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Consider a nonlinear ordinary di�erential equation
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on [a;+1[, where n � 2, 0 < a < +1 ea
h of the fun
tions p

k

: [a;+1[! R, k 2 f1 <

� � � < n � 1g are lo
ally absolutely 
ontinuous together with its derivatives up to order

k � 1, in
lusive, and the fun
tion f : [a;+1[�R

n

! R is lo
ally summable in the �rst

argument and satis�es the lo
al Lips
hitz 
ondition in the last n variables.

As is well-known, even in the 
ase where p

k

(t) � 0, the general theory of the Cau
hy

problem does not answer the question on the existen
e of a global nontrivial solution of

the equation (1) if the in
rease order with respe
t to at least one phase variable is greater

than 1.

In 1986, I. Kiguradze [1℄ investigated a 
ertain boundary value problem for (1) and

obtained suÆ
ient 
onditions for the existen
e of proper solutions in the above-mentioned


ase. The same question was 
onsidered by the author in [2℄ for equation (1). In the

present paper we 
omplement the results of [2℄, in the 
ase, where n is odd.

Throughout this work, the use will be made of the following notation:

R is the set of real numbers;
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is the n-dimensional real Eu
lidean spa
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onstants de�ned by the re
urren
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The solution u of the equation (1) is said to be proper, if it is de�ned on [t

0

;+1[�

[a;+1[ and does not equal identi
ally to zero in any neighborhood of +1.

We say that the proper solution u of the equation (1) vanishes at in�nity, if
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on R

n

, where 
 � 0 and � 2 [0; 1℄.

Below, unless otherwise spe
i�ed, the fun
tion f is assumed to satisfy the 
onditions
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, where the fun
tions �
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: [a;+1[! R (i = 0; : : : ; n
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� 1) are lo
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summable, while the fun
tion h : [a;+1[! R
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ally summable in the

�rst argument, nonde
reasing in the last n

0

arguments and for any �
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> 0 satis�es the
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Theorem 1. Let there exist the 
onstant Æ > 0 su
h that the inequalities
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hold on [a;+1[. Then there exists a proper, vanishing at in�nity, solution u of the

equation (1) satisfying the initial 
onditions
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The theorem below deals with the 
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The 
ondition (4) in this 
ase is ful�lled automati
ally.

Theorem 2. Let there exist a 
ontinuous solution Æ : [a;+1[! [0;+1[ su
h that

Æ(a) > 0 and the inequalities
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hold on [a;+1[. Then there exists at least one proper solution of the equation (1)

satisfying the initial 
onditions (5).
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In a spe
ial 
ase where p

k

(t) � 0 for k 2 f1; : : : ; n � 3; n � 1g and p

n�2

(t) � 1,

Theorem 2 implies one result from [3℄.
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