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OF SINGULAR FUNCTIONAL DIFFERENTIAL EQUATIONS
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Let —co<a<b<+00,0<a,<1,n>1,and f be a continuous operator acting
from the space of continuously differentiable vector functions w :]a,b[ — R™ satisfying
the condition

sup { (¢ = )~ (6 = 7 fu(b)]| + (£ = ) (b= O W' (Bl]: @<t < b} < oo

to the space of n-dimensional, summable with the weight (t—a)® (b—t)?, vector functions.
Consider the system of functional differential equations

u (t) = f(u)(t) (1)
with the boundary conditions

lim u(t) =0, limu(t) =0,

t—a t—b

2
sup {(t ~ 0"~ (b~ 08~ (D) + (¢~ 06— 07 (Dl -0 < £ <} < oo,

In case n = 1 or f(u)(t) = fo(t,u(t),v(t)), where fo :]a,b[ xR™ — R™ is a vector
function satisfying the local Carathéodory conditions, boundary value problems of the
type (1), (2) are investigated in full detail (see [1-9, 11-20] and the references therein).
Below we give optimal sufficient conditions for the solvability and the unique solvability
of the problem (1), (2) which generalize the results of [19].

Throughout the paper the following notation will be used.

R =]—o00,+00[, Ry = [0,+00].

R™ is the space of n-dimensional vector columns x = (x;)_, with the components
z; € R (i=1,...,n) and the norm

n
lall =) Jail-
=1

If x = ()], then |z| = (|z;])]_,.

Ri = {(m,)f‘zl ER": xz; € Ry (z =1,... ,n)}

The inequality between vectors is understood componentwise, i.e, if x = (z;)_, and
y = (yi)j=, € R", then
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R™*™ is the space of n x n-matrices X = (z;;),_; with the components z;;, € R

n
IX0="Y" fal.

ik=1

R ={X = (@ik)P oy * ik € Ry (1,6 =1,...,n)}.

r(X) is the spectral radius of a matrix X € R"X™.

C’éﬁ(]a,b[;R”) is the space of continuously differentiable functions u :]a,b[— R"
such that the norm

luller = sup{(t— a)* (b= O T Hu(®)l| + (t = a)* (b= )| ()] - a<t< b}

(i,k =1,...,n) and the norm

is finite.
Ifu=(u;)l, € C‘i,ﬁ(]a,b[;R”), then

v0,0,6(ui) =sup { (t —a)* 7 (b — )" Mu; (1) : a<t<b},

W i) a<t< b},

Vo,g(u;) = maX{llo,aﬁ(ui),lll,aﬁ(ui)}, Vo,g(u) = (Va,g(ui))

V1,0,5(ui) = sup {
n
i=1"

Ly ,g(Ja,b[; R™) is the space of vector functions v :]a,b[— R™ with summable with
the weight (t — a)®(b — t)? components and the norm

b

i,z = /(t—a)“(b—t)ﬁ\lv(t)\ldt-

a

La,g(]a,b[;RiX") is the set of matrix functions H :]a,b[ — Rixn with summable
with the weight (t — a)*(b — t)# nonnegative components.

My g(Ja,b[ X Ry; RY) is the set of vector functions h :]a,b[ xRy — R} summable
in the first argument with the weight (t — a)® (b — t)? and nondecreasing in the second
argument.

In what follows it will be assumed that the operator f : C’éﬁ(]a,b[;R”) —
Ly g(Ja,b[; R™) is continuous and

sup {[|F@)O)|| + Ilullcr | < p} € Laplla,b; R) for 0<p < +oo.

A vector function u :]a,b[— R™ is called a solution of the problem (1), (2) if:

(i) u is continuously differentiable and u’ is locally absolutely continuous in ]a, b[;
(ii) u satisfies the boundary conditions (2);

(iii) u satisfies the system (1) almost everywhere on |a,b[ .

Analogously to Theorem 1 of [10] it can be proved the following

Theorem 1. Let there exist a positive number po such that for any X €]0,1] an
arbitrary solution of the differential system

du(t)
BT Af(u)(t)

satisfying the boundary conditions (2) admits the estimation
ull~1 < po.
luller <o

Then the problem (1), (2) is solvable.
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Corollary 1. Let there exist H € Lq g(la,b[; RL*™) and h € My 3(la, b X R4; RTY)
such that

1O < HOvas () +h(tluller ) for teladl, ueClyablsR). (3)

Moreover, let

b
. 1 -~
Jim (= / (e, )l de) =0 (4)

and the system of differential inequalities
' ()] < H(t)va,p(u) (4

under the boundary conditions (2) have only the trivial solution. Then the problem
(1), (2) is solvable.

The problem (5), (2) has only the trivial solution if
b
r(/(tfa)o‘(bft)"‘H(t)dt) <b-—a, (6)
a
or
H(t) < (t—a)~*(b—t) " Ho, Ho€ R
and
r(Hp) < min{2 — a,2 — }. (7)

Therefore from Corollary 1 it follows

Corollary 2. Let there exist H € La,g(]a,b[;Rixn) and h € My g(la,b[ X Ry; RY)
such that the conditions (3), (4) and (6) are fulfilled. Then the problem (1), (2) is sol-
vable.

Corollary 3. Let there exist Ho € Rixn and h € My g(la,b[ X R4 ; RY) such that
|[F@®] < (6= )70 =) Hova () +h (5 Julles )
fOT te ]a7 b[ , u€ Cé,ﬁ(]aa b[ 5 Rn)
and the conditions (4) and (7) are fulfilled. Then the problem (1), (2) is solvable.
Theorem 2. Let there exist H € Lo g(la,b[; R}*™) such that
|F)(#) = F@)(®)| < H®va,s(w—v) for t€labl, u,veChz(a,b[;R™) (8)

and the problem (5), (2) has only the trivial solution. Then the problem (1), (2) has one
and only one solution.

Corollary 4. Let there exist H € Ly, g(la, b[; R}*™) such that the conditions (6) and
(8) are fulfilled. Then the problem (1), (2) has one and only one solution.

Corollary 5. Let there exist Hy € Rixn such that
|Fu)(®) = F@)@)| < (t—a) (b — )% Hova 5 (u — v)
for t€la,bl, u,ve Cé,B(]a,b[;R”).

Then the problem (1), (2) has one and only one solution.
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A particular case of (1) is the differential system with deviating arguments

u"(8) = fo(t,u(ri (1)), v/ (r2(t))) - (9)

This system will be considered under the following assumptions:

(i) fo maps I x R into R", where I C [a,b] and mesT = b — q;

(ii) fo(t,-,-) : R?®™ — R™ is continuous for every t € I, and f(-,z,y) : I — R™ is
measurable for every x and y € R™;

(iii) 7 : I —]a,b[ (i = 1,2) are measurable functions.

The propositions below on the solvability and the unique solvability of the problem
(9), (2) follow from Corollaries 2-5.

Corollary 6. Let there exist H;, € La,g(]a,b[;RiX") (i = 1,2) and h €
My,5(Ja, b X Ry; RY) such that
Fo(ts (rL(®) = @)' = (b = 11(8))" Pz, (r2 (1) —a)_a(b—Tz(t))_ay)‘ <
< Hi(t)|z + [Hz(t)]y| +

+h(t (r1(8) = a)' 7 (b= 71(1))' T[] + (r2(t) — @) (b — 72(£)) "7 [y])
for tel, z,y€e R"

and the condition (4) hold. Moreover, let either

b
r(/(tfa)a(bft)g Hl(t)+(bfa)H2(t)] dt) <b—a (10)
or
Hi(t) + (b — a)Ha(t) < (t —a)~*(b— )~ Ho, r(Ho) < 2. (11)

Then the problem (9), (2) is solvable.

Corollary 7. Let there exist H; € Lo g(]a,b[; Rixn) (1 =1,2) such that

fo(t (r1(t) = a)' = (b = 11(8)) P, (r2(t) — @)~ (b = 72(t)) Py) -

—fo(t, (71 () =)' =% (b — 71.(£))' P F, (r2(t) — )7 (b — 72(£)) ~77) ‘ <
< Hi(t)|lx — 7| + H2(t)ly — 3| for t€la,b], z, T, y, 7€ R".

Moreover, let either the condition (10) or the condition (11) hold. Then the problem
(9), (2) has one and only one solution.

As an example, consider the differential system
(r1(8) — a)* (b — 11 ()L () lu(m ()] +
+(12(t) — @) (b = m2(1) Fa () ' (r2(8))] + a(2), (12)

where F; : I — R™*™ (i = 1,2) are matrix functions with measurable bounded compo-
nents, 7; : I —]a,b[ (¢ = 1,2) are measurable functions, and q € L, g(Ja,b[; R™).
From Corollary 7 it follows

’lL” (t)

Corollary 8. Let there exist Ho € Rixn satisfying the inequality (7) such that
|Fi(t)] + (b — a)|Fa(t)] < Hp for tel.

Then the problem (12),(2) has one and only one solution.
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Suppose now that
a=8=0, Fi(t)=Hy, F(t)=0, q(t)=¢,

where O is the zero matrix, Hy € Rixn, and £ € R™ is a vector with positive components.
Let us show that if
r(Ho) > 2,

then the problem (12), (2) has no solution. Indeed, let u be an arbitrary solution of that
problem. Then
u''(t) > £.

Thus

(t—a)(b—t)
2

Taking into account this inequality, we obtain

u(t) < — £ for a<t<b.

1
u''(t) > 5 Ho+ ¢

and 1
u(t)§7(5H04+Z)Z(tfa)(b7t) for a <t <b.

If we continue this process, then we will get
400 1 k
_ > - _ _
u(t) > Z (2 HO) ot —a)(b—t) for a<t<b,
k=0

which is impossible since r($ Ho) > 1.
The above example shows that the condition (7) in Corollaries 3 and 5-8 cannot be
replaced by the condition
r(Ho) < min{2 — a,2 — 8}.
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