T. TADUMADZE

LOCAL REPRESENTATIONS FOR THE VARIATION OF SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

(Reported on March 13, 2000)

1. Let J=[a,b] be a finite interval; $O\subset\mathbb{R}^n$ be an open set; E be a space of functions $f:J\times O^s\to\mathbb{R}^n$ satisfying the conditions:

1) for a fixed $t \in J$ the function $f(t,x_1,\ldots,x_s)$ is continuously differentiable with respect to $(x_1\ldots,x_s)\in O^s$; 2) for a fixed $(x_1,\ldots,x_s)\in O^s$ the functions $f,\ f_{x_i},\ i=1,\ldots,s$ are measurable with respect to $t\in J$; for an arbitrary compact $K\subset O$ there exists a function $m_{f,K}(\cdot)\in L(J,\mathbb{R}_0^+),\ \mathbb{R}_0^+=[0,\infty)$, such that

$$|f(t,x_1,\ldots,x_s)| + \sum_{i=1}^{s} |f_{x_i}(\cdot)| \le m_{f,K}(t), \quad \forall (t,x_1,\ldots,x_s) \in J \times K^s.$$

Let now $\tau_i(t)$, $i=1,\ldots,s$, $t\in J$, be absolutely continuous functions satisfying the conditions: $\tau_i(t)\leq t$, $\dot{\tau}_i(t)>0$; Δ be a space of piecewise continuous functions $\varphi:J_1=[\tau,b]\to O$, $\tau=\min\{\tau_1(a),\ldots,\tau_s(a)\}$, with a finite number of discontinuity points of the first kind, satisfying the conditions: $cl\{\varphi(t):t\in J_1\}$ is a compact lying in $O: \|\varphi(t)\| = \sup\{|\varphi(t)|:t\in J_1\}$.

To every element $\mu=(t_0,x_0,\varphi,f)\in A=[a,b)\times O\times \Delta\times E$ there corresponds the delay differential equation

$$\dot{x}(t) = f(t, x(\tau_1(t), \dots, x(\tau_s(t))), \tag{1}$$

with the initial condition

$$x(t) = \varphi(t), \quad t \in [\tau, t_0), \quad x(t_0) = x_0.$$
 (2)

Definition 1. The function $x(t) = x(t; \mu) \in O, t \in [\tau, t_1], t_1 \in (a, b], t_0 < t_1$ is said to be a solution corresponding to the element $\mu \in A$, defined on $[\tau, t_1]$, if the function x(t) on the interval $[\tau, t_0]$ satisfies the condition (2), while on the interval $[t_0, t_1]$ it is absolutely continuous and satisfies the equation (1) almost everywhere.

Introduce the set $V=\{\delta\mu=(\delta t_0,\delta x_0,\delta \varphi,\delta f)\in A-\mu: |\delta t_0|\leq c=const, |\delta x_0| ec, ||\delta \varphi||\leq c, \delta f=\sum_{i=1}^k \lambda_i \delta f_i, |\lambda_i|\leq c, i=1,\ldots,k\},$ where $\mu=(t_0,x_0,\varphi,f)\in A; \delta f_i\in E-\tilde{f}, i=1,\ldots,k$ are fixed points. By a standard way it is proved that if x(t) is the solution corresponding to the element $\tilde{\mu}$, defined on $[\tau,\tilde{t}_1],\tilde{t}_1< b$. Then there exist numbers $\varepsilon_0>0,\ \delta_0>0$ such that for an arbitrary $(\varepsilon,\delta\mu)\in [0,\varepsilon]\times V$ to the element $\tilde{\mu}+\varepsilon\delta\mu\in A$ there corresponds the solution $x(t;\varepsilon\delta\mu)$ defined on $[\tau,\tilde{t}_1+\delta_0]\subset J_1$. It is obvious that the solution $x(t;0),\ t\in [\tau,\tilde{t}_1+\delta_0]$ is a continuation of the solution $\tilde{x}(t)$ in the sequel assumed to be defined on the whole interval $[\tau,\tilde{t}_1+\delta_0]$.

The above presented discussion allows us to introduce the function

$$\Delta x(t;\varepsilon\delta\mu) = x(t;\varepsilon\delta\mu) - \tilde{x}(t), \ \ (t,\varepsilon,\delta\mu) \in [\tau,\tilde{t}_1+\delta_0] \times [0,\varepsilon_0] \times V.$$

Key words and phrases. Delay differential equations, variation of solution.

²⁰⁰⁰ Mathematics Subject Classification. 34K15.

The function $\Delta x(t; \varepsilon \delta \mu)$ is called the variation of the solution $\tilde{x}(t)$. In order to formulate the main results, we will need the following notation:

$$\omega_{i}^{-} = (\tilde{t}_{0}, \underline{\tilde{x}_{0}, \dots, \tilde{x}_{0}}, \underline{\tilde{\varphi}(\tilde{t}_{0}-) \dots, \tilde{\varphi}(\tilde{t}_{0}-)}, \tilde{\varphi}(\tau_{p+1}(\tilde{t}_{0}-)), \dots, \tilde{\varphi}(\tau_{s}(\tilde{t}_{0}-))),$$

$$i-times \qquad (p-i)-times$$

$$i = 0, \dots, p;$$

$$\omega_{i}^{-} = (\gamma_{i}, \tilde{x}(\tau_{1}(\gamma_{i})), \dots, \tilde{x}(\tau_{i-1}\gamma_{i})), \tilde{x}_{0}, \tilde{\varphi}(\tau_{i+1}(\gamma_{i}-)), \dots, \tilde{\varphi}(\tau_{s}(\gamma_{i}-))),$$

$$\tilde{\omega}_{i}^{-} = (\gamma_{i}, \tilde{x}(\tau_{1}(\gamma_{i})), \dots, \tilde{x}(\tau_{i-1}(\gamma_{i})), \tilde{\varphi}(\tilde{t}_{0}-), \tilde{\varphi}(\tau_{i+1}(\gamma_{i}-)), \dots, \tilde{\varphi}(\tau_{s}(\gamma_{i}-))),$$

$$i = p+1, \dots, s; \gamma_{i} = \gamma_{i}(\tilde{t}_{0}), \dot{\gamma}_{i}^{-} = \dot{\gamma}_{i}(\tilde{t}_{0}-), i = 1, \dots, s;$$

$$(3)$$

 $\gamma_i(t)$ is the function inverse to $\tau_i(t)$.

$$\lim_{\omega \to \omega_{i}^{-}} \tilde{f}(\omega) = f_{i}^{-}, \ \omega = (t, x_{1}, \dots, x_{s}) \in R_{\tilde{t}_{0}}^{-} \times O^{s}, \ i = 0, \dots, p,$$

$$R_{\tilde{t}_{0}}^{-} = (-\infty, \tilde{t}_{0}]; \qquad \lim_{(\omega_{1}, \omega_{2}) \to (\omega_{i}^{-}, \tilde{\omega}_{i}^{-}) \\
\omega_{1}, \omega_{2} \in R_{\gamma_{i}}^{-} \times O^{s}, \ i = p + 1, \dots, s.$$
(4)

Theorem 1. Let $\gamma_i = \tilde{t}_0$, $i = 1, \ldots, p$, $\tilde{t}_0 < \gamma_{p+1} < \ldots < \gamma_s < \tilde{t}_1$, there exist the finite limits: f_i^- , $i = 0, \ldots, s$; $\dot{\gamma}_i^-$, $i = 1, \ldots, s$, there exist a left semi-neighborhood $V^-(\tilde{t}_0)$ of the point \tilde{t}_0 such that

$$t < \gamma_1(t) < \dots < \gamma_{\ell}t), \quad \forall t \in V^-(\tilde{t}_0). \tag{5}$$

Then there exist numbers $\varepsilon_1 \in (0, \varepsilon_0], \delta_1 \in (0, dl_0]$ such that for an arbitrary $(t, \varepsilon, \delta \mu) \in [\tilde{t}_1 - \delta_1, \tilde{t}_1 + \delta_1] \times V^-; V^- = \delta \mu \in V : \delta t_0 \leq 0$, the formula

$$\Delta x(t; \varepsilon \delta \mu) = \varepsilon \delta x(t; \delta \mu) + o(t; \varepsilon \delta \mu), \tag{6}$$

is valid, where

$$\{Y(\tilde{t}_{0};t)\sum_{i=0}^{p}(\hat{\gamma}_{i+1}^{-}-\hat{\gamma}_{i}^{-})f_{i}^{-}-\sum_{i=p+1}^{s}Y(\gamma_{i};t)f_{i}^{+}\dot{\gamma}_{i}^{+}\}\delta t_{0}+\alpha(t;\delta\mu),$$

$$\hat{\gamma}_{0}^{-}=1,\hat{\gamma}_{i}^{-}=\dot{\gamma}_{i}^{-},i=1,\ldots,p,\;\dot{\gamma}_{p+1}^{-}=0,$$

$$\alpha(t;\delta\mu)=Y(\tilde{t}_{0};t)\delta x_{0}+\sum_{i=p+1}^{s}\int_{\tau_{i}(\tilde{t}_{0})}^{tlt_{0}}Y(\gamma_{i}(\xi);t)\tilde{f}_{x_{i}}[\gamma_{i}(\xi)]\dot{\gamma}_{i}(\xi)\delta\varphi(\xi)d\xi+$$

$$+\int_{\tilde{t}_{0}}^{t}Y(\xi;t)\delta f[\xi]d\xi,\;\;\tilde{f}_{x_{i}}[\xi]=\tilde{f}_{x_{i}}(\xi,\tilde{x}(\tau_{1}(\xi)),\ldots,\tilde{x}(\tau_{s}(\xi))),$$

$$\delta f[\xi]=\delta f(\xi,\tilde{x}(\xi)),\;\;\tilde{x}(\xi))$$

 $\lim_{\varepsilon \to 0} \frac{|o(t;\varepsilon\delta\mu)|}{\varepsilon} = 0$, uniformly with recpect to $(t,\delta\mu) \in [\tilde{t}_1 - \delta_1,\tilde{t}_1 + \delta_1] \times V^-$ and $Y(\xi;t)$ is a matrix function satisfying the equation

$$\frac{\partial Y(\xi;t)}{\partial \xi} = -\sum_{i=1}^{s} Y(\gamma_{i}(\xi);t) \tilde{f}_{x_{i}}[\gamma_{i}(\xi)] \dot{\gamma}_{i}(\xi), \quad \xi \in [\tilde{t}_{0},t],$$

and the condition

$$Y(\xi;t) = \begin{cases} I, & s = t, \\ \Theta, & s > t, \end{cases}$$

I is the identity matrix, Θ is the zero matrix

Remark 1. If $\tilde{\varphi}(\tilde{t}_0-)=\tilde{x}_0$, then $f_0^-=\cdots=f_p^-$, $f_i^-=0$, $i=p+1,\ldots,s$. If $\dot{\gamma}_p^-<\cdots<\dot{\gamma}_1^-<1$, then the condition (5) is fulfilled.

Theorem 2. Let $\gamma_i = \tilde{t}_0, \quad i = 1, \ldots, p, \ \tilde{t}_0 < \gamma_{p+1} < \cdots < \gamma_s < \tilde{t}_1, \ there exist the finite limits <math>f_i^+, \quad i = 0, \ldots, s; \ \dot{\gamma}_i^+, \quad i = 1, \ldots, s \ (see \ (3), \ (4)), \ and \ there exist a right-hand semi-neighborhood <math>V^+(\tilde{t}_0)$ of the point \tilde{t}_0 such that

$$t < \gamma_1(t) \le \dots \le \gamma_p(t), \quad \forall t \in V^+(\tilde{t}_0).$$
 (7)

Then there exist numbers $\varepsilon_1 \in (0, \varepsilon_0], \ \delta_1 \in (0, \epsilon_0], \ such that for an arbitrary <math>(t, \varepsilon, \delta \mu) \in [\tilde{t}_1 - \delta_1, \tilde{t}_1 + \delta_1] \times [0, \varepsilon_1] \times V^+ = \{\delta \mu \in V : \ \delta t_0 \geq 0\}$ the formula (6) is valid, where

$$\delta x(t;\delta \mu) =$$

$$\{Y(\tilde{t}_0;t)\sum_{i=0}^{p}(\hat{\gamma}_{i+1}^+ - \hat{\gamma}_{i}^+)f_{i}^+ - \sum_{i=p+1}^{s}Y(\gamma_i;t)f_{i}^+\dot{\gamma}_{i}^+\}\delta t_0 + \alpha(t;\delta\mu),$$

$$\hat{\gamma}_0^+ = 1, \ \hat{\gamma}_i^+ = \dot{\gamma}_i^+, \ i = 1, \dots, p, \hat{\gamma}_{p+1}^+ = 0.$$

Remark 2. If $\tilde{\varphi}(\tilde{t}_0+)=\tilde{x}_0$, then $f_0^+=\cdots=f_p^+, \quad f_i^+=o, \quad i=p+1,\ldots,s$. If $1<\dot{\gamma}_1^+<\cdots<\dot{\gamma}_p^+$, then the condition (7) is fulfilled.

Theorem 3. Let the assumptions of Theorems 1, 2 are fulfilled and

$$\sum_{i=0}^{p} (\hat{\gamma}_{i+1}^{-} - \hat{\gamma}_{i}^{-}) f_{i}^{-} = \sum_{i=0}^{p} (\hat{\gamma}_{i+1}^{+} - \hat{\gamma}_{i}^{+}) f_{i}^{+} = f_{0};$$
$$f_{i}^{-} \dot{\gamma}_{i}^{-} = f_{i}^{+} \dot{\gamma}_{i}^{+} = f_{i}, \quad i = p+1, \dots, s.$$

Then there exist numbers $\varepsilon_1 \in (0, \varepsilon_0]$, $\delta_1 \in (0, \delta_0]$, such that for an arbitrary $(t, \varepsilon, \delta \mu) \in [\tilde{t} - \delta_1, \tilde{t} + \delta_1] \times [0, \varepsilon_0] \times V$ the formula (6) is valid, where

$$\delta x(t,\delta \mu) = [Y(\tilde{t}_0;t)f_0 - \sum_{i=n+1}^s Y(\gamma_i;t)f_i]\delta f_0 + \alpha(t;\delta \mu).$$

For the case $s=2, \ \tau_1(t)\equiv t$ analogous theorems are proved in [1].

2. To every element $\zeta=(t_0,\varphi,f)\in A_1=[a.b)\times\Delta\times E$ there eorresponds the delay differential equation (1) with the initial condition $x(t)=\varphi(t),\ t\in[\tau,t_0].$ Introduce the set

$$V_1 = \{\delta\zeta = (\delta t_0, \deltaarphi, \delta f) \in A_1 - \tilde{\zeta}: \ |\delta t_0| \le c, \deltaarphi = \sum_{i=1}^k \lambda_i \delta f_i, \ |\lambda_i| \le c, \ i = 1, \dots, k\},$$

where $\zeta = (t_0, \varphi, f) \in A_1$; $\delta f_i \in E - f$, $\delta \varphi \in \Delta - \tilde{\varphi}$, $i = 1, \ldots, k$ are fixed points. Analogously we set the function (see Section 1)

$$\Delta x(t; \varepsilon \delta \zeta) = x(t; \varepsilon \delta \zeta) - \tilde{x}(t), \quad (t, \varepsilon, \delta \zeta) \in [\tau, \tilde{t}_1 + \delta_0] \times [0, \varepsilon_0] \times V_1.$$

Theorem 4. Let $\tilde{\varphi}(t)$ be absolutely continuous in a left semi-neighborhood of the point \tilde{t}_0 , there exist the finite limits $\dot{\varphi}^- = \dot{\tilde{\varphi}}(\tilde{t}_0 -)$ and

$$\lim_{\omega \to \overset{\circ}{\omega}} \tilde{f}^-(\omega) = \overset{\circ}{f}^-, \quad \omega \in \mathbb{R}^-_{\tilde{t}_0} \times O^s, \quad \overset{\circ}{\omega}^- = (\tilde{t}_0, \tilde{\varphi}(\tau_1(\tilde{t}_0 -)), \dots, (\tau_s(\tilde{t}_0 -))).$$

Then for an arbitrary $(t, \varepsilon, \delta) \in [\tilde{t}_0, \tilde{t}_1 + \delta_0] \times [0, \varepsilon_0] \times V_1^- = \{\delta \zeta \in V_1 : \delta t_0 \leq 0\}$ the formula

$$\Delta\varepsilon\delta\zeta) = \varepsilon\delta x(t;\delta\zeta) + o(t;\varepsilon\delta\zeta) \tag{8}$$

is valid, where

$$\begin{split} \delta x(t;\delta\zeta) &= Y(\hat{t}_0;t)[\delta\varphi^- + (\dot{\varphi}^- - \overset{\circ}{f}^-)\delta t_0] + \beta(t;\delta\zeta), \quad \delta\varphi^- = \delta\varphi(\tilde{t}_0 -), \\ \beta(t;\delta\zeta) &= \\ &= \sum_{i=1}^s \int\limits_{\tau_i(\tilde{t}_0)}^{\tilde{t}_0} Y(\gamma_i(\xi);t) \hat{f}_{x_i}[\gamma_i(\xi)] \dot{\gamma}_i(\xi) d\xi + \int\limits_{\tilde{t}_0}^t Y(\xi;t) \delta f[\xi] d\xi. \end{split}$$

Theorem 5. Let $\tilde{\varphi}(t)$ be absolutely continuous in a right semi-neighborhood of the point \tilde{t}_0 , there exist the finite limits $\dot{\varphi}^+ = \dot{\tilde{\varphi}}(\tilde{t}_0+)$ and

$$\lim_{\omega \to \overset{\circ}{\omega}^+} \tilde{f}(\omega) = \overset{\circ}{f}^-, \quad \omega \in \mathbb{R}^+_{\tilde{t}_0} \times O^s, \quad \overset{\circ}{\omega}^+ = (\tilde{t}_0, \tilde{\varphi}(\tau_1(\tilde{t}_0+)), \dots, (\tau_s(\tilde{t}_0+))).$$

Then for each $\bar{t} \in (\tilde{t}_0, \tilde{t}_1)$ there exists a number $\varepsilon_1 \in (0, \varepsilon_0]$ such that for an arbitrary $(t, \varepsilon, \delta\zeta) \in [\tilde{t}_0, \tilde{t}_1 + \delta_0] \times [0, \varepsilon_1] \times V_1^+ = \{\delta\zeta \in V_1 : \delta t_0 \geq 0\}$ the formula (8) is valid, where

$$\delta x(t;\delta\zeta) = Y(\hat{t}_0;t)[\delta\varphi^+ + (\dot{\varphi}^+ - \overset{\circ}{f}^+)\delta t_0] + \beta(t;\delta\zeta), \quad \delta\varphi^+ = \delta\varphi(\tilde{t}_0+).$$

Finally we note that the formulas (6), (8) play an important role when invstigating delay optimal problems.

REFERENCES

1. G. Kharatishvili, T. Tadumadze, and N. Gorgodze, Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument. *Mem. Differential Equations Math. Phys.* **19**(2000), 3–105.

Author's address:

- I. Vekua Institute of Applied Mathematics
- I. Javakhishvili Tbilisi State University
- $2,\ University\ St.,\ Tbilisi<math display="inline">380043$

Georgia