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Consider the linear system of generalized ordinary di�erential equations

dx(t) = dA(t) � p(t) � x(t) + df(t); (1)

where A : [0;+1[! R

n�n

and f : [0;+1[! R

n

are, respe
tively, real matrix- and

ve
tor-fun
tions with lo
ally bounded variation 
omponents, and p : [0;+1[! R

n�n

is

a matrix-fun
tion, lo
ally integrable with respe
t to A.

In this paper we give some suÆ
ient 
onditions guaranteeing the stability with respe
t

to, small perturbation in the Liapunov sense, of the system (1).

Before passing to the statement of the basi
 results, we give some notation and de�-

nitions.

R =℄�1;+1[ is the set of all real numbers, [a; b℄ and ℄a; b[ are, respe
tively, 
losed

and open intervals, R

+

= [0;+1[.

R

n�m

is the spa
e of all real n�m-matri
es x = (x

ij

)

n;m

ij=1

with the norm

kxk = max

i=1;:::;m

n

P

i=1

jx

ij

j:

R

n�m

+

= f(x

ij

)

n;m

: x

ij

� 0 (i = 1; : : : ; n; j = 1; : : : ;m)g:

R

n

= R

n�1

is the spa
e of all real 
olumn n-ve
tors x = (x

i

)

n

i=1

.

If x 2 R

n�n

, then x

�1

and det(x) are, respe
tively, the inverse to x matrix and the

determinant of x; I

n

is the identity n� n matrix.

d

V




= supf

b

V

a

(x) : 
 < a < b < dg, where

b

V

a

(x) is the sum of total variations on the


losed interval [a; b℄ of the 
omponents x

ij

(i = 1; : : : ; n; j = 1; : : : ;m) of the matrix-

fun
tion x :℄
; d[! R

n�m

, v(x)(t) = (v(x

ij

)(t))

n

i;j=1

, where v(x

ij

)(t) = (

t

V

�1

x

ij

) for

t 2℄
; d[ (i = 1; : : : ; n; j = 1; : : : ;m)

1

.

x(t�) and x(t+) are the left and the right limits of the matrix-fun
tion x :℄
; d[!

R

n�m

at the point t 2℄
; d[, d

1

x(t) = x(t) � x(t�), d

2

x(t) = x(t+) � x(t).

BV

lo


([0;+1[; R

n�m

) is the set of all real matrix-fun
tions x : [0;+1[! R

n�m

of

bounded variation on every 
losed interval from [0;+1[.

If g : [0;+1[!R is a nonde
reasing fun
tion, x : [0;+1[!R and 0�s<t<+1, then

Z

t

s

x(�) dg(�) =

Z

℄s;t[

x(�) dg

1

(�)�

Z

℄s;t[

x(�) dg

2

(�) +

+

X

s<��t

x(�) d

1

g(�) �

X

s��<t

x(�) d

2

g(�);
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1

x

ij

as a 
onstant outside [a; b℄ is assumed to be 
ontinuous.
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where g

j

: [0;+1[! R (j = 1; 2) are 
ontinuous nonde
reasing fun
tions su
h that

the fun
tion g

1

� g

2

is identi
ally equal to the 
ontinuous part of g, and

R

℄s;t[

dg

j

(�) is

the Lebesgue-Stieltjes integral over the open interval ℄s; t[ with respe
t to the measure


orresponding to the fun
tion g

j

(j = 1; 2), (if s = t, then

R

t

s

x(�)dg(�) = 0);

L

lo


([0;+1[; `; g) is the set of all real fun
tions x : [0;+1[! R �(g)-measurable

(i.e., measurable with respe
t to measures �(g

1

) and �(g

2

)) and integrable on the 
losed

interval [0; b℄ for every b 2 [0;+1[.

A matrix-fun
tion is said to be nonde
reasing if ea
h of its 
omponents is su
h.

If G = (g

ik

)

`;m

i;k

: [0;+1[! R

`�n

is a nonde
reasing matrix-fun
tion, then

L([0;+1[; R

n�n

) is the set of all matrix-fun
tions x = (x

kj

)

n;m

k;j

: [0;+1[! R

n�m

su
h that x

kj

2 L([0;+1[; ; R; g

ik

) (i = 1; : : : ; `; ; k = 1; : : : ; n; j = 1; : : : ;m)

Z

t

s

dG(�) � x(�) =

�

n

X

k=1

Z

t

s

x

kj

(�) dg

ik

(�)

�

`;m

i;j=1

for 0 � s � t < +1:

If G

j

: [0;+1[! R

`�n

(j = 1; 2) are nonde
reasing matrix-fun
tions, G � G

1

� G

2

and x : [0;+1[! R

n�m

, then

Z

t

s

dG(�) � x(�) =

Z

t

s

dG

1

(�) � x(�)�

Z

t

s

dG

2

(�) � x(�) for 0 � s � t < +1;

L([0;+1[; R

n�m

; G) =

2

\

j=1

L([0;+1[; R

n�m

; G

j

):

r(H) is the spe
tral radius of the matrix H � R

n�n

.

Under a solution of the system (1) is understood a ve
tor-fun
tion x 2

BV

lo


([0;+1[; R

n

) su
h that

x(t)� x(s) =

Z

t

s

dA(�) � p(�) � x(�) + f(t) � f(s) for 0 � s � t < +1:

We will assume that f 2 BV

lo


([0;+1[; R

n

); A 2 BV

lo


([0;+1[; R

n�n

and p 2

L

lo


([0;+1[; R

n�n

; A) are su
h that

det(I

n

+ (�1)

j

djA(t) � p(t)) 6= 0 for t 2 R

+

(j = 1; 2): (2)

Let x

0

2 BV

lo


([0; ;+1[; R

n

) be a solution of the system (1).

De�nition 1. Let � : R

+

! R

+

be a nonde
reasing fun
tion su
h that

lim

t!+1

�(t) = +1:

The solution x

0

of the system (1) is 
alled �-exponentially asymptoti
ally stable if there

exists a positive number � su
h that for every " > 0 there exists a positive number

Æ = Æ(") su
h that an arbitrary solution x of the system (1) satisfying the inequality

kx(t

0

)� x

0

(t

0

)k < Æ

for some t

0

2 R

+

admits the estimate

kx(t) � x

0

(t

0

)k < " exp(��(�(t) � �(t

0

)) for t � t

0

:

Stability, uniform stability and asymptoti
 stability of the solution x

0

are de�ned just

in the same way as for systems of ordinary di�erential equations (see, e.g., [1℄ or [2℄), i.e.,

in the 
ase, where A(t) is the diagonal matrix-fun
tion with diagonal elements equal to t).

Note that exponential asymptoti
 stability ([1℄, [2℄) is a parti
ular 
ase of �-exponential

asymptoti
 stability (�(t) � t).
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De�nition 2. The system (1) is 
alled stable (uniformly stable, asymptoti
ally stable,

�-exponentially asymptoti
ally stable) if every solution of this system is stable (uniformly

stable, asymptoti
ally stable, �-exponentially asymptoti
ally stable).

Alongside with the system (1) we 
onsider the 
orresponding homogeneous system

dx(t) = dA(t) � p(t) � x(t): (1

0

)

Proposition 1. The system (1) is stable (uniformly stable, asymptoti
ally stable, �-

exponentially asymptoti
ally stable) if and only if the zero solution of the system (1

0

) is

stable (uniformly stable, asymptoti
ally stable, �-exponentially asymptoti
ally stable).

Proposition 2. The system (1) is stable (uniformly stable, asymptoti
ally stable, �-

exponentially asymptoti
ally stable) if and only if some solution of that system is stable

(uniformly stable, asymptoti
ally stable, �-exponentially asymptoti
ally stable).

Therefore the stability (in all senses) of the system (1) is the property of the matrix-

fun
tions A and p.

De�nition 3. A pair (A; p) of matrix-fun
tions A 2 BV

lo


([0;+1[; R

n�n

) and p 2

([0;+1[; R

n�n

A) satisfying the 
ondition (2) is 
alled stable (uniformly stable, asymp-

toti
ally stable, �-exponentially asymptoti
ally stable) if the system (1) is stable, (uni-

formly stable, asymptoti
ally stable, �-exponentially asymptoti
ally stable).

Now we formulate the basi
 lemma whi
h will be applied in proving theorems below.

Lemma 1. Let the 
ondition (2) hold. Moreover, let the matrix-fun
tions A

0

2

BV

lo


([0;+1[; R

n+�n

) and p

0

2 L

lo


([0;+1[; R

n+�n

; A

0

) be su
h that the following


onditions are valid:

(a) det(I

n

+ (�1)

j

djA

0

(t) � p(t)) 6= 0 for t 2 R

+

(j = 1; 2); (3)

(b) for some t

0

2 R

+

, the Cau
hy matrix u

0

of the system

dx(t) = dA

0

(t) � p

0

(t) � x(t)

satis�es the inequality

ju(t; t

0

)j � 
e

��(t)+�(t

0

)

for t � t

0

;

where 
 2 R

n�n

+

, and � : R

+

! R

+

is a nonde
reasing fun
tion satisfying (3);

(
) there exists a matrix H 2 R

n�n

+

su
h that r(H) < 1 and

Z

t

t

0

e

�(t)��(�)

ju(t; �)jdV (B)(�) < H for t � t

0

;

where

B(A; p;A

0

; p

0

)(t) �

Z

t

0

dA(�) � p(�)�

Z

t

0

dA

0

(�) � p

0

(t) +

+

X

0<��t

d

1

A

0

(�) � p

0

(�)

�

I

n

� d

1

A

0

(�) � p

0

)

�

�1

�

d

1

A(�) � p(�)� d

1

A

0

(�) � p

0

(�)

�

�

�

X

0��<t

d

2

A

0

(�) � p

0

(�)

�

I

n

+ d

2

A

0

(�) � p

0

(�)

�

�1

�

d

2

A(�) � p(�)� d

2

A

0

(�) � p

0

(�)

�

:

Then an arbitrary solution x of the system (1

0

) admits the estimate

jx(t)j � Qjx(t

0

)je

��(t)+�(t

0

)

for t � t

0

;

where Q(I

n

�H)

�1


:
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Theorem 1. Let the 
onditions (2) and (4) hold, where A, A

0

2BV

lo


([0;+1[;R

n�n

),

p 2 L

lo


([0;+1[; R

n�n

;A) and p

0

2 L

lo


([0;+1[; R

n�n

;A

0

). Moreover, let the pair

(A

0

; p

0

) be uniformly stable and

+1

V

0

(B) < +1; (4)

where the matrix-fun
tion B(A; p; A

0

; p

0

) : R

+

! R

n�n

is de�ned by (5). Then the pair

(A; p) is uniformly stable as well.

Theorem 2. Let the 
onditions (2) and (4) hold, where A;A

0

2BV

lo


([0;+1[; R

n�n

),

p 2 L

lo


([0;+1[; R

n�n

;A) and p

0

2 L

lo


([0;+1[; R

n�n

;A

0

). Moreover, let the pair

(A

0

; p

0

) be �-exponentially asymptoti
ally stable and the 
ondition

lim

t!+1

�(�)(t)

V

t

B = 0

hold, where � : R

+

! R

+

is a nonde
reasing fun
tion satisfying (3),

�(�)(t) = supf� � t : �(�) � �(t) + 1g;

and the matrix-fun
tion B(A; p;A

0

; p

0

) : R

+

! R

n�n

is de�ned by (5). Then the pair

(A; p) is �-exponentially asymptoti
ally stable as well.

Remark 1. If the pair (A; p) is �-exponentially asymptoti
ally stable and the 
ondi-

tions (2) and

lim

t!+1

�(�)(t)

V

t

e

B = 0;

hold, where

e

B(A; p; f) � f(t) +

X

0<��t

d

1

A(�) � p(�)(I

n

� d

1

A(�) � p(�))

�1

� d

1

f(�)�

�

X

0��<t

d

2

A(�) � p(�)(I

n

+ d

2

A(�) � p(�))

�1

� d

2

f(�)

and the fun
tion �(�) : R

+

! R

+

is de�ned as in Theorem 2, then an arbitrary solution

x of the system (1) satis�es the 
ondition

lim

t!+1

kx(t)k = 0:

Analogous results were obtained in [2℄ for linear systems of ordinary di�erential equa-

tions.
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