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LOCAL REPRESENTATIONS FOR THE VARIATION OF SOLUTIONS
OF DELAY DIFFERENTIAL EQUATIONS

(Reported on March 13, 2000)

1. Let J = [a, b] be a finite interval; O C R™ be an open set; E be a space of functions
f:J x 0% — R"™ satisfying the conditions:

1) for a fixed t € J the function f(¢,z1,...,zs) is continuously differentiable with
respect to (z1...,2s) € O%; 2) for a fixed (z1,...,2s) € O° the functions f, fz;,, i=
1,...,s are measurable with respect to t € J; for an arbitrary compact K C O there

exists a function my g () € L(J, Ra’), Rg‘ = [0, 00), such that

8
F(bay, szl + Y eV Smpkc(t), V(... 2s) € T x K.
i=1

Let now 7i(t), s = 1,...,s, t € J, be absolutely continuous functions satisfying
the conditions: 7;(t) < t, 7;(t) > 0; A be a space of piecewise continuous functions
¢ Ji = [1,b] > O, 7 = min{ri(a),... ,7s(a)}, with a finite number of discontinuity

points of the first kind, satisfying the conditions: cl{p(t) : t € J1} is a compact lying in
0; llp(t)| = sup{o(t)] : ¢ € J1}.

To every element pu = (to,zo0, ¢, f) € A = [a,b) Xx O X A X E there corresponds the
delay differential equation

i) = fltx(mi(t), ... ,z(7s(1))), (1)

with the initial condition
z(t) = ¢(t), t € [r,t0), z(to) = zo. (2)

Definition 1. The function z(t) = z(t;u) € O,t € [1,t1],t1 € (a,b],to < t1 is said
to be a solution corresponding to the element pu € A, defined on [7,t1], if the function
z(t) on the interval [7,%o] satisfies the condition (2), while on the interval [to, 1] it is
absolutely continuous and satisfies the equation (1) almost everywhere.

Introduce the set V' = {dp = (dto, dz0,0p,0f) € A — p : |0to| < ¢ = const, |dzo|‘ec, ||
5‘»0” <cdf = zi-c:l Al(sfw‘Al‘ <ei=1,... 7k}7 where p = (t07x07@7f) € A0f; €

E — f,i = 1,...,k are fixed points. By a standard way it is proved that if z(t) is
the solution corresponding to the element fi, defined on |7, fl],fl < b. Then there exist
numbers g9 > 0, dp > 0 such that for an arbitrary (e,0u) € [0,¢] X V to the element
ji + edp € A there corresponds the solution x(t;edu) defined on [1,#1 + do] C J1. Tt is
obvious that the solution x(¢;0), ¢ € [r,%1 + do] is a continuation of the solution #(t) in
the sequel assumed to be defined on the whole interval [7,%1 + do].

The above presented discussion allows us to introduce the function

Az(t;edp) = x(t;edp) — &(t), (t,e,0u) € [, + do] x [0,e0] x V-

2000 Mathematics Subject Classification. 34K15.
Key words and phrases. Delay differential equations, variation of solution.



139

The function Az(t;edu) is called the variation of the solution Z(t). In order to formulate
the main results, we will need the following notation:

w; = (fo, &0, ... , %0, p(fo—) ..., ¢(fo—), B(mp+1(fo—)), - . , B(7s (o)),
i-times (p-i)-times
t=0,...,p; (3)

w; = Vi, BT (¥))s - - 5 B(Tim1%1))s B0, P(Tik1 (Vi—))s - - > P(Ts (vi—))),

S5 = (B (), 871 (30)), BE0=)s @ries (=) - B(ra(25-)),
i=p+1,...,8 v =7(o), ¥, =%i(to—), i=1,...,s;

v:(t) is the function inverse to 7;(t).

lim_f(w) =f,w=(x1,...,25) € R; x 0% i=0,....p,

U.)—)U.)i
Ry = (-oo,foy  Mim  [f(wn) ~ f@)] = £, ()
(w1, wa) = (w; ,w; )
wi,w2 € Ry, xO%, i=p+1,...,s

Theorem 1. Let y; =1ip, i =1,...,p, o < Yp+1 < ..o < 9s < t1, there exist the
finite limits: f,~, 1 = 0,...,8; ¥, @ =1,...,s, there exist a left semi-neighborhood
V= (io) of the point iy such that

t<m(t) <...<yt), YEe V(). (5)

Then there ezist numbers €1 € (0,e0],01 € (0,dlo] such that for an arbitrary (t,e,0u) €
[y — 61,81 +01] x V73V~ =6u € V : 6tg <0, the formula

Ax(t;edp) = edu(t; op) + o(t; edp), (6)
is valid, where
dx(t; ou) =
p s
YV (i0it) Y (ipy =) = D Y7ot + adts ap),
i=0 i=p+1

tltp
ats ) = Y Oozo + 3 / ()30 1 (€3 ()5 0(€)dE +
=P ()

t

+/Y(£;t)5f[€]d€, foil€] = fo; (6, 8(T1(€)), - .., &(7a(€))),

to

6f[€] = £ (& &(T1(8))-- - B(7s(£))),

lim._, M = 0, uniformly with recpect to (t,0u) € [tl — 01,1 + 01] x V™ and
Y(&;t) is a matmz function satisfying the equation

oY ( f’ ZY (7 ()s ) fos i (1% (€), € € [Fo, 8],
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and the condition

I, s=1t,
Y(ﬁ;t)—{g oot

I is the identity matriz, © is the zero maltriz.

Remark 1. If $(lo—) = &o, then fy = --- = fp, f7 =0, i=p+1,...,s. If
ip < -+ <A; <1, then the condition (5) is fulfilled.

Theorem 2. Let v; = to, 4 = 1,...,p, to < Ypt1 < +++ < vs < b1, there exist
the finite limits f;r, 1 =0,...,s; "y;L, t=1,...,s (see (3), (4)), and there exist a
right-hand semi-neighborhood V1 (io) of the point to such that

t<y(t) <o <p(t), Vee V(). (M)

Then there exist numbers 1 € (0,e0], 01 € (0, €0], such that for an arbitrary (t,e,du) €
[f1 — 81,81 4+ 61] x [0,e1] x VE = {6u € V1 g > 0} the formula (6) is valid, where

ox(t; op) =
P s
(Y (oit) Y (i =% = Y YA }oto + alt; o),
=0 i=p+1

Ao =1 4 =4 i=1...p4, =0.

Remark 2. If p(to+) = o, then fgr == f;,L, f;L =0, i=p+1,...,s. If
1< "yf' < e < "y;', then the condition (7) is fulfilled.
Theorem 3. Let the assumptions of Theorems 1, 2 are fulfilled and
P P
> Gra =T =Y G AN = for
i=0 i=0
FTAT =5 = fi i=pt 1,
Then there exist numbers 1 € (0,e0], d1 € (0,d0], such that for an arbitrary (t,e,déu) €
[t —61,& 4+ 61] x [0,60] X V the formula (6) is valid, where
8
oa(t, o) = [Y (loi)fo — Y Y(%i;8)fildfo + alt; o).
i=p+1
For the case s =2, 7i(t) =t analogous theorems are proved in [1].
2. To every element ¢ = (to,p, f) € A1 = [a.b) X A x E there eorresponds the delay

differential equation (1) with the initial condition z(t) = ¢(t), t € [r,t0].
Introduce the set

Vi = {6¢ = (3to, 00, 0f) € A1 —C:
k

|6to| < ¢, 0 = in(sfi, N <e i=1,....,k},
i=1

where ¢ = (to,p, f) € A1;0fi e E—f, dp € A— @, i=1,...,k are fixed points.
Analogously we set the function (see Section 1)

Az(t;e8¢) = x(t;€6¢) — #(t), (t,£,8¢) € 1,81 + o] x [0,€0] X V4.
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Theorem 4. Let @(t) be absolutely continuous in a left semi-neighborhood of the
point ig, there exist the finite limits o~ = @(fo—) and

lim fo(@)=f , weRy x 0% & = (o, @il , (s (=)

Then for an arbitrary (t,e,0) € [to,f1 + do] x [0,e0] x V;” = {6¢ € V1 : &to < 0} the
formula

Aedl) = edx(t; 6¢) + o(t; 6¢) (8)
is valid, where
§z(t;6¢) = Y (fo; 1) [0~ + (¢~ — }_)5?50] + B(t;8¢), ¢~ = dp(io—),
B(t;6¢) =

EO t
= / ¥ (€)1 ) Foy (O () + / Y (€:)oflelde.
i=1 P

i (fo) to

Theorem 5. Let $(t) be absolutely continuous in a right semi-neighborhood of the
point Lo, there exist the finite limits )+ = ¢(to+) and

~ o ~ ~ ~
lim fw)=f~, weRf x0", W+ = (fo, p(r1(fo+))s - » (7 (Fo+)))-
woot
Then for each t € (to,t1) there evists a number 1 € (0,e0] such that for an arbitrary
(t,e,8¢) € [io,i1 + o] x [0,e1] x V;T = {6¢ € Vi : dtg > 0} the formula (8) is valid,
where

ot
5z(t;0¢) = V(o;t)[dp™ + (6T — f )dto] + B(t;6¢C), 6T = dp(fo+).

Finally we note that the formulas (6), (8) play an important role when invstigating
delay optimal problems.
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