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The optimal problem with a quasilinear differential equation in Banach spaace is con-
sidered, where the linear part of the right-hand side contains unbounded operators. In
the class of piecewise uniformly Lipschitz mappings, with values in a compact subset of
finite-dimensional space, the existence of the optimal control is proved. As an illustra-
tion of the obtained result, the existence of the optimal control for an optimal problem
containing an equation of hyperbolic type is established.

1. STATEMENT OF THE PROBLEM. THE EXISTENCE THEOREM

Let J = [a,b] be a finite interval, X and Xo be Banach spaces, Xo be densely and
continuously embedded in X. B(Xo,X) denotes the Banach space of linear bounded op-
erators from X to X, B(X) = B(X, X); for each ¢, A(t) : D(A(t)) - X, D(A(t)) C X,
is a linear unbounded operator and the family {A(¢)}:cs satisfies the following assump-
tions:

(i) Xo C D(A(t)), A(t) € B(Xp, X), Vt € J, and ¢t — A(t) is a norm-continuous
mapping from [a,b) to B(Xop,X);

(if) A(t) generates a semigroup of class co on X, V¢ € J (see[l]), and there are
constants M, 3 such that

1
1Y 01— A e < MO=B)7F, A> 8,
=k

for any finite family {t;} with a <t; <--- <t <b, k=1,2,--;
(iii) There is a family {S(¢t)} of isomorfisms of Xo in X such that ¢t — S(t)z is
cotinuously differentiable for each z € Xy and
SHA)S(t)™" = A(t) + B(t), B(t) € B(X),
where B(t) is strongly continuous in X.
Further, let U C R” be a compact set, f : J X Xo X U — X be a continuous mapping
and there exist & > 0, such that for every ¢t € J and u € U
[f(t, z1,u) — f(t,22,u)| < klz1 — 22|x,, VZ1,22 € Xo.

Moreover, as in [2], let Q = Q(m,[) be the set of piecewise continuous functions u(-) :
J — U having the property: for each u(-) € 2 there exists a partitiona =&y < ---&m = b
such that on every (&;,&;41) the restriction of u(-) satisfies the Lipschitz condition:
lu(t’) —u(t”)| < LIt —t"|, V',t" € (&,&+1), i=0,...,m—1,

besides, the constants m and L do not depend on u(-) € Q; let ¢* : J2 x X2 — R!,
i=0,1,...,[, be continuous functions; K be a compact set in Xp.
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Consider the problem:

z(t) = A(t)z(t) + f(t,z(t),u(t)), tE€ [to,t1] CJ, u(:)€Q, (1)
z(to) = zo0 € K, )
qi(t07tlaxoax(t1)):07 i=1,...,1 (3)
¢°(to, t1, 20, (t1)) — min. (4)

Definition 1. A continuous function z(t) = z(t, z) € Xo, t € [to,t1], is said to be a
solution corresponding to an element

Z= ((toatth:u(')) € I’ x K xQ, to <ti,

if it in X satisfies (1) at the points of continuity of u(-) and satisfies the initial condition

(2)-

Definition 2. The element z € J? x K x 0 is said to be admissible, if the correspond-
ing solution z(t, z) satisfies (3).

The set of admissible elements will be denoted by A.
Definition 3. The element Z = ((io,#1,%0,4(-)) € A is said to be optimal, if
T=1() = inf I(2),
where
I(z) = ¢°(to, t1, w0, x(t1)), (t) = x(t, 2).
Theorem 1. if A # (), then there exists an optinal element.

Remark 1. If {A(t)} is a family of bounded operators, then we can take Xo = X and
the conclusions of Theorem 1 are valid without assumptions (ii), (iii), which easily follow
from continuity of mapping A(t).

2. AUXILIARY LEMMAS

First, the family {A(t)} satisfies conditions of Theorem 6.1 of [3], so the following
lemma is valid. Note that we denote the exponent of the generator A by e4 as in [4].

Lemma 1. Let the family {A(t)}res of unbounded operators satisfy the conditions
(i), (i), (iii). Then there exists a unique family of operators T(t,s) € B(X) — solutions
of the homogeneous equation, defined for a < s <t < b with the following properties.

h1l) T(t,s) is strongly continuous (X) in s, t,
T(s,s) =Ix and [T(L,s)|px) < MePt=9) q <5<t <b;
h2) T(t,r) =T(t,s)T(s,r), r<s<t;
h3) T(t,s)Xo C Xo, T(t,s) is strongly continuous (Xo) jointly in s, t and there
exist constants M > 1, [ >0 such that
IT(t,) 5 xg) < M7, a<s<t<b;
h4) for every x € Xo and a < s <t < b:

3] 3]
E[T(t’ s)x] = A(H)T(t, )z, E[T(t’ s)x] = =T (t, s)A(s)x.
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Lemma 2. Let [to,t1] = Jo C J; zo € K; ¢ : Jo — Xo is a continuous mapping
and there exist k1 > 0 such that

‘g(t7xl) - g(t7x2)‘X0 S ‘1‘1 _x2|X07 V$1,1'2 S XO) vt € Jo-

Then there ezists a unique continuous function x(-) : Jo — Xo, satisfying in X the
following Cauchy problem:

(5)

i(t) = A(t)z(t) + g, 2(t)), tE€ Jo,
z(to) = zo.
The proof of Lemma 2 is a standard one and is based on the fact that the solution
satisfies also

t
z(t) = T(t,to)zo + /T(t, s)g(s,z(s))ds, te Jo, (6)
to

S0 we omit it.

Lemma 3. To each element z = (to,t1,z0,u()) € J2 x K x Q, to < t1, there
corresponds a unique function x(t) = x(t, z), which continuously maps [to, b] into Xo, at
the points of continuity of u(-) satisfies the equation (1) in X and the initial condition (2),
and satisfies (6) on [to,b]; there exist a constsnt y > 0 such that |x(t)|x, <7, to <t <b,
and v does not depend on z.

Proof. For an arbitrary z = (tg,t1,20,u(:)) € J2 x K x Q, to < t1, by definition of
u(-) there exists a partition top = &o--- < & = b, j < m, such that on every (&,&;+1),
1=0,...,j—1, u(-) satisfies Lipschitz condition with a constant L. Obviously, for every
t € [to,b] there exist u(t+), u(t—).

Let Jo = [to,b], g(t,z) = f(t,z,u(t)), u(&)=u(é1—). Making use of Lemma 2 we
construct a unique continuous mapping z(-) : [to, 1] — Xo, satisfying (1) in X, (2) and
(6) on [to,&1]-

Further, let Jo = [¢1,&2], g be as above, u(&1) = u(&i4), u(€2) = u(2—), a new
initial moment be ¢ = £; and a new initial value be £(¢1). Use Lemma 2 and the obtained
solution denote by z(-), again. Now, z(-) : [to,£2] — Xo is continuous, differentiable in
X on [to, 2] except for t = &1, on [to,&1] we have (6) and

l‘(t) = T(tagl)x(gl) + /T(t7 s)f(s,:v(s),u(s))ds, te [51752]' (7)
&1

Substituting in (7) the value of z(&1) calculated by (6), we see that (6) takes place on
[to, &2]-

Continuing this process, after j steps we obtain the unknown z(:), which has the
demanded properties.

Finally, using the Gronwall’s lemma and (6) we can estimate |2(t) —T'(t, to)zo|x,, SO
there exists v, such that |z(t,2)|x, <7, to <t <b, and v does not depend on z. [
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3. THE PROOF OF THEOREM 1

There exists a sequence
zj = (té,t’ll,:n{),uj()) €A, j=1,2,...
such that
I(zj) =1, té%io, t’llﬁfl, :1:{)%:7:0 when ¢ — oo, (8)

and there exists @(-) € 2, such that lim;_, o u;(t) = @(t) everywhere on .J, except a finite
set of points (see [2], Lemma 2).

By virtue of Lemma 3, there exists a continuous function &(-) : [fo,b] — Xo, which
corresponds to the element = (fo,%1, %0, (-)). Consider the nontrivial case fo < #1.
There exists y1 > 0, such that

|f(t7x7u)|X0 S 1, vVt € J) Yu € U’ |m|X0 S Vs

where v is from Lemma 3.

With regard for (8), without loss of generality we can suppose t{ > {4+ mno, Vi€EN,
for some 79 > 0.

Taking into consideration the continuity of the mappings ¢*, (8), Lemma 3 and
#(l1) —a;(8]) = (8(0) — 2(1)) + (3(t]) — 2;(1))),
in order to prove Theorem 1 is sufficient to show

lim (z; () —&(#)) =0 in Xo. (9)

j—o0

Denote ¢; = MePfb=a) f(s) = f(s,&(s), q(s)), fi(s) = f(s,2;(s),uj(s)).

Let us take arbitrarily ¢ > 0, and choose 1 € (0,7,] such that n3c1y1et* < ¢/3. By
virtue of (8), there exists jo € N such that |iy — th] < n when j > jo. Thus, taking into
consideration (8) and the Gronwall Lemma, we get:

. ey i\ - £
|&() — 2 (1) xo <IT(t,E0)T0 —T(t, tg)ah|x,e* O~ + 3+

b
+epect ) / F(s) = £ (s, &(5),u;(5))|x, ds,

to+n

vt € [to +no,b], j > jo-
By virtue of Lemma 1 and the Lebesgue theorem on passage to limit in integrals,
there exists j1 € N such that j; > jo and from (j > 1, t € [to+ no,b]) it follows

|Z(t)—z; (t)]x, < . Due to the arbitrariness of €, z;(-) uniformly converges on [to+m0, b]
to Z(+) in Xo. Thus (11) is valid.
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4. APPLICATION TO OPTIMAL PROBLEM WITH HYPERBOLIC SYMMETRIC OBJECT TO BE
CONTROLLED

Consider the optimal control problem

y d
s 2 (6056 + Ut ul)y = (&, u(0), (10)
j=
EER™, te€lto,t1] C[0,n], u(-)€Q,
y(&,t0) =yo(§), wo(-) € K C H'(R™), (11)
/\yo — wo(&)2d€ + / ly(€,t1) — 01(€)|?d€ — min. (12)
RTL
Here y = (y1,... ,yn) is an N-vector of unknown functions of &, ¢, a;j(£,t) are Hermitian

symmetric N x N matrix functions, b(&,t,u) is an N x N matrix function, c¢(¢,t,u) € CV,
Q is determined above, ¢o(-), ¢1(-) € L2(R™), K is a compact subset in H! (the Sobolev
space).

We assume

(I) The maps t ~ a;(-,t) are continuous on [0,7] to C*(R™), j=1,...,n;
(IT) (t,u) — b(-,t,u) is continuous on [0,n] X U to C1(R™);
(I1T) (t,u) = ¢(-,t,u) is continuous on [0,7] x U to H'(R™).

Here C(R™) denotes the set of all N X N matrix-valued functions g such that g and
6%9]7 are continuous and bounded on R™. This is a Banach space with the corresponding
supremum norm.

Denote: X = L2(R"), Xo = HY(R™), J = [0,7], yo(-) = w0 € K; for every t € J,
A(t) : D(A(t)) — X is a linear unbounded operator in X formally given by (see [3]):

n

A== 3 a6, 57

j=1
for every z1, z2 € Xp we have

(to,tl,ﬂ?l,ﬁﬂg

=/|=’81( —¢o()] df-i-/\m (&)7de,
RTL

and for (t,p,u) € J x Xo x U we define f(t,p,u) € Xo as follows:
f(ta P u)(g) = 0(57 t, u) - b(f, t, u)@(g)

Now we can rewrite (10)—(12) in the Banach space X in the following form:

x(t) = A(t)x(t) + f(t,x(t),u(t)), te [to,tl] CJ, u()e Q, (13)
I(tO) = € K, (14)
¢°(to, t1,0,x(t1)) — min. (15)

Lemma 1 is applicable to { A(:)} (see [3]), and a simple verification shows that Theorem
1 is applicable to (13)—(15). Thus, there exists an optimal element (o, ¢1, %0, %(-)) whose
correspondig solution (&, t), t € [to,%1], has the following properties: ¢ + &(-,t) is
continuous in H'(R™), in L (R™ ) it satisfies the equations (15) and (12) at the points of
continuity of u(-), and Z(-,tp) = Zo holds.
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