

we get

(B

1

)

L

p

(�;�)

(t

j

; �) =

"

b

0

(t

j

) 0

0 b

0

(t

j

)

#

+

"

b

1

(t

j

) 0

0 b

1

(t

j

)

#

�

8

>

>

<

>

>

:

2

6

6

4


oth�(i�

j

+ �) �

e

��(1�


j

)(i�

j

+�)

sinh�(i�

j

+ �)

e

�(1�


j

)(i�

j

+�)

sinh�(i�

j

+ �)

� 
oth�(i�

j

+ �)

3

7

7

5

+

"

1 0

0 e

2�(1�


j

)i

#

�

2

6

6

4

� 
oth�(i�

j

+ �)

e

�(1�


j

)(i�

j

+�)

sinh�(i�

j

+ �)

�

e

��(1�


j

)(i�

j

+�)

sinh�(i�

j

+ �)


oth�(i�

j

+ �)

3

7

7

5

"

1 0

0 e

�2�(1�


j

)i

#

9

>

>

=

>

>

;

(4.36)

=

"

b

0

(t) b

1

(t)e

��(1�


j

)i

w

W

1

p

(�;�)

(t

j

; �)

b

1

(t)e

�(1�


j

)i

w

W

1

p

(�;�)

(t

j

; �) b

0

(t)

#

;

w

W

1

p

(�;�)

(t

j

; �) :=

sinh�(1� 


j

)[i(�

j

� 1) + �)

sinh�(i�

j

+ �)

;

where �

j

is de�ned in (1.79). Thus, we get the symbol de�ned in (4.28).

As proved above, the operator B

1

(see (4.35)) in the spa
e L

N

p

(�; �)

is equivalent (as a Fredholm operator) with B

0

(see (4.4)) in the spa
e

(W

1

p

)

N

(�; �) and their indi
es are equal Ind B

0

= Ind B

1

(see (4.34)).

Thus, the symbol (B

0

)

L

p

(�;�)

(t

j

; �) := (B

1

)

L

p

(�;�)

(t; �) de�ned in (4.36)

is responsible for the Fredholm properties and the index of B

0

in the

spa
e (W

1

p

)

N

(�; �). Now the assertion follows from Theorem 4.1 (and from

Theorem 4.3).

In the 
ases X(�) = (H

0

�+1

)

N

(�; �) and X(�) = (PC

1

)

N

(�; �) the proofs

follow verbatim the above exposed 
ase X(�) = (W

1

p

)

N

(�; �).

5 Conformal mapping and BVPs

Through this se
tion we use the notation from x 1.1: for domains 


�

, for

their boundary � = �


�

, for the weight fun
tion �(t) (see (1.2), (1.4)), for

the unit disk D

1

and the unit 
ir
umferen
e �

1

= �D

1

.

5.1 The Cisotti formula and its appli
ations

In the present subse
tion we prove the Cisotti formula (5.5). It was pub-

lished in 1921 (see [LS1, Ch. III, x 1, n

o

. 44, Example 5℄) and was redis
ov-

ered in [PK1℄ for pie
ewise-smooth 
urves by a di�erent method (namely,
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by redu
ing the problem to the Riemann{Hilbert BVP for analyti
 fun
-

tions). This formula has several interesting appli
ations (see [KKP1℄) and

we will give some further appli
ations below. Returning to the original

method (see [LS1℄) we prove the Cisotti formula for arbitrary domain

bounded by a re
ti�able Jordan 
urve.

Next Theorem is easy to as
ertain if properties of 
onformal mapping

! : D

1

�! 


+

and of the inverse to it !

�1

: 


+

�! D

1

are taken into

a

ount: it suÆ
es to 
hange variables in the integrals � = !(z), z = !

�1

(�).

(see (1.47) and [Ev1, Ch. V, x 1℄).

Theorem 5.1 The derivatives !

0

(z) and (!

�1

)

0

(�) of 
onformal mapping

(1.46) and its inverse are both square integrable

Z




+

j(!

�1

)

0

(�)j

2

jd�j = �

2

;

Z

D

1

j!

0

(z)j

2

jdzj = (mes


+

)

2

; (5.1)

while restri
ted to the boundaries they be
ome absolutely integrable

Z

�

j(!

�1

)

0

(�)jjd�j = 2� ;

Z

�

1

j!

0

(z)jjdzj = mes� : (5.2)

Next Theorem is a far non-trivial and subtle 
onsequen
e of the foregoing

theorem and we quote [Go1, p.p. 405{411℄ (see also [Ko1, Ch. I, II℄) for

rigorous proofs.

Theorem 5.2 If !(z) in (5.1) is a 
onformal mapping of the unit disk D

1

onto a simply 
onne
ted domain 


+

with the re
ti�able Jordan boundary,

then:

i. ! 2 W

1

1

(D

1

) (see x 1:1).

ii. !(z) is absolutely 
ontinuous on the boundary �

1

.

iii. For almost all t

0

2 [0; 2�℄ there exists an angular (i.e., non-tangential)

boundary limit

^

! of the fun
tion !

0

(z)

lim

re

it

^

!e

it

0

!

0

(re

it

) = �ie

�it

0

d!(e

i�

)

d�

�

�

�

�

�=t

0

: (5.3)

The limit is denoted again by !

0

(e

it

0

).

Theorem 5.3 The derivatives !

0

(z) of the 
onformal mapping ! : D

1

!




+

has the following representation

!

0

(z) = !

0

(0) exp

2

6

4

1

�

Z

j�j=1

�(�)d�

� � z

�

1

�

Z

j�j=1

�(�)

d�

�

3

7

5

; z 2 D

1

; (5.4)

�(e

it

) := �(t) � t�

�

2

= #(t)� t for a.a. t 2 [��; �℄ ; (5.5)
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where �(t) and #(t) = #

!(e

it

)

= arg~�(!(e

it

)) denote the in
linations with

respe
t to the abs
issa axes of the tangent and the outer unit normal ve
tors

at the point !(e

it

), respe
tively (see Fig. 1).

Proof. Due to (5.3) �

0

(t) := �(e

it

) in (5.5) exists for almost all t 2 (��; �℄

and for those t we have

!

0

(e

it

) = �ie

�it

d!(e

it

)

dt

= �ie

i�

0

(t)

�

�

�

�

d!(e

it

)

dt

�

�

�

�

:

Sin
e !

0

(e

it

) 6= 0 (!(z) is a 
onformal mapping!)

Re [�i log!

0

(e

it

)℄ = Im log !

0

(e

it

) = �

0

(t) = �(e

it

) for a.a. t 2 (��; �℄

and the S
hwartz integral re
overs the analyti
 fun
tion �i log!

0

(z) 2

w

1

1

(D

1

) by its real part on the boundary

�i log!

0

(z) = iC +

1

2�

�

Z

��

e

i�

+ z

e

i�

� z

�(e

i�

)d�

(see [Ko1, Ch. I, II℄, [LS1, x. 44℄); therefore

!

0

(z) = exp(�C) exp

2

4

i

2�

�

Z

��

e

i�

+ z

e

i�

� z

�(e

i�

)d�

3

5

= C

0

exp

2

4

�

i

2�

�

Z

��

�(e

i�

)d� +

i

�

�

Z

��

�(e

i�

)e

i�

d�

e

i�

� z

3

5

= C

1

exp

2

6

4

1

�

Z

j�j=1

�(�)d�

� � z

3

7

5

and taking z = 0 easily lo
ate the 
onstant C

1

:

C

1

= !

0

(0) exp

2

6

4

�

1

�

Z

j�j=1

�(�)

d�

�

3

7

5

:

It is sometimes helpful to have the Cisotti formula (5.4) in the following

equivalent form

!

0

(re

it

) = !

0

(0) exp

2

4

i(P

r

�

0

)(re

it

)� (

e

P

r

�

0

)(re

it

)�

i

2�

�

Z

�

�

0

(�)d�

3

5

; (5.6)

0 < r < 1 ; �� < t � � ;
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where P

r

'(z) is the Poisson operator and

e

P

r

'(z) de�nes the adjoint har-

moni
 fun
tion to P

r

'(z) (jzj < 1; see [Ko1, Ch. I℄):

P

r

'(re

it

) :=

1

2�

�

Z

��

1� r

2

1� 2r 
os(t� �) + r

2

'(�)d� ;

e

P

r

'(re

it

) =

1

2�

�

Z

��

r sin(t� �)

1� 2r 
os(t� �) + r

2

'(�)d� :

(5.7)

In the next theorem we have 
olle
ted properties of the Poisson op-

erator P

r

and its adjoint

e

P

r

from [Ko1, Ch.I℄ and [Ko1, Ch. V, xD.1

o

℄,

ne
essary for further investigations.

Theorem 5.4 Let ' 2 L

p

(�), � := [��; �℄, 1 � p <1. Then

i. P

r

'(z) is harmoni
 in D

1

and

kP

r

'

�

�

L

p

(�)k � k'

�

�

L

p

(�)k ; 0 � r < 1 ; lim

r!0

kP

r

'� '

�

�

L

p

(�)k = 0

ii. If '(t) is 
ontinuous at some t

0

2 �, then

lim P

r

'(z) = '(t

0

) as z = re

it

! e

it

0

; r < 1: (5.8)

iii. If Im g(t) � 0, jg(t)j � �

�

2

for all t 2 � and � < 1, then

�

Z

��

exp

h

�

�

�

e

P

r

g(e

it

)

�

�

�

i

�

4�


os

�

2

�

: (5.9)

In parti
ular, if ' 2 C(�), '(��) = '(�), then the 
onvergen
e in

(5.8) is uniform (in
luding 
onvergen
e a
ross tangent paths) with re-

spe
t to t

0

2 �.

Remark 5.5 Easy to 
he
k that

P

r

'(z) = ImC

�

'(z) �

1

2�

�

Z

�

'(�)d� ;

e

P

r

'(z) = �ReC

�

'(z) for Im'(t) � 0

(5.10)

(see (1.3)). Therefore for

e

P

r

' we 
an apply the Plemelji formulae and get

lim

z

^

!e

it

e

P

r

'(z) = �

1

2

'(t) �

1

2�

�

Z

�


ot

t� �

2

'(�)d� ; (5.11)

where the limit is angular (see (1.25)).
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Corollary 5.6 If the in
lination of the tangent ve
tor to the boundary 
urve

� is 
ontinuous on the entire boundary, derivative !

0

(�) of the 
onformal

mapping in (1.46) belongs to the Smirnov{Lebesgue spa
e !

0

2 e

p

(D

1

)

for all 1 < p <1.

Proof. Due to the asserted 
onditions �

0

(t) = �(e

it

) in (5.5) is a 
ontinuous

fun
tion �

0

2 C(�) and �

0

(�) = �

0

(��) (see (5.5)); then

�

0

(t) = �

1

(t) + �

2

(t) ; �

1

2 C

1

(�) ; �

1

(�) = �

1

(��) ;

j�

2

(t)j �

�

4p

=

1

2p

�

2

for all t 2 � :

From (5.6) and (5.8) we have

�

Z

��

j!

0

(re

i�

)j

p

d� =

�

Z

��

j exp

h

�

�

�

p

e

P

r

�

1

(e

i�

) + p

e

P

r

�

2

(e

i�

)

�

�

�

i

d�

�

4�C

0


os

�

4

for all 0 < r � 1

(see Corollary (5.6)), where

C

0

=

�

Z

��

exp

h

�

�

�

p

e

P

r

�

1

(e

i�

)

�

�

�

i

d� <1

sin
e �

1

2 H

1

(�

1

) and P

r

�

1

(�) is uniformly bounded with respe
t to 0 <

r � 1 (see (5.10) and (5.12) below).

Let us formulate several 
onsequen
es of the foregoing results. First of

them is a weak form of the Lindel

�

of theorem; in full generality it 
an be

found e.g. [Ko1℄ and deals with arbitrary domain with Jordan boundary.

For a domain with the smooth boundary it is proved e.g in [Go1, ℄ by

di�erent method and in [KKP1, p. 141℄{as here, by using the Cisotti

formula, but for pie
ewise-smooth 
urves.

Theorem 5.7 Let 


�

be a simply 
onne
ted domain with the re
ti�able

Jordan boundary � and !(z) be a 
onformal mapping of the unit disk D

1

onto the domain 


+

. If the tangent exists at some point of the boundary t

0

2

�, then the argument arg!

0

(z) of the derivative of the 
onformal mapping

is 
ontinuous at e

i#

0

2 �

1

= �D

1

, where t

0

= !(e

i#

0

):

lim arg!

0

(z) = arg!

0

(e

i#

0

) = e

i�(#

0

)

as z ! e

i#

0

and z 2 


+

:

In parti
ular, if the tangent exists at ea
h point of the boundary �, then

arg!

0

(x) is a 
ontinuous fun
tion on the 
losed domain 


+

.
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Proof. The proof follows from Theorem 5.4.ii and from the equality

arg!

0

(z) = arg!

0

(0) + P

r

�

0

(t)�

1

2�

�

Z

�

�

0

(�)d� ; (5.12)

z = re

i#

; 0 < r < 1 ; �� < t � �

(see (5.6)), where �

0

(t) := �(e

it

) is de�ned in (5.5).

Let 0 < � <1 and X be a 
ompa
t suÆ
iently smooth manifold (we 
an

take X = [0; 1℄, X = 


+

or even X = � if the latter is suÆ
iently smooth).

Norm in the Zygmund spa
e Z

�

(X) is de�ned as follows

jj'jZ

�

(X)jj = jjf jC

[�℄

�

(X)jj

+

X

j�j=[�℄

�

sup

x;x�h2X

j(�

�

')(x + h)� 2(�

�

')(x) + (�

�

')(x � h)j

jhj

f�g

+

;

� = [�℄

�

+ f�g

+

[�℄

+

2 N

0

; 0 < f�g

+

� 1;

where

kf jC

m

(X)k =

X

j�j�m

sup

x2X

j�

�

f(x)j:

For � 2 R

+

nN the spa
e Z

�

(X) 
oin
ides with the generalized H

�

older

spa
e H

�

(X) (see [St1℄), where (
f. x 1.1)

jj'

�

�

H

�

(X)jj = jjf jC

[�℄

(X)jj+

X

j�j=[�℄

sup

x;y2X;x6=y

j(�

�

')(y) � (�

�

')(x)j

jy � xj

f�g

;

� = [�℄ + f�g; [�℄ 2 N

0

; 0 < f�g < 1:

Z

�

(�) 
oin
ides with the Besov spa
e B

�

1;1

(�) (see [Tr1℄) and the

next theorem represents very parti
ular 
ase of [Du10, Theorem 3.2℄ (
f.

Theorem 1.8 above). the assertion 
an readily be derived from the Mus-

khelishvili{Privalov theorem (the 
ase � < 1), proved in [Mu1, x 21℄,

for non-integer � 2 R and extended to integer values � = 1; 2; : : : by the

interpolation of Zygmund spa
es (see [St1, Tr1℄ for theorems on interpola-

tion).

Theorem 5.8 Let 0 < � < 1 and the boundary � = �


�

be m-smooth,

where m 2 N

0

, m � �.

The potential operators

C

�

: Z

�

(�) �! Z

�

(


�

) ;

W

�

: Z

�

(�) �! Z

�

(


�

) ;

V

�

: Z

�

(�) �! Z

�+1

(


�

)

(5.13)

(see (1.3) and (1.16)) are bounded.

In parti
ular, if � is pie
ewise-smooth, we should restri
t 0 < � < 1.
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Kellogg proved that if the in
lination of the tangent ve
tor is a H

�

ol-

der 
ontinuous fun
tion with some exponent 0 < � < 1 (so 
alled Ljapunov

boundary), then the derivative !

0

(x) of the 
onformal mapping ! :;D

1

!




+

also is H

�

older 
ontinuous with the same exponent �. The simple proof

of this assertion is exposed in [KKP1, p. 143℄ and is based on the Cisotti

formula. . Next theorem generalization the Kellogg theorem for � � 1.

Theorem 5.9 Let 


�

be a simply 
onne
ted domain and the in
lination of

the tangent to the boundary � = �


�

with respe
t to some �xed dire
tion

belongs to the Zygmund spa
e Z

�

([0; `℄) for some 0 < � <1.

If !(z) is a 
onformal mapping of the unit disk D

1

onto the domain 


+

,

then ! 2 Z

�+1

(


+

).

Proof. Let us 
onsider the natural parametrisation of the 
urve � by the

ar
 length parameter �(s) [0; `℄! �, �(0) = �(`) (
f. (1.21)). The derivative

�

0

(s) 
oin
ides with the unit tangent ve
tor to � and the 
ondition of the

theorem 
an be written as follows

arg �

0

(�) 2 Z

�

([0; `℄) ; arg�

k+1

s

�(`�0) = arg�

k+1

s

�(0+0) ; k = 0; : : : ; [�℄ :

From (5.3) we �nd easily that

�(e

it(s)

) = �(t(s)) � t(s)�

�

2

;

where t(s) : [0; `℄ ! [��; �℄ is a 
ontinuous fun
tion of the ar
 length

parameter, de�ned by the equality !(e

it(s)

) Thus, we need to prove the

impli
ation

t

0

(�) 2 Z

�

([0; `℄) ) t

0

(s(!(�))) 2 Z

�

(�

1

) :

From the asserted 
onditions � 2 C(�

1

) and from Corollary (5.6) we get

!

0

2 e

2

(D

1

). Then

js(!(�

2

))� s(!(�

1

))j =

�

�

�

�

�

�

�

�

2

Z

�

1

j!

0

(�)jjd�j

�

�

�

�

�

�

�

�

0

B

�

�

2

Z

�

1

j!

0

(�)j

2

jd�j

1

C

A

1

2

0

B

�

�

2

Z

�

1

jd�j

1

C

A

1

2

= C

0

j�

2

� �

1

j

1

2

: (5.14)

Thus, s(!(�)) 2 H

1

2

(�

1

) and we �nd the �rst 
rude in
lusion �(s(!(�))) 2

Z

�

1

(�

1

) = H

�

1

(�

1

) with �

1

= min

�

1

2

;

�

2

	

. Due to Theorem 5.8 and to the

Cisotti formula (5.4) we get another 
rude result !

0

2 Z

�

1

(D

1

). We return

to (5.14) and �nd

js(!(�

2

))� s(!(�

1

))j =

�

2

Z

�

1

j!

0

(�)jjd�j � C

1

j�

2

� �

1

j ; �

1

; �

2

2 � ;
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where C

1

= sup

�2�

1

j!

0

(�)j. the obtained estimate and the in
lusion �(�) 2

Z

�

([0; `℄) give the se
ond 
rude in
lusion �(s(!(�))) 2 Z

�

2

(�

1

) with �

2

=

minf1; �g. Due to Theorem 5.8 and to formula (5.4) this in
lusion yields

!

0

2 Z

�

2

(D

1

), whi
h is the �nal result provided 0 < � � 1.

If � > 1 we take the derivative in (5.4)

!

00

(z) = !

0

(0) exp [C

�

1

�(z)�B

0

℄C

�

1

�

0

(z) ; (5.15)

B

0

:=

1

�

Z

j�j=1

�(�)

d�

�

; z 2 D

1

:

On the other hand,

(�

�

�)(s(!(�))) :=

d�(s(!(�)))

d�

= �

0

(s(!(�)))(�

�

s)(!(�)) : (5.16)

From the equality

(�

�

s)(!(�))j = j!

0

(�)j ;

(
f. (5.13)), and from the in
lusion !

0

2 Z

1

(�

1

) � H

1

(�

1

) we 
on
lude

(�

�

s)(!(�)) 2 H

1

(�

1

). This in
lusion, together with �

0

(�) 2 Z

��1

([0; `℄)

yields �

�

�(s(!(�))) 2 Z

�

3

(�

1

) (see (5.16) with �

3

= minf1; �� 1g.

Again, we derive !

00

2 Z

�

3

(


+

)) ! 2 Z

�

3

+2

(


+

) from (5.15) and from

Theorem 5.8. The �nal result is obtained if � � 2 whi
h implies �

3

= �.

If � > 2 we repeat the foregoing proof, taking further derivatives in

(5.15) and a

omplish the proof by the mathemati
al indu
tion.

Corollary 5.10 (see also [KKP1℄). The inequality

0 < C

1

�

�

�

�

�

log[!(�)� !(�

j

)℄

log[� � �

j

℄

�

�

�

�

� C

2

<1 (5.17)

holds for all j�j = 1 provided t

j

= !(�

j

) is not a 
usp of �, i.e., if 0 < 


j

< 2.

Proof. Invoking the Lagrange theorem and Cisotti formula (5.5) with

the Plemelji formula (the last one in (1.25)) we get

log[!(�)� !(�

j

)℄ = log(� � �

j

) + log!

0

(�

0

)

= C

0

+ log(� � �

j

) + �(�

0

) +

1

�

Z

j� j=1

�(�)d�

� � �

0

;

where �

0

= �

0

(�; �

j

) 2

^

�

j

� and

C

0

:= log!

0

(0)�

1

�

Z

j� j=1

�(�)

d�

�

= 
onst :
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The density �(�) in the Cau
hy integral is pie
ewise-H

�

older 
ontinuous

� 2 H

�

(�

1�

j

n f�

j

g) by 
ondition and has the following jump at �

j

2 �

ow

�(�

j

+ 0)� �(�

j

� 0)

�

= 1� 


j

:

Applying the estimates

1

�

Z

j� j=1

�(�)d�

� � �

0

= �

�(�

j

+ 0)� �(�

j

� 0)

�

log(�

j

� �

0

) + �

1

(�

0

)

= (


j

� 1) log(�

0

� �

j

) + �

1

(�

0

) = (


j

� 1) log(� � �

j

) + �

2

(�

0

)

as � ! �

j

, j�

0

� �

j

j=j� � �

j

j � 1, where �

1

; �

2

2 H

�

(�

1�

j

n f�

j

g) (see [Mu1,

x 26℄) we �nd

log[!(�) � !(�

j

)℄ = 


j

log(� � �

0

) + �

3

(�

j

; �)

with uniformly bounded �

3

(�

j

; �) 2 H

�

(�

1�

j

n f�

j

g) when � ! �

j

and (5.17)

follows.

5.2 Proof of Lemma 1.11

Repeating verbatim the arguments exposed in the proof of Theorem 1.16

(see (1.51){(1.56)) we �nd easily that the Riemann{Hilbert problem (1.35)

in the spa
e 	 2 E

p

(


�

; �), g 2 L

p

(�; �) is equivalent to the singular integral

equation (1.50) in the spa
e L

p

(�).

Let, for de�niteness, 
onsider the domain 


+

. The 
ase of outer domain

di�ers only by angles: we should repla
e all 


j

by 2�


j

(i.e., by the measure

of the 
omplementary angle).

First let us prove that G 2 PC(�

1

); namely,

G(�

j

� 0)

G(�

j

+ 0)

= exp

�

�

2�

p

i+ 2�

�

1

p

+ �

j

�




j

i

�

; j = 1; : : : ; n : (5.18)

In fa
t, in the vi
inity of t

j

2 � we get

�

0

(!(�)) = �

j

(�) [!(�)� !(�

j

)℄

�

j

= �

j

(�)

�

!

0

(�

0

j

)

�

�

j

(� � �

j

)

�

j

; � ! �

j

;

�

0

j

:= �

j

�

j

+ (1� �

j

)� ; 0 < �

j

< 1 ; �

j

(�) =

Y

k 6=j

[!(�)� !(�

k

)℄

�

k

(see (1.46), (1.48)) and �

j

(t) is 
ontinuous at t

j

: �

j

(t

j

� 0) = �

j

(t

j

+ 0).

Therefore,

G(�

j

� 0)

G(�

j

+ 0)

=

�

0

(!(�

j

� 0))

�

0

(!(�

j

� 0))

�

0

(!(�

j

+ 0))

�

0

(!(�

j

+ 0))

"

!

0

(�

j

� 0)

!

0

(�

j

� 0)

!

0

(�

j

+ 0)

!

0

(�

j

+ 0)

#

1

p
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=

(�

j

� 0� �

j

)

�

j

(�

j

� 0� �

j

)

�

j

(�

j

+ 0� �

j

)

�

j

(�

j

+ 0� �

j

)

�

j

"

!

0

(�

j

� 0)

!

0

(�

j

� 0)

!

0

(�

j

+ 0)

!

0

(�

j

+ 0)

#

1

p

+�

j

= exp

�

2��

j

i+ 2

�

1

p

+ �

j

�

[arg !

0

(�

j

� 0)� arg !

0

(�

j

+ 0)℄i

�

:

We pro
eed with the help of (1.66) (see also (5.6) and (5.8))

G(�

j

� 0)

G(�

j

+ 0)

= exp

�

2��

j

i+ 2

�

1

p

+ �

j

�

[arg �(�

j

� 0)� arg �(�

j

+ 0)℄i

�

= exp

�

2��

j

i� 2�

�

1

p

+ �

j

�

(1� 


j

)i

�

= exp

�

�

2�

p

i+ 2�

�

1

p

+ �

j

�




j

i

�

:

The fun
tion �

��

j

�

j

with

�

j

:= �

1

p

+

�

1

p

+ �

j

�




j

; j = 1; : : : ; n; (5.19)

has dis
ontinuity on the unit 
ir
umferen
e if �

j

6= 0;�1; : : : and this dis-


ontinuity we �x at the point �

j

2 �

1

; then

(�

j

� 0)

��

j

�

j

(�

j

+ 0)

��

j

�

j

= exp(�2��

j

i) = exp

�

2�

p

i� 2�

�

1

p

+ �

j

�




j

i

�

and 
onsider the fun
tion

G

0

(�) := G(�)

n

Y

j=1

�

��

j

�

j

; � 2 �

1

: (5.20)

Let us prove that

G

0

2 C(�

1

) ; jG

0

(�)j = 1 for all j�j = 1 and ind G

0

= 0 : (5.21)

Continuity on �

1

follows from (5.18) G

0

(�

j

� 0) = G

0

(�

j

+ 0), j = 1; : : : ; n,

while from (1.51), (5.20) we �nd immediately that the fun
tion is unimod-

ular jG

0

(�)j = 1.

To prove the last 
laim ind G

0

= 0 we rewrite (5.20) as follows

G

0

(�) = G(�)

n

Y

j=1

 

�

� � �

j

�

j

�

� � �

j

�

!

��

j

�

j

= G(�)

n

Y

j=1

(��

j

)

�

j

�

� � �

j

� � �

j

�

��

j

= 


0

�

0

(!(�))

�

0

(!(�))

"

!

0

(�)

!

0

(�)

#

1

p

�

� � �

j

� � �

j

�

��

j

; � 2 �

1

; 


0

:=

n

Y

j=1

(��

j

)

�

j

:
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Thus, G

0

(�) has a 
ontinuous extension inside the unit disk

G

0

2 C(D

1

) ; G

0

(z)j 6= 0 for all z 2 D

1

and the homotopy

G

0;r

(�) := G

0

(r�) ; j�j = 1 ; 0 � r � 1

is 
ontinuous, non-vanishing and 
onne
ts the fun
tion G

0

= G

0;1

with the


onstant G

0;0

= G

0

(0), 
on�rming ind G

0

= 0.

Let us rewrite (5.20) in the form

G(�) := G

0

(�)

n

Y

j=1

�

�

j

�

j

; � 2 �

1

: (5.22)

From (5.22), (5.21) and Corollary 4.2 we �nd that 
onditions (1.36) (1.32)

are ne
essary and suÆ
ient the singular integral equation (1.50) to have a

solution, be
ause under these 
onditions A is Fredholm in L

p

(�

1

) and has

the following index

Ind A =

X

�

j

>1

1 ;

sin
e ind �

�

j

�

j

= 0 when �

j

< 1 and ind �

�

j

�

j

= 1 when �

j

> 1.

In 
on
lusion it is worth mentioning that the problem has alwayes non-

negative index Ind

L

p

(�

1

)

A � 0, i.e., is surje
tive if it is Fredholm.

5.3 Proof of Theorem 1.26

As in the proof of Lemma 1.11 in x 5.2 we treat, for de�niteness, the domain




+

. In the 
ase of outer domain we have just to repla
e all 


j

by 2� 


j

.

First we suppose �

ow

= ;. Then

G(�) :=

e

G

0

(�)

n

Y

j=1

�

e�

j

�

j

; � 2 �

1

; (5.23)

e�

j

:=

(

�

j

for

1

p

� �

j

;

�

j

� 1 for

1

p

> �

j

;

e

G

0

(�) := G

0

(�)�

�

; � :=

X

�

j

62�

ow

�

j

>1

1

(see (5.22) and (1.93){(1.95)). Due to Corollary 4.2 equation (1.50) is Fred-

holm in L

p

(�

1

) if and only if 
onditions (1.94) hold and then

Ind A = ind

e

G

0

= � =

X

�

j

62�

ow

�

j

>1

1
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(see (5.23)). Proposition (1.95) follows be
ause the equivalent Riemann{

Hilbert BVP (1.55) has non-negative index � � 0 and has the trivial

kernel dim Ker A = 0 (if the index is positive, BVP (1.55) would have the

trivial 
okernel dim Coker A = 0; 
f. [GK1, Kh1, Mu1℄).

Now let �

ow

6= ; and 
onsider equation (1.50) for g

0

2 L

p

(�

1

;�

ow

),

' 2 L

p

(�

1

) or, what is equivalent, 
onsider operator (1.93). We should

start by proving boundedness of (1.93). First note that due to Lemma 1.25

the operator

G� 1

2

K : L

p

(�) �! PC(�) � L

p

(�;�

ow

)

is bounded and sin
e is one-dimensional in
uen
es neither the Fredholm

property nor the index of the operator

A = P

+

�

1

+G(�)P

�

�

1

+

G(�) � 1

2

K :

Therefore, in what follows, we ignore this summand in the operator A and

put

A = P

+

�

1

+G(�)P

�

�

1

:

Let �

�

1j

:= f� 2 �

1

: � Im (�=�

j

) > 0g be the semi-
ir
les having ��

j

as

endpoints and �

�

�

j

(�) be the 
orresponding 
hara
teristi
 fun
tions (� 2 �

1

).

Boundedness of the operator in (1.93) follows from the boundedness of

the restri
tions

A

�

j

:= (1� �

�

j

)I + g

1

�

�

j

A�

�

j

g

�1

1

I : L

p

(�

1�

j

) �! L

p

(�

1�

j

; f�

j

g) ; (5.24)

g

1

(�) :=

j� + �

j

j

2

p

� + �

j

for all �

j

2 �

ow

. Easy to as
ertain that if

G

�

j

(�) := G(�

j

� 0)�

�

�

j

(�) +G(�

j

+ 0)�

+

�

j

(�) ;

then

G(�) �G

�

j

(�) = O(j� � �

j

j) as � ! �

j

2 �

ow

: (5.25)

Due to Lemma 1.22 the operator

A

�

j

�A

0

�

j

= g

1

[G(�) �G

�

j

℄P

�

�

1

g

�1

1

I : L

p

(�

1�

j

) �! L

p

(�

1

; f�

j

g) ;

A

0

�

j

:= g

1

[P

+

�

1

+G

�

j

P

�

�

1

℄g

�1

1

I (5.26)

is bounded. Moreover, if " > 0 and �

�

j

;"

is the 
hara
teristi
 fun
tion of

the neighbourhood �

1�

j

;"

� �

1�

j

, 
ontra
ting to f�

j

g as "! 0, then

k�

�

j

;"

(A

�

j

�A

0

�

j

)

�

�

L(L

p

(�

1

); L

p

(�

1

; f�

j

g))k

�M

0

k�

�

j

;"

(G�G

�

j

)

�

�

L

1

(�

1

)k

1�Æ

;
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whi
h yields

lim

"!0

k�

�

j

;"

(A

�

j

�A

0

�

j

)

�

�

L(L

p

(�

1

); L

p

(�

1

; f�

j

g))k = 0 as "! 0

sin
e Æ > 0 is arbitrary. Thus, boundedness of operator (1.93) follows from

the boundedness of the operator

A

0

�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) :

The boundedness of A

0

, in its turn, follows from the estimates

k

e

V

�

j

A

0

�

j

'

�

�

L

p

(�

+

1

)k �M

j

k'

�

�

L

p

(�

1

)k ; M

j

<1 for all �

j

2 �

ow

(see (1.90), (1.92)).

We 
an suppose, that

G

�

j

(�) =

(

e

2�

p

i

for � 2 �

+

1

;

1 for � 2 �

�

1

(5.27)

In fa
t, the operator

B

j

:= P

+

�

1

+G

�1

(�

j

� 0)P

�

�

1

(5.28)

has 
onstant 
oeÆ
ients G(�

j

� 0) =
onst6= 0 and due to the following

well-known properties of the singular proje
tions

(P

�

�

1

)

2

= P

�

�

1

; P

+

�

1

P

�

�

1

= P

�

�

1

P

+

�

1

= 0 ; P

�

�

1

+ P

+

�

1

= I (5.29)

is invertible B

�1

j

= P

+

�

1

+G(�

j

� 0)P

�

�

1

, B

�1

j

B

j

= B

j

B

�1

j

= I . Therefore it

suÆ
es to prove boundedness of the operator

AB

j

= P

+

�

1

+G

�1

(�

j

� 0)GP

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (5.30)

instead of (1.93). The 
oeÆ
ient G

0

(�) := G

�1

(�

j

� 0)G(�) of the operator

(5.30) has limits G

0

(�

j

� 0) = 1 and G

0

(�

j

+ 0) = e

2�

p

i

and 
orresponding

lo
al representative G

0

�

j

(�) has the form (5.27).

Let us apply the isomorphisms Z

p�

j

= Z

p

Z

�

j

de�ned in (3.31){(3.36).

Sin
e

A

0;�

j

:= Z

p�

j

A

0

�

j

Z

�1

p�

j

=

1

2

(I +Z

p�

j

g

1

S

�

1

g

�1

1

Z

�1

p�

j

)

+

1

2

�

e

2�

p

i

0

0 1

�

(I �Z

p�

j

g

1

S

�

1

g

�1

1

Z

�1

p�

j

) (5.31)

it suÆ
es to �nd Z

p�

j

g

1

S

�

1�

j

g

�1

1

Z

�1

p�

j

. Applying (3.44) we pro
eed as follows

Z

�

j

g

1

S

�

1

g

�1

1

Z

�1

�

j

 (x) =

1

�i

1

Z

�1

�

�

�

�

�

{

0

�

j

(x)

{

0

�

j

(y)

�

�

�

�

�

1

p

{

�

j

(y)

{

�

j

(x)

{

0

�

j

(y)'(y)dy

{

�

j

(y)� {

�

j

(x)

=

1

�i

1

Z

�1

'(y)dy

y � x

= S

R

'(x)
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and further

Z

p�

j

S

�

1

Z

�1

p�

j

= Z

p

(Z

�

j

S

�

1

Z

�1

�

j

)Z

�1

p

=

2

4

S

p

�N

p

N

p

�S

p

3

5

;

where

S

p

'(x) :=

1

�i

1

Z

�1

e

�

x�y

p

'(y)dy

1� e

�(x�y)

=W

0

s

p

;

s

p

(�) := 
oth�

�

i

p

+ �

�

; �; x 2 R;

N

p

'(x) :=

1

�i

1

Z

�1

e

�

x�y

p

'(y)dy

1 + e

�(x�y)

=W

0

n

p

;

n

p

(�) :=

1

sinh�

�

i

p

+ �

�

: (5.32)

Easy to as
ertain that

A

0;�

j

:= Z

p�

j

A

0

�

j

Z

�1

p�

j

=

�

1

2

(I + S

p

) + e

2�

p

i

1

2

(I � S

p

)

1

2

(e

2�

p

i

� 1)N

p

0 I

�

=W

A

0

(�

j

;�)

(5.33)

(see (5.31){(5.32)), where A

0

(�

j

; �) is the symbol. Sin
e


osh z sinh w � sinh z 
osh w = sinh(w � z) ; z; w 2 C ;

we �nd the symbol

A

0

(�

j

; �) :=

"

e

�

p

i

h


osh

�

p

i� sinh

�

p

i 
oth�

�

i

p

+ �

�i

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

=

"

e

�

p

i

sinh��

sinh�

(

i

p

+�

)

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

(5.34)

Applying (3.30), (3.32) we get

Z

p�

j

e

V

�

j

Z

�1

p�

j

= g

j

e

V

1

I=g

j

�

e

�

�

p

i

V

1

�V

1

0 0

�

+R

j

=g

j

W

ev

0

+R

j

(5.35)

ev

0

:=

�

e

�

�

p

i

�

1� g

�1

�

(�)

�

g

�1

�

(�) � 1

0 0

�

=

�

e

�

�

p

i

i

�

�

i

�

0 0

�



104

(see (3.8)). From (5.33) and (5.35) we have

Z

p�

j

e

V

�

j

A

0

�

j

' = g

j

e

V

1

A

0;�

j

( 

1

;  

2

)

>

+R

j

A

0;�

j

( 

1

;  

2

)

>

= (V

1

W

0

a

1j

 

1

+V

1

W

0

a

2j

 

2

; 0)

>

= (W

0

b

1j

 

1

+W

b

2j

 

2

; 0)

>

+R

j

A

0;�

j

( 

1

;  

2

)

>

; (5.36)

where ( 

1

;  

2

)

>

:= Z

p�

j

' and

a

1j

(�) :=

sinh��

sinh�

�

i

p

+ �

�

; b

1j

(�) :=

�i sinh��

� sinh�

�

i

p

+ �

�

; (5.37)

a

2j

(�) :=

sinh

�

p

i

sinh�

�

i

p

+ �

�

; b

2j

(�) :=

i

h

sinh

�

p

i� sinh�

�

i

p

+ �

�i

� sinh�

�

i

p

+ �

�

;

be
ause V

1

= W

0

g

�1

�

� I = W

0

g

�1

�

�1

(see (3.23)) and g

�1

�

(�) � 1 = �i=�.

The fun
tions b

kj

(�) satisfy 
onditions (3.4) and, therefore, b

kj

2 PC

p

(

_

R).

This yields the estimate

k

e

V

�

j

A

0

�

j

'

�

�

L

p

(�

+

1�

j

)k � kZ

�1

p�

j

kkZ

p�

j

e

V

�

j

A

0

�

j

'

�

�

L

p

(R

+

)k (5.38)

= kZ

�1

p�

j

kkg

j

e

V

1

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k + kR

j

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k

� kZ

�1

p�

j

k

2

4

X

k=1;2

kg

j

W

0

b

kj

 

k

�

�

L

p

(R)k + kR

j

A

0;�

j

( 

1

;  

2

)

>

�

�

L

2

p

(R)k

3

5

�M

0

j

k( 

1

;  

2

)

>

�

�

L

2

p

(R)k =M

0

j

kZ

p�

j

'

�

�

L

2

p

(R)k �M

j

k'

�

�

L

p

(�

1�

j

)k :

Estimates (5.30) follow and imply the boundedness in (1.93).

To prove the Fredholm 
riteria (1.94) we apply the lo
alization method,

due to I.Gohberg andN.Krupnik (see [GK1, RS1℄) modi�ed for operators

between two di�erent spa
es (see [Du9, x 3℄). We skip over exposing details

of the method be
ause they are well-known and even modi�ed version is

operating with similar obje
ts{lo
alization 
lasses, lo
al equivalen
e, lo
al

representatives, lo
al invertibility et
.

We 
hoose a standard 
overing system of lo
alizing 
lasses fM

�

g

�2�

1

,

where M

�


onsists of all multipli
ation operators vI by smooth fun
tions

v 2 C

1

(�

1

), jv(t)j � 1 (t 2 �

1

) whi
h are equal 1 in some neighbourhood

of �. Boundedness of operators vI 2 M

�

in the spa
e L

p

(�

1

) is trivial,

while in L

p

(�

1

:�

ow

) follows from Lemma 1.22. Another essential property{


ompa
tness of 
ommutators

[vI; A℄ = vA�AvI : L

p

(�

1

) �! L

p

(�

1

:�

ow

) ;
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whi
h is a bounded operator already, follows from the well-known 
riteria

of 
ompa
tness in L

p

(�

1

) spa
e modi�ed with the help of Lemma 1.22

Z

�

1

2

4

Z

�

1

j log(� � �

j

)k(�; �)j

p

0

jd� j

3

5

p

p

0

jd�j <1 ;

sin
e the kernel k(�; �) of the 
ommutator [vI; A℄ is a uniformly bounded

fun
tion.

As a lo
al representative of A at a regular point �

0

6= �

1

; : : : �

n

we 
hoose

the following operator

A

M

�

0

� A

�

0

:= P

+

�

1

+G(�

0

)P

�

�

1

; A

�

0

: L

p

(�

1

) �! L

p

(�

1

) (5.39)

with the 
onstant (\frozen" at �

0

) 
oeÆ
ient. This operator is invertible

A

�1

�

0

:= P

+

�

1

+G

�1

(�

0

)P

�

�

1

(see (5.28), (5.29)).

Before lo
alizing at the point �

j

, where the 
oeÆ
ient has dis
ontinuity

G(�

j

+0) 6= G

j

(�

j

�0) 6= 0 let us simplify the operator by taking 
omposition

with the invertible operator B

j

in (5.28). The 
omposition AB

j

has the

same image Im A

j

= Im A and due to invertibility of B

j

we 
an 
onsider

the 
omposition

A

j

:= P

+

�

1

+G

�1

(�

j

� 0)GP

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

) (5.40)

instead of (1.93). The lo
al representative of the operator (5.40) at the

point �

j

2 �

1

is 
hosen as follows

A

j

M

�

j

� A

0




j

;�

j

:= g

1

[P

+

�

1

+G

�

j

P

�

�

1

℄g

�1

1

I ; G

�

j

(t) := e

2��

j

i

�

+

j

+ �

�

j

;(5.41)

�

j

=

1

p

�

�

1

p

+ �

j

�




j

;

sin
e G

�1

(�

j

�0)G(�

j

+0) = e

2��

j

i

(see (5.18) and note that in (5.24){(5.27)

we have taken the outward peak whi
h means 


j

= 0); �

�

j

in (5.41) are the


hara
teristi
 fun
tions of the semi-
ir
umferen
e � Im (�=�

j

) � 0.

The lo
alized operator A

0




j

;�

j

should be 
onsidered in the appropriate

lo
al spa
es:

A

0




j

;�

j

: L

p

(�

1

) �! L

p

(�

1

) if 0 < 


j

� 2 ;

A

0

0;�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) if 


j

= 0; (i.e., �

j

2 �

ow

) :

(5.42)

The lifted operators (
f. (5.33))

A




j

;�

j

:= Z

p�

j

A

0




j

;�

j

Z

�1

p�

j

=: L

2

p

(R) �! L

2

p

(R) if 0 < 


j

� 2 ;

A

0;�

j

:= Z

p�

j

A

0

0;�

j

Z

�1

p�

j

=: L

2

p

(R) �! L

2

p

(R; f1g) if 


j

= 0

(5.43)
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are 
onvolutions

A




j

;�

j

=W

0

A




j

(�

j

;�)

(5.44)

(
f. (5.33)) with the symbols

A




j

(�

j

; �) :=

�

1

2

(I + s

p

(�)) + e

2��

j

i

1

2

(I � s

p

(�))

1

2

(e

2��

j

i

� 1)n

p

(�)

0 I

�

=

�

e

��

j

i

0

0 1

�

2

4

sinh�

(

i

p

��

j

i+�

)

sinh�

(

i

p

+�

)

sinh��

j

i

sinh�

(

i

p

+�

)

0 1

3

5

=

�

e

��

j

i

0

0 1

�

2

4

sinh�

(

��

(

1

p

+�

j

)




j

i

)

sinh�

(

i

p

+�

)

sinh�

[

i

p

�

(

1

p

+�

j

)




j

℄

sinh�

(

i

p

+�

)

0 1

3

5

: (5.45)

The operator A




j

;�

j

=W

0

A




j

(�

j

;�)

for 


j

6= 0 is invertible in L

2

p

(R) i�

A

0

(�

j

; �)=e

��

j

i

sinh�

�

��

�

1

p

+ �

j

�




j

i

�

sinh�

�

i

p

+ �

�

6= 0=)

�

1

p

+�

j

�




j

6= 1; (5.46)

as it follows from (5.45) and (2.5). Condition (1.94) is justi�ed.

Now let 


j

= 0; then �

j

=

1

p

and (see (5.45))

A

0

(�

j

; �) :=

"

e

�

p

i

sinh��

sinh�

(

i

p

+�

)

e

�

p

i

sinh

�

p

i

sinh�

(

i

p

+�

)

0 1

#

(5.47)

(
f. (5.36), (5.37)). The operator

e

V

1

:=

�

I + V

1

0

0 I

� �

e

�

�

p

i

I �I

0 I

�

=

�

e

�

�

p

i

(I + V

1

) �(I + V

1

)

0 I

�

=W

0

v

0

: L

2

p

(R; f1g) �! L

2

p

(R) ; v

0

(�) :=

�

e

�

�

p

i

��i

�

�

��i

�

0 1

�

(5.48)

arranges an isomorphism (see (1.92) and (5.35)). Therefore, the operator

A

0;�

j

in (5.43), (5.44) (the 
ase 


j

= 0) is equivalent to the operator

e

V

1

W

0

A

0

(�

j

;�)

=W

0

v

0

W

0

A

0

(�

j

;�)

=W

0

A

1

0

(�

j

;�)

: L

2

p

(R) �! L

2

p

(R) ; (5.49)

where

A

1

0

(�

j

; �) := v

0

(�)A

0

(�

j

; �) :=

2

4

(��i) sinh��

� sinh�

(

i

p

+�

)

(��i)

[

sinh

�

p

i�sinh�

(

i

p

+�

)℄

� sinh�

(

i

p

+�

)

0 1

3

5
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Obviously, A

1

0

(�

j

; �) 2 PC

2�2

p

(R) (see (3.4)) and

det A

1

0

(�

j

; �) =

(�� i) sinh��

� sinh�

�

i

p

+ �

�

6= 0 for all � 2

_

R :

W

A

1

0

(�

j

;�)

is invertible in L

2

p

(R) and yields invertibility of the lo
al represen-

tatives A

�

j

in (5.42) for all �

j

2 �

ow

.

Thus, under 
onditions (1.94), all lo
al representatives of the operator

(1.93) are invertible, whi
h implies that (1.93) is Fredholm.

To prove the index formula (1.95) we re
all the representation (5.23)

and arrange a homotopy sending the fun
tion G(�) to

g(�) := g

0

(�)

Y

�

j

2�

ow

g

j

(�) ; � 2 �

1

; (5.50)

where the fun
tions g

0

(�) and g

j

(�) have the same images (a

ept the same

values) as

e

G

0

(�) and �

�1

j

�

1

p

�

j

, respe
tively, when � ranges over �

1

(we remind

that e�

j

= �

j

=

1

p

as soon as 


j

= 0). More of this, supports of g

0

� 1 and of

g

j

� 1 are \squeezed" and belong to �

10

and �

�

j

, respe
tively. Therefore,

supp (g

k

� 1) \ (�) supp (g

j

� 1) := ; for all k 6= j ;

g

0

2 C

1

(�

1

) ; ind g

0

= ind

e

G

0

= � :

g

j

2 C

1

(�

1

n f�

j

g) ;

g

j

�

1

p

�

j

2 C

1

(�

1

) ; ind

g

j

�

1

p

�

j

= 0 :

(5.51)

To arrange su
h homotopy we just de�ne

G

#

(�) :=

e

G

0

(�)

"

g

0

(�)

e

G

0

(�)

#

#

Y

�

j

2�

ow

2

4

g

j

(�)

�

1

p

�

j

3

5

#

�

1

p

�

j

Y

�

j

62�

ow

�

(1�#)�

j

�

j

(5.52)

for 0 � # � 1. Sin
e the fun
tions [g

0

(�)=

e

G

0

(�)℄

#

and [g

j

(�)=�

1

p

�

j

℄

#

are


ontinuous for all 0 � # � 1 (see (5.51)) and the exponents (1 � #)e�

j


ontinue to satisfy 
onditions (1.94) when �

j

62 �

ow

, we get the operators

A

#

:= P

+

�

1

+G

#

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

;�

ow

)

whi
h are Fredholm for all 0 � # � 1. Then these operators maintain the

index

Ind A = Ind A

0

= Ind A

1

= Ind (P

+

�

1

+G

1

P

�

�

1

) : (5.53)

Due to the disjoint supports of g

j

� 1 (see (5.51)) we get

A

1

= P

+

�

1

+G

1

P

�

�

1

= D

0

Q

�

j

2�

ow

D

j

;

D

0

:= P

+

�

1

+ g

0

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

) ; (5.54)

D

j

:= P

+

�

1

+ g

j

P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g)
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and the operators 
ommute D

j

D

k

= D

k

D

j

. Therefore

Ind A

1

= Ind D

0

+

X

�

j

2�

ow

Ind D

j

= ind

e

G

0

+

X

�

j

2�

ow

Ind D

j

(5.55)

and to justify the index formula (1.95) we just have to show that

Ind D

j

= 0 for all �

j

2 �

ow

: (5.56)

By the 
ondition the image of g

j

(�) 
oin
ides with the image of �

�1

j

�

1

p

�

j

whi
h means that

jg

j

(�)j = 1 ; g

j

(�

j

� 0) = e

2�

p

i

; g

j

(�

j

+ 0) = +1 : (5.57)

Let us 
onsider the operator

H

�

j

= I +Z

�1

p�

j

W

0

H

Z

p�

j

= Z

�1

p�

j

W

0

1+H

Z

p�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) ;

1 +H(�) =

�

e

�

p

i

�

��i

e

�

p

i

0 1

�

: (5.58)

The lifted operator (see (3.37){(3.40))

Z

p�

j

H

�

j

Z

�1

p�

j

=W

0

1+H

: L

2

p

(R) �! L

2

p

(R; f1g) (5.59)

is invertible. In fa
t,

[1 +H(�)℄

�1

=

�

e

�

�

p

i

��i

�

�

��i

�

0 1

�

= v

0

(�)

(
f. (5.48)) and therefore

e

V

1

in (5.48) is the inverse operator to (5.58)

e

V

1

W

0

1+H

=W

0

v

0

(1+H)

= I (5.60)

(see (3.23)).

For the parameter-dependent operator

R

#

:= (1�#)B

j

�#e

�i

H

�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) ; 0 � # � 1 ; (5.61)

where

2�

p

� � � 2� will be 
hosen later, the lo
al representatives for �

0

62

�

ow

read

R

#

M

�

0

� R

#;�

0

= g

�1

1

[(1� #)P

+

�

1

+ (1� #)g

j

(�

0

)P

�

�

1

℄g

1

I � #e

�i

I

=℄g

�1

1

[(1� #� #e

�i

)P

+

�

1

+ [(1� #)g

j

(�

0

)℄℄g

1

� #e

�i

℄P

�

�

1

: L

p

(�

1

) �! L

p

(�

1

) ; (5.62)
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while for �

j

2 �

ow

we get

R

#

M

�

j

� R

#;�

j

=℄g

�1

1

[(1� #)P

+

�

1

+ (1� #)G

�

j

(�

0

)P

�

�

1

℄℄g

1

I

�#e

�i

Z

�1

p�

j

W

1+H

Z

p�

j

= Z

�1

p�

j

W

R

#

(�

j

;�)

Z

p�

j

: L

p

(�

1

) �! L

p

(�

1

; f�

j

g) (5.63)

(
f. (5.39), (5.41), (5.42){(5.47)), where G

�

j

(�) = +1 for Im (��

�1

j

) > 0

and G

�

j

(�) = e

2�

p

i

for Im (��

�1

j

) < 0 (
f. (5.27), (5.41)) and

R

#

(�

j

; �) = (1� #)A(�

j

; �)� #e

�i

[1 +H(�)℄ : (5.64)

The operators R

#;�

0

in (5.62) are invertible having 
onstant non-vani-

shing 
oeÆ
ients

1� #(1 + e

�i

) 6= 0 ; (1� #)g

j

(�

0

)� #e

�i

6= 0 for all 0 � # � 1 ; �

0

6= �

j

provided � > � (we remind that g

j

(�

0

) = e

�i

with

2�

p

� � � 2� is impossible

sin
e �

0

6= �

j

). The inverse operator is written as in (5.28){(5.30).

The operators R

#;�

j

in (5.63) are also invertible be
ause the lifted oper-

ators

W

0

R

#

(�

j

;�)

= Z

p�

j

R

#;�

j

Z

�1

p�

j

: L

2

p

(R) �! L

2

p

(R; f1g) (5.65)

are invertible. To verify this we should apply the isomorphism

e

V

1

from

(5.48)

e

V

1

W

0

R

#

(�

j

;�)

=W

0

v

0

R

#

(�

j

;�)

: L

2

p

(R) �! L

2

p

(R) (5.66)

(see (3.23)), where

v

0

(�)R

#

(�

j

; �) = (1� #)A

1

0

(�

j

; �)� #e

�i

v

0

(�)[1 +H(�)℄

= (1� #)A

1

0

(�

j

; �)� #e

�i

I

=

2

4

(1� #)

(��i) sinh��

� sinh�

(

i

p

+�

)

� #e

�i

(1� #)(� � i)

sinh

�

p

i�sinh �

(

i

p

+�

)

� sinh�

(

i

p

+�

)

0 1� #(1 + e

�i

)

3

5

(see (5.49), (5.60)). The image of the fun
tion

h

p

(�) :=

(� � i) sinh��

� sinh �

�

i

p

+ �

�

=

sinh��

�

2

6

4

� sinh�� 
os

�

p

� 
osh�� sin

�

p

�

�

�

sinh�

�

i

p

+ �

�

�

�

�

2

�i

sinh�� 
os

�

p

+ � 
osh�� sin

�

p

�

�

�

sinh�

�

i

p

+ �

�

�

�

�

2

3

7

5

; h

p

(�) = h

p

(��)



110

on the 
omplex plane C when � ranges through R is a 
ontinuous 
urve


onne
ting points h

p

(�1) = e

�

�

p

i

on the unit 
ir
umferen
e and passing

through h

p

(0) = �

�

sin

�

p

< 0 on the negative semi-axes. Easy to as
ertain,

that

�

p

� arg h

p

(�) � 2� �

�

p

and the 
onstraints

max

�

�; 2� �

�

p

;

2�

p

�

< � � 2�

on the parameter � ensure the ellipti
ity

det v

0

(�)R

#

(�

j

; �) = [(1� #)h

p

(�)� #e

�i

℄[1� #(1 + e

�i

)℄ 6= 0

for all 0 � # � 1 ; � 2

_

R;

whi
h yields invertibility of the operator in (5.66) (see (2.5)).

Thus, the operator R

#

in (5.61) depends on the parameter # 2 [0; 1℄


ontinuously and 
onne
ts the operator B

j

with the invertible one �e

�i

H

�

j

in the group of Fredholm operators, whi
h yields equality of indi
es

Ind B

j

= Ind R

0

= Ind R

1

= Ind H

�

j

= 0 :

5.4 Proof of Theorem 1.23

First suppose � has no peaks T

pk

= ;.

Let us write the symbols of equations (1.39) and (1.40) in the spa
es

X

m

(�; �) = W

m

p

(�; �); H

0

�+m

(�; �); C(�; �); PC

m

(�; �) a

ording to (4.6),

(4.10) and (4.28)

(A

�

)

X

m

(�;�)

(t; �) :=

8

>

>

>

>

>

<

>

>

>

>

>

:

1

p

"

�1 0

0 �1

#

if t 6= t

1

; : : : ; t

n

;

1

p

�

�1 H

m;j

(�)

H

m;j

(�) �1

�

if t = t

j

;

where m = 0; 1, �

j

is de�ned in (1.79) and

H

m;j

(�) :=

sinh�(1� 


j

)(i�

j

�mi+ �)

sinh�(i�

j

+ �)

: (5.67)

A

ording to Theorems 4.1, 4.3 and 4.6 equations (1.39) and (1.40) are

Fredholm in X

m

(�; �) if and only if

inf

�2R

�

�

det (A

�

)

X

m

(�;�)

(t; �)

�

�

=

1

4

inf

�2R

�

�

1�H

2

m;j

(�)

�

�

6= 0 : (5.68)
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Invoking the formulae

sinh

2

a� sinh

2

b = sinh(a� b) sinh(a+ b) ;

sinh(a+ 2�k) = sinh a ; a; b 2 C ; k = 0;�1; : : : :

we �nd easily

1

4

(1�H

2

m;j

(�)) =

sinh

2

�(i�

j

+ �)� sinh

2

�(1� 


j

)(i�

j

�mi+ �)

4 sinh

2

�(i�

j

+ �)

= �

sinh�[(2� 


j

)(i�

j

+ �)�mi+ 2


j

i℄ sinh�


j

(i�

j

+ ��mi)

sinh

2

�(i�

j

+ �)

= �

sinh�(2� 


j

)(i�

j

+ ��mi) sinh�


j

(i�

j

+ ��mi)

sinh

2

�(i�

j

+ �)

: (5.69)

Due to (5.69) 
ondition (5.68) holds if and only if

(2� 


j

)(i�

j

+ ��mi) 6= 0;�i; : : : ; 


j

(i�

j

+ ��mi) 6= 0;�i; : : : :

Sin
e 0 < �

j

< 1, m = 0; 1 the latter 
onditions 
an be written as follows

�

j

6=

(




0

j

if m = 0 ;

1� 


0

j

if m = 1 :

(5.70)

and the 
ondition of the theorem is justi�ed.

On the other hand due to (5.70) the group of non-degenerate symbols

(5.68) is divided in four homotopy groups (two for ea
h m = 0; 1); the

symbols inside ea
h group have equal indi
es and it suÆ
es to �nd the

value for one representative of the group. Sin
e

det (A

�

)

X

m

(�;�)

(t; �) =

1

4

[1�H

2

m;j

(�)℄ =

1

4

[1�H

m;j

(�)℄[1 +H

m;j

(�)℄

it is suÆ
ient to investigate simpler fun
tions 1�H

m;j

(�). Images on the


omplex plane of representatives




j

=

1

p

; �

j

=

1

4

;

3

4

; m = 0; 1

are plotted on Fig. 7{Fig.10 in Appendix. The result 
an be summarized

as follows:

ind det (A

�

)

X

m

(�;�)

(t

j

; �) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 for �

j

< 1� 


0

j

and m = 0 ;

�1 for �

j

> 1� 


0

j

and m = 0 ;

1 for �

j

< 


0

j

and m = �1 ;

0 for �

j

> 


0

j

and m = �1 :
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From Theorems 4.1, 4.3 and 4.6 we get the index formula (we remind that

T

pk

= ;)

Ind A

�

= �

n

X

j=1

ind det (A

�

)

X

m

(�;�)

(t

j

; �)=

8

>

>

>

>

>

<

>

>

>

>

>

:

X

t

j

62T

pk

�

j

>


0

j

1 for m=0;

�

X

t

j

2T

�

j

<1�


0

j

1 for m=1

(see (1.81)).

Now we need information about the kernels dim Ker A

�

to derive the

remainder equalities in (1.81).

Solvability results follow from from (1.81) provided (1.82) or (1.83) hold.

First of all note, that due to Lemma 1.21 it suÆ
es to establish values

of dim Ker

X

A

�

and dim Coker

X

A

�

only for one spa
e among those where

operators A

�

have equal indi
es.

Equalities dim Ker A

�

= "

�

, dim Coker A

�

= "

�

under 
ondition

(1.82) and, in general, equalities in (1.81) 
an be derived from the equiva-

len
e of BVPs and our BIEs stated in Theorem 1.12 by invoking Remark

1.10, Lemma 1.15 and equivalen
e of BVPs with the Riemann{Hilbert

problem, stated in Theorem 1.16, be
ause either the kernel or the 
okernel

of the Riemann{Hilbert problem (and of 
hara
teristi
 singular integral

equation) are trivial (see [Du1, GK1, Kh1℄).

If one of 
onditions of the theorem is missing we 
an apply above men-

tioned equivalen
e with the Riemann{Hilbert problem to �nd that our

BIEs are not Fredholm. Moreover, sin
e in all 
ases the kernels and 
oker-

nels are �nite dimensional dim Ker A

�

� n+1 and dim Coker A

�

�

� n+1,

the images Im A

�


an not be 
losed.

Now suppose � has peaks T

pk

6= ;.

Lo
alization method applied in x,5.3, 
an be applied in the present sit-

uation as well. Due to Corollary 1.7 lo
al representatives of operators A

�

in (1.39) at t

0

62 T

pk

are

A

�

M

t

0

� �

1

2

I

and are invertible in L

p

(�).

At the inward peak t

l

62 T

iw

we should lo
alize the operator A

�

to the

same one, but repla
e the 
urve � by a new one L

j

whi
h 
oin
ides with �

in the vi
inity of t

j

and has t

j

as a single outward peak. Therefore we 
an

suppose, without restri
ting generality, that � has a single knot T = ft

1

g,

whi
h is either an angular point or an outward peak.

WARNING! While 
hanging from the inward peak to outward, we 
hange

the orientation of the 
urve. Then operators A

�

and B

�

are repla
ed by

�A

�

and �B

�

, respe
tively. We should also inter
hange one-side neigh-

bourhoods �

�

t

j

and �

+

t

j

whi
h leads, due to non-equal rights of these neigh-
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bourhoods in the de�nition of the spa
e L

p

(�; �; T

iw

) (see (1.76)) to di�er-

en
es, whi
h should be taken into 
onsideration.

Due to Lemma 1.13 the Riemann{Hilbert problem is surje
tive and we


an enjoy equivalent redu
tion of (1.39) and of (1.44) to the 
orresponding

BVPs (1.6){(1.8) for the domain 


+

justi�ed in Theorems 1.12 and 1.14.

Due to equivalen
e established in Theorems 1.16 and 1.17 we �nd that

equation (1.39) is equivalent to (1.50) while (1.44){to (1.60). By applying

Theorem 1.26 and 1.29 we a

omplish the proof of Fredholm properties.

The same equivalen
e 
an be used to prove the index formulae for the


ase of one knot. In 
ase of multiple knots we 
an use exa
tly the same

approa
 as in (5.51){(5.54) and redu
e the proof to the 
ase of one knot.

For equations (1.40) and (1.45) we make 
on
lusions as for dual equations

to (1.39) and to (1.44), respe
tively.

As for dim Ker A

�

and dim Ker B

�

in (1.39){(1.40) and in (1.44){

(1.45), the formulae 
an be derived from the index formulae and above

mentioned results on kernels in L

p

(�) spa
es (see Remark 1.10).

Remark 5.11 Due to Lemma 1.21 any integrable solutions '

�

2 L

p

(�; �)

of integral equations (1.39) and (1.40) are 
ontinuous (are H

�

older 
ontin-

uous with the exponent 0 < � < 1 or even belong to the Zygmund spa
e

Z

�

(�) for 0 < � <1) provided the right-hand sides are 
ontinuous (belong

to H

�

(�) or to Z

�

(�), respe
tively and, in the latter 
ases, � suÆ
iently

smooth).

Moreover, invoking Theorem 5.8 we �nd that the solution u(x) to the

Diri
hlet BVP (1.6), (1.7) is 
ontinuous on 


�

(is H

�

older 
ontinuous

with the exponent 0 < � < 1 or even belongs to the Zygmund spa
e Z

�

(�)

for 0 < � <1) provided the same 
ondition holds for the date g(t) on �.

Similar assertions for L

p

-spa
es and 
ontinuous solutions 
an be found

in [Mi2, x 14℄ and in [Ma1, Ch. I, Theorems 3 and 5℄.

Remark 5.12 Non-equal rights of 
urves �

�

t

j

in the de�nition of the spa
e

L

p

(�; �; T

pk

) in (1.76) originates in the behavior of the 
onvolution opera-

tor with 2 � 2 matrix symbol whi
h is a lo
al representative of the bound-

ary integral operator and 
an easily be tra
ed in the proof of Theorem 1.26

in x 5.3 (see (5.42){(5.47)). Di�eren
e of 
onditions on the fun
tion ' 2

L

p

(�; �; T

pk

) at outward and inward peaks in the de�nition (1.76) re
e
ted

in "

j

= �1, is due to the above-mentioned non-equal rights of 
urves �

�

t

j

and 
an be explained by the 
hange of domain 


+

to some outer domain by

lo
alization to make an inward peak outward (see the proof of Theorem 1.23

above).
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