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Abstract. Boundary value problems for partial differential equations of
elliptic, parabolic and mixed types with small parameters by higher order
derivatives are considered. It is assumed that the solution of the correspond-
ing degenerate equation has singular points and curves where this solution
is non-smooth. Asymptotic representations of solutions of non-degenerate
problems with respect to small parameters are constructed.
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INTRODUCTION

Many real processes connected with non-uniform transitions are described
by means of differential equations involving large or small parameters which
quantitatively characterize the influence on the process run of that factor
which comes into account by the corresponding term of the differential equa-
tion. If, for example, one or another parameter 1s small, then we can natu-
rally take it equal to zero and obtain thus a more simple problem. In that
case solutions of the original problem with sufficiently close to zero values of
the parameter can be expected to be close to a solution of the new problem,
corresponding to the zero value of the parameter.

Let us consider on a set Qp . =7 x &, where 7 is the domain of variation
of independent variables and & is the set of values of one or several param-
eters, Problem A., i.e., the problem of solving the differential equation

Leuz = (Ly ¢+ Lo)ue = he(t) (0.1)
under the additional (boundary, initial, etc.) conditions
BgUg =0. (0.2)

The point € = 0 is assumed to be limiting for the set &, 0 ¢ &£. Suppose that
we have to investigate properties of the solution of Problem A, as € — 0.

Suppose that we are able to construct a formal asymptotic expansion of
the solution in the form of the series

u(f &) ~ Z ui (1) :(€), (0.3)

where ¢;(€) are the elements of a chosen by us asymptotic sequence {¢,(€)},
s =20,1,..., and uz(f) are the expansion coefficients; in other words, we
can determine the functions uz({) in such a way that for every partial sum
Un (1,8 = Yois, ui(i)i() the inequalities [|L:Un (T, &) — hz(T)|| = o(dn (&)
hold, Where({qf;i(a} Is an asymptotic sequence, not necessarily coinciding
with the sequence {¢;(€)}). Suppose also that similar inequalities are fulfilled
for the additional conditions.

Assume that for €= 0 Problem Az turns into Problem Ap, 1.e., into the
problem of solving the degenerate equation

Loto = ho(t) (0.4)

under certain conditions
BOUO =0 (05)
(which, as a rule, are a part of the conditions Bz = B, + By of Problem Az).
The problem Az will be called non-degenerate and Problem Ay will be said
to be the degenerate problem corresponding to Problem Ag.
If the series (0.1) represents an asymptotic expansion of the solution
of Problem A; uniformly with respect to ¢ € 7, then they say that the
solution depends regularly on the parameters. If, however, the asymptotic
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expansion (0.1) is valid not everywhere in 7 = 7 U7, then such problems
are called singularly perturbed problems. Not always one can by the type
of an equation and additional conditions make a conclusion whether the
perturbation is regular or singular.

Thus, the closeness of a small parameter to zero in singularly perturbed
problems does not imply uniform closeness (in a norm) of solutions of the
degenerate and non-degenerate problems in the whole domain of variation
of independent variables. A formal criterion that the problem under consid-
eration belongs to the class of singularly perturbed problems is, for exam-
ple, the presence of small multipliers by higher derivatives of the equation,;
although the occurrence of such multipliers is not always an evidence of
non-uniform transition from the solution of the non-degenerate problem to
the solution of the degenerate problem as a small parameter tends to zero.

In constructing asymptotic expansions of solutions of singularly per-
turbed problems, the coefficients uz({) of the formal asymptotic expansion
(0.1) frequently happen to have themselves singularities at the points of the
set T' C TUJT (quite often of lesser dimension than that of the set 7), and
the order of singularity increases with the growth of the index ¢. In such
singularly perturbed problems the solution, being a function of the param-
eter €, has singularity at some point €y of the set £. At the same time, in
the vicinity of the points of the set I' C 7 U J7 the given solution, being
a function of independent variables, possesses a specific behaviour which
differs from the character of variation of that function at other points of
the set 7. In this case the problem will be called bisingular or bisingularly
perturbed problem; this term introduced by A.M. Il'in (see [31]) has proved
to be highly suitable for characterization of situations arising in asymptotic
analysis of solutions of differential equations.

In the sequel, partial sums u(Z,€) = Zﬁ\;o u; (1)64(8) of asymptotic expan-
sions will be called asymptotic representations of order N of the function
u(t_: €), and partial sums of formal asymptotic expansions will be called for-
mal asymptotic representations.

In the study of properties of solutions of singularly perturbed problems
the most important are the following questions: finding of conditions By
for the degenerate problem; investigation of the conditions under which the
solution of the non-degenerate problem tends (as the parameter € tends to
zero) to the solution of the corresponding degenerate problem; possibilities
of constructing an asymptotic (with respect to the parameter) expansion or
asymptotic representation of a solution of the non-degenerate problem by
elements of the chosen asymptotic sequence; error estimation of asymptotic
representations of order N in a corresponding norm. In particular, one of
the basic problems arising in the investigation of the character of variation
of the solution of Problem A, (as the small parameter tends to zero) is to
find conditions under which the solvability of Problem Ay (in a space of
functions) implies that of Problem A, (in a naturally corresponding space
of functions; in [86], in the case of boundary value problems for ordinary
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differential equations such conditions are called conditions of regular degen-
eration of Problem A, into Problem Ap), to obtain a priori estimates for
the solutions of Problems Ag and A, and also the estimate for the closeness
of solutions of the degenerate and non-degenerate problems.

The development of the asymptotic analysis of singularly perturbed dif-
ferential equations and associated with them solutions of initial and bound-
ary value problems is, of course, of great importance for more profound in-
vestigation of qualitative and quantitative characteristics of those processes
and phenomena for which regularly and singularly perturbed differential
equations turn out to be mathematical models; for constructing effective
and stable numerical algorithms for solving the above-mentioned problem.
It 1s, for example, known that the non-uniformities appearing in the prob-
lems of nonlinear optics [83] form a boundary layer zone. Non-uniform tran-
sitions take place in problems dealing with laminated media and composite
materials (discontinuous and sharply varying coefficients, see [7], [44]), in
nonlinear problems (interior transitions, see [4], [15], [84]), in problems for
domains with non-smooth boundaries (see [31]), etc. The study of pro-
cesses of heat transfer between a moving liquid and a heated rigid body
placed in it, the description of the movement of a conductive liquid in an
electromagnetic field and many other problems require the consideration of
singularly perturbed equations of mixed type. Differential equations with
small multipliers by derivatives, as mathematical models of the objects,
processes and phenomena, arise naturally in automatic control, nonlinear
oscillations, gas and magnetohydrodynamics, when describing processes tak-
ing place in physics, chemistry, biology, ecology and in some other sciences;
similar equations appear in the analysis of difference schemes, upon con-
struction of convergent numerical algorithms for solving stiff problems, and
in many other problems of theoretical and applied character. Statements of
various mathematical problems requiring investigation of the character of
dependence on a parameter of solutions of differential equations with small
maltipliers by higher derivatives can be found in [4], [6], [15], [16], [18], [19],
[23]-]25], [27], [29]-[32], [35], [43], [44], [46], [51], [53], [80], [83], [84], etc.
Therefore the theory of asymptotic analysis is, undoubtedly, of great signif-
icance both for the development of fundamental investigations and for the
solution of concrete practical problems.

Systematic investigation of the asymptotic theory of singularly perturbed
differential equations goes back to the works of A. N. Tikhonov [78]-[80]. Af-
ter them we can mention the works due to M. I. Vishik and L. A. Lyusternik
[86], A. B. Vasil’eva [81], A. B. Vasil’eva and V. F. Butuzov [82], S. A. Lo-
mov [45], E. F. Mishchenko and N. Kh. Rozov [47], A. M. I’in [31], [32]
and also the works of their pupils and successors. Among the works of for-
eign scholars the most known are those of N. Levinson [43], P. Fife [23],
[25], Fife and V. Greenly [24], S. Chang and F. Howes [16]; a more de-
tailed bibliography can be found in [5], [7], [13], [14], [17], [21], [22], [28],
[34]-[39], [43], [49], [50]-[52], [54], [55]. Different ways have been being
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elaborated for constructing asymptotic expansions, and in this connection
there appear new terms such as “the method of boundary layer functions”
(or the M. I. Vishik and L. A. Lyusternik method, or the A. B. Vasil’eva
and V. F. Butuzov method), “the method of matching of asymptotic ex-
pansions” (more frequently connected with the name of A. M. II'in when
dealing with differential equations), “the regularization method” (or S. A.
Lomov’s method), “the method of a canonical operator” (or V. P. Maslov’s
method), “the averaging method”, etc. However, even at present one can-
not say that the general theory of constructing asymptotic expansions of
singularly perturbed differential equations is completely developed. Many
questions arising upon study of asymptotic behaviour of solutions of some
concrete problems of applied character have neither theoretical ground nor
even algorithms for investigation of properties of solutions as the parameters
tend to their limiting (critical) values.

The construction of the theory of asymptotic expansions for solving sin-
gularly perturbed partial differential equations takes its origin in the works
by M. I. Vishik and L.A. Lyusternik devoted to linear equations, when the
coefficients of formal asymptotic expansions have no singularities (see, e.g.,
[86] and bibliography therein). Their method of constructing asymptotic
expansions of solutions of singularly perturbed equations of boundary layer
character of variation was subsequently used by many researchers and ex-
tended to nonlinear equations and to many problems for whose solutions the
coefficients of formal asymptotic representations have singularities growing
with the growth of the representation order. In particular, V. F. Butu-
zov has introduced angular boundary functions (see, e.g., [13]) and elabo-
rated by the aid of those functions the techniques allowing one to construct
asymptotic expansions for different types of singularly perturbed problems;
for some bisingular problems (with angular characteristics) he suggested the
method of smoothing for constructing asymptotic representations to within
some order [14]. Tt should be noted that in many cases the error estimate
of asymptotic representations of solutions of initial boundary value prob-
lems for singularly perturbed partial differential equations is performed with
the help of “corrections” constructed to partial sums of formal asymptotic
expansions.

The method of M. I. Vishik and L. A. Lyusternik of constructing asymp-
totic expansions is based on the assumption that a part of functions de-
scribing the behaviour of a solution in the neighbourhood of the set I' and
determining the character of variation of the solution in that neighbourhood,
tends exponentially to zero as the small parameter tends to zero. However,
this assumption in many bisingular problems is either invalid, or the be-
haviour of the solution in the neighbourhood of the set I' is so complicated
that it seems impossible to determine exponentially decreasing components
of asymptotic expansion as solutions of sufficiently simple auxiliary prob-
lems. In such problems the most effective is the method of matching of
asymptotic expansions. A valuable contribution to the development of the
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method has been made by A.M. I'in [31] who, together with his pupils, jus-
tified the applicability of the method to many classes of problems connected
with linear and quasi-linear ordinary and partial differential equations.

Describe briefly the sequence of operations we undertake in constructing
asymptotic expansions to solve differential equations. Note that in specific
problems the coefficients uz({) may likewise depend on small parameters ¢.
To simplify the description, the problem will be assumed to involve one small
positive parameter ¢, and the solution of the problem under consideration
to depend on two independent variables ¢; and 5.

Let it be required to construct an asymptotic expansion (or an asymptotic
representation) of the solution of the problem (0.1), (0.2). Along with this
problem let us consider the corresponding degenerate problem (0.4), (0.5)
(as is mentioned above, the correct statement of the degenerate problem
requires additional, not always evident, investigations).

1. For constructing asymptotic expansions with respect to the small pa-
rameter one needs more exact a priori estimates of the solution, depending
on the parameters of the equation. This need is connected firstly with the
necessity to study the character of influence of each parameter involved in
the initial equation and to determine the structure of the solution. Sec-
ondly, the coefficients of the resulting asymptotic expansions quite often
have isolated singularities (points or lines) at which the continuity or differ-
entiability of functions is violated, so to obtain error estimates one should
know the character of violation for these functions as they approach the
above-mentioned points or lines; in particular, the question how the solu-
tion behaves as the point approaches the plane of definition of initial data
always arises in equations of parabolic type. Thirdly, when constructing
asymptotic approximations, we always have, as a rule, to consider solutions
of one or another equation in an unbounded domain. Therefore the char-
acter of variation of those estimates for infinitely increasing or decreasing
arguments should be taken into account. Note that the ability of getting a
priori estimates of a solution of the problem is a decisive factor in deducing
error estimates of asymptotic expansions.

2. First of all we must determine an asymptotic sequence {¢;(¢)} which
will be used in constructing the asymptotic expansion. Obviously, this se-
quence cannot be arbitrary. Indeed, the solution of the problem (0.1), (0.2)
has a quite definite structure which depends on: (i) the kind of equation
and additional (initial and boundary) conditions; (ii) the character of depen-
dence of the operator on the small parameter; (iii) the type of the domain in
which we seek for the solution; (iv) properties of the solution of the degen-
erate problem (0.4), (0.5). According to what has been said, partial sums
of an asymptotic series must likewise possess an analogous structure. Thus,
for example, if the solution of Problem A. is given in the form

ue(ty,ta,€) = v(ty,ta,ta/e, 1/ Ine),

where v(t1,t2,7,A) is an infinitely differentiable function of its arguments,
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then for the solution of Problem A, we can obtain the asymptotic expansion

tl,tz, Zun tl,tz,tz/ )(IHE) " (06)

as € — 0.

Generally speaking, in constructing an asymptotic expansion of the func-
tion u.(t1,12, €) one cannot take as asymptotic sequence the power sequence
{"} because the power series fails to describe the behavior of the function
1/Ine as e — 0.

3. Our next step is to determine the character of dependence on a small
parameter and to investigate other properties of coefficients of the asymp-
totic expansion (for example, the small parameter involved in the coefficients
of the expansion (0.6) is given by the combination t5/¢). The properties of
the coefficients, the character of their dependence on the small parameter as
well as the type of the asymptotic sequence {¢;(¢)} can be “guessed” upon
investigation of properties and specific features of the problem (0.1), (0.2),
in deriving a priori estimates for the solution, by comparing the solutions
of the problems (0.1), (0.2) and (0.4), (0.5), as well as from the well-known
peculiarities of the physical process described by the mathematical model
(0.1), (0.2). The necessary information can also be obtained upon consid-
ering more simple variants of the problem (0.1), (0.2).

4. Suppose that two foregoing steps are realized, i.e., the type of the
asymptotic sequence {¢;(€)} is determined and natural assumptions on the
characteristic properties of the coefficients of the expansion are made. Sub-
stituting (0.3) in (0.1) and (0.2) and performing with regard for supposed
properties of the coefficients w;(t1,%2,¢€) the needed transformations (such
as the change of the coefficients, the initial and boundary functions by their
Taylor expansions, introduction of new independent variables, and so on),
the problem (0.1), (0.2) reduces to the form

> [Lius(ti, 12,061 ZBU t,ts, )i(e) ~ (0.7)

where qu(e) 1s, generally speaking, a new asymptotic sequence and L; are
some operators. As far as the initial data of the problem (the coefficients,
the boundary and initial functions) may possibly be non-smooth, and the
problem may have some other singularities (caused, for instance, by the
nonlinearity of the problem), it is found possible to construct an asymptotic
representation of some order rather than a complete asymptotic expansion
of the solution; in other words, the equalities (0.7) in that case are replaced
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by the asymptotic equations

Z [Lz'uz'(h,tz, 6)]@(5) = 0<¢;N(€))’

=0

[Biwi(ty, t2,)]i(e) = o(n(c)).-

-

=0

Since the relations (0.7) must be fulfilled for all sufficiently small values of
the parameter, the equations (0.7) are equivalent to the family of equations

Liui(tl,tz,E)IO, Biui(tl,tz,E)IO, i:O,l,... . (08)

These equations represent mathematical writing of problems for deter-
mining of the asymptotic expansion coefficients w; (1,12, €).

It should be noted that in many cases the solution of the initial problem
has essentially different asymptotic representations in different parts of its
domain of definition, and therefore the above-mentioned procedure must
necessarily be performed for each part separately.

5. The next step in constructing an asymptotic expansion of the solution
of the problem (0.1), (0.2) is to solve the series of the problems (0.8).

If the sequence {¢;(¢)} and the basic properties of coefficients are defined
correctly, then the problems (0.8), starting at least with some number, are,
as a rule, of the same type and differ from each other only by the right-hand
sides of the equations and by the boundary and initial functions.

Failure to carry out this criterion shows that there is an error in our pre-
vious constructions. Of course, every problem (0.8) must have more simple
solution than the initial problem (0.1), (0.2), otherwise all our constructions
will become senseless. Solutions of those problems must exist and be unique.
Indeed, the coefficients of asymptotic expansion in the chosen asymptotic
sequence {¢;(e)} must, as is said above, be defined uniquely. Hence if a so-
lution of at least one of the problems (0.8) is not unique, this means that we
did not possibly take into consideration additional restrictions allowing one
to distinguish a unique solution, or our hypotheses on the possible structure
of the solution and based on these hypotheses constructions were erroneous
from the very beginning.

Having found the solution of each problem (0.8), we must verify that
the functions w; (1,12, €) constructed by us really possess the properties we
have supposed at the second stage. Otherwise, substituting the approximate
solution (0.3) with the coefficients found from (0.8) into the equations (0.1),
(0.2), we will fail in getting the equations (0.7) (and hence the series of the
problems (0.8) by means of which we have defined those coefficients), since
in the absence of the above-mentioned properties of the functions w;(¢1, 2, €)
it will be impossible to carry out the needed transformations resulting in
the asymptotic relations (0.7).
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6. Thus as a result of our previous steps we have constructed either the
formal asymptotic series (0.3) or the corresponding finite sum, the formal
asymptotic representation. It is necessary now to see that this series is really
an asymptotic expansion of an unknown solution of the problem (0.1), (0.2).
In other words, we have to prove that everywhere in the domain of variation
of the independent variables the relation

n

ue(ty, o, €) = > ity 2, €)i(€) = o(¢n(e)) (0.9)

i=0

1s fulfilled, where n < N if we seek for an asymptotic representation of the
solution, and n = 0,1, ... if we seek for its full asymptotic expansion.

After proving that the above relation is valid, the process of constructing
the asymptotic expansion may be considered as completed.

The emphasis should be placed on the fact that the best error estimate
of an asymptotic approximation is the estimate in a norm of that functional
space 1n which the problem under consideration is well-posed. In most of the
works dealing with the construction of asymptotic expansions of solutions of
the problems for singularly perturbed differential equations, the estimation
of closeness of an asymptotic representation to the solution of the problem
is carried out either in the norm of the space C(7), or in integral norms.
At the same time, the construction of numerical algorithms of the solution
takes always into account the properties of the solution as an element of
one or another functional space. Therefore the employment of asymptotic
expansions in developing the above-mentioned algorithms should not take
one out of the scope of the space under consideration.

In practice, however, it is too difficult to prove this, and to justify the
validity of the constructed expansion, very often one takes the relations (0.8)
as fulfilled to within O(QSN(E)) when substituting that expansion into them.
In this case they say that the formal expansion 1s a residual expansion for
the unknown solution (of the equation or of boundary conditions).

One should bear in mind that the residual expansion of the solution is, in
fact, far from being an asymptotic expansion. To illustrate this statement,
let us consider the following example:

consider the boundary value problem

e +yy =0, —l<t<]l, y(-1)=-1, y(1)=1

Choose as asymptotic the sequence {¢'}. Evidently, the function y.(¢,¢) =
th](t + ¢)/(2¢)] satisfies the equation for any value of the constant ¢. If the
constant ¢ does not vary as € changes, |¢| < 1, then the function y.(t,¢)
as ¢ — 0 satisfies both boundary conditions to within o(e”), where n is
a positive integer. Thus, for the chosen asymptotic sequence the function
ye(t, €) for any |e| < 1 will be the residual expansion of the solution both of
the equation and of boundary conditions. At the same time, the function
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yo(t, €) is an asymptotic approximation of the solution with respect to the
chosen asymptotic sequence.

Surely, if the proof of the validity of the relations (0.9) causes insupera-
ble difficulties (and this may happen due to the objective complexity of the
problem or erroneous hypotheses on the supposed structure of asymptotic
expansions), then such an approach to the proof of the validity of the ob-
tained expansion as an approximate solution will be justified. However, as
the above example shows, the residual expansion of the equation and of the
additional conditions is, in fact, far from being an asymptotic expansion of
the solution.

In the present work we consider the methods of constructing asymptotic
(as small parameters tend to zero) expansions of solutions of initial and
boundary value problems for quasi-linear (Chapter I) and linear (Chapter
IT) singularly perturbed partial differential equations of elliptic, parabolic
and mixed types, when the solutions of the corresponding degenerate prob-
lems have singularities of any kind; in other words, we consider bisingular
boundary value and initial boundary value problems for equations of the
above-mentioned types. Moreover, it should be noted that we consider only
those problems whose asymptotic expansions of solutions possess boundary
and/or interior layers of exponential type. Asymptotic expansion can, cer-
tainly, be constructed by the method of matching asymptotic expansions,
however the method we present in this work for the solution of the problems
is proved to be more effective, as far as it gives a more clear presentation of
the solution structure.

The results stated here were obtained partially in the author’s earlier
works cited in references. In the present work we do not consider boundary
value problems for ordinary differential equations (for the corresponding

results, see [1], [59], [60], [62]-[64], [71], [73], [74], [85], etc.).
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CHAPTER 1
QUASI-LINEAR PARABOLIC EQUATIONS

This chapter is concerned with the study of singularly perturbed quasi-
linear equations of parabolic type; special attention will be paid to the
so-called model equation of gas dynamics [57]

LuEezaz—u— O L

oz~ gy — 5 =

A great many works have been devoted to the investigation of properties
of solutions of the above equation, depending on the properties of initial
and boundary functions (among recent works we may mention the works of
N. S. Bakhvalov [4], T. D. Ventzel [84], A. M. II'in [31], O. A. Ladyzhen-
skaya [39], O. A. Oleinik and T. D. Ventzel [54], O. A. Oleinik and S. N.
Kruzhkov [53], V. I. Pryazhinskii [56], V. I. Pryazhinskii and V. G. Sushko
[58], etc.). Asymptotic (with respect to the parameter) expansions of solu-
tions of the above-given equation under different assumptions on properties
of solutions of the corresponding degenerate problem have been constructed
by the method of matching (see, for example, A. M. II’in [32], V. I. Pryazhin-
skii and V. G. Sushko [59]). The particular interest in the given equation
1s due to the fact that properties of its solutions are characteristic of prop-
erties of solutions of quasi-linear equations and their systems; in particular,
singularities of analogous type can be observed in the solutions of a system
of equations of gas dynamics.

In the first two sections we make a priori estimates of solutions and their
derivatives for an n-dimensional quasi-linear parabolic equation (whose each
second order derivative has its “own” small parameter as a multiplier) and
for a system of quasi-linear equations of parabolic type. These estimates
are necessary for justification of asymptotic representations of solutions and
will be used in the subsequent sections.

In the third section we construct asymptotic expansions of solutions when
the solution of the corresponding degenerate problem has for ¢ > 0 a line of
discontinuity (shock type wave). Boundary layer asymptotic expansion is
constructed for a shock wave, and the error estimation is performed in the
norm of the space C'.

The case where the solution of the degenerate equation i1s continuous for
t > 0 but has “fracture” lines on which its the derivatives are discontinuous,
is considered in the fourth section. Similar situations may happen when
the initial function is continuous but non-differentiable at some point (a
weak discontinuity of the solution of the degenerate equation), or when
the initial function is discontinuous and its limiting values from the left
and from the right of the point of discontinuity are connected by certain
relations (rarefaction wave). In the former case we construct a complete
asymptotic expansion of the solution in powers of a small parameter, while
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in the latter case we give an approximation for the solution of the non-
degenerate equation which is more exact than the one constructed earlier.

1.1. A PRIORI ESTIMATES OF SOLUTIONS OF THE CAUCHY PROBLEM
FOR A QUASI-LINEAR PARABOLIC EQUATION

A priori estimates are of great importance for getting error estimates
of formal asymptotic expansions A priori estimates for partial differential
equations have been made by various authors. Complete enough results
obtained in this direction can be found in the list of references (for example,
[3], [16], [20], [39]-[42], [53], [57], [58], etc.).

In [4], [5], [31], [33], [52], [b4], a priori estimates were obtained for solu-
tions of the Cauchy problem for one-dimensional (in spatial variable) quasi-
linear parabolic equation under various properties of the initial function.

In this section, under various assumptions on the modulus of continuity
we investigate properties and deduce interior a priori estimates of solutions
of a multi-dimensional singularly perturbed parabolic equation with several
small parameters.

1. Consider the Cauchy problem

0*u d ou
oz~ ag bW = vt ) — 5 =0, (1)
u|t:0 = uo(x). (2)

Here # = (x1,%2,...,%,) is a point of the space R, [[; = (0,7] x R",
the functions ¢;(¢,2,u) and (¢, z,u) are defined and continuous for all
(t,z,u) € ﬁT x R along with their partial derivatives in the variables
and u up to some order , ¢ € (0,1], up(x) is some bounded measurable
function,

Lu=¢;

_ Z [6¢i(t,x,u) n 6¢i(t,x,u)8_u

d
GRS Ox; du Ox; 1

dl‘i

In the equation (1) and everywhere below if either term has two or more
same indices, then this means summation over all these indices from 1 to n.
Introduce the following notation:
(z,t) are points of the space R"; |z| = \/x} + 23 + -+ - + x2;

T c,d) = (xla"' y Li—1,Ciy Ti41y .- a$n)a q e, (ta$) = g(ta$ e, )a
(¢e)4) (¢e)4) (¢e)4)

b b, 2 b
/ g(t,x)dx:/ // g(t, ey, e, ... ep)dedes .. day;
a ai An
az

b

b
/ g(t, x)dl‘(cyi) = (bi - ai)_l /g(c,i)(ta x)dx;

a
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€ is a vector with the coordinates (e1,€2,...,¢6,), €¢ = min ¢; €' =
1<i<n
ejes---€). By M, My, k =1,2,... we denote independent of € constants,

if the value of these constants is unessential for our further reasoning.

In deducing estimates for the solution of the problem (1), (2), the solu-
tion will be assumed to be bounded everywhere in ﬁT by a constant myg.
Moreover, we will assume if needed that for (t,z) € ﬁT and |v(t,z)| <
my the following estimates are valid: |¢;(¢,z,v)] < my; |@L,(t, z,v)] <
m; U’ | wv(t z U)| < mg UU’ |¢zxk(t z U)| < pl k> |¢;xkx (t x,v)| S pi,kys;
600 (620 < pi; [ 2, 0] < 75 10,2, O < ot i (8,2, 0)] < 7

Let fq(z) be an infinitely differentiable function of one Varlable, defined
for z € (—o0, o0) and satisfying fq(z) = 1 for |z —a] < 1, fa( ) =0 for |z —
al > 2, 0 < fa(2) <1. Consider the function f(x)=f, (7 a1) fo, (€5 xa) -
Jo, (e;t2y,), where b is a point of R™. The function v(¢,z) = u(t, l‘)f(l‘)
satisfies the equation

0?v  Ov du of 82f
A o P R PR P “S(t’x’“)*m(t’x’“) ®

Liv=¢

and the initial condition

v(0,2) = vo(x) = f(®)uo(x). (4)

2. Consider the modulus of continuity of u(t, ) with respect to the spatial
variables. To this end it suffices to estimate the difference u(t, z)—u(t, z(y ;))
which will be done in two steps. First we will obtain a preliminary estimate
(see the inequality (5)) and then, using this estimate as auxiliary, we will
get the final estimate.

In obtaining the auxiliary estimate, the points x, y will be assumed to
belong to the cube b; —¢; < @y, y; < bj4+¢€;,1=1,2,---,n. In this case
v(t,z) = u(t,z), v(t,y) = u(t,y), and therefore

b+2¢

u(t, z) — u(t, 2y j)) = /[G(t,x,z,O)—G(t,x(yyj),z,O)]vo(z)dz—l—
b—2e¢

t b4+2¢ af 321:

-I-/ /[G(t,x,z,r)—G(t,x(yyj),z,r)] [qSZa—ZZ—I—eZua—ZZQ—ﬂ/J] dzdr +
0 b—2¢

t b+2¢ a af

+ [dr /{3,22 [G(t,x,z,r)—G(t,x(yyj),z,T)]}(l—éiyj)[q/)if—l—QUGiaZi]dz—i—

0 b—2e¢
t b4+2¢ a af

-I-/ Gt x, 2, 7)— G(t, 2y 5y, 2, 7)) ¢ |0 f + 2ue; 57— | dzdT =
06_25{3@ ( )= Gt 2,5 | 5]

=A1 4+ Ay + As + A4,
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where G(t,x,2,7) = e Y 2[4x(t — )] 7"/? exp{—(x; — ;) /4[e;(t — 7)]} is the
fundamental solution of the heat conductivity equation, é; ; is the Kronecker
symbol: 6; ; = 0 for ¢ # j, 6;; = 1.

The integrals A; and A, are estimated directly:

Ty b+2¢ a
—1/2,_
|A1] < mg /df / ‘a—ZjG(t,x(w),z,O) dz| < Myimoe; 2y 1/2|xj—yj|;
Y b—2¢
As| < Ma(eg g + 5t Sy —
|A2| < Ma(eg Mo + €5 mo +7)¢; l2; — s,
where My = max m;. When estimating the integral Az we first assume

1<i<n
that the inequality y; < x; is fulfilled and then represent it as a sum Az =
Azq + Az + Azz + Az s+ Az + Az s in such a way that the interval
(b; —2¢;,b; +¢;) of integration with respect to the variable z; be partitioned
by the points 2y; — z;; yj; 27 (x; +y;); #;; 2x; — y; into 6 segments. Since
for b; — 2¢; < z; < 2y; — x; the inequalities 0 < z; —y; < y; — 2; are
fulfilled, the estimate for the integral Az ; can be obtained in the form

t b+2¢
T — 2
|A371|§M4(m0—|—m0)|xj—y]’|7/ dT/ G(t,x,z,r)|272|2dz(x7j)><
0 b 2e €€ (t—T)
bi+2¢; (y; — 2 2
. 2=y Yi =) .
X Yi — 2 exp [— < dz <
/bj—ZEj ( ! ]) 46](t_ T) !

< M(1 =)™ (mo + 1m0 )eg V0= 2y — 7,
0 < v < 1. The integral Az g is estimated analogously.
The variable z; in the integral As» satisfies the inequalities 2y; — x; <
z; < y; from which we obtain 0 < y; — z; < x; — y;. Hence
exp{—(z; — y;)*/[Ae;(t — 7]} < exp{—(y; — 2)*/[e;(t — 7)1},
and therefore

t b+2¢ 1
| A3 2| < Mg(mo +m0)/ dT/ G(t,x,z,r)dz(xyj)/ |z; — y;| x
0 b—2¢ 0

X{/:” Y — % exp[_(yj—zj)z]exp[_92(%’—%)2]+

yi—a; 26 (t—r1) de;j(t — 1) de;(t — )
_|_/yj 0(x; — zj) exp [_ (y; — Zj)z] exp [— —62(%’ - y],)z] }dz' do
ayi—az; 26i(t —T) de;(t — ) de;(t — ) / '
From the equality z; —y; = (z; — y;)707 "' [0(x; — y;)]' =7 we have

t b+2¢ 1
| A3 2| < Mg(mo + T0)|2; — y]'|7/ dT/ Gtz z, T)dZ(xyj)/ 071
0 b—2¢ 0

([ By [ B SR,
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Y 0wy —y;))P Y (y; — %)? 0% (x5 —y; )
D Sr A/ R - — A g, — A A<
*/ 2ei(t—1) " 4ej<t—r>] e | dej(t =) |
< Mr(mo + o) [y(1 — 9)]Le; 2y A2 0y — )

The estimate for the integral As 5 is analogous to that of the integral Az .

From y; < z; < (2; + y;)/2 there follow the inequalities 0 < z; —y; <
(z; —y;)/2 < z; — z; and from (z; + y;)/2 < z; < x; the inequalities
0 <waj—z < (x;—y)/2 <z —y;. By virtue of these relations, the
integrals Az 3 and As 4 are estimated just in the same way as the integrals
A372 and A375.

As for the integral A4, we partition it into 6 summands A4, 1 <k <6
and estimate each summand by using the same techniques as for the corre-
sponding part of the integral As. Thus we can consider that the intermediate
estimate for the modulus of continuity of the function u(¢, ) is obtained:

Jult, ) — ult, )| <
< Mmoc; P2y — gy | 4 (6 b mo + ¢ o + ro)e; P 2y — gy | +
(1 =)y (mo + o) ey AT |y — . (5)

We use the estimate (5) for the determination of the estimate of the
difference wu(t,x) — u(t, z(, ;)). The points z, y will now be assumed to
belong to the cube b; — 27 e; < a;, y; < b; +27'¢;, 1 < i < n. It can be
easily seen that the estimates for the integrals A;, A can remain unchanged.
We rewrite the sum Az + A4 as

b+2¢ a af
/ dT‘/b {622 [Gt’x’Z’T)_G(t’x(y,])’Z’T)]}(¢Zf+QUEZa_ZZ)dZ:

b+25 bj—e] b+2¢ b +25]
/ dT/ dz(w') dz; + / / dz(w)/ dz; +
b b'—25] b ite;

b+2¢ bite;
/ dT/ dz(z,])/ ()dZ] IBl—|—Bz—|—Bg.
b bj—e;

In the integral B;, the inequalities

n

(xi — z) ¢ 2
> bl -
;462'(15—7') = 16(t—1) 46] t—T Z t—T 16(15—7')

i)
are fulfilled, and therefore

b+2¢ b —ej
| B1| < My(mo+7g)|2; — y]|/ dr/b dz(zj)/ G(t x,z(ﬂ_e/zyj),r)x

b;—2¢;
i = sllas — 50y B0 )4y < g (ma + o) — 5] %
dejei(t — 7)2 2e;(t— 1) g = OO 0/1% J

><(6]'—1/215—1/2 + Ej—3/2tl/2 + 6;1/2651/2) exp{—e;/(16)}.
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It is obvious that the same estimate is valid for the integral Bs as well.
Let us now pass to the estimation of the integral Bs. We write it as

b+2¢ bites 9
Bs = d dz(s t — Gt .
3 / T/b Z(Z’])/bj—ej {6zi (Gt x,2,7)— G( ,x(yyj),z,r)]} X

(¢>Zf + 2ue; gf )dz] =

b+2¢ bite; a
/ dr/b dz(z’j)/bj_ej {3,22' [Gt,x,z,r)—G(t,x(yyj),z,r)]}qbidzj +

b+2¢ bites 9
/ dT‘/b dz(zhy) /bj_gj {a_ZZ[Gt, x,z, T) — G(t’ x(y,j)a Z, 7')]} X
0

XQUEia—dej = Bgyl + 3372.

Since

¢i(7, 2,u(7, 2)) = 6i (T, 2(¢ j), w(T, 2(¢ ) + (8T 2, u(T, 26 5))) —
_¢i(T’ 2(&,5) U(T’ Z(E,j)))] + [¢i(Ta z, U(T, Z)) - ¢i(7—’ 2, U(T’ Z(E,j)))]’
the integral B3 ; can be represented in the form of three summands denoted
by Bs1.1, Bs 12, and Bs 1 3, respectively. For the inequality b; —27'¢; < x;j,
yj < bj + 27 ¢;, the integral Bs 1 is estimated directly:

t ;5 b+2¢
‘/0 dT/ dfj/b , [6:(7, 2(¢ 5y, w(T, 26 ) (2) + 2¢5ufy, ] dze 5y %
Y —z¢€

bitej 5?2
. ~/b &zzﬁz (t’x(fyj)azaT)de S

< Mumom —yiley e P exp{—e; /(161)}.
Using the inequality
|6i (7, 2, u(T, (¢ ) = GilT, 2(e 5y w7, 26 )| < pigl&s — 2],
for the summand Bj 1 2, we have

b+2¢ bite; T
|337172| <M14p0]/ dT/b dz(z,])/ dZ]/ G(t,l‘(gyj)Z,T) X

Yj
& =z |$Z—Zz+5,y(5 —x
ei€ej(t —1)?

< Mispojeq 12 t1/2|l‘ - yil,

67]—1—

€j (t_ 7)
where po i = 1réla<x p;x. To the integral Bs 13 we apply the intermediate
i<n

estimate (5). Since

|¢i(7—’ 2y U(T’ Z)) - ¢i(7—’ 2 U(T’ Z(E,j)))| <
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< Mygmg o { [moe; VEpm1z + (mo + g +T)¢; S =141/2) o
x|& — 2|+ 3711 —5) " (mo + To)e; ! 12 1/2t(1_’y)/2|€]’—2‘7’|’y}’

the integral B3 ; 3 is estimated as

b42¢ bte; ©;
oral<nomond [ar [ Ny [ s [ ff oo
b bj—¢j Y

+<e01mo+eo Mo + 1) V2 g = 2+ (=) x

bl

x(mo _|_mo)EJfW/ZEal/ZT(l—W)/2|€j _ Zjn}G/z/,zj(t’$(§,j)’Z’T)d€j

where mg ., = max m,;,. Evidently, without any difficulties we can obtain
n

1<i<
b+2¢ bite; 62
ozd d i Ly ‘— t’ Ny 2,
/ T/b “ W/, e S SRR

b+2¢ bite;
/ CYdT/ dz(w»)/ G(t,x(gyj),z,r) X
b bj—e;

X [|xl — zillg _2ZJ| + buslé; = |]dZ] < Moageg 1/2151/2"'“
€€t — 1) et —7)

bt2e bites e — 2|5 — 2|7
Td dzes 5 G(t ; R
/ T/b & W/, - G( ,96(5,]),2,7)[ aoli—n? T

. ,7j|2 y)| ]dz] < My V? (7 D/2pa47/2.
6] —

Consequently, for the integral Bz 1 3 we have the estimate

dZ]' S

1/2,=1/2

|B31,3] < Mmou[moey €

1.-1/2,1/2
;o

_|_

+ (mo + My + F)ea?’/ze_l/zt]

+(mo + o )€y e i |25 — 1.

The integral B3> can be estimated in the same manner as the integral
Bz 1,3. Combining all the obtained inequalities, we can write out the esti-
mate for the modulus of continuity of the function u(¢, #) with respect to
the variable z;:

1/2,~1/2

Ju(t, @) = u(t, 2y )| < M{moe; 07 4 moeg 2 4

+[mou(mo + To)eg e /% + (61 mo + €5 o + 1)y +

1/2, 1/2

—|—p070€51/2]t1/2 + mOU(eo_lmo + eglmo +r)eg t}|x] -yl

From the last inequality, in particular, it follows that one can weaken the
requirements imposed on the initial data of the problem as follows:

|¢ixk,(ta €T, U)| S PO,k S 6];1?0,]{:’ |1/)(ta €T, U)| S r S 60_1F'
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Then the latter inequality can be written as

lu(t, z) — u(t, $(y,j))| < M{mo(Gj_l/zt_l/z + 60_1/25]._1/2) 4
+ [mow(mo + mo)ej_l/2 + (mo + Mo + F)ej_l/z -1—507],6],_1/2]651151/2 +
+maoy (mo + Mo + 7)653/26]»_1/215} lz; — y;l. (6)

Thus we have proved the following assertion.

Theorem 1. Let ug(x) be ¢ bounded measurable function. If the functions
&i(t, x,u) are bounded for all (t,2) € ﬁT, |u(t, )| < mo, |t z,u)| <7,
€j|¢§xj(t,x,u)| < Pojr |Giu(t, @, u)| < moy, where the constants F, Py ;,
Moy are independent of €, then for the modulus of continuity of the function
u(t, z) with respect to the variable x; the estimate (6) is fulfilled. Ift € [0, T,
then this estimate can be written in the form

—1/2

Jut, ©) —u(t, 2y )| < Me; 2 2 e Ve e ) ey — i), (T)

while ift € (0, €p], then

fult, ) —ult, g | < M 202 4 G ey — gyl (®)
The constants M depend only on the upper bounds of the functions |u(t, )|,
|@i(t, x,u)|, eol(t, x,u)|, € |¢§xj(t, z,u)|, |fiu(t, 2, u)| in the cylinder Ny =
{(t,l‘)|0 <t < T, by —2¢ <y < b; + 262'}.

Remark 1. Theorem 1 remains valid if instead of the differentiability of
the functions ¢;(¢, z, u) with respect to the variables z; we require the fulfill-
ment of the Lipschitz condition with respect to those variables. Moreover,
our reasoning is also true if the functions ¢;(¢, z, u) satisfy the Holder con-
dition with respect to the variables x;, u, respectively with the exponents
A1, Az, 0 < A1, A2 < 1; note that naturally the right-hand sides of the
inequalities (7) and (8) will somehow change.

3. In the previous subsection we have required that the functions
¢i(t, x,u) possess the bounded first order derivatives with respect to the
variables x;, u. If, however, these functions and the function (¢, z, u) are
more smooth with respect to the above-mentioned variables, then the esti-
mate (7) may be essentially improved.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Let, moreover,
the functions ¢;(t, x,u) have the second derivatives with respect to the vari-
ables z;, u, and the function ¥(t, z, u) has the first derivatives with respect to
the same variables. If everywhere in the strip {(t,z)|eg <t < T, —oo < #; <

oo} these derivatives salisfy the condilions | ;’xjxk(t,x,uﬂ < e{lelzlpoyjyk,

|¢;/1/'ju(t’x’u)| < 6]'_1(]0,]'? |¢7uu(t, @, u)| < Moua, |1/)/xj(t,l‘,u)| < 6]'_160_17Q0f
[! (¢, 2, u)| < egtr, where the constants P0,j ks 407, Mouu, To, Tu TEMAIN

unchanged when € changes, then everywhere in the strip [[; the estimate
(8) is valid for the function u(t, ), and the constant M does not depend
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on the values of the functions u(t,»), ¢;(t,x,u), and Y(t, x,u) outside the
cylinder Ny.

Proof. Let the function f4(z), defined by us in the first section, satisfy
the condition [f4(2)]?[fa(2)]7! < M for all a — 2 < z < a + 2; obviously,
such functions do exist. Consider the function v1(t,z) = f(x)[u?(t, ) +
ﬁju’xj(t,x)], where the constant §; is chosen from the condition §; =
min {, /€ €o; ¢jTga, ). Let the function vy (t,z) at some point Py(tg, zg) of
the strip eg < ¢ < T reach the greatest positive value. If ¢{; = ¢, then
the assertion of Theorem 2 follows from Theorem 1. Suppose t; > ¢y. For
t =tg, ¥ = xg the equality f(u® + 3; le])/xk =—fi (u? +B5; le]) is fulfilled,

and therefore at the above-mentioned point we have the relation
821}1 61}1 61}1 9 6u

is 5 — P — | = 26 (
f[EaZ & 615] “I o,

oL Zgzé+f1/) + e, — 2€zf(af) |+

+vq [f¢zuu a - ¢zu a 61‘2
+ 2 [2ut 4 2ul,, + B, 4 By Olp e, — W — U] (9)

Since the function vy(t,#) reaches at the point Py its greatest value, the
right-hand side of the latter inequality is non-negative at that point. Hence

2,8 (5) + > {r U oo o, By — 0] |+

25—;(¢}/ux]ﬁ ]uu +UlZ{f¢zuU_+h }+Zgl<0 (10)

2 Ou
) + fzﬁ_xi[(waﬁ] - ¢zuu] +

where by h;, ¢; are denoted the corresponding summands from the right-
hand side of equation (9). Consider each summand of the last inequal-
ity written in the form f?u} [2€;u}. + fue, B — u?¢l ], i # j. If that
summand 1s positive, then neglecting it we will only strengthen inequal-

ity (10). TIf, however this summand is non-positive, then at the point

Py one group of inequalities, either 0 < 2eul,, < u?ol! . — (/)ZM B; or
u?olt — fuz; B; < 2eul, <0, is fulfilled. In each case the derlvatlve ul,.

for i # j at the point P satisﬁes the inequality |uj, | < Me;t. Therefore
inequality (10) can be written in the form

Ul + Ul{¢]uu6] 26]) 26] 6 Zh }+ Ul{ 26] ]ux] N
—BJZ(QEJGO)_lez - 2fU - (263) 16Jf“2¢yuu} + { Bffz 4¢J““
+Put = (26) 7107 Ut O, + (2¢5) 7157 Zgi - M23(2€j€0)_16]2} =0
i=1
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"

Since | z’uumj%_l < M, the last inequality implies the upper bound of
the function v1(¢,#) at Py. Hence, under our assumptions, the estimate
u’xj (t,z) < Mﬁj_l is fulfilled everywhere in the strip ¢y <t < 7. To obtain
the lower bound, it suffices to consider the function va(t, z) = f(¢, 2)[5; u’xj -
u?].  Thus, under our assumptions regarding the functions ¢;(¢,z,u),
(t, z,u), everywhere in the strip eg <t < T the estimate (8) is valid. O

4. Pass to the estimation of the modulus of continuity of the derivatives
of the function wu(t, z). All the assumptions on the smoothness and bound-
edness of the functions ug(z), ¢(¢,x,u), ¥ (¢, z,u) we made in proving in
Theorem 1 and Theorem 2, will be assumed to be fulfilled. With the help
of the function f,(z) we can write the difference u’xj (t,z)— u’xj (t,2(y,s) in
the form

b+2¢
()= (g, ) == [ ()56, 0) =Gty 02, 0+
b—2¢ /
t b+2¢ a a a
# far [ (54 r52 w gl ) TG a5 = Gl s+
0 b—2¢
t b4+2¢

Ou of ou\ 0
—1—/ / (f(/);ua—% + 2€Zua—ZZa—ZZ) a—Zj[G(t,x,z,T)— G(t,x(yys),z,r)dz =
0 b—2¢
=C1 4+ Cy+ Chs.

First we will obtain a preliminary estimate. The integral C; is estimated
directly:

|C1] < Me; 22 e, — ).

The integral Cs is estimated analogously to the integrals As ;1 ; if j # s and
Ay if j = s. Therefore

[Col < M~ (1= 9) 7! (mo + 74 Bo)es e e MOy — ],
0 1, Py = D s
<y <1 Pop 121%)%170,2
For estimation of the integral C's we will make use of the estimate of the

first derivatives of the function u(¢, z) from Theorem 2. If the conditions of
Theorem 2 are fulfilled, then the inequality

|Ca| < My=H (1 — 7)™ (mo + mou)e; 7 26 A2 4
e T — P

holds. Thus the preliminary estimate for the modulus of continuity of
derivatives of the function w(¢,#) is true. Using the auxiliary function



72

w = truy(t, x), p > 1/2, we obtain the inequality
Jw(t, x) 3w(t,x(yys))‘ <

tores b+2e 8f ou qu
< dé, 2e; - p et
- /O/y g/b—ze ( 6228;;2—1_ dz + mHfp — prh T uf+
62f bet2es 92
+ T ua dZ(E s)/ FE G(t, x5y, 2, T)dzs | +
b+25 '
dT 3f du +Tuf%+7—uf1/}—/,t7'“_luf+
b— 6ZZ 6;;2 dZZ'
o*f 9?
+eHu Oz 2) e 3223,25 G(t, s, 2, T)dz| = D1 + Do,
where

=9(r2) =9 (1. 26.)

(g((T, Z)) |Z

Z(&,9)
Using the estimate of the modulus of continuity of the function u(¢, #) and

the preliminary estimate of the modulus of continuity of its derivatives, we
obtain

IDy| < Me; P e i (L e P e M) ey — ),

1Ds| < Me; P 2t 4 A p gt 4 PP 4 6 ) e — )
Therefore the following Theorem is true.

Theorem 3. If the conditions of Theorem 2 are fulfilled, then everywhere
in the strip [ the estimate [ug, (&, ) —uy (8, 2¢y,5)] < Mej; 12 1/2(15_1 +

g 2t)|xs —ys| is valid, where the value ofthe constant M does not depend on
the values of the functions uo(x), ¢i(t, x,u), ¥(t,,u) outside the cylinder
Ny = {(t,l‘)|0 <t<T, |bz — l‘l| < 262'}.

The following theorem is valid.

Theorem 4. Let in the strip [, the conditions of Theorem 2 be fulfilled,
foreg <t < T the functions ¢;(t, x,u) have the third derivatives with respect
to the variables u, xp, k = 1,2,... n, and the function (t,x,u) have the
second deriwatives with respect to the same variables. Supppose that every
differentiation of these functions with respect to the variable x; introduce
the multiplier e;l i the estimate of their modules, while the differentiation
with respect to the variable u leave the order of their smallness unchanged
as € — 0. Then everywhere in the strip [ the estimate |u, (t z) —

uy (Exy )| < Mej 12 1/2(15 ey h)|es —ys| is valid, where the constant
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M remains unchanged as the functions ¢;(t,x,u), (¢, x,u) change outside
the cylinder Ny.

To prove the theorem it suffices to consider the functions

o = f{ e G, [ ) (G e )] b

for ¢g <t < 7T and to use arguments like those done in proving Theorem 2.
Analogously to Theorems 3 and 4 we prove the following

Theorem 5. Let s = (s1,82,...,8n) be a multi-indez, where s; are non-
negative integers, |s| = S.1_, s;, the functions ¢;(t,x,u) have the deriva-
tives of order |s| + 2 with respect to the variables u, xy, i,k = 1,2,...,n,
the function ¢¥(t,x,u) has the derivatives of order |s|+ 1 with respect to the
same variables, and |¢;(t,x,u)| < my, |(t, z,u)| < €5'Fo. Suppose also
that every differentiation of these functions with respect to the variables xj,
wintroduces the multiplier elzlin the estimate of their modules and the differ-
entiation with respect to u leaves the order of smallness of these derivatives
unchanged as € — 0, then in the strip [[ the estimate

‘ olu(t,e) Mt vy )
Oxi*0ws? .. Oxpm  Ox*0x3? .. . Jxp™ | —

< ]\46—5/2 1/2< —(1+[s])/2 + 65(1+|s|)/2)|x]' _ y],| (11)
is valid, where e=*/? = 1_81/2 e2/2 ~~€;s"/2, and the constant M does not

depend on the values of the functzons u, ¢i(t,x,u), Y(t,x,u) outside the
cylinder Ny.

Using the estimate (11) and the equation (1), we can formulate a similar
assertion for the function 91*1**u(t, x)/0x5 0xs? - - - Oxin Ot as well.

5. Consider now the case where the initial function ug(z) is bounded,
measurable and satisfying the Holder condition with the exponent v: |ug(2)—
wo(Y)| < H(|ler— 1| +|za—y2|" 4+ -+ |20 — ynl”). We use this inequality
for the estimate of the modulus of continuity of the function wu(t,z). For
the estimate of the integral A; we have

|As| <

b+2¢ a
/ dz(u)/ Z(E]))a Gtz jy, 2, 0)dé;| +

2e

b+2¢ ;5
—|—2H‘ / dZ(E ) G(t Bg ) ? 0)|€] — zj |1+V _1t_1d€]
bo

Yi
< M (mo + Hel! ™00 o) — g

for b; —¢; < z; and y; < b; + ¢;. Not changing the estimates of the
integrals As, As, Aa, we obtain that under the conditions of Theorem 2 for
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the modulus of continuity of the function u(t, ) the estimate
u(t, 2) = ult, gy )| < M ("D 4 GG g — ) (12)

holds.

When we estimate the modulus of continuity of the function u’xj (t,z),
the estimation of the integral D 1s made as above by using the inequality
(12). For estimation of the integral Ds let us consider the summand which
contains the multiplier 7#~!. Estimating this summand by means of the
inequality (12), we will obtain the following assertion.

Theorem 6. If the function ug(x) satisfies the Hélder condition with the
exponent v and the functions ¢;(t, x,u) and ¥(t, z, u) satisfy the conditions
formulated in Theorem 2, then the estimate (12) is valid for the function
u(t,z). If, however, the functions ¢;(t,x,u) and (¢, x,u) satisfy the con-
ditions of Theorem 4, then everywhere in the strip [[; the estimate

|u/xj (t, a:)—u/xj(t, l‘(yys))| §MGJ»_l/ze;l/z(eg/zt_l‘l'”/z—l—eal) lzs—ys| (13)

is valid. The constants M in the inequalities (12) and (13) do not depend on
the values of the functions ¢;(t, x,u) and (¢, x,u) outside the cylinder Ny.

Analogous statements can be formulated for derivatives of any, more
higher, order of the function u(t, z), as it has been done in Theorem 5.

Remark 2. Tt should be especially noted that the estimates (12) and (13)
remain valid if the initial function satisfies the Holder condition only with
respect to the variable z; (with respect to the variables z;, z,, respectively).
If the initial function ug () satisfies the Lipschitz condition, then we can put
v = 1 in the estimates (12) and (13). If the initial function is differentiable
and 1ts derivative satisfies the Holder condition with the exponent A, then
under the corresponding conditions on the functions ¢;(t, z, u), ¢¥(t, z,u),
in the estimates (12) and (13) one can take v = A + 1.

6. All the aforementioned arguments were concerned with the case where
the initial function is characterized by its belonging to one or another func-
tional space for all z € R™. Of special interest, however, may be the cases
where the function ug(z) belongs to one Hélder space on some set Q@ C R"
and belongs to the other space for # € R™ \ € . There naturally arises
the question on the behavior of the modulus of continuity of the function
u(t,z) as t — 0 in the neighborhood of a boundary point of the set €.
Obviously, the corresponding estimate of the modulus of continuity of the
function u(¢, #) must involve on the one hand the terms determined by the
smoothness of the function ug(x) at the points of the set 2, and on the other
hand the terms determined by its smoothness on the set R™\ 2. Depending
on the curve along which we reach the point, the degree of influence of the
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above-mentioned terms of both groups increases or decreases. The appro-
priate investigation has been carried out in [68]; here we restrict ourselves
to the formulation of the corresponding term only.

Condition A. We will say that the point z = (21, 2, ..., 2,) of the set Q
satisfies Condition A, if there exists a hyperplane P containing this point
and such that for some neighborhood S of the point z all the points of the set
QS lie only on one side of that hyperplane. Moreover, the neighborhood

S is assumed to be such that sup |ay — zx| > Brer, where B is a constant
€S
not depending on e.

Theorem 7. Let the initial function ug(x) be bounded, measurable every-
where in R™ and satisfy the Holder condition with respect to the variable
z with the exponent oy everywhere in R™. Let the function ug(x) satisfy
the Holder condition with the exponent as > «y with respect to the vari-
able xy everywhere in R™ \ §, where  is a sel of points. Lel the point
2z =0 belong to the set Q and satisfy Condition A, the hyperplane P coin-
cide with the hyperplane zy = 0 and all the points of the set S\ Q lie in the
half-space 1 < 0. Let, finally, 0(t,z1) be a continuous, twice continuously
differentiable fort > 0 function such that the following relations hold:

H(t,l‘l)z 0, 1 S _/\1toz1/2;
H(t,l‘l)z 61_2(1‘1+A1ta1/2)2, _/\1toz1/2 S 1 S 61/3—A1ta1/2;
H(t, l‘l)I 1—61_2(l‘1—€1 —|—A1ta1/2)2, 261/3—A1ta2/2 Sl‘l §€1—/\2ta2/2;
H(t,l‘l)z 1, r, > 61—A2ta2/2;

0<O(t, 21)<1, €P|0™O(t, x1)/0eT|< M, |06(t, 1) /0] < MAyey o221,
A= 60621 2, Ao = 60622/2. Then for allt > 0 the estimate
lu(t, z) — u(t, 2y 1))| < M{elzl/zeo_l/z + 6?2_1)/2#“2_1)/29(15, z1) +
et T2 021 g )] ek — uil (14)

18 true.

The estimate (14) shows the character of the continuous passage from
the estimate defined by the Holder exponent «y to the estimate defined by
the Holder exponent .

Corollary 1. If the function wuo(x) satisfies the condition |ug(zx) —
uo((y 1)) < Hl|xp — ye|® everywhere in the plane t = 0, with the exception
of the powmt z = 0, and the condition xy, yp s fulfilled for the variables
zryr > 0, then the estimate

Jult, @) = u(t, 2y )| < Me P (MGt + /@D 4 T2y — g
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is valid everywhere outside the set {(t,x)|0 <t < g, —es + M? <z, <
€5 — /\t“/z}. In particular, for n = 1 the estimate

Ju(t, ) = u(t,y)] < M VAT 4 2D 4 712 je —y)

is valid for all points (t,x), (t,y) lying outside the curvilinear trapezoid
which is formed by the linest = 0; t = €g; @ = —e + MY2%; & = € — M*/2;
A = lta/2,

7. We can show that the estimates obtained in Theorems 1-6 are exact
with respect to the order of smallness of the variables ¢, ¢z, €g which are
contained in the right-hand sides of those estimates. Indeed, let first ¢ < €.
In this case for the solution of the Cauchy problem

eugy —up =0, ul,_ = uo(w),

where ug(#) = 0 for # < 0 and ug(x) = 1 for # > 0, we have u/(¢,0) =
(47T€t)_1/2, and therefore for x = 0 the estimate of Theorem 1 i1s non-
improvable. If as the initial we take the function ug(z) = 0 for # < 0 and
up(e) = x® for 0 < 2 < 1, 0 < a < 1, where the function ug(z) and its
derivative of the first order is bounded and continuous for all x > 0, then
for sufficiently small values ¢ the inequality u/,(¢,0) > 7_1/2(4t€)(a_1)/26_1
will be fulfilled. Thus the estimate of Theorem 6 cannot be improved with
respect to the order of smallness of the variables ¢, ¢ for ¢t < e.
Let now ¢ > €. Consider the problem

0%u Ju  Ou
FER (19)
tlt=o = up(z) =1 for 2 <0, wug(z)=-1 for z>0. (16)

Using Hopf’s construction [30], we can write out the expression for the
spatial derivative of the function (¢, z). Using then an asymptotic repre-
sentation for the probability integral for large values of z we have that for

t=0(1), 2= 0(e), € < 1 the relation
Wt z) =171 — (26) 7  ch T (2/(2¢)) + O(eM?) (17)
is valid, and therefore the above-obtained estimates are exact for ¢t > e.
Consider finally the equation

1" 1" /
€1 Vg + Vyy — VU

ez — VUy — vy = 0,

where ¢; is the root of the equation 2ei(1+4 \/e1)™? = ¢, 0 < ¢ < 1.
Consider the solution of that equation, satisfying for ¢ = 0 the condition
vl,_g = volz,y) = 1, if x4y /e <0, wolx,y) = -1, if o+ y,/e1 > 0.
Obviously, the solution of that problem is the function v(¢, z, y) = u(t, (¢ +
y/e1)/(1+ \/a)), where u(t, z) is the solution of the problem (15), (16).

Therefore it follows from (17) that the theorems proven above provide us
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with the estimates which are exact with respect to the order of smallness of
the parameters ¢, ¢g for ¢t > e.

Remark 3. Let us consider the spaces of functions L, ,(a,b) and L,(a, b),
where p > 1, a < b,

b 1/p T pb 1/p
||U||Lp,z(a,b) = sup (/ |v|pdx) , ||U||Lp(a,b) = (/ / |v|pdxdt)
0<tST a 0 a

for any finite a, b, p. It follows from the relation (17) that in the spaces
L, »(a,b) Ly(a,b), for the derivatives with respect to the spatial variables
of the solution of the problem (1), (2) for the bounded initial function wug(z),
the best estimates in the sense of the order of the parameter ¢y take place for
p = 1; the derivatives in a general case have in the norms L 5, L; the zero
order of smallness with respect to the parameter €y, even if b —a = O(ep).

8. In conclusion, we present some estimates of solutions of the Cauchy
problem for the initial equation in the case of one spatial variable; those
estimates make the constants appearing in the above-proven inequalities
more precise and will be used later on.

Forall 0 <t < T, —o0o < & < 00, |u(t, z)| < oo, the functions ¢(¢t, z, u),
¥(t, z, u) will be assumed to have uniformly bounded derivatives of the first
and second order, @1, (¢, z,u) > ¢g > 0.

Theorem 8. Everywhere in the strip [[, the estimates
i<nf< [eup(z) — ¢(0, 2, up())] < eulp(t, ) — (¢, z,u) <

< sup [eug(x) - ¢(0’$’u0(x))]

—ooLr <00

hold.
Proof. Function vy (t, z) = [eu!, — ¢(t, x, u)]e™ " satisfies the equation
EQUlllxx_qj);(u)vllx_Ullt_[ao—i_’l/);]vl = e_aut[€1/)/x'+¢’l/); _¢¢;+¢;] = Fl(ta l‘)

and also the initial condition v1(0, %) = eug(z) — ¢(0, z, ug(x)). Consider

an auxiliary function z(f,z) = a(2? + 1)*2, where ay, as are some con-

stants and as < 1/2. If we assume ag = 1 — inf ¢, + «as[2e + sup |¢]],
T T

a1 = max {sup |F1(t, z)|, sup |ug(x)|} then for any 0 < ay < 1/2 everywhere

T

in the strip [, the inequalities Lz < —z < 0, L(z£v1) < 0, (#£v1)|t=0 > 0
are fulfilled. Choose a number N so large that the functions z+wv; on lateral
sides of the rectangle D{0 <t < T, |z| < N} would take non-negative val-
ues. According to the maximum principle, these functions are non-negative
everywhere in [],, and therefore |eu, — ¢(¢, z, u)| < are*?(z? 4+ 1)*2. Ob-
viously, the last inequality is valid at any point of the strip [[. Passing to
the limit as oy — 0, we arrive at the assertion of the theorem. O
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Corollary 2. If ¢(t, x, u)
inf__feup()—o(uo(2)] < eudlt,2) = #(0) < sup_[eup(e)=o(uo(z))]

—o0 —o0L e 00
are fulfilled.

Theorem 9. If e|luy(x)| + *|uf ()] < M, then everywhere in [[5 the es-
timates

é(u), (¢, x,u) =0, then the inequalities

|l (8 0)| < M, Jedi(t,2)| < M
are true.

Proof. Let N > 0 be any positive number and Gn(z) be a twice contin-
uously differentiable function, Gy(x) = 1 for |¢| < N, Gy(x) = 0, for
o] > N+1,0 < Gu(z) < 1, [Gh(2)]?/Gn(z) < M. Let va(t,x) =
Gn(z)[ev), + vi], where the function vy(¢, ) has been defined in Theorem
8. The function vs(¢, #) on the lateral sides of the rectangle D{(¢,z)|0 <
t < T, |x] < N+ 1} vanishes. If the function va(t, #) reaches its greatest
(for the rectangle D) positive value for ¢ = 0, then for # < N there takes
place the relation
2

62% < sup {673#5(3;, v) 2, x)+€2u6’(x)+€—d¢(0’ Z;;Uo(l‘)) +3(0, x)},
from which, with regard for Theorem 8, we obtain the upper bound for the
function §%u/dz?. However, if the largest (for the rectangle D) positive
value is attained at the point Py(to, 2¢) lying in the rectangle D or on its

upper side, then at that point we have the relation
0%v Ov Ov
31,22 - %8—2 - 8_152 — (¥, + ¢Zx)vz] -
0% Ou v
Gy (@) |25 + 2600, S + Falt 2) + Fat, o))
—vus(t, 2)[eGy — ¢, Gy — 26(Gy)?/GN] = 0, (18)

where the functions Fa(t,z) = eyl ubvy + el vy + €F|,., Fs(t,z) =
200 (1, &) + [, — ¢l Jv? are bounded in the rectangle D uniformly with
respect to e. As it follows from equation (18), at the point Py the inequality

Gy (x) [e

D\ 2 du d
G2 (x) [%(%) + el a“ 8“0 ¥ Byt ) + Fa(t,z)] +

G ()[Y) + Olalvz + valeGRy () = 6, G (x) — 2¢(Gy(2))?/ G ()] < 0

is valid, or what comes to the same thing, v3(z)+ A.(¢, 2)va + B(t,2) < 0,
where A(t, x), Be(t, z) are some functions, bounded in [], uniformly with
respect to €. But the last inequality can be satisfied only for vo < M, which
ensures the upper bound for the function ed?u/dz? for all |z| < N. Passing
to the limit as NV — oo, we obtain the required upper bound for the whole

strip [[r.
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To obtain the lower bound it suffices to consider the auxiliary function
v3(t, z) = Gn(x)[evi, — v¥] and to repeat our reasoning. The estimate for
the derivative with respect to the variable ¢ follows from equation (1). O

Using the obtained estimates, we can prove the following assertions ([66]).

Theorem 10. Let ||¢ + 1//x||L1(HT) <M. If ||u6(x)||L1(HT) < M, then

/ / 1"
Uyy Uy, Upys

Li(Iz)-
/ / 1"
Theorem 11. If ||¢ + f/’xHLl(HT) < M, ||ux||Ll(HT) + HEUMHLI(HT) <
M, then for all t € [0,T] the inequalily ffooo |u(t, ) — uo(a)|de < M s

valid. Moreover, if there exist lim wug(z) = u~, lim ug(x) = ut and the
r— —00 T—00

are bounded uniformly with respect to ¢ in the norm of the space

integrals

0 (o)
I = / |ug(x) — v~ |d, I = / |uo(2) — u+|dx
0

— 00

converge, then the integrals

0 oo
I = / |u(t, ) — u™|de, I, = / lu(t, z) — ut|dx
- 0

oQ

also converge simultancously, and lim wu(t,z) = u~ and lim u(t,z) = u™.
r— —00 T—00
1.2. SOME A PRIORI ESTIMATES FOR A SYSTEM OF QUASI-LINEAR
EqQuATIONS

In this section we deduce some integral and uniform estimates for solu-
tions of the Cauchy problem associated with a quasi-linear system of singu-
larly perturbed equations of parabolic type. In particular, these estimates
characterize the behavior of a solution and its derivatives as a small pa-
rameter tends to zero and the time derivative increases infinitely. They
are proved to be useful in investigating the properties of solutions of model
problems of gas dynamics.

1. In the strip Iy = {(¢,2)|0 <t < T, —00 < # < o0}, let us consider
the Cauchy problem

9%u  Hu d
e@—%:%(b(t,x,v), (1)
9%v  Ov ou
G @~ o 2)
ul,_g = uo(z), v|—y = vo(x), (3)

where € is a non-negative constant, and wug(z) and wvg(z) are continuous
bounded functions possessing bounded derivatives of the first and second
order. We will assume that vo(x) > mg > 0, where mgy is a constant
not depending on the parameter €. Suppose that the function ¢(¢, 2, v) is
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continuous and bounded in each of the domains D, = I, X {a < v < o},
where a is an arbitrary positive constant, and possesses in D, the continuous
uniformly bounded derivatives up to the fourth order, inclusive, with respect
to either Variable ¢L(t,x,v) < 0 and ¢, (t,z,v) > 0, and the function

F(tye,v)=— f V=@, (t, x, s)ds increases infinitely as v — +0.

For ¢(t, x, v) = (v/2v)72, € = 0 the problem (1)—(3) describes motion of
shallow water and isentropic gas motion in terms of the Lagrange coordi-
nates in the case ¢, /¢, = 2.

In [84], for the case ¢(t, 2, v) = ¢(v), T.D. Ventzel by means of the change
of variables f* = —F(t,x,v) & u(t, z) has shown that in the strip Il the
inequalities |u(t, )| < M, v(¢,2) > m > 0 hold, where the constants M, m
do not depend on €. In the same work it has been proved that under the
above formulated conditions for the function ug(#), vo(z), ¢(v) the solution
of the problem exists everywhere in Ilp.

Making the change of variables 7 = t/¢, £ = 2/¢ and denoting again the
independent variables by ¢, x, we obtain the problem

62u1 _ % . d(/)(t,x,vl) (4)
Ox? ot dz ’
vy Oy Ouy

oz "ot = on! (5)

Ul = wi(x),  viloo = vi(2), (6)

where @1(z), 91(x) are given functions. In what follows, the index in no-
tation of the solution of the problem (4)—(6) will be omitted and for the
solution of the equations (4), (5) the use will be made of the conventional
notation, i.e., u(t,z) and v(¢,x). The solution of the problem (4)—(6) will
be assumed to exist everywhere in I, and the inequalities v(t,z) > m > 0,
|u(t, )] < M for that solution to be fulfilled everywhere in Il

2. If G(t,2,&,7) = [An(t — 7)]7 2 exp {—(x — &)?/[4(t — 7)]}, then the
problem (4)-(6) can be written in the form

u(t, z) / Gtz €, 0)ug(€)dé +
/ dT/ B(r &)t =) e = Gt e, & ), (D)
u(t, x) / G(t,x,€,0)v(€)de —

__/dT/ (t=7)" (e =€)G(L, x, €, Tyu(r, ) dE. (8)
The estimate

v(t, ) < MVi+1 (9)
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can be immediately obtained from (8). Substituting (7) in (8) and changing
the order of integration, after elementary transformations we obtain

oQ

o(t,z) / Gl . €, 0)oo(€)dé — / (¢ = E)G(t, 2, €, 0)uo(€)de +

— 00

/dr/ é(r, €, v [ (( g))]G(t,x,&,r)d&:[l—%fz—l—%lg. (10)

From (10) we readily obtain the estimate for the derivative of the function
v(t, x) with respect to the variable :

ol (t, z)] < MVt + 1. (11)

Theorem 1. Let the functions ug(x), vo(x) have the limits u™, v~ , respec-
tively, as x — —oo and the limits ut, vt as x — 400 , and the functions
(t,—x,u”), ¢(t,x,u™) have as * — Foo the limits ¢, ¢7. Then for ev-
ery fived value t = ty the functions u(t, x), v(t, z) have the same limits at
wmfinity as they have fort =0.

Proof. Consider first the function v(¢, ) defined by equation (10). For the
definiteness, let © — +oo. Obviously,

z/2 53]
L :/ vo(f)G(t,x,f,O)d€+/ [vo(€) — vT]G(t, =, €,0)dE +

—oo z/2

+ut G(t,2,&,0)dE =N+ Lo+ s
z/2
For x — oo, we shall estimate each summand on the right-hand side of the
last equation. For values #, such that x/(2t) > 1, we have

|111|<M/ Gtx€0d€<M/ exp (—z?)dz.
/(41
Using Millse’s relation ([48]), we obtain the inequality
i1 ] < M exp [—a?/(48%)][e/(4V) + /w + 22/ (161)] Y,

where 4/ < w < 2. It is not difficult to see that I} 3 — vt as # — oo,
where

|1173—v+| |vt|exp[— 2/ 442 {\/_l‘/ 4\/_)—1— w+x2/(16t)]}_

For the integral I; » we can easily obtain the inequality |[;»] <

sup |vo(¢) — vt|. Further,
£>w/2

1

z/2
I :/_ G(t,x,f,O)(r—g)[uo(f)—u+]d€—|—

+ /ZGUJ%€0X$—€HUd©—U+W€+
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t/m(u” —ut)exp [—J;Z/(16t)] =Dhi+1ls+ I

For the integral I»; the estimate |Ipq| < M~/texp [—J;Z/(16t)] 1s valid.
Passing to the estimation of the summand I 2, we get

—xz/(8V%)
I o= 2\/t/ﬂ'/ [uo(x+2zﬁ)—u+]zexp (—2%)dz —
—x/(4\/_)

—23/t/7 uo l‘+22\/_) —u ]zexp(—zz)dz—
—e/(8V1)

_/ [uo(x + 2:\/t) — ut]zexp (—z%)dz.
—z/(8V/1)

Obviously, for z/(4v/f) > 1 the following inequalities hold:
2

—x/(S\/_)
‘/ x—i—?z\/_)—u ]zexp (—2%)dz @),

@/ (4V/1)
‘ / oD [uo(l‘ + 2,2\/1?) — u+]zexp (—zz)dz
—x /(81

§Mexp(—

<M sup |up(€) —ut|.
£>3w/4

Finally we pass to the limit /5. Partition it in three summands

I3 = /Ot dT/_:a(x)d)(Ta&’v)[ (QZ__?;}G(t%&T)d&Jr

+/t dT/ioa(x)q/)(T,&,v)[ (th__{fij](;(t,x.g,r)wr

x+a(f) e
/ dr/x o )[1 - (;Et _i)_)]G(t, e &, TV =Is1 + Iso + I3 3,

where a(z) a monotonically increasing function, a(z) < /2 for z > 0
and lim a(z) = oco. By simple calculations, for l‘/\/_ > 1 we obtain the

. r— 00
estimate

V 16tw + [of —a(x) 4

, —<w<2.
16tw + [« )] +a(z) T

Hence |I5 1] < Mt3/?[a(x)] "t exp{—[a(2)]?/(16t)}. An analogous estimate

can be obtained for the integral I3 5. Thus, using the above-obtained esti-
mates, we can write equality (10) as follows:

|1371|§4Ma(x)\/1?exp{— 16t }

z(t,2)= vt z) — vt =gt z) +
. x+a(x) (x—€)2 .
s [ar [ o, D=0 e v [1- S Gl € e (12)

here ¢(t,z) is the function, tending to zero as # — +o0o. On considering
equality (12) as the integral equation with regard to the function z(¢, z), we
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solve 1t by the method of successive approximations; note that as the initial
approximation zy(t, ) we shall take the function g(¢, z).

Let inequality « > 2N hold, where the number N is chosen in such
a way that for @ > N the relation |g(¢,2)| < g is fulfilled. Supposing
z —2a(x) > N, we shall have

t z4o(z) 1 +
|z1(t, 2) — zo0(t, )| < 2_1/ dT/ / ‘8¢(T’€’v + 020(7,€)) df x
0 il 0
xr

—a(x) Jv
x|v bty @9
o(r,€) = v* 1 —2t_T)\G(t,x,ﬁ,ﬂd&emw/?,

(
M, = sup |¢>;(t,x,v)|,
(t,@)€My,m<v<M~I+1
and this inequality is valid for all # > N. The inequality |va(?, ) —vi(¢, 2)| <
(Myt/2)?u can be obtained analogously. If M,t/2 < 1, then the sequence
{zn(t, z)} converges, and the terms of that sequence are uniformly bounded
by some constant like M p. Hence, for the function v(¢, z) for ¢t < M, ! and
x > 2N the relation |v(t, z)—vt| < My is fulfilled. Repeating our reasoning
successively for kMt <t < (k+ 1)M,; !, we shall get the validity of the
assertion of the theorem with respect to the function v(t, #) for all ¢ > 0.
Estimate now the difference u(¢,z) — u¥. It can be easily seen that
the first summand in the expression (7) is investigated exactly in the same
manner as the first one in the expression (10). Let us consider the second
summand for x > 2N:

1

27 [ dr | é(r & v)t =) e =Gt e, &, T)dE=—1 — I, =
[]

i —ale)/(2VE-T)
= —/dr / ¢>(T,$+22\/t—T,U)(t—T)_l/ZZG(Z,4_1,O,O)dZ—
0

13 00
_/ dr / o(r, 2+ 22/t — 7, 0)(t — 7)Y 226G (2,471, 0,0)dz.
O —a(@)/(2vi-7)

It 1s not difficult to see that for for sufficiently large values of N the inequality

2

|| < M/o (t—7)"Y%exp [— ﬁ dr < M/texp[—z2/(16t)]

is valid. The integral I in the following way:

13 00

/(t—r)_l/zdr / [(/)(T,x—i—?zx/t—r,v+)—¢+]zG(z,4_1,0,0,)dz—l—
0 —a(@)/(2V7)
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1 1 [e%e)
—|—(/>+/G(x,t,x—a(x),r)dr—l—/(t—r)_l/zdr / [p(T, x+22/t—T,0)—
0 0 —a(@)/(2V1)

—¢(r, & + 22/t — 7,vT)]2G(2,471,0,0)dz = I~271 + I~272 + I~273.
Using the estimates for the function v(¢, ) — v, we obtain for x > 2N :

|f2,1| S sup |¢)(T,€,U+) _¢+|a
£>N,0<r<t

ot < e {22

|la] < sup  Ju(r, &) — vt
£>N,0<r<t
From these inequalities follows the relation lim |u(¢,z) — u*| = 0. Obvi-
r—00

ously, the case z — —oo 18 considered analogously. O

Remark 1. From the above estimates follow the estimates for the rate of
convergence of the functions u(t, z), v(t,z) to the corresponding limiting
values as |¢| — oo. This rate depends on ¢ and on the rate of convergence
of the functions ug(z), vo(x), ¢(¢, z,v_), ¢(t,z,vT) to their limiting values.

Remark 2. 1t follows from the above reasoning that the behavior of the
function v(t,z) as  — 400 does not depend on the character of variation
of the function ug(z) as |x| — oo and of the function vg(#) as # — —oo.

The proof of the theorem below 1s the same as that of Theorem 1.

Theorem 2. [f llim (Jug(®)] + |vi(x)]) = 0, llim (l¢'(t, —x,v7)| +

|6/(t, 2, v%)]) = 0, then | lim (Ju (¢, 2)] 4 [v(¢, 2)]) = 0.

Tr|— 00

Theorem 3. If the conditions of Theorems 1 and 2 are fulfilled and, more-
over, if the integrals

Li(t,x)= /x [v(t,8) —vT)dE, IL(t,z)= /Oo[v(t,f) —vt]d¢,

— 00

B = [ - uwlde, hn = [l - e

— 00

exist for t = 0, then they do exist for any t > 0 and the following equalities
hold:

Li(t,0) + I (¢ 0,0) + 15(0,0) + (ut — u™)t, 13
{Ig(t,0)+f4(t,0) = 13(0,0)+I4(0,0)+(¢+ —qf)_)t. ( )

Theorem 4 is proved in the same way as Lemma 4 in [34].
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Corollary 1. If v~ £ vT, then

L o(£,0)+ 15 4(t,0) = /0 [v(t,x —at) —v™ |de +

— 00

—1—/ [v(t,z — at) — v ]de = I 4(0,0) + I 4(0,0),
0

where a = (ut —u™) (vt —v7)7L if um #ut, then
0
Isp(t,0) + L p(t,0) = / [u(t, 2 — bt) — u”]de +

— 00

—1—/ [u(t,z — bt) — uT]dx = I3 3(0,0) + 1450, 0),
0

where b= (¢~ — ¢T)(ut —u™)~ L.

Theorem 4. Let the function ¢(t, 2,07 )— ¢~ be absolutely integrable with
respect to the variable x for x € (—o0,0], and the function ¢(t,z,vt) — ¢T
be absolutely integrable for x € [0,00). Let, moreover, the integrals

0

L(t) = /_ [v(t,2) — o7 |de, Ix(t) = /000 lo(t,z) — vT|dz,

0 oo
3(t) = / |u(t, ) — u™|de, 4(t) = / lu(t, z) — ut|dx
—o0 0
converge for t = 0. Then these integrals converge for any t > 0 and the
mequalities
L)+ L) < Mt (1432, L)+ Ii(t) < Met(1 +3/%)  (14)
hold.
Proof. Consider first the integral I1(¢). Denote the function [1 — 271(z —
E?/(t — )G, x,&,7) by Q(t,z,&, 7). We have

oQ

v(t,z)— v = / [v0(&) — vT|G(t, x,&,0)dE —

— 00

—2—1/_°° wo(€)(x — )G, 7,€,0)d€ +

t o0 *
+2—1/ dr/ (1,6, 0)Q(t,x, &, 7)dE = P — 27 Py + 271 5.
0 — 00

Obviously,

0
P1:/ [v0(€) — vT )Gt 2, &,0)dE +

oQ

—|—/ [Uo(f) — U_]G(t, l‘,f, O)df = Pl,l(ta l‘) —|— Plyz(t, l‘),
0
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whence

/_OOO [Pt x)lde < /_Ooo [vo(§) — o7 | {/_OOO G(t,r,&o)dl‘}d& < 1(0),

0] [e%) 0]
/ |P1ao(t, 2)|de < M/ {/ G(t,x,&,O)dx}d& < MV/4t.
— o0 0 — 00

Pass now to the estimate of the integral P». Let us write it in the form

oQ

/_ [uO(€)—u_](l‘—€)G(t,$,€,0)d€+/0 [uo(€) —uF](z=E)G(t, z, &, 0)de+

i z?
+H(ut — u_)ﬁexp [— E] =Pyt 2)+ Poa(t,z) + Poa(t, x),

and hence

0
/ | P21 (t, 2)|de < M/t I5(0),

0

0
/ | Po o(t, 2)|de < M\/ELL(O), / | Po a(t, x)|de = lut —u~ |t

— 00

Finally, let us estimate the integral ffoo |Ps(t, x)|dz. We represent the
function Ps(t, x) as

s(t:) /dT/ 7,6v7)]Q(t, 2, &, T)dE +
/dT/ & vNQ(, v, &, T)dE +

+{/ dT/ 6(r, €, v7)Qt, v, &, 7)dE +
1t s}
+/0 T/O o(r. €, vH)Qt, 2,6, 7) €}

= P3(t,x) 4+ Psa(t,x) + Pss(t,«) + Psal(t, ).

For the function Ps (¢, z) we shall have

0
/ |P5,1]de <

d - dxd

/ / o AT RL TS
§+\/2(t—7)

+/0 dT/_oo |¢<r,£,v>—¢<r,£,v—>|/0 Q(t, 0, €, 7)dedé +
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t 0 E+\/m
+ [ar [ lotrg 0 - otréo) Qt, €, 7)dade =
0 —00 E—+/2(t—7)
=P311+ FP312+ P313.

Calculating the integral of the function Q(¢, z, &, 7), we obtain

P311<M/ dT/ |dl‘ P312<M/ dT/ |d€
For the integral P31 3 we can easily get the inequality
(RS 1
P37173I —/ e ? d5—|— —6_1/2 X
{Qﬁ -1/V? V2
t 0
<[ [ lotrg 0 = otrg ol <
<M/ dr/ v )|dE.

The integral of the function Ps 1(t, ) is estimated analogously:

/ |P32tx|dx<M/ dT/ v(r,z) —vT|dz.

Let us now pass to the integral Ps a:
t 0
Pra= [ dr [ otne ) - oIQ 6 e +
0 — 00

t 00
—|—¢>_ / dT/ t, l‘,f, T)df = P37371(t, l‘) + P37372(t, l‘)
0 0

Obviously,

/ |P331tx|dx<M/ dT/ (rye,v7)— ¢~ |dx,

/_Oo | P53 2(t, x)|de = 3\/_t3/2¢—

We can easily see that the integral of the function Ps 4 is calculated exactly
in the same manner.
Thus

/0 lo(t, z) — v~ |de < M(1+1) +

M{ /Otdr/_ooo lo(r, ¢, |d€—|—/ dr/ ¢>+|d§}
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—|—M/ dT/ o(t, @) — v |de +F —u” |t + (97) 2T — 67|32

Similarly,

/00 lo(t, 2) —v¥|de < M(1+ V1) +

t 0 t [e%)
Ml | d V6~ |d d ) ¢t
{/ r/ (€, v7)o |5+/0 r/o o(r, 6. 0%) — 6 |£}+
—|—M/ dT/ o(t, ) — vF |de 4 Jut —u |t + (97) "2 gT — o 1372

Adding term by term the last two inequalities and using the Gronwall-
Bellman’s lemma, we obtain the first inequality (14). The second one is
proved in a similar manner. []

The following assertion is proved without any changes.

Theorem 5. If vo(z) — v™, ug(z) — u™, ¢(t,z,v) — ¢~ € L, z(—0,0)
vo(z)—vt, up(z)—ut, ¢(t,z,vt)—¢* € L, ,(0,00),p > 1, then v(t,z)—v~,
u(t,z) —u~ € Ly »(—00,0), v(t,z) —vt, u(t,z) — ut € Ly »(0,00).

Under appropriate assumptions on the initial data of the problem we can
formulate analogous statements for the derivatives of the functions u(t, z),

u(t, z).
Let us pass now to the estimates of the functions under consideration in
the uniform norm.

Theorem 6. FEverywhere in the half-plane t > 0 the estimates
(4, 2)| + [t @) + 1048, )] + 0L, )] + [l (t, 2)] < M In (e +2),
it (1, 0)] < M/l (e )
are valid.

Proof. As follows from equality (8),

2U o0
=0 [ @t 0+

2
Ox e

ary? /w w3 — ) — 17 (& — EP]G(t, 2, €, 0)dé -

e /dr/ (=) lo(r €, 0)3 =3t — 1) Yo — &) +

+47Ht — 1) (2 — ONG(t, &, €, T)dE = —27H (K — Ky + K3).

In proving the theorem we may assume ¢ > 1, since for bounded values of
the variable t the estimates of derivatives of functions can be obtained by
the methods we have used in §1. Evidently, |K{| < Mt~1,
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and hence to estimate the second derivative of the function v(¢,x) with
respect to the variable x it sufficiently to estimate the integral Ks:

/dr/ dt—r,x +E vt —T e+ &) %
=37 472N G, €,0,0)dE =

_21/ dr/ {- }d5+21/dr/{ }dE = K31 + K39,

where 8 is some positive value which will be defined below. Since v, (¢, )| <
M+/t+ 1, we can easily obtain the estimate |K31| < M+/6(t+ 1). In the
integral K35, making the change of the variable £ = 22+/7, we get | K3 2| <
M|Int —Iné§|. Choosing § = ¢t~1, we obtain the intermediate estimate

|l (t, )| < Mn (e +1).
The estimates
lul(t,z)] < MIn(e+1t), |vbo(t,z)] < Mln(e+t)

can be found analogously from formulas (7) and (8).
Estimate now the function (¢, ). From (7) we have

e (te) = La(t, o) + Lo(t, ) = —(20) ™" /_Oo uo(§)Q, 2, £)dE +

R R L P (e e AT S

Obviously, |L1(t,z)] < Mt~1. The integral Ls(t,2) can be represented in
terms of

Lz(t,x):/Ot_édr/_o:o{...}d&—l—/tiédr/_o:o{...}d&:Lzyl(t,x)—l—Lzz(t,x).

Integrating once by parts and using the obtained estimates for the deriva-
tives of the function v(t, x), we readily obtain the inequality |Ls »(t, 2)| <
MVE{1 + [In(t +1)]?}. It is easily seen that the inequality |Lo (¢, )| <
M6=1/2 holds. Choosing 6 from the equality 6 = [In (¢ 4 ¢)]?, we find the
estimate |ul, (¢, )] < M In (¢ + e). Estimates for the derivatives of the func-
tions under consideration with respect to the variable ¢ follows from equa-
tions (4) and (5). Getting back to the estimate of the function v/, (¢, ),
we are able, with regard for inequality (14), to find from (10) the required
estimate for that derivative. [

In conclusion, we can formulate an analogue of Theorem 6 in the form
applicable to the problem (1)—(3).
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Theorem 7. Everywhere in the half-plane t > 0, for the solution of the
problem (1)—(3) the estimates

|ewl,(t, @) [+ lewy (¢, )+ [evy (¢, @) |+ ]evi(t, @) |+ |e*ugly (1, )] < M n (e+t/e),
|e2vll (¢, )| < M+/In (e +1/e)

are valid.

It should be noted that the results of the above theorem improve the
results obtained in [84] for the cases ¢ — 0 and ¢t — oc.

1.3. QuasI-LINEAR PARABOLIC EQUATION WITH A DISCONTINUOUS
INITIAL FUNCTION

In this section we construct asymptotic representations for a solution
of quasi-linear parabolic equation, when the solution of the corresponding
degenerate problem is a discontinuous function.

1. In the strip [];{(¢,2)|0 <t <T,—00 < < co} let us consider the

problem
0%u Ju  Ou
= 27 7 —_ & _— = =

The function ¢ will be assumed to be infinitely differentiable, uniformly
bounded for bounded values of the argument, ¢(0) = ¢’(0) = 0, ¢"”(0) =1,
and ¢"(u) > ¢o > 0 for any u. Let the function f(x) be continuous and
uniformly bounded for # # 0 and possess uniformly bounded derivatives of
any order for & # 0, which have finite limiting values as £ — 0 and * — +0.

Along with Problems A, we consider in the strip [[; Problem Ay,

ou , Ju _ _
o T o)z =0, u(0,) = f(x). (2)

As is known, Problem Ay may have no solution in the class of differentiable
functions even for an arbitrarily smooth initial function. In order for the
problem (2) to be solvable for a continuous or piecewise continuous initial
function, it is necessary to seek its solution in the class of discontinuous
functions.

As it follows from O. A. Oleinik’s work [51], for an arbitrary bounded
measurable initial function f(z) a solution of Problem A is infinitely dif-
ferentiable for ¢ > 0. At the same time, a solution of Problem Ay may
appear to be a discontinuous function even for an infinitely smooth initial
function, and for a discontinuous initial function a solution of the problem
may be continuous for ¢ > 0. In connection with these specific peculiarities,
an asymptotic, as € — 0, representation of a solution of Problem A, may
or may not possess terms of boundary layer character; moreover, boundary
layer terms of expansion can describe both the ordinary differential equa-
tions and equations of parabolic type.
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Hence, the structure of an asymptotic, as € — 0, representation of a
solution of Problem A, depends essentially on the properties of the solution
of Problem Ajy. It is not difficult to prove the following

Theorem 1. If f(x) is a function, infinitely differentiable and bounded
along with its deriwatives of any order, and a solution of Problem Ay 1s
infinitely differentiable in the strip [[r, then for the solution of Problem A,
we can construct a uniform, asymptotic as € — 0 expansion of the type

oQ

Ult,z,€) ~ Z ezkuzk(t, z),

k=0
and for that expansion in the strip [[1 the estimate

N

Hu(t,x) - €2kuk(t,x)HC2 < O+
k=0

15 valid.

Thus the occurrence of terms of boundary layer character in an asymp-
totic expansion of the solution of Problem A, is due to the occurrence of sin-
gularities in the solution of Problem Ay. In the present section we describe
an asymptotic representation of the solution of Problem A. in the case,
where a solution of Problem Ay 1s a discontinuous function for 0 <¢ < T'.

Thus let the initial function satisfy the above-formulated conditions, pro-
vided f(=0) > f(40). Let the solution of the problem (3), (4) be an
infinitely differentiable function everywhere in ﬁT, except for an infinitely
smooth line # = #,(¢), 2,(0) = 0 at the points of which the solution of Prob-
lem Ay and any its derivatives have finite limiting values as # — z,(t) — 0
and z — x,(t) + 0. As is known (see, e.g., [51]), on the line & = z,(¢t) the
relation

P(uo(t, wp(t) +0)) — ¢(uo(t, #,(t) — 0))
uo(t, p(t) +0) — uo(t, z,(t) — 0)

is fulfilled, where ug(t, z) is a solution of Problem Aj.

In what follows, for the sake of simplicity we will assume that the identity
#p(t) = 0 holds; the consideration of the general case somewhat complicates
technical details of the construction and is not a matter of principle.

(1) =

(3)

2. An asymptotic expansion of the solution of Problem A, will be sought
in the form

U(t,x,e)rvZe%uzk(t,x)—l—Ze%vk(t,x/ez). (4)
k=0 k=0

The function ug(¢, ) is assumed to be known, and the functions wap(t, #)
for k > 1, vi(¢,€) are to be defined.
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The functions uag (¢, #) must ensure the closeness of the asymptotic ex-
pansion and the solution of Problem A, everywhere outside the neighbor-
hood of the line of discontinuity of the solution of Problem Aj.

The functions vy (¢, &) will be constructed under the assumption that they
are of boundary layer character of variation as || — oo and guarantee along
with their derivatives of the first order the continuity of the asymptotic
expansion (4).

A solution of Problem Ay under the condition (3) is defined uniquely.
Characteristics of the equation (2) are straight lines intersecting on the line
2z = 0. The function ug(t, #) is a solution of the functional equation

uo = fz — ¢'(wo)t), (5)

which shows that the derivative of the function wug(t, #) with respect to the
variable  for # # 0 can be found by the formula

f'(z = ¢ (o)) _ /(&%)
L+ 1¢"(uo) f'(x — 16/ (uo)) 1416 (F(2")f'(x°)

In particular, from the condition of solvability of the equation (5) it follows

qu(t l‘)

that in case the initial function is smooth, the smoothness of the solution
of Problem Ay cannot be violated for ¢ € [0, Tp), where

To=_min _[=¢"(f(x))f (x)]

—ooLr <00

-1

Using the standard techniques, we can see that the functions ua (¢, z) for
k > 1 are defined as solutions of the equations

0 0
Lougy, = % + a—x[fﬁl(uo)uzk] =
(5+1)
= 8 qu 2 qu) uo Z ualu%...uas%Esz(t,x),(G)
|a|+8=2k

satisfying the zero initial condition. Here, each of the indices 4, aq,cvs,. . . o
may be any even integer from 0 to 2k — 2, |o| = w3 + g + - - - + ;. It can
be easily seen that solutions of the equations (6) are, generally speaking,
discontinuous for z = 0.

Let us now pass to the construction of the functions ve(¢, &) which are
defined separately for £ < 0 and ¢ > 0. Using again the well-known proce-
dure of constructing the asymptotic expansions, we find that the functions
vag(t, &) are obtained as solutions of the following differential equations:

621}0 6v0

o —(/>( +wvo)5= =0, (7)

o€
(6 (a0 )vze]) = k" (1 +00) L2 4 B (1,6): (8)

23

Liw 6 Vok 6
102k = —F5,5 — 37
ag? o
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here u;, = xgrgouzk(t,x), u;'k = xl—ig}ou%(t’x)’ uzik = u,, for & < 0,

uzik = u;'k for £ > 0, and the function ®55(¢,&) is represented as a sum of a
finite number of summands, each containing as a multiplier at least one of
the functions vg;(¢, &) or v’m(t,f) for i < k. The equations (7) and (8) are
solved separately for £ < 0 and & > 0; for £ = 0 we impose the following
conditions of continuity of:

— the asymptotic expansion

u2k(t, —0) + Uzk(t, —0) = u2k(t, —|—0) + Uzk(t, —|—0), (9)

— the first derivatives of the asymptotic representations:

oot —0)]; — foolt, +0)]f = 0, [oai(t, ~0)]; — [vo(t, +0))s =
= [uspooll, 40, — [usgoolt, 40L& > L. (10)

Lemma 1. The equation (7) possesses a solution of boundary layer type,
which satisfies the conditions (9), (10) and tends exponentially to zero as
€] — 0.

Proof. In equation (7), for £ < 0 and £ > 0 we change the unknown functions
27 = ug + vg, and 2zt = uEIJ' + vg, respectively. It is readily seen that both
equations take the same form, and their coefficients coincide for & = 0 by
virtue of the condition (9).

For oo < ¢ < oo, let us consider the equation

Zgg — (b/(z)zg =0 (11)

and show that it has a solution, tending to u~ as § — —oo and to ut as
& — oo0. Bearing this in mind, we integrate both parts of equation (11)
with respect to the variable ¢ and obtain zg — ¢(z) + C(t) = 0. Then we
choose a constant C(#) of integration in such a way that the derivative of
the function z(¢,£) would tend to zero as z — uy: C(t) = ¢(uy). By
virtue of the condition (3), 92/0¢ — 0 as z — ug . Thus the function z(¢, &)
satisfies the equation zé = ¢(2) — ¢(uy) = ¢(2) — ¢(ud). The function
U(2) = ¢(2) — ¢(ug) is convex and vanishing for z = uy and z = u}. Every
solution of the equation under consideration satisfies the equality

(68 g 2(1,€) dw
¢ /z(t,O) (w) /z(t,o) p(w) — olug)
The values z = u; and z = uEIJ' are first order zeros of the function ¥(z).
Hence the integral on the right-hand side of the last equality diverges as
z — uy and z — wul, that is, the function z(¢,€) takes the values uy
and ué’ for none of the finite value &, if z(¢,0) # uoi. This means that
a solution of equation (11) having the above-mentioned limiting values as
& — +oo exists for & € (—o0,00) and is defined uniquely by its valuation
for & = 0. Because function ¢(z) for uEIJ' < z < ug 1s of constant sign, every
such solution is given in terms of the monotonically decreasing function of
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the variable &; note that 9z/9¢ vanishes for none of the value £. Since
zge = 9" (2)P(2), ¢'(ug) > 0, ¢'(uf) < 0, the function z(¢,€) has only one
point of inflection € = ¢y(t), and therefore ¢'(z(t,co(t))) = 0. We fix the
integral curve with inflection for £ = 0, and let z = Z(¢,&) be the equation
of that curve. Then the function z = 2(t,& — Cy(t)), where Cy(?) is an
arbitrary smooth function, defined for all ¢ € [0, T, satisfies equation (11)
and has an inflection for £ = Cy(t). Therefore Cy(t) can be interpreted as
the constant of integration distinguishing a unique solution of equation (7):

(4,6 — Co(t)) —us, €< 0,
“O(t’g):{zgt,g—(}ogt;;—ug, 5§0. (12)

Obviously, the condition (10) is fulfilled for any choice of the function
Cy(1); thus, in constructing a zero approximate asymptotic expansion u® =
uo(t, ) + vo(t, 2 /€) one constant of integration (being a function of the pa-
rameter ¢) remains still undetermined. The proof presents no difficulties
when solutions of equation (7), satisfying the conditions 0 < wy(¢,0) <
Uy — ué’, tend exponentially to zero. [

Lemma 2. Solutions of the boundary layer type equation (8) exponentially
tending to zero as || — oo and satisfying the conditions (9), (10) exist.
For every fized k the set of functions {vs(t,&)}, s =0,1,... k is defined to
within one integration constant Cy(t) which is a function of the parametert;
moreover, each of the integration constants Cs(t), s = 0,1,.. .,k is defined
as a solution of some linear, for s > 1, first order ordinary differential
equation. The initial value C5(0) for the solution of each of these equations
1s arbitrary.

Proof. The existence and exponential tending to zero as |[£] — oo of solu-
tions of equations (7) is obvious. By virtue of the above-described properties
of the function vo(t,&) = ¥o(t,& — Co(1)), the solution of either equation (8)
which tends to zero as || — oo, exists and depends on the two constants of
integration being the functions of the variable ¢. Let us consider equation

(8) for k = 1. Obviously, we shall have
vy _
23
¢ (ow Jug\*
+ _ “vto 1o, £ _ e, N YR0
s = [ G0t -l (52) +

ug\ £ 0v
+6" (u + vo) [u + n(%) ] %—;}dn,
where the indices and “+” are chosen for £ < 0 and £ > 0, respectively.
A solution of equation (13) is defined by means of two constants of integra-
tion. Condition (9) can be satisfied by choosing only one of the constants.
As is follows from (13), no choice of the second constant of integration can
satisfy that condition for the function va(¢,€); only the remaining, for the

(uF + vo)vz = BF(1,€), (13)

49 ”
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time being unknown constant of integration Cy(¢) can satisfy the condition
(9). From equation (13) and condition (10) we have

duo(t, +0) auo(t,—O)_/O dvo ° Jug
B —o0 ot d€+ 0

o o Wdf + @o(t), (14)

where the function <i>2(t) is defined by means of limiting, as  — 0, values
of the function ug(¢, #) and its derivative with respect to the variable x.
Using the representation (12) for the function vy(¢,€), form the last equa-
tion it is not difficult to get for the function Cy(¢) the differential equation
Ch(t) = qo(t, Cy), whose right-hand side is the continuous function and sat-
isfies the Lipschitz condition in the second argument for all ¢t € [0,T]. Tt
follows from the relations (8) and (13) that the conditions (9) and (10) will
be fulfilled for any choice of the initial condition for & = 0 for the solution
of equation (13). The lemmais proved for the case k = 1.

To prove the lemma for the general case k¥ > 2, we write the relation
for the jump of first derivatives of the function var(¢,£) with respect to the
variable ¢ for & = 0 in the form

Quag(t, —0)  Juag(t,+0) ™ Juagp_»
o o . o

where g5 (1) is the given function. Using the general type of the solution
of equation (8) for k > 2 and performing integration with respect to the
variable &, we can get a differential equation for the integration constant

Czk_z(t):

d€+gk(t)a (15)

a(t)Csp_o = pr(t)Cor—2 + qx(t), (16)
where

o0 3
a(t) :/_ exp [/0 o' (uF + vo)dn] d& > ag > 0,

pr(t), qi(t) are the known smooth functions.

Note that the conditions (9) and (10) are fulfilled for any choice of the
initial value for the solution of equation (16). Moreover, in the approxima-
tion u(®*)(t, x, ¢), the integration constant Cyy(t) and all the initial values
C25(0), s < k — 1, remain still undetermined. O

Remark 1. Note that we have completely constructed a formal asymp-
totic expansion of the solution which, in fact, 1s the asymptotic residual
expansion of the equation. By no choice of values of the constants Cs5(0)
can one achieve that the given expansion would satisfy the initial condi-
tion uniformly for all |z| < oo. At the same time, it is obvious that in
order that the constructed by us formal expansion approximate the exact
solution for ¢ > 0, it is necessary to determine these constants uniquely, as
long as the choice of constants enables us to determine the structure of the
solution in the neighborhood of the line of discontinuity of the solution of
the degenerate problem.
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The following assertion is a consequence of the theorems proved in the
first section.

Lemma 3. The values of Ca5(0) can be chosen in such a way that fort =0
the equality

/Oo v24(0,€)dE = 0

— 00

would be fulfilled.

Proof. Here we shall prove only the case s = 0, since the validity of asser-
tions of the lemma for s > 0 can be easily proved by means of the explicit
representation of the solution. We have

oo 0 oo
/ vo(O,g)dfz/ [2(0,5—60)—u5]d€—|—/ [2(0,€—c0)—u3')] dé = Jo(co),
—o0 —o0 0
where ¢y = Cy(0). Since the function 2(0,£ — ¢g) is continuously differ-
entiable for £ € (—oo0,00) and the integrals of that derivative converge
uniformly as ¢y varies on any finite interval, we can write the equality

dJo(Co)_  02(0,&—cq) __/Oo vp(0,€) o4
“deo _/_Oo B — dé = . 735 dé =uy —ud = const >0.

Thus the value Jy(cg) is the linear function of the variable ¢y. Hence there
exists a finite value &, such that the equality Jy(ép) = 0 holds. O

3. Let us pass to the error estimate of the constructed asymptotic ex-
pansion. We will use some a priori estimates of the solution of the problem
(1), cited in the foregoing sections.

Under our assumptions, the initial function f(z) satisfies the inequal-
ity sup [f(z1) — f(z2)][z1 — 22]7! < K, and for the solution of Problem

T1#T
A¢ the estimate ul(t,2) < K; is valid. As it follows from the construc-
tion of asymptotic representation, the similar estimate is also valid for the
derivative with respect to the spatial variable of the function U(N)(t,l‘).
Moreover, from the results of the first section the lower estimate u/ (¢, z) >
—Me= (1712 4 1) follows . We will also use the known estimates

/

which in the case under consideration are valid for all ¢ € [0,7] and any
finite a, b, a < b.

Let the constant o be such that 1/3 < a < 1/2, § = Me'=2%. First we
obtain the error estimate outside the § — neighborhood of the straight line
z = 0 which is the line of discontinuity of the solution of the degenerate
equation. Using the auxiliary functions

b
W‘dl‘ < M, / |u(t, ) — up(z)|de < Me,
T a

z1,0(t, @, €) = 2Mg exp [e_l(Mlt — |e|+ ML T + 6)] +
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FE PN (1) e [u(t, z)— u(N)(t, J:)] ,

where the constants My, My, My, oy not depending on € are such that for
|#| > M,T + é the inequalities

(V) 1
ar(t,z,€) = ag + 6“67(”)/ ¢ (u(t, )0 + N (t, 2) (1 —0))do > 1,
z 0
|L5u(N)(t,x)| < MEN+2

are fulfilled.
By means of the maximum principle we can easily prove that for |z| >
2MIT + 1+ 6 the estimate |u(t, ze) — u™N) (¢, €)| < Me2N+2 is fulfilled.

Lemma4. Let o = const, 0 < o < 1/2. For |x| > 8 = €' 7% the
inequality |u(t, z) — uN)(t, 2)] < Me® holds.

Proof. By virtue of the properties of the function wN)(¢,z) for |z| > &
there takes place the inequality [u(t, x) — uN(t, x)]/x < K5, where K5 is
some constant, not depending on €. Moreover, for any a, b, a < b the rela-
tion fab lu(t, 2) — uN)(t, 2)|de < Kze is valid, and therefore on the segment
[60/2, é0] of the straight line t = t1, t; € [0, 7] there is at least one point
@ = x1 such that the function z(t,z,¢) = u(t,z) — u¥) (¢, z) satisfies at

the point (¢1, #1) the inequality dgz(t1,21,€)/2 =46y min  z(t1,2,€)/2 <
50/2<5< 60

fé /2% z(t,x,e)dr < Kze. Suppose that at the point (¢1,23), dy < 22 <
2M1T + 2 the inequality z(¢, , €) > Cpe® is fulfilled, where Cy = 24/ K Ks.
Let (t1,23) be a point of the segment [z, z2] of the straight line t = ¢; at
which z(¢,z,¢) = 271Cpe?, and for = € (23, 22] the inequality z(t1,z,€) >
271Che? is fulfilled; such a point exists because the function z(f1,x,€) is
continuous for « > éy/2. Hence, Cpe®/2 < z(t1,x2,€¢) — z(t1,23,€) =
zh(ty, e+ aa(1—0), €)(wa—x3) < Ko(wa—x3),0 < 6 < 1, whence za—z3 >
(2K2)~1Cpe®.  Using this inequality, we get Kze > f z(ty, x, €)de >
(4K2)71CZ2e?* = K3€2“, which contradicts the condition o < 1/2.

Analogously, the upper bounds for the integral of the function z(¢, z,€)
can be obtained in a half-strip x < —éy, 0 < ¢ <7 and the lower bounds in
half-strips || > 8y, 0 <t <T. O

Lemma 5. For |x| > Mé&y the estimate |u(t, z) — uN)(t, )] < M2N+2 s
valid.

Proof. Let p > 0 be some number. Let us construct a function fi(¢, )
possessing the following properties: fi1(t, —p) = fi(t,p) = 0; fi(t,z) > 1 for
|l‘| Z myp, my = COHSt,

s alfl
P ows ot

< M; %Jrfb( <N>)%:g1(t,x)§0 for |z| > p.
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It is not difficult to see that if p > —elne, then the function exists. Consider

an auxiliary function z1(¢,z,€) = e~*2'f1(¢,2)z(¢, z,¢) which for z > p
satisfies the equation
0? 0 0
Liz = ¢ -l ¢ (u) = L as(t, z,€)zy = B1(t, z, €),

gz gr Ot
where as(t,z,¢) > 1 for |x| > p, and the function ®4(¢, x,€) is written in
an obvious manner. Note that by virtue of the properties of coefficients of
the asymptotic expansion the constant oo can be chosen independent of e.
For t = 0, |z| > p the condition |z1(0, =, ¢)| < Me2N+2 is fulfilled for the
function z1(¢, x, €).

Suppose that the function z1(¢, z, €) at some point Pi(#1, #1) of the half-
strip « > p, 0 < t < T reaches its largest (for that half-strip) positive
value. Since the equality zf], + f1z, = 0 is fulfilled at the point Py, that is

fezt = —z(f{x)z/fl, the function Z; = z; — By, where 3y is some constant,
satisfies at that point P; the relation
9?7, 071 071
Lizii=é —¢'(u) == —as? — —— =
=g TGy T eh =

= 60&2(t, T, 6) + 6_a2t’z [E%x - gl(ta €T, 6)] - 2626_a2t (f{x)z /fl -

1
emtf Ptz €) — e_%tz%x/ ¢ (uf + uN) (1= 6))0. (17)
0
Consider the value of the right-hand side of (17) at the point P;. Denote

1
8e= " [pff,] = di, dempf], / 6" (ub + uN (1 - 0))d0 = ds,
0]

46—a2t1p2 "o d3, 46—a2f1€—(2N+2)f1FN = d4

lez

and choose a constant [y as follows:
Bo = max{ezp_zdlfl_lz; ptdyz?; pTdsz; €2N+2d4} .

For such a choice of the constant Jy, the expression L1z is nonnegative at
the point Py, since as(Py) > 1, g1(Pr,€) < 0. As it follows from equation
(17), the largest value the function z (¢, #,€) reaches at the point Pj is
nonnegative, i.e.,

Fi(P)z(Prye) < em @, (18)

Suppose first that 8y = €2p~2dy f;7 1 (P1)z(P1, ¢). Then inequality (18) im-
plies f2(Py) < e2p=2dye=2"1. Therefore, by virtue of Lemma 4, f1(P)z x
(Pr,e) < Mettep=t,

If Bo = p~tdaz?(Py€), then fi(P1)z(Pr,e) < Me**p~l. However, if
Bo = €2p~2d32( Py, €), then f1(P1)z(P1,e) < Me*top=2.

Finally, for 3y = ¢?V*+2d,; we obtain the inequality fi(Py)z(Pr,¢) <
Me2N+2 Comparing these estimates and supposing o = (mg + 3)/(3mo),
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mo > 6, p = 8y, we can state that the estimate z(¢,z,¢) < Meto™1 =
M e¥H3/mo holds for all & > mip, 0 <t <T.

Let now z2(t, @, ¢) = fa(t, x)z(t, z, €), where the function f2(¢, #) is con-
structed in the half-strip # > mqip, 0 < ¢ < T just in the same way as the
function fi(t, ) in the half-strip # > p, 0 <t < T. Repeating for the func-
tion z2(?, 2, €) the same arguments as for the function z1(¢, z,¢), we shall
arrive at the conclusion that for « > 2myp, 0 < ¢ < T, when the function
z2(t, x, €) reaches at the the point P its positive maximum, we have the
estimate

u(Py) — u™M)(Py) < Mex+9/mo,
Repeating our reasoning successively in the half-strips « > 3mip, > 4mqp
and so on, we shall step by step raise the exactness of the estimate until we
obtain the inequality z(P,,¢) < Me2V+2, 1t is easily seen that a number of
steps 7, which we have to do for getting a final estimate, does not exceed
the value [(2N + 2)my] /3 + 1.

The lower bound for the asymptotic expansion error can be found anal-
ogously. O

Lemma 6. For |z| > M&y, &g = ¢'/372/"™0 mgy > 6 the estimate
2ot 2, €)| = |[u(t, z) — u™(t, 2)],| < M+ (19)
15 vald.

Proof. First let us prove the unique boundedness of the function du/dx
in the domain under consideration. Towards this end we consider in the
half-strip # > M6y = Me'/3=2/™0 (0 < t < T the function Z(t,z,€) =
[?u!, — ¢(u) + ¢(uN))]. As is easily seen, the function Z(t, z, €) in that strip
is uniformly bounded with respect to ¢ and satisfies both the equation

du)

oz

— 1" 2 (U(N)) ! " N
(N) (), 99 (N)
1/12—€2¢ (u )[ ] (u U ) oz /0 0] (u9+u (1 9))d9—|—

+¢" (NN Fy(t, e, ¢) = @1 (t x,¢),  |®1(t, x,€)| < M,

and the initial condition Z(0, z,¢) = €2f'(x) — [¢(u) — ¢(U(N))]|t—0' In the
half-strip > sMj p, let us consider now the function f;(¢, ) which has been
used in proving the above lemma. Let Pi(¢1,%1) be the point of the above-
mentioned half-strip in which the function z2(¢,z,€) = e™' f (¢, 2)Z(t, z, €)
reaches its smallest negative value. If the constant fy is chosen from the
condition

fo = Ae™ max { = 26 f(POZ(PL ) [fL (P, €2(PL ) f o (P1),
€[ (Py, )®1(Pr,e),  Z(Pr, )¢ (w(Pr)) — ¢/ (™ (P))] f1, (P},
then at the point Py for the function z3(t, #, €) = z2(¢, , €) + By the relation

8223 623 623 82f
2 / —t=|,2 $
e ¢'(u) ar 2T ot T oteze Ox?

—gs(t, o, e)] -
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Ifs
oz

is fulfilled. It follows from this inequality that the minimum, the function
z3(t, x, €) reaches at the point Py, is nonnegative, i.e., at that point there
takes place the inequality e~ f (¢, z)z(¢, x,€) > —By. Consequently, at the
point Py the relations fy (¢, 2)Z(t, ,¢) > —ep™'Z(t, x, €) > —Ke*/3+2/Mo are
valid, and therefore the inequality Z(¢,z,¢) > —Me?/3+2/mo is fulfilled for
xz > map. Just as in the previous lemma, through a finite number of steps
we shall obtain that for x > Mp the estimate Z(¢, z,e) > —Meé? is fulfilled,
whence for # > Mp, 0 <t < T there follows the estimate |uy(t,z)| < M.
To complete the proof of the lemma, it suffices to consider the function
z4(t, x,€) = zy(t, x, €) which satisfies for « > Mp the condition

_zgze—ffglz[ ]2 — e (u) — ¢'(u<N>)]%i; F et B, <0

9 6224 624 6Z4

9z ¢/u6_x —¢"(u) [u(t, z)— u(N)(t, x)]z4 =

*uN) OFN(t, x,€) OuN)(t, )12
T (0N Al (0, (N) e\ AT S) "o e, (N) )
= [¢'(w) =/ (u™)] = S [6 ()=o) [F
Taking into account the uniform (with respect to the parameter ¢) bound-
edness of the function (u — u(M))! for & > Mp and repeating the proof of
the previous lemma, we can prove the assertions of Lemma 6. [

L224 =€

Analogously is proved the following

Lemma 7. For |x| > Mc'/3F2/mo the inequality |z (1, x, €)| < MNT2 s
valid.

Proof. Let R be an arbitrary number, not depending on €. Denote by D a
set of points of the rectangle {(¢,z)|, 0 <t < T, |z| < R} and consider in
the rectangle D the potential wy (¢, x, €) of the difference —z = u(N)(t, z)—
u(t, z):

wn(t, €)= _/ zde + [Zx — 7 h(N)]dt’
r

where T' = T'(¢, ) is a piecewise smooth curve connecting the point (0, —R)
with an arbitrary point (¢, ) of the rectangle D,

1 T
¢>;(U)=/0 ¢'(ub +uN(1 - 0))de, h(m:/ F(t,y, €)dy.

-R

Obviously, the function wy (¢, x, €) for & # 0 satisfies both the equation

2
Lowy = 628 YN é! dwn — dwn = h(N)(t,l‘,E) (20)

Ox? 4 ox ot

and the conditions on the boundary of the rectangle

¢ N
wn(0,z,¢) = / Ze%vzi (O,y/ez) dy,
-Ri—g
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dr + 0(€2N+2),

rz=—R

t
wn(t,—R,€) = —/ [ezzx — ¢l 2+ h(N)]
0

dr + 0(€2N+2).
R

r=

t
wN(t,R,G):—/ [ezzx—q/); ~z—|—h(N)]
0

It is readily seen that if for the boundary layer functions ves(¢,£), 0 < s <
N the estimate |va,(2,&)| < Me="ll holds, then for ¢ = 0 the function
wn(t, z, €) satisfies the condition

lwn (0,2, €)| < €2 M exp [—m|x|/€2] + MeHN+2,

The function wy(t, #,€) is continuous together with its derivatives every-
where in the rectangle D for # # 0. For # = 0, ¢ > 0 the function wy (¢, z, €)
is discontinuous, and

FrouN (s, +0)  9uN (s, —0)

_ _ _ 2 ) _ ) _
wn(t,+0,¢) — wn(t,—0,¢) = ¢ /0 [ £ £ ds =
Own (t,+0, ¢ Own (t,—0, ¢
= gN(t,E), N(at ) — N(at ) = g?v(t,E),

Jwy (t,40,¢) B Jwn(t,—0,¢) 0
dx dx o

Moreover, the relations |gn (¢, €)] < Me*N+2 g (1) < M2V *2 are valid.
Therefore, applying the generalization of the maximum principle to piece-
wise continuous functions (see, e.g., [67]) it is not difficult to get the estimate
|lwn(t,z,e)| < Me?. From this inequality it, in particular, follows that for
any finite a, b, a < b, t1 € [0,T] there holds the relation

b
‘/ [u(tl,x)—u(N)(tl,x)]dx‘ < Mé2.

Using this relation and arguing simply, we can show that the coefficient ¢!,

in equation (20) satisfies the inequalities ¢!, > ¢g > 0 for —R < # < —my €2,

¢! < —¢o < 0 for mie? < & < R, ¢, (uN)) > —mye® for —mie? <z <
—e2Co(t), and ¢/ (uN)) < mae? for 2Co(t) < & < mye?, where Co(t) is the
function defined by us upon constructing the function vo(¢,€). O

Lemma 8. In the rectangle D, the estimate
lwn (t, 2, )| <M T2 Me? exp{—yot/[*In e ] —vox?/[*Ine™ ]} (21)
15 valid, where vy s a constant not depending on €.
Proof. Consider auxiliary functions
z1,0(t @, €) = €2N+2K1(t +1)+
+e2 Ky exp {—76_4[1‘2 — 0] - /\6_2t} + Y10tz €) Fun(t, z,€),

where K;, Ko are some positive constants, not depending on ¢, and
Y12t z,€) = Sre~17l £ 2= 1gn (1, €)signe, v, A, 6 are positive numbers,
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81 < €*Nt2 The functions z1,2(t, 2, €) for a sufficiently large value of K4
are positive on the lateral faces of the rectangle D, since |11 5(¢, 2, €)| <
Me2N+2 For t = 0 there holds the inequality |wn(0,z,¢)| < e2NT2M +
€2M exp (—m|z|/€?), and hence

z1,2(0,2,€) > Ky e2N+2 _ |41 2(t, &, €)| — MN+2 4

+ Ky exp[—ye o —e?co) {1 —ma K5 ' explye™ H(x—e?co)* —mlx|e ]},

cp = Cp(0). Choose a constant v in such a way that the expression in
braces would be positive for |z| < [2(N + 1)e?Ine~!]/m. To this end,
it 1s sufficient that for K5 > mg the index of the exponent would take
negative values at the ends of the segment [—2(N + 1)e?In (e71)/m, 2(N +
1)e?In(e=1)/m]. Obviously, for this in its turn it suffices to satisfy the
inequality v < m?/ [2(]\7 +1)In 6_1]. The fact that the function 21 »(¢, z, €)
is positive for |z| > [2(N + 1)e?Ine~!]/m is obvious.

Let the functions z »(t, %, ¢) take in the rectangle D negative values.
Since the functions under consideration are continuous, there exist points
at which either of the functions reaches its negative minimum. For example,
let Py(t1, 21) be a point of negative minimum of the function z1 (¢, x, €). Since
21, +0,6)— 21 (¢, —0,€) = =261 < 0, 21 # 0. Hence the function z1 (¢, z, €)
at the point P, has continuous derivatives up to the second order inclusive.
With regards to the estimates for the functions gn(t,¢), ANV (¢, 2, ¢) and
value 6 we shall have

Loz = —eNP2K + Ky exp [ — 76_4(l‘1 — GZC’O(tl))Z — 6_2/\t1] X
x[ =2y + 477 (w1 — €Co(t))” + 2ye (21 — € *Co(t1)) ¢y, +
A—=2y (21— Co(t1))Co(t1)] 461717 (21 46, sign a1) =27 gy (t1, €) %
xsign oy —h(N)(tl, z1,6)< —%EZN"'ZKl + Ky exp [ — 76_4(1‘1 —EZC’O(tl))z—
—6_2/\t1] [ — 2y 4+ 4”)/26_4(l‘1 — GZC’O(tl))Z +
—1—2’)/6_2(1‘1 — ezCO(tl))q/); +A—=2y(2; — EZCQ(tl))Cé(tl)].

First, let |21 — ¢2Co(t1)] < mye?. In that case 4e=*y?[x — 2Cp(11)]? <
M[Ine=172, 2ve [z — 2Co(t1)]4], < Me*[Ine 7Y —2y[r1 — 2 Co(t1)] ¥
Ch(t1) < Me*[lne=t]71) and therefore Lsz; < 0 if we choose A = 7.
If me? < |oy — €2Co(t1)] < mac?lne=!) then we obtain 4y%e¢=4z; —
ACo(t1)]? < 4mi[lne™ 42, 2ye?[er — A Co(t1)]¢), < —2maygolne!,
—2y[x1 — 2Co(11)]CH(t1) < M. Let it be required that in the case under
consideration the inequality 42 ¢ =4[z —2Co(¢1)]* —ye 2|21 —€2Co(t1)]|po <
0 be fulfilled. For this to be so it is sufficient that the constant + to sat-
isfy the inequality v < ¢o[4mglne=1]71. Obviously, under such a con-
dition the inequality Loz1(¢1,21,¢) < 0 will be fulfilled on the interval
me? < |xy — 2Co(t1)| < mae?Ine~! at the point Py.
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Let, finally, |21 —e?Co(t1)] > mae?Ine~t. If the constant my is sufficiently
large, then the validity of the inequality Lozi(¢1, 21, €) < 0 is evident. Thus
at the extremum point of the function z1(¢1, z1, €) the inequality Loz < 0
is fulfilled, and therefore this point cannot be the point of negative mini-
mum. Consequently, the function z (¢, z, €) everywhere in the rectangle D
is nonnegative. Carrying out analogous investigation with respect to the
function z2(¢, x, €), we finally have

o (t,2,6)| < MENF2 4 M exp {—y[x — ECo(O] /e — 11/},

where v = min {¢o/[4malne1]71 2(N + 1)[mIne~!]7t}. From the above
inequality we immediately obtain the assertion of the lemma. [

Theorem 2. Qutside of the neighborhood Q = {(t,2) ]| 0 <t < Me?lne !,
|z] < Me?VIne=1} of the point where the line of discontinuity of the solution

of the degenerate equation and the initial straight line meet, the inequality
lu(t, z,¢) — uN(t 2, €)] < Me*N*t2 is valid.

Proof. Let t; > Me%Ine=t. Tt follows from (21) that for any a, b, a < b the
inequality

b
‘/ [u(ty, z) — u(2N+3)(t1,x)]dx < MtNHS

is fulfilled. Let #; be a point of the line t = #; at which the difference
u(ty, x) — uPNt3)(t; x) reaches its largest positive value mg. Let a, b be
chosen in such a way that b = 21, and on the interval [a, b] the function
2(ty,x,€) = u(ty, ©) — uNt3(4; x) is nonnegative. Since 9z/dx < mye?
in the strip [[;, the length of the interval [a, b] is not less than mge?/m .
Therefore

2.2
mg€

b
< / z(ty, x, e)de < MHS,
a

2m1

whence my < Me?Nt2. Analogously one can prove the assertions of the

lemma in the case of negative minimum of the function z(¢,,¢) for an
arbitrary point lying outside the neighborhood of 2. O

Theorem 3. Everywhere in the strip [, with the exception of the neigh-
borhood Q{(t,z) |t < Me*Ine™L, |z| < e?lne™1} of the origin, the estimate
|20 (¢, z, €)| < Me*N+2 s valid.

Proof. As is shown in the first paragraph, in the case under consideration
there takes place the inequality |u”, (¢, )| < Me~'(¢=3 +1=3/2). Moreover,
from the construction of the asymptotic expansion 1t follows that for an
approximate solution wN)(¢, z) the estimate |[u(N)(t, l‘)]gt| <Met x40
is valid. Thus for t > MecZlne™!, # # 0, we have the estimate for the
function Zy(t, 2, ¢) = u(t, z) — uN(t, z):

O?zZn(t, x,¢€)

v eMe™2 (22)
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It follows from Lemma 8 and estimate (21) that everywhere in the strip [,
for any finite a, b, @ < b, the inequality

b ~
JZn(T,x,¢€
‘/ &2 N( )dr §M€2N+2
a

oz

is valid. Using the estimate (22) for the function Zan15(t, , €), we can to
receive, just as in Theorem 2, the validity of the assertion of Theorem 3.

Let V(t,2,¢) = {qu’x — qb(u)} — {ez[u(N)]’x — qS(u(N))}. On writing for
that function the corresponding potential we can prove the assertions similar
to those of Lemmas 6 and 7 and then to prove for the function z(¢, x, €) the
analog of Theorem 3, i.e., to get an estimate for the function 62 /9x?[u(t, x)—
uN)(t, 2)]. Thus we can obtain an estimate for the derivative with respect
to the variable £. Hence we have the following assertion. [

Theorem 4. If the solution of the problem (3), (4) is a function which is
bounded, infinitely differentiable in the closure of the half-strips {0 <t <
T, —co< < -0} and {0 <t <T,0< &< oo}, then for the asymptotic
expansion of the solution of the problem (1), (2) everywhere in the strip [,
with the exception of the neighborhood of the origin of radius Mc*Inc¢™ ' the
estimate

< M€2N+2

Cl

u(t,z,€) — Z 2k [uk(t, z) + vi(t, x/ez)]

k=0

15 valid.

Remark 2. Obviously, the asymptotic expansion of a solution of the ini-
tial problem has similar structure even in the cases, where Problem Ay has
several isolated lines of discontinuity defined for 0 < ¢ < 7. Moreover,
the obtained estimates enable one to consider ”composite” approximate
solutions which are represented on one part of the strip by means of the
asymptotic expansion and by some other means on the other part of the
strip (for example, by numerical methods).

1.4. EXPANSION IN THE CASE OF WEAK DISCONTINUITY OF THE
SOLUTION OF THE DEGENERATE PROBLEM

In this section we consider a quasi-linear parabolic equation under the
assumption that a solution of the corresponding degenerate problem has for
t > 0 one or several lines of discontinuity of derivatives. In case of one line
of discontinuity of derivatives generated by a “breaking” of thecontinuous
initial function (weak discontinuity of a solution), we construct a complete
asymptotic expansion of the solution of the nondegenerate problem. In case
of two intersecting lines of discontinuity of derivatives generated by a dis-
continuous initial function (rarefaction wave), we construct two terms of
asymptotic expansion of a solution which specify earlier known representa-
tions.
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1. In the strip [[, = {(t, )]0 <t < T, —co < & < oo}, let us consider
the Cauchy problem
5, 0% Ju  Ou

Lu=el— — — =90 — . 1
=Tt g = =0, o= () (1
The function f(x) will be assumed to be continuous and bounded for z €
(—o0, 00), possessing for # # 0 bounded continuous derivatives of any order
and having finite limiting values as * — —0 and & — +0.

Along with the problem (1) we consider Problem Ag:

u 8u

A solution ug(¢, ) of Problem Ao will be supposed to be a continuous func-
tion everywhere in the strip [],, possessing continuous bounded derivatives
everywhere in [],, with the exception of the points of the characteristic
which passes through the origin; the derivatives of the function ug(¢,2) on
that characteristic, generally speaking, are not continuous, although they
have limiting values when their arguments tend to the points of the char-
acteristic from the left and from the right. In this case we will say that
the function ug(t, #) has a weak discontinuity at the points of the above-
mentioned characteristic. Note once more that the characteristics of the
problem (3), (4) are straight lines.

Our aim is to construct a uniform asymptotic expansion of the solution
of the problem (1), (2). Tt would be more natural to suppose that the
asymptotic expansion of the solution of Problem A, in the case under con-
sideration could be obtained from the asymptotic expansion constructed by
us in the previous section for the discontinuous initial function by the pas-
sage to limit as the jumping values of the initial function tend at the point
z = 0 to zero. However, the constructions of the present section show that
the boundary layer terms of the asymptotic expansion in the case under
consideration are determined by means of parabolic equations, and in this
connection their character of variation differs in principle from the above-
considered case where the boundary layer terms were described in terms of
ordinary differential equations.

For the sake of simplicity it will be assumed that a weak discontinuity of
the solution of the degenerate problem takes place along the straight line
z = 0; bearing this in mind, under the above assumptions on the properties
of the function ¢(u), it is sufficient that the equality f(0) = 0 be fulfilled.

2. An asymptotic expansion of the solution of Problem A, will be sought
in the form

u(t,z) ~

[M]¢

(o)
€2ku2k t,x) —|—Z€kvk (t,x/e) (3)
k k=1

0
Here the functions wap(t, ) are defined just as in the preceding section.
It can be easily seen that the function wg(?,#) is continuous everywhere
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in the strip [],, and its derivatives with respect to the variable z have the
jumps as their arguments pass through the straight line = 0; note that the
jump of the derivative tends to a different from zero constant as ¢ — 0. The
functions uay (¢, ), k > 1, being solutions of the equation (6) in the previous
section under zero initial conditions, are, generally speaking, discontinuous
for # = 0 functions, bounded along with their derivatives of any order for
z # 0. Moreover, jumps of the functions us (¢, 2), k > 1, as well as of their
derivatives with respect to the variable # have as ¢ — 0 the order O(%).

As usual, it will be assumed that the functions v (¢, €) as functions of the
variable £ are of boundary layer character as |£| — co. Taking into account
the expression written out in the previous section for the derivative of the
function ug(t, z), we can write a recursion system of equations

_ 0% dvy 8 [1, a*é _
lel = —agz — _@t —_ _ag |:§Ul + 1+ aitvl] — Oa (4)
621}k Ovy 0 a:l:g _ 4
W_W_% [(Ul‘Fm) Uk:| = _8€<I)k(t’€)’ (5)

k > 2. Here a* = hnilo (%), and the functions @y (¢,£) can be easily

defined successively for &k = 2,3,... by using the standard algorithms; the
functions @y (¢, £) are represented by a sum whose each summand is a prod-
uct of a polynomial Ps(¢,&) of degree s with functions of the variable ¢ as
coefficients by one or several functions v;(¢,€), s < k, i = 1,2,...,k — L.
Moreover, by virtue of our assumptions on the properties of the solution of
the problem (2), the functions 1+ a*¢, 1+ a~t do not vanish for ¢ € [0, T].

The equations (4), (5) are solved separately for £ < 0 and £ > 0. We will
seek for such solutions of the equation (4), (5) which satisfy the conditions

[vai+1(t,€)] = 0, [(Uzi+1(ta5))/§] = — [(uailt,@)),] (6)

[oai(t, ] = ~fusi(t )], [(v, )| =0, (7)
v (0,8) = 0, (8)
[2(t,y)] = 2(t,40) — z(t,—0), ¢ = 1,2,... . The fulfilment of the conditions

(6), (7) implies the continuity (along with the first order derivatives) of the
formal asymptotic expansion (3) of the solution of the problem (1).

3. Consider the problem (4), (6), (8) for ¢ = 0. The change of the
unknown function wi (¢, €) = vy (t,&)+at&/[1+a*t] leads us to the equation
w/1/§§ - wlwig - w/u =0, 9)

whose solution must satisfy the additional conditions wq(0,€) = até,
wi(t,4+0) = wi(t,—0), [w’lg(t,g)] = 0. Thus the solution of the equation

(9) must be continuous in the domain ¢ > 0 and possess in that domain the
continuous derivative with respect to the variable £. Note that the equation
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(9), Hopt’s equation [30], and the solution of that equation can be written
out explicitly:

(a+ —a Wi &
t,&) = 2 )+
wn(t,) {\/(1+a—t)(1—|—a+t) exp (- 37)
a~V1+att a=¢é? e
e o - a1+ a—t)] /au,o e
atv1+at ate? o0 2
e vorTraet __%s -w?y
T +att T [ A1+ a+t)] /_a+(t,5) ‘ w} :
x{ [ [ a= &2 ] /oo g 4
V1+attexp | — ———— e w
b 4(1 —|—Cl_t) o(t,€)

— a+€2 e _w? -1
+V1+a~texp [— m] /_U+(m) e dw} , (10)
where ot (¢,€) = 5/(2\/1 + a"‘t), o(t,&) = 5/(2\/1 +a~t). The expression
(10) implies that the equality vi(¢,0) = O(\/%) is fulfilled for & = 0.
To investigate the behavior of the function wy(¢,&) as || — oo, we will
use the well-known asymptotic formulas for the integrals appearing in (10).
Applying these formulas, for |£] > 1 we can get

wi(t,€) = a*¢/[1 4 a*t] + 267 (at — a7)/ (V7E?) x
x/(T+a=t)(1 + att)exp {—€7/[4t(1 + a=0)]} (1 + o(1)),

where the symbol “4” takes the values “—” for ¢ <« —1 and “4” for £ >
1. On the basis of the above-obtained asymptotic representations we can
formulate the following

Lemma 1. A solution of the problem (4), (6), (8) exists and exponentially
tends to zero as |§| — oo; moreover, for that solution there holds the estimate

1 i [ gr ] o[- ]}

For our further investigation we have to study the behavior of the deriva-
tives of the function vy(¢,€) as |§] — o0 and ¢t — 0.

Lemma 2. For the derivatives of the solution of the problem (4), (6), (8)
with respect to the variable & the estimates

2 2
\Lla(?g)\ < m{ex |- m] e [~ S},
‘6%1(1&,5 ¢

57 )‘ < Mt—1/2(1 _|_€2/t){exp [— m] + exp [— g]}

are valid.
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We can prove thet lemma by means of an explicit expression for the
function v (¢, ). From Lemmas 1 and 2 and the equation (4) it follows the
estimate for the function dvy /0t.

Let us pass to the consideration of the functions vy (¢,€), k > 2. Suppose
that the estimates

2 2
%\ < M e ) { e | - m] e [- ]}

92y, —_— & &
e | < Vi {e [ - gy |+ e [ - 5]
hold for the right-hand side of the equation (5). Note that by the change of
variables

y:f/[l—l—ait], =1/ [l—i—ait], 6k:(1+ait)vk (11)

the equations (4), (5) are reduced to those with bounded coefficients which,
generally speaking, are discontinuous for y = 0:

~1t ~ oy ~r
Vyy — 0107y — U1, = 0,

-~ /
Wy = (B10), = 1, = {@(r)/[1 =]}
The existence of bounded solutions of either equation can be substanti-
ated, for example, by the methods developed in [40]. To do this, it suffices
to write the solution separately for y < 0 and y > 0 and then, using Green’s
function, to write out an integral equation with respect to the function
Ur(7,0). From the known estimates for Green’s function (see, e.g., [26]) it
follows that the obtained integral equation of Abelian type is uniquely solv-
able. Thus the consideration of the problem (5), (7), (8) is reduced to two
problems in half-strips & < 0 and & > 0. As is known, owing to the continu-
ity of the boundary (for y = 0) and initial functions, as well as by virtue of
the properties of the coefficients and right-hand sides of the equation (5) for
different values of the index k, each problem has a unique bounded solution.
Let us show that the functions vy (¢, €) and their derivatives are of bound-
ary layer character as |£] — oo.

Lemma 3. Every solution of the problem (5), (7), (8) satisfies the esti-
mates

|0k (8, €)1+ Vv (t, 1+ o (1, )] + tofee(8,€)] <

2 2
< w1+ i) {exp [ gy | e [l
<+l e [ - ] ve [ §
Proof. First we estimate the function wvg(¢,£). The function wy(t, &) =
v (t, €)e™ ™" satisfies the equation
62wk
og?

ngk =

a*é ]8wk dwy

_[Ul+1+ait aE ot
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—[0/154-7711 —|—ai/(1—|—ait)]wk = e M (t,€), (12)

and also the conditions w;(0,€) = 0, wi(t,0) = prp(t) or wr(0,&) = 0,
wie(1,0) = qx(t). Moreover, pp(t) = O(t), q(t) = O(t) as t — 0, k > 2,
owing to the above-mentioned character of jumps (as t — 0) of the functions
uas(t, ) and their first order derivatives on the line # = 0. The solution of
equation (12) will be considered in the half-strip {0 < ¢t < T, 0 < & < c0}.

Let first at < 0. Consider auxiliary functions zy »(¢,&) = ma(l +
EMx )t exp [—52/(415)] + wi(t,€), where mg is a positive constant and ny, is a
positive nonnegative integer. Obviously,

_ ng 2 3
Lazi o = (14 &"*)mgexp [—€ /(4t)]{ 21+ nr) +
ng(ny — 1) np&nk atn,ne

+i 1_|_€nk - (1+€nk) - (1+Cl+t)(1+€nk) —

B npE™ "ty B até? ni(t,)E 3¢

14 &7 2(1+ att) 2 2(1+¢&m+)

tt dvi(t, —
“Trar ! Ula(g & it} e g (1. 0). (13)

Taking into account the estimates obtained for the function v (¢,&), we
can choose a constant my so large that for £ > 0 the inequality

vy (t,€) at atn,&x
™t e T Tier T rarnren)
n nplvi  ng(ng — L)gnx—2 >0

be fulfilled. It can be easily shown that if £ > 0 and a+ < 0 the inequality
Eloi(t, )| < Mot exp[—€/(4t) — mo&? /(1 + att)]

where Ty and g are positive constants, is valid for the function vy (t,£).
Therefore there exists a constant m; > 0, such that the expression ap-
pearing in the braces in (13) is less than —1. Taking into consideration
the inequalities to which satisfy the function Fj(¢,&, v, ..., v5—1) and its
derivative with respect to the variable ¢ and choosing a constant ms, we
find that the inequality L3z 2 < 01is fulfilled for all 0 < ¢ < T, £ > 0. Using
the maximum principle, for the function wy(¢,€) we obtain for a™ < 0 the
estimate |wg(t,€)] < Mt(1+ ™) exp [—52/(415)].
If at > 0, then on considering auxiliary functions

z3,4(t, &) = mat(l 4 ™% ) exp {—52/[415(1 + a+t)]} + wi(t, ),

and arguing as above, we can prove that the function 23 4(¢,&) for 0 <t < T,
& > 0, are positive. Hence, the second assertion of the lemma is valid for
&> 0, k> 2. Analogously we can prove the same estimate for the half-strip
0<t<T —0c0o<é<0.
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To estimate a derivative of the function vy (¢,£) with respect to the vari-
able £, it is sufficient to make in equation (12) the change of variables (11)
and then to consider the function vy(7,y) = 793(r, y) which can be written
in the form

vi(T,y) = %/;jy)e_f (T— Z—z)ﬁk (T— f?)dz—

/OT zm/ e | 7—77)

{377[ a+9v1(9,77)17k(9,77)—|— ﬁ (9’77)] 4

e }d“/o zm/ exp |
37] [1 —9a+9 16, )70, m) + ﬁék(a ] fk(g +9}

=J1—Js+ Js.

Here v(7,y) = y/(2+/7), and the functions 1 (T, y), <i>k(7', y), pr(T) are ob-
tained by the above-mentioned change of variables of already known func-
tions v1(¢, &), ®r(t, &), pr(t).

Let us estimate now the derivatives of the function Jy(r,y). Differenti-
ating this function with respect to the variable y and integrating by parts,
we readily get the estimate

[T1,| < M(VT +y+y° T+ /1) exp[—y*/(47))].

In a similar manner we obtain the second derivative of the function Jy (7, y)
with respect to the variable y:

|77, < M(1+yJ/7+y*/7)exp[—y*/(47)].

Estimates of derivatives of the functions J» and J3 can be obtained ex-
actly in the same way is done in the first paragraph, provided the initial
function is smooth. []

Remark. Thus we have constructed the formal asymptotic expansion of
the solution of the problem under consideration. Its partial sums are asymp-
totic residual representations of the equation and boundary conditions. To
prove the asymptotic character of the constructed by us formal expansion,
it 18 necessary to obtain the corresponding error estimates.

Theorem 1. For the solution of Problem A, under the above-mentioned
conditions the asymptotic expansion (3) is valid. Moreover, the estimate

||u(t, z,€)— u(N)(t, x, E)HC1 =



N 2N+1
= ||u(t, z,€) — €2ku2ktx— e“vp(t,x, € < Me2N
(to, €)=Y , 2,
k=0 k=1

holds.

Proof. Consider the difference 2y (t,2,¢) = u(t,z,¢) — uM(t,z,¢). The
function zy (¢, , €) satisfies the zero initial condition for ¢ = 0 and is twice
continuously differentiable for ¢ > 0, # # 0. The function zy(t,x,¢) for
z = 0 1s continuous and has continuous for ¢ > 0 derivatives of the first
order. Everywhere in the strip [[,, with the exception of the points of the
axis # = 0, the function zn (¢, x, €) satisfies the equation

Ozn " HulV) Ozn

¢/(u) Oz — oy Oz ZN — E) :_\PN(t’$’€)’ (14)

2 aZZN
Ox?

where
1
¢g:/ & (™M1 = 0) + ub)dl, [Wn(t, )| < MENF2,
0]

From the results of the previous paragraphs it follows that the coefficients
of equation (14) are continuous for ¢ > 0 bounded functions, and the coef-
ficient ¢'(u) is differentiable for ¢ > 0, while the derivative of the function
uN)(t, z, €) with respect to the variable z is uniformly (with respect to t)
bounded by a constant of the type Me~!. According to the maximum prin-
ciple, everywhere in the strip [, the estimate zn(¢, %, €) for the function
lzn(t, z, €)] < Me2N*2 s valid.

To estimate the first derivative of the function zy (¢, #, €) with respect to
the variable z we consider the function Zy (¢, z, ¢) = €*24, — [(/)(u)—q/)(u(N))]
For ¢ = 0 this function satisfies the zero initial condition. For ¢ > 0, x = 0,
the function Zy (¢, #, €) is continuous and has, generally speaking, a jump of
derivatives with respect to . It is easily seen that standard reasoning allows
us to obtain the estimate |2y (¢, z, ¢)| < M N2 which leads to the estimate
of the derivative of the function zx (¢, #, €) with respect to the variable x.

To estimate the value of the first derivative of the function zy(¢,,¢€)
with respect to the variable ¢, we again consider equation (14) and write it
in the form

26221\7 62]\7 6

gr? Ot~ Ox
As is mentioned above, the function zy (¢, z, €) is continuous everywhere in
the strip [[; and has the continuous first derivative with respect to the
variable . Hence the derivative of the function zx (¢, z,€) with respect to
the variable ¢ is also continuous in the strip [[,. Therefore the jump of
the second derivative of the function zy(t,z,€) with respect to the vari-
able  for # = 0 is equal to within the multiplier ¢? to that of the right-
hand side of that equation. By an algorithm for constructing coefficients
of asymptotic expansion a jump of the function ¥y (¢, z, €) can be written

[¢(u) — $(uN )] = Uy (t,2,c).
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as Un(t,+0,¢) — Un(t,—0,¢) = gn(t,€), where gn(t,€) is the continuous
function, such that the inequality |gn(t,¢)] < Me2N+2 holds. Moreover,
the function \ifN(t,l‘,E) = Un(t,z,e) — 27 gn(t,€)0(x), O(x) = —1 for
z < 0,0() =1 for z > 0, is continuous, and for the modulus of con-
tinuity of that function we have the estimate |\i!N(t, z,€) — \TIN(t, y,6)] <
M€2N+1t_1/2|x—y|. Using this estimate, we can, as when proving Theorems
3 and 4 of the first paragraph, to get the inequality

|[en(t 2, | < MEN (VI e7?),

which provides us with the estimate for the function dzn (¢, 2,¢)/0t. O

4. Let now the initial function f(z) be discontinuous for = 0, f(x) =0
for x < 0, f(z) = b > 0 for # > 0. Then the solution of Problem Ay is
continuous and many times differentiable everywhere in the strip [[,, with
the exception of the points of the straight lines # = 0, x = ¢'(b)t. As is
known, the solution of Problem Ay under the above-mentioned assumptions
on the function f(x) is termed a rarefaction wave.

The properties of the solution of Problem A, under the above-indicated
assumptions on the function f(x) have been considered in [5], [51], [52], [54],
etc. In particular, the estimate

b
/ lu(t, z, €) — ug(t, ¥)|de < Me?,

where a, b are arbitrary finite numbers; a < b, has been obtained in [5].
In this section we will give an estimate for the above-mentioned difference
in the uniform norm

Introduce the new variables 7 = t/¢?, y = x/c? and consider in the
half-plane {0 < 7 < oo, |y| < oo} the problem
0%u ,, 0w Ou
— —_ =0 0= : 15
5r 05— =0, o= f(a) (15)

The solution of the corresponding degenerate problem can be written in the
form

0 for y <0,
uo(T,y) =< b for y > ¢'(b)r,
q(y/T) for 0 <y < ¢'(b)r,
where the function ¢(y/7) is defined as the solution of equation ¢'(¢(r)) = r.

Lemma 4. Fory<0 and ¢'(b)r <y, for the difference zo(r,y) =u(r,y,€)—
uo(T,y) the inequality

|z0(7, y)| < M{exp [=y*/(47)] + exp [~ (y — ¢/ (b)7)?/(47)]}
s fulfilled.



113

Proof. Let us consider an auxiliary function ¢(7,y) = exp [—yz/(47')] for
>0, ¢(r,y) = 0 for 7 = 0. Obviously,
9y L))
=22 gt - _ U0
v Oy? ¢ (u) dy 0Tt 2T
and hence for y< 0 the relation Li(Mv £ z0)= M[—(27) "¢/ (u)y/(27)] <
0 holds, since the function ¢’(u) for the initial function is nonnegative.
Moreover, the function M4z is nonnegative for 7 = 0 and for large values
of y, if the constant M is sufficiently large. According to the maximum
principle, the function M £ zp i1s positive for y < 0, which implies the
validity of the assertion of the lemma for y < 0.
Using the function ¢(r,y) = exp [— (y — (/)’(b)r)z/(élr)], we can analo-
gously prove the assertion of the lemma for the case y > ¢'(b)r. O

[—1 4 y¢'(u)],

Lemma 5. The function zo(7,y) tends to zero as T — oo; note that
|z0(T, )| < MT™%, where 0 < o < 1/2 is an arbitrary constant.

Proof. We introduce into consideration an auxiliary function

exp [—-m(y — By/7)*r7 1]/ 7%, —o0 <y <0,
(1, y) = { exp (—mf?) /7%, 0<y<¢(b)r,
exp [—=m(y — ¢'(b)T + By/T)*r7 /7%, ¢'(b)T < y < o0,

where «, m, § are some nonnegative constants. For y < 0 we shall have

_ 621/) / O ! " Ouo o _
Loy = 7 (U)% —/0 ¢" (uo + Hzo)dgwﬂ) T o

= (7, y) { (o = 2m) /7 + m(4m — 1)(y — BV/7)*/7°+
+m(y — BVT) [26'(w) — B/v/T/7]} .

Choose a positive constant m so small that the inequality 4m — 1 < 0 be
fulfilled and then define a constant « from the condition o« — 2m < 0. If
@' (u)/T— B > 0, then for any choice of the constant 8 > 0 the whole right-
hand side of the latter equation will be negative for y < 0. If ¢'(u)/7—3 < 0
for sufficiently large values of the variable 7, then the assertion of the lemma
in the case under consideration is obvious. For the rest values of 7 the
negativeness of the expression in braces is equivalent to the fulfilment of the

inequality
o @VE=H) )
[V7(1—4m)]  7m(1 —4m) '
This inequality will be fulfilled in the case if we choose the constant 8 such
that the inequality 8 < 21/(1 — 4m)(2m — «)/m be fulfilled. Hence there
exists a constant § > 0 such that for y < 0 the inequality Loy < =871 is
fulfilled.

Similarly, choosing for y > ¢(b)7 successively the constants m, «, 3, we
can achieve the validity of the inequality Lot < —8y7=! for all y > ¢/(b)7.




114

For 0 < y < ¢/(b)r, the function zp(7,y) satisfies the equation Lazg =
—q"(y/7)/7%. Obviously, the equality L2t = —771[¢" (ug + 020)q' (y/T) —
o] is fulfilled for 0 < y < ¢'(b)7. Let o < min { 0<min<b @ (ug+0z0)/¢" (uo),

2_1}. As is easily seen, o # 0. Since ¢/(y/7) = [¢"(q(y/7))] 7, the inequal-
ity Loty < =677 14 is fulfilled for 0 < y < ¢/(b)7.

Consider now auxiliary functions Ri »(7,y) = M4 £ zo(7,y). For these
functions, for y # 0,y # ¢/(b)7 the relations Lo Ry » < =877yt Loug(r,y) =
—Mém= ) F ¢"(y/7)/7? are fulfilled. Since the functions Rjs(7,y) are
continuous for all 7 > 0, —oo < y < oo and, moreover, the relations

[RI,Z]; |y:0,y:¢’(b)7’ = _2Mm67-_a_1/2 exp (_mﬁz) + O(T_l)

are fulfilled, the negative minimum of these functions for sufficiently large
values of the variable r cannot be achieved for y = 0 or y = ¢’'(b)7. Tt is
easily seen that if the constant 7' is sufficiently large, then all the above
relations will be fulfilled for ¢ > T'. We now choose the constant M so large
that the functions Ry »(7, y) for 7 = T be positive. Owing to the maximum
principle, these functions will be positive for all 7 > T, which proves the
assertion of the lemma for the above-mentioned choice of the constant «.

Using the obtained estimate for the chosen value of o and repeating, (if
necessary) all the above arguments, it is not difficult to see that the constant
« can take any positive value, less than 1/2. O

We introduce into consideration auxiliary functions w((¢’(b)7 — y)//7),
w(y/+/7) which can be defined by the equality

w(s) = exp [_ % [/Z 6—92d9] N (16)

First we consider an auxiliary solution of the problem (15) written in the
form

w(y/VT)/VT if y<0,
b—w((¢'(b)T —y)/vT)/VT if 0<y<¢'(b)r,
ui(my) = 4 (/7)) + p1 (/) [wly/V7) /T —y/7] = (17)
—1/¢"(b)p2 ((¢'(b)7 = y)/7) [w((¢'(b)T — w)/7)//T+
+(y = ¢'(b))7)/7] it y>¢'(b)r
where p1(s) and p2(s) are sufficiently smooth shearing functions, 0 < p;(s) <
1, pi(s) = 1for s < myg'(b), pi(s) = 0 for s > ma¢’(b), i = 1,2, and my, ma
are some positive, sufficiently small constants whose values will be specified
below.
It is readily seen that the function wi(r,y) — uo(7,y) is by itself the

“correction” to the solution of the degenerate problem (2) which we have
to estimate.
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The difference z1(r,y) = w(r,y) —ur(r,y) for 7 > 0, y £ 0, y # ¢'(b)T

satisfies the equation

8221

0z ouy 0z
Lyz = — () ZL g o) 2.~
321 P ¢ (u) By " (u1 + 021) 3y 1= 5o U1,
where Luy = uf,, — ¢'(ur)uy, — uf,. It is evident that the relation Lu; =
—r7 ! (s)[¢' (u1)—u1], s =y/\/7isfulfilled for y < 0. Let us consider the
auxiliary function ¢(r,y) = 7'_710’(5)6””2 for y < 0, where ¥ >0, m > 0
are some constants. We have

ww//

Lzt = 7'_7_16””210/{7 -1+ + w1l — ¢"(ur + 021)] +

w/
+2m + 2ms[2w” 4+ s(2m + 27 w'] — /7¢ (w)[w” + 2m5w/]}. (18)
It offers no difficulty to prove the following

Lemma 6. For y < 0 and sufficiently small values of the constant m the
relations 2w” + s(2m + 27 Hw' > 0, w” + 2msw’ > 0, w'w/w' < 271 are
fulfilled.

The proof can be performed by direct calculations by using the represen-
tation (17).

Taking into account the assertion of Lemma 6, from the equation (18)
we can get the estimate

w"w

Ly < T_W_lemyQ/Tw/{'y +2m— 1+ +w'[l —¢" ((ur + 9,21)]}.

w/
For y < 0 and sufficiently large values of 7, by Lemma 5 we can make the

summand w'[1 — ¢”(uy + 6z )] arbitrarily small in modulo. Hence for y < 0
and sufficiently large values of 7 the relation

Lip < =677 71y (y/\/;) exp (myz/r) = —67'_11/)(7', Y)
is fulfilled, where 6 > 0, v > 0 are some constants; note that the constant v
can be chosen so that the inequality ¥ > 1/2 be fulfilled.

Consider now the domain 0 < y < ¢/(b)7 and the auxiliary function
Y(7,y) = 777w (0). Obviously, for 0 < y/7 < m2¢’(b) there takes place the
equality

Ly = vy 7=’ (0) — 77771’ (0) 9" (uy + 021)[¢' (y/7) +
+01(y/T)(w/VT = y/T) 4 pr(y/T)(=y/ (2w — 1+ w? [2)].

By using for the function w(s) Millse’s relation [48], we can get the equality
Ly = 7'_7_110/(0){7 — ¢"(uy + 0z1) [q'(y/r) +

¥

i) e e (D E Ul
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If 0 < y/\/7, then by decreasing (if necessary) the constant ma, we get
Ly <2777y = 2/7 4+ O (mz + 77%)} /7, where the constant « is cho-
sen in the same way as in Lemma 5. Choosing now v < 2/7, we obtain for
0 < y/7 < mag’(b) the inequality L1y < =87~ 1(r,y) [1 + O (ma + 779)].
If, however, ma¢’(b) < y/7 < (1 —ma)¢'(b), then we obtain p;(s) = pi(s) =
0,7=1,2, and hence Li¢ < %7'_7_1 [y =14+ O(r~%)]. A similar inequal-
ity can be obtained for (1 — ma)¢’(b) < y/7 < ¢'(b). Consequently, in
the case under consideration, for sufficiently large values of 7 we will have
Ly < =671, if and only if v < 1, 0 < y/7 < ¢/(b).

The construction of the barrier function for y/7 > ¢’(b) is carried out by
means of the function w((¢'(b)T — y)/+/7T) exactly in the same manner as
we did it for y < 0 by means of the function w(y/+/7). The function ¥ (7, y)
is continuous in the half-plane 7 > 0, and if the variable 7 is sufficiently
large, for y = 0 and y = ¢'(b)7 there takes place a jump of derivatives with
respect to the variable y of order O(7=7=1). By simple but cumbersome
calculations we can show that the relation Liu; = (’)(7'_2) 1s fulfilled for
sufficiently large values of 7 and for all —oco < y < o0, y # 0, y # ¢'(b)7.
Consider the auxiliary functions Ry »(7,y) = My(1,y)L21 (7, y), where M is
a large enough constant. It 1s easily seen that those functions are continuous
for all —co < y < oo, and there take place the inequalities [R1,2];|y:0 < 0,

[R172]|y:¢,(b)7 < 0. Therefore the functions Rj »(7,y) fail to achieve their

minimal values on the lines y = 0, y = ¢’(b)r. Choosing the constants M
and T sufficiently large and using the maximum principle, we can conclude
that the inequality |z1(7, y)| < My(7,y) is fulfilled for all 7 > T

Lemma 7. For the function (17), the relation |u(r,y)—ui(r,y)| < M177,
where 1/2 < v < 1 is a positive constant, is fulfilled for all sufficiently large
values of T.

Using the obtained relations, we can get the main result on the problem

(15).

Theorem 2. The function ui(7,y) defined by the formula (17) satisfies for
7> T the inequalities

lu(r,y) —wi(r, )] < M7~ Vexp (—may®/7) if y <0,
lu(r,y) —wi(r, )l S M777 if 0<y<'(b)T,
u(,y) —us(r,y)l < M7~ exp {—msly — ¢'(b)7]*/7} of y > ¢'(b)r.
Here M and T are sufficiently large constants, v is an arbitrary positive

constant such that 1/2 <y < 1, and mg is a constant, 0 < mz < 1/4.

The proof of Theorem 2 is analogous to that of Lemma 7.
Getting back to the variables ¢ and z, we can rephrase the obtained
results in terms of the following
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Theorem 3. Fverywhere outside some neighborhood of the origin the es-
timate

lu(t, 2) —uy (t/€*,y/e?) | <
M2t exp (—mga:z/ezt) if <0,
< S Mty if 0<z < @'(b)e,
Met=7 exp {—mafir — S'OMP /) if ¢/ (Bt <

is valid (m3 is a positive constant), note that the radius of that neighborhood
is of order O(e?).

Obviously, Theorem 3 may be considered to be valid for all ¢ > 0 if the
constant M is sufficiently large; note once more that one can obtain the
corresponding estimates for finite values of ¢ by using the same techniques
we have used in the first section.

Theorem 3 gives us an idea of the character of variation of the solution
of the problem under consideration as ¢ — .
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CHAPTER II
LINEAR EQUATIONS OF ELLIPTIC AND PARABOLIC TYPES

In this chapter we consider linear, singularly perturbed problems con-
nected with equations of elliptic, parabolic and mixed types.

Many problems of physics, chemistry and engineering lead to mathe-
matical models representing singularly perturbed problems for elliptic and
parabolic equations in different parts of a domain. For example, when
modeling the descending straight motion of liquids and gases in plates of
rectification columns, there arises a boundary value problem for a parabolic
equation with discontinuous coefficients [12]. In mathematical description
of electromagnetic fields appearing in moving of trains on a magnetic cush-
ion there arises the necessity in studying solutions of singularly perturbed
boundary value problems for differential equations which are elliptic in one

part DT of the domain D and parabolic in the other part D= = D\ ﬁ-l—;
note that solutions of an elliptic equation depend in D~ on the time vari-
able t as on a parameter [18], [19]. Many problems dealing with foliated
and periodic media lead to problems for mixed type differential equations.

When we solve practical problems connected with singularly perturbed
differential equations of mixed type or with discontinuous coefficients (the
so-called stiff problems), quite often we encounter the problem of choosing
a numerical method which would be stable with respect to simple parame-
ter variations. To justify the choice of one or another numerical algorithm,
1t 1s necessary to divide the initial problem into several consecutive prob-
lems to which standard methods of numerical calculation could be applied.
Such a “deparallelization” of the initial problem becomes possible owing to
preliminary investigation of the asymptotic character of a solution.

In the first two sections of Chapter II we deal with the boundary value
problems for elliptic equations, when coefficients of the equation are either
discontinuous or a higher coefficient of the degenerate equation vanishes. If
a higher coefficient of the degenerate equation vanishes on some line, then in
constructing an asymptotic expansion of a solution there arise problems for
parabolic equations with the so-called varying time direction, when the coef-
ficient of the derivative with respect to the “time” variable vanishes. In the
second section, for problems of similar type, theorems on the solvability of
corresponding problems in unbounded domains are proved; estimates of the
behavior of solutions for unboundedly increasing arguments are obtained;
asymptotic (in powers of the small parameter) expansion of a solution is
constructed.

In the third section we consider an equation of elliptico-parabolic type.
Under different additional assumptions, asymptotic expansions of solutions
of the problems under consideration are constructed; estimates of closeness
of partial sums of asymptotic expansions to exact solutions of the problems
are presented.
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2.1. ELLipTIC EQUATIONS WITH STRONGLY VARYING COEFFICIENTS

Not infrequently, numerical modeling of processes in science and engineer-
ing lead us to the necessity of investigating solutions of elliptic equations
with strongly varying coefficients. Problems of similar type are most fre-
quently encountered when studying processes which take place in foliated
media and also in media with small-grained or periodic structure. Appli-
cation of standard numerical algorithms of solvong such equations is inef-
fective by the following reasons. As a rule, in discretization of the initial
problem there appears a system of linear algebraic equations with a sym-
metric matrix A whose eigenvalues A have great scattering, for example,
maxAa[minAs]™! ~ maxk(Z)[mink(z)]7t = A > 1 (k(T) is the diffu-
sion coefficient). Application of traditional numerical methods for solving
a system of linear algebraic equations with matrices with A > 1 requires
a significant waste of the processor time (a number of iterations necessary
to obtain the solution of a system of linear algebraic equations is at best
proportional to v/A)).

In their work [7], N.S. Bakhvalov and G.P. Panasenko suggested an iter-
ative method of solving the Dirichlet problem for the elliptic equation with
strongly varying diffusion coefficient

—div(k(Z)Vu) = f(T), T€Q, ulsn=0.

The rate of convergence of the suggested iterative process does not depend
on the value of A; in particular, the case is quite possible where the coeffi-
cient € in the domain k(%) is equal to infinity. Moreover, it was assumed

N _
that Q = 'Ulﬁi,, where €; are nonintersecting subdomains with piecewise
1=

smooth boundaries, and the coefficient k(%) satisfies the conditions:
1% k(T) = aiki(T), TEQ, oy =const >1, 0< Ky < k(7)< Ky
200 Q,,9Q,,..., Qn are topologically separable.
For such a problem we have managed to construct an iteration process
with the rate of convergence not depending on the value A = max «; for the

case where every subdomain ;, ¢ = 1,2,... N with a large \/Zalue of o 1s
in the vicinity of the subdomain €2; with values «; of order O(1) only.

As it turns out, without knowledge of the character of variation of a
solution in different parts of the domain oy, o, o, and without correspond-
ing a priori estimates we are unable to extend that method to problems in
which the orders of €2;, €;, €, in the three neighbouring subdomains 2 are
different. In this connection, it is of great importance to study asymptotic
behavior of a solution for large values of the diffusion coefficient in different
parts of the domain 2.

1. Let us study asymptotic properties of solutions of the model equation

—diV(kE(l‘,y)vue) = f($,y), (1)
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whose solution is sought in the rectangle Q = U QZ, Q; =[i— 1,4 x [0,b],

1 <7 < 'b; as for the diffusion coefficient, we assume that it is of the form

ki(z,y) if (z,y) e ={(z,y)|0<z<1,0<y<1},

e Lho(z,y) if (z,y) €Qa={(z,y) |1 <2 <2,0<y<1},

ke(z,y) =< e ks(x,y) if (x, YEW={(r,y)]|2<2<3,0<y<1},
e ha(z,y) if (ryy)e={(z,y)|3<e<4,0<y<1},

ks(z,y) if (z,y) € Qs ={(z,y) |4 <2 <b5,0<y<1},

0 < e« 1 is asmall parameter.
Let a solution u.(#, y) of the equation (1) satisfy the boundary conditions

(@, y)],_y = ue(@, )] ,_5 = 0, u’ey(x,y)|y:0 = u’ey(x,y)|y:1 =0.(2)

We impose the following additional conditions on the lines of discontinuity
of the coefficients and on the right-hand side of the equation:

ue(i —0,y) = ue(i +0,y),

ke(i—0,y)0uc(i — 0,y)/07 = k(i + 0,y)0u (i + 0,y) /07, 3)

where 7 is a normal to the interface line, 1 < ¢ < 4. Suppose f(z,y),
ki(z,y) > ko > 0 are piecewise continuous functions which are uniformly
bounded along with all their derivatives in the closure of each subdomain.
The solvability of the problem (1)—(3) follows from the work [40].

Let us formulate the problem of constructing an asymptotic, as € — 0,
representation of the solution of the problem under consideration. We will
naturally assume that the solution of the equation (1) in domains €; and
{25 under the conditions (2) and boundary condition of the first or second
kind for « = 1 and # = 4 can be found to any degree of precision by
means of some algorithm (e.g., a numerical one). As for the subsequent
application of the obtained results, it suffices to prove that the asymptotic
representation is close to the exact solution in the integral norm, although
by simple calculations we can obtain corresponding estimates in a uniform
norm.

Asymptotic representation UN) (i, y, €) of a solution of the problem (1)-
(3) for an arbitrary N is sought in the form

Un(z,y,€) ~ Z " um (2, y). (4)

The coefficients of the asymptotic representation (4) will be defined for each
subdomain of the domain £2;, 1 < ¢ <5. We begin with the domain 23.
To define the functions uy, (2, y) in the domain Q3, we have the problem

Lau,, = —div (]Cg(l‘, y) grad un, (, y)) =8 flz,y), (5)
—k’3(l‘ y) mx(x y)|x:2+0 - kz(l‘ y) U — lx(x y)|x:2_0’ (6)
kg(l‘ y) mx(x y)|x:3_0 k4(l‘ y) U — lx(x y)|x:3+0’ (7)
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/

Uy (2,9)], g = oy (2.9, = 0. (8)

In particular, for the function ug(z, y) we have the homogeneous equation
(5) with homogeneous boundary conditions. Consequently, ug(z,y) = Cy,
where () 1s a constant to be defined below.

In the domain 5, the functions um, (#, y) are defined in terms of solutions
of the problems

/

Uy (2, y)|y:0 = Uy (2, y)|y:1 =0. (12

Loup, = — div(ka(z, y) grad um (2, y)) = bo,m f2, y), (9)
—ka(z, y)u:nx(x’ y)|x:1+0 = ki(z, y)u;n—lx(x’ y)|x:1_0’ (10)
Um(l‘, y) |x:2—0: Um(l‘, y) |x:2+0a (11)

)

It follows from the relations (9)-(12) that for (z,y) € 2 the identity
uo(z,y) = Cy should be fulfilled. Analogously one can determine that
the relation ug(x,y) = Cp holds for (z,y) € 4. In the domain £y, for the
function wy, (z,y) we obtain the problem

Lt = —div (ki (2, y) grad um (2, ) = 6o,m F(2,y), (13)
Uy (2, y)|y:0 = Uy (@, y)|y:1 =0,

(14)
um (2, y)|x:0 =0, um(e, y)|x:1—0 = um(, y)|x:1+0'
Similar problems for the function w,, (2, y) can be written out in the domain
Q5. The solvability of elliptic equations in a rectangle with mixed boundary
conditions can be found in [40]. In particular, for the function ug(x,y) the
corresponding boundary value problem for 0 < z < 1 has the form

L1u0($ay):f($ay)a ($ay)691a
u()y(x’ y) |y:0: u()y(xa y) |y=1: Oa (15)
Uo(l‘, y) |l‘20: Oa Uo(l‘, y) |x:1—0: CO~

Leaving the constant Cj for the time being undefined, we pass to construct-
ing the function uy(#,y). In the domain Q3 we have for this purpose the
problem (5)—(8). Hence ui(z,y) = C1, (#,y) € Qs, where € is a constant
which, like a constant Cy, will be defined below.

For the function u;(z,y) in the domain 2 we have the problem

L2u1(xay) :f($ay)a (16)
6U1(l‘, y)/ay|y:07y:1 = Oa Ul(l‘, y) |x:2—0: Cla (17)
_k2($a y)ullx(x’ y)|x:1+0 = kl(x’ y)ullx(l;’ y)|x:1—0 :

The problem for the function ui(x,y) in the domain Q4 is formulated
analogously.
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Finally, we define the function us(#, y) in the domain €23 in terms of the
solution of the problem

Lus(z,y) = f(z,y), (18)

with the boundary conditions

s, (z, y)|y:07y:1 =0,
—k’3(l‘, y)u/Zx(xa y)|x:2+0 = k’z(l‘, y)ullx(x’ y)|x:2—0 ) (19)
kg(l‘, y)u/Zx(xa y)|x:3—0 = —k’4(l‘, y)ullx(xa y)|x:3+0 ’

Choose now a constant Cy so as to ensure the solvability of the problem
(18)—(19). Using Green’s formula, we write the condition for its solvability

as follows:
I3 _/ / flae,y da:dy—/ ks(x, )3uza(x y)ds. (20)
825 n

Taking into account the condition (19), we can write the relation (20) in
the form of the following equality:

12732/10[]62(1" y)%]

For the problem (16)—(17) we write out the relation similar to (19) and
define from it the first summand in the right-hand side of (21):

dy. (21)

=20 oz £=340

dy /1[/@4(1‘, y)w]

0 o y=1 9 ’
A dy+/ R IR
r=140 y= w=2
! 8 0
/ [kz(l‘ ul ] dy = [M%@DW] dy +
0 £=1-0
=1 0
+1i» —/ [/ﬂ(m y)iuoa( )] dy+ I ».
y=0 z r=1-0

Reasoning analogously, we obtain the expression for the second summand
appearing in the right-hand side of (21). As a result, this equality will take

the form
0 Jug(x, y) 1 Jug(x, y)
= [ [t =520 o [ oo =

Having written out for problems of the type (15) the relations analogous to
the relation (20), we can express the summands in the right-hand side of
the equation (22) which will take the form

1075:/10[/@1(96,3/)%] - dy—/ol[km’y)W]

dy. (22)

r=4—-0

dy. (23)

r=5
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Get back to the solution of the problem (15). Tt can be represented
as follows: wg(z,y) = z1(x,y) + Coza(,y), where Cy is a constant to be
defined, and z;(z,y), j = 1, 2, are solutions of the problems

L1Z1 = f(l‘,y), (l‘,y) & Ql, Ziy|y:0,y:1 = 0, Z1|x:0,x:1 = 0, (24)
Liza =0, (2,y) €, 29ly=0,y=1 =0, 22le=0 =10, 22]e=1 = 1.

In a similar form we can represent a solution of the problem (8): ug(x,y) =
Z1(x,y) + CoZa(z,y), (z,y) € Q5. The equation (23) will take the form

0 0z 0 0z
Ios I/ ki(x,y) % dy+/ ks(z,y) % dy +
1 =0 1 r=5
0 0% 0 0%a
—|—C’//€ r,Y) = dy—i—C’/k r,Y) = dy. 25
o/ 1z, y) - - o/ s(z,y) & - (25)

Let us show that the equation (25) is solvable with respect to the con-
stant Cp. Since the problems for the functions z2(z,y), Z2(z, y) are of the
same type, it is sufficient to show that the value, for example Kq; =

yyz_lo by (x, y)ﬂi’a%ﬂb:o
cording to the corollary from Hopf’s theorem (see, e.g., [42]), the solu-
tion of the problem (24) can have negative (positive) relative minimum at
none of the interior points of the domain €. Suppose that the relation

min  za2(z,y) = z2(2o, yo) < 0 holds. Then it follows from the Zaremba-

y=0,y=1
Giraud principle that the inequality 25, (, y)|<xD vo) 0 is fulfilled at the

point (zg,yo). However, by the hypothesis from (24) it follows that the
derivative with respect to the variable y of the function z2(#, y) is equal on
the horizontal sides of the rectangle € to zero, and therefore the function
za(#,y) reaches its minimum for # = 0. Note that there takes place the
inequality dz1(0,y)/0x > 0 which, as it follows from the relations (24), is
fulfilled for an arbitrary point (0,%), 0 < ¥ < 1. This implies the relation
[(071 > 0.

Consequently, the equation (23) is uniquely solvable with respect to the
constant Cy, and hence the function ug(#, y) is defined in the domain €.

Just in the same way we can define the constants C, Cs, . ... Note that to
construct the function U(N)(x, y, €) uniquely, it is necessary to consider the
function U(N+2)(x, y, €) and then, with the help of the solvability conditions
for the coefficients of the expansion uyy1(z,y), unt2(x,y), to define the
constants Cy_1, Cy. which arise in the process of constructing.

dy, has the property of having a fixed sign. Ac-

Theorem 1. There exists a value e > 0 such that for all positive € < €q
the estimate

Nue(z, y) — UM (@, y, )|z, < MVt

15 valid.
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Proof. Obviously, the function wy(z,y,¢) = u(x,y) — UN) (2, y,€) is the
solution of the problem

Lwy = div(ke(x,y) grad wy (=, v, e)) =0, (z,y)€ EJ Q;,
Wiy, (2,0,¢6) = wy, (z,1,6) = 0, wy(0,y,¢) = wn(5,y,¢) = 0,
wn(i+0,y,¢€) —wn(i — 0,y )_o, i=1,2,3,4, (26)
ke(i4+ 0,9)0wn (i +0,y,€) /07 — k(i — 0, y)Jwn (i — 0,y,¢) /07 =

= N ko2, y)dunyi(2,y, ) /07|~ Z;g, 1<i<A4.

~~

It is readily seen that the right-hand side of the last of equations (26) can
be estimated as follows:

. Ou i+ 0, . Ou i—0,
w0 0D g st

Formally integrating once by parts the identity

1 5
/ / U(xay)LwN(l‘,y, E)dl‘dy: 0,
0 0

where n(z,y) is an arbitrary function from the space Wzlyo — the subspace

of the space W (), in which a set of all functions from C'(Q) is dense and
equal in the vicinity of boundaries # = 0, # = 5 of the rectangle n(z,y) to
zero. Taking n(z,y) as the function wy(x,y,€), we can easily obtain the
equality

/ / o a;”;>2+<M> bazdy.

With regard for the relation (16), the left-hand side of the latter equation
can be estimated from over:

y=1 dwn(z,y,e)

k (x,y)TwN(l‘,ya 6)]

dy‘ < MM (21)

r=i

and the right-hand side estimated from upper:

/(Jl/oske(x,y){(agf)er(MN) }dxdy>ko||gradwN||L2 (28)

As far as the function wy (#,y, €) is an element of the space Wzlyo, for it the

inequality
1 5 1 5 9
//wjzv(x,y,e)dxdng/ / (gradwN) dxdy (29)
0o Jo 0o Jo




125

with the constant C, depending only on the domain €, is valid (see [42]).
Taking into account relations (27)—(29), we arrive at the inequality
lwn(z,y,€)||r, < MeV*! for any value N, which proves the theorem. [

As is indicated in [40], in the considered by us case of high smoothness
in each of subdomains of the functions k;(x,y), f(x,y) the solution of the
problem (1)—(3) satisfies (in the classical sense) the equation (1) and the

5

conditions (2)—(3) at every interior point of the set = 'U1Qi and of each
1=

of the segments composing the boundary of domains €;, 1 < i < 5, respec-

tively. Using this fact and the estimate of Theorem 1, we can prove the

assertion of the following.

Theorem 2. For the partial sum U(N)(x, y,€) of an asymptotic expansion
of a solution of the problem (1)—~(3) the estimate

||U5($,y) - U(N)($aya E)HC(Q) < MEN_l
s valid.

It is not likewise difficult to estimate the first derivatives of the difference
uc(x,y) — UN)(z,y,¢) and to obtain an error estimate in the norm of the
space C'! for the asymptotic representation.

Remark. Consideration of the problem on constructing an asymptotic
expansion of a solution of the problem (1)—(2) under the assumption that
the coefficient k.(z,y) may be of order ¢ in some strips 1 < @ < x5 of
the original rectangle is not a matter of much difficulty; moreover, some
parts of the rectangle, being the strips of the type 3 < # < x4, may have
the width g, where the value p is a small parameter not depending on the
parameter €. Finally, instead of the equation (1) one can consider a more
general equation which contains terms with first derivatives.

2.2. ELLiPTIC EQUATION WITH DEGENERATION IN LOWEST TERMS

In this section we construct asymptotic expansions of solutions for solving
some problems which are connected with a singularly perturbed equation
of elliptic type, for which the coefficient at a higher derivative of the corre-
sponding degenerate equation vanishes on some smooth line. In constructing
a formal asymptotic expansion there arises the need to study properties of
solutions of parabolic equations with varying time direction.

1. In the rectangle D{(z,y) | 0 < # < 1, |y| < 1} let us consider the
boundary value problem

Leu = ?Au—a(z, y)u; —k(z,y)u=—f(z,y), ulsp=0. (1)

Suppose the functions a(z, y), k(x,y) are defined in the closure of the rect-
angle D and are infinitely differentiable and uniformly bounded along with
the derivatives of any order of functions, k(x,y) > ko > 0.
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Asymptotic expansions of various types for solving the problem (1) under
different assumptions on initial data have been previously constructed by
many authors (see, e.g., [13], [32], etc.). As a rule, one of the basic assump-
tions we use in considering such kind of problems is the assumption about
regular solvability of the appropriate degenerate equation; in the problem
under consideration this assumption leads, in particular, to the requirement
that everywhere in the rectangle D the inequality |a(z,y)| > 0 should be
fulfilled.

We will assume that a(z, ¢(z)) = 0, where y = ¢(x) is some infinitely
differentiable for « € [0, 1] function such that |¢(z)] < 1. Under such an
assumption, the type of an asymptotic representation of a solution of the
problem (1) depends substantially on the signs of the function a(z,y) for
y < ¢(x) and y > ¢(x). If we assume that the functions involved in the
equation are very smooth, then it becomes essential only the sign of the
function a(z,y) as the variable y increases. Therefore the description of the
techniques of constructing asymptotic expansions of solutions will cover the
cases: 1) a(z,y) = yb(x); 2) a(z,y) = —yb(x); 3) a(z,y) = y*b(x);
4)  a(z,y) = —y*b(x). Here b(x) is an infinitely differentiable for z € [0, 1]
function, b(x) > b > 0. The construction of asymptotic expansions for some
other types of dependence of the coefficient a(x,y) on its arguments differs
by insignificant technical details only.

It is not difficult to see that 1t 1s sufficient to describe the asymptotic
expansion for the above-mentioned cases only in the neighborhood of the
straight lines # = 0, y = 0 since the types of the expansion in the two
neighboring portions of the boundary can be obtained by a simple change
of variables.

In accordance with the results obtained in [1], we will additionally assume
in case (2) that there exists a positive integer N such that for all = € [0, 1]
the inequality Nb(z) + k(z, #(x)) > 0 holds.

Asymptotic expansion of a solution of the problem (1) in the neighbor-
hood of the left and lower portions of the boundary of the rectangle D will
be sought in the form

(N) = 2m I+y
= 35 e oo )]

2N
D M ) R G R M C | R

When deducing the equations which determine the functions in the repre-
sentation (2), the functions will be assumed to tend uniformly to zero as at
least one of the arguments increases unboundedly, that is, these functions
are of boundary layer character of variation with respect to their arguments.
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2. Let a(z,y) = yb(x). In this case, the coefficients of the representa-
tion (2) can be constructed for any value of the number N. The coefficients
tam (2, y) of the so-called smooth parts of the asymptotic expansion, approx-
imating the solution of the initial problem outside a fixed neighborhood of
the set 0D, can be found in terms of solutions of the equations

8u2m

Lousy =a(x,y) +k(x, y)uam =00,m f(2, y)+FAuspm_o = fom (2, 9); (3)

here and everywhere in what follows, the functions with negative indices
are assumed to be identically equal to zero. The solution of each of the
equations (3) exists for |y| < 1, is unique and infinitely differentiable in D
(see [1]). In the neighborhood of the boundary & = 0 of the rectangle D,
the boundary layer terms of the representation (2) are found for 0 < & < oo,
|yl < 1 in terms of the solutions of the problems

92P,, OP,,
LgP = F — boya—y — k’o(y)Pm =
9 Py, - , " 9P~
= —Tzz Y k() Py +y > b€ 3y =Py, (1)
j=1 ji=1
Prn(0,y) = —un(0,y) = pm(y), (5)

where b;, k;(y) are the coefficients of the expansions of the functions b(z),
k(z,y) in powers of the variable . Without restriction of generality we
may assume by = 1. Note that the equation (4) is parabolic for y # 0, with
varying time direction; boundary value problems for equations of similar
type in bounded domains under zero boundary conditions and zero right-
hand side have been considered in [77].

Now we proceed to deducing the equations which determine the functions
vam (2, 7m), wm (€, n) guaranteeing the fulfilment of the boundary condition
for y = —1. By means of a standard procedure we readily obtain that these
functions are the solutions of the problems

L, m =
V2 87]2 ( ) 67]
ULNg ; 3202m—2 Ovam_2
= ; ki (e)p vam—2j — —5 5=+ Ub(ﬂﬁ)Tn, (6)
9w, Owm mz? .
Lepwm = ——F+—— = Z ki€ n w1 —
o m
m m—2
 PAWm — 5 a2wm—2 'awm—j—Z
_ b & _ pef I moime 7
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where /NCj(x), k; 1 are the coefficients of the expansions of the function k(z, y)
by the Taylor formula,

vam (2,0) = —uam(z, 1), wn(£,0) = —Pn(§,—1). (8)

The functions vem, (2, 1), wm (€, n), which ensure the fulfilment of the bound-
ary condition for y = —1, cause discrepancy in the boundary conditions for
z = 0. To remove that discrepancy, we use the functions @, (¢, n) which
are found in terms of the solutions of the problems

Len@m = AQum + Qg = D kiuCin'Qunjzi—o —
jHi=1
e € e
= D hOEE A D b == = Ann), ()
j=1 j=0

Qm(Ca 0) = Oa Qm(oa 77) = _Um(oa 77) - wm(oa 77) = Qm(n)’ (10)

0 < ¢, n < oo, tending to zero as ( + 1§ — oo.

3. Now we pass to the problems of existence and uniqueness of solutions
of the problems written out by us and to investigation of properties of
these problems. We begin with the functions P, (€, y) which guarantee the
fulfilment of the boundary condition for z = 0.

To solve the problem (4), (5) for m = 0 under the assumption that
the function Py(€,y) vanishes as € — 0, we will use the Fourier sine-
transformation; supposing the application of that transformation is legit-
imate, we will find an explicit form of the function Py(€,y), investigate its
properties and prove the validity of all transformations used.

Applying to both parts of the equation (4) the Fourier sine-transformation,
we obtain for the Fourier image po(s, y) the equation

yﬁéy + [52 + ko(y)] Py = spo(y)\/2/m. (11)

Obviously, the equation (11) is analogous to the equation (3). As it follows
from the results of [1], the equation (11) has for |y| < 1 a unique solution
which is infinitely differentiable for all |y| < 1. Tt is easily seen that the
Fourier preimage in that case can be written out explicitly:

|Po(&, )| = %/Ooo po(yw) exp [— r’ 4+ /yywt‘lko(t)dt] dr, (12)

w = exp [—52/(4152)] :

Lemma 1. The function in (12) is well defined; it is continuous in the
half-strip 0 < & < oo, |y| < 1. This funclion is continuously differentiable
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wn the domain of its definition, and there exists a constant v > 0 such that
the estimate

|Po(&, )+ | Poe (& m)| + | Po, (€ w)| +
+ | Py (& 0)| 4 | Poe (€ w)| + | Plyye(€ )| < Mexp (—y€)  (13)
holds.

Proof. First we show that the function Py(€,y) is defined for y = 0. Obvi-
ously,

Po(§,y) = \%/Ooo Ppo(yw) exp [— r’ — kog)fz]dr.

This implies that the limit of the function y — 0 as Py(&, y) exists and can
be written in the form

. ko()€”
;li% Po(&,y) = g}lm / po(yw) exp [ r 4y

:%[/(J"”exp [_rz_ Zofz]d +/po°°exp [__4_€M _
v/ 005) p[ rz_ko,ofz]dr

4r?

Jar =

A

po = [k070€/4]1/4. It is clear that the integral, appearing in the right-hand
side of the latter equality, exists for all 0 < & < oo, being a function,
differentiable for ¢ > 0.

To obtain the estimate (13), let us consider formula (12):

oQ

|Po(é,y)| < M exp (—rz)drg M(l—i—\/g)_lexp (—Ef/?),
P1
p1 = (E€2/4)1/4. To estimate the derivative of the function Py(&,y) with
respect to the variable &, we consider the integral obtained from (2) by
means of a formal differentiation with respect to the variable £ under the
integral sign. Obviously, ywpf(yw) + ko(yw)po(yw) = —F(0, yw). We have

S ke? ~
/ 5 exp [— re 4+ —]dr <M exp (—rz)dr,
0 2r 4 p1
and therefore the integral I(&,y) converges uniformly with respect to vari-
ables £, y. Consequently, the function Py(¢, y) is differentiable with respect
to the variable & everywhere in the domain of definition, and there takes
place the estimate

I [ o (- E (),
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Let us pass to the estimation of the first derivative of the function Py(&, y)
with respect to the variable y. With this end in view, we consider the
integral

J(&y) = %/OOO [wph(yw) + (w — D)po(yw) x

1 ”
< [ Hita o+ oyt = pae] exp[—m / t_lko(t)dt]dr,
0 y

which is obtained by a formal differentiation with respect to the variable y of
the integrand in (12). As in the previous case, we shall have the inequality
|J(&,y)| < M(1+ E)~texp (—Ef/?), from which follow the existence and
the estimate for the function Py, (€, y).

It is readily seen that in a similar manner one can estimate the function
0% Py /0¢dy, derivatives of the function Py(€,y) with respect to the variable
y of any order and also the function 8% Py/9£0y? with the same majorizing
function in the right-hand side of the inequality. [0

Lemma 2. A solution of the problem (4), (5) exists for m > 0 and satisfies
the estimates of the type (13).

Proof. Evidently, to deduce the estimates for the solution of problem (4), (5)
for m > 01t is sufficient to estimate the influence exerted by the right-hand
side of the equation. Using the Fourier sine-transformation, a corresponding
component of a solution can be written as

P& y) = —%/Ooo 6_@3—26)@ [/ya kot(t)dt] /OOO Pr(n, ye™") x
x{exp [— %] — eXp [— %] }dﬁ, (14)

Z

o1 = ye~?. Supposing that the estimate (13) is valid for the function
Prn(€,y) and for its derivatives to within the factor 1 +&™~1 we can write
the inequality

|Pm,1(€ay)| S
< M{e‘ﬁf/z/ 6_3EZ/4dZ/ (1—|—€—\/?z—|—2\/;w)m_16_w2dw—
0 o

2

_eﬁf/Z/ 6_3E2/4d2/ (1—&—\/?Z+2\/;w)m_16_w2dw},
0 [

3

oy = [Vkz — €)/(2V7), 03 = [Vkz + £]/(21/Z). Let us estimate the first

integral in braces. Obviously,

m—1
(L+E—VE+2/m)" <M Y it (15)

i+j+1=0
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where ¢, 7, [ are nonnegative integers. Therefore
~ —3kz/4 ~ _ \/: m—1_—w? m—1
e dz (1+¢ kz + 2¢/zw) e dw < M1+,
0 o2
Consider the second integral

/ 6_3EZ/4dZ/ (1-¢- \/Ez + Qﬁw)m_le_Wde <
0 T3

M Z gl/ 6_3EZ/4Zj+l/2wle/ e_w2dw§

z+y+l 0 73
= o0 VE 2
L _|_5) 3_
<M s jHl—s—1/2 [_ (27 2 .
< E E ¢ / z exp P 4kz dz
i+j+{=0s5=1

By virtue of the validity of the sequence of the inequalities we have

o0 2
/ zj+l_s_1/2exp(— €——Ez)dz<
0 4z -

0o 0o
. . 2 3 2
S 7‘[/ 52]+2l_25_2w_2]_21"'25_26_” dw + 7‘[/ w2]+21—2se—w dw S

<M (1+€f'+’)/

04

oQ

= dus 4 M (1 +€j+l—s—1/2)/ 6_°"2dw,

04

o4 = (k€2 /4)1/*. Therefore
oo 2 _ . =
/ ZJ+l—s—1/2 exp (_ i _ kz)dz <M (1 +€]+l—8) e—\/;E/Z’
0 4z

whence

e\/ig/2 Ooe_?’zz/4 ” 1-— —\/Ez—l—? z m_16_”2dw<
3 Vz <
0] o3
<M (14€m71 Ve,

Thus the estimation of the module of the function P, 1(¢, y) is complete.

We shall now proceed to the estimation of the first derivative of the
function Py, 1(&,y) with respect to the variable £. To this end we consider
the integral

I(&,y) = —ﬁ— OOO j—zzexp [/U kot(t)dt] /OOO Pr(n,ye™) x

(e [ [ 2 o
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which is obtained from equation (18) by means of a formal differentiation
under the integral sign. Evidently,

16, y)] < Mem VL2
X / 6_3EZ/4dZ/ (1+¢&- VEz + Qﬁw)m_w\/ﬁz - 2w|e_w2dw.
0] oo
Using inequality (15), we obtain

m—1

|Il(€,y)|§Me_\/?5/2 Z gi/ Zj+l/26—3Ez/4dz/ wl(\/Z—i—w)e_dew.

itj+i=0 70 o0
As 1s easily seen, the integrals in the right-hand side of the latter inequality

converge, and therefore |I;(£, y)| < M(1 +5m—1)6—\/?5/2.
Let us pass to the estimation of the integral I5(¢, v):

m—1 ) _ 0o 2
L,y < MeVFE2 Y 52'/ zf'+’/2e—3’“/4dz/ W (VEtw)e™ duw.
i+j+i=0 70 EE

Acting similarly to that we have done when estimating the function
Pn1(&,y), we can get the estimate |[Io(&,y)| < M(1+ fm_l)e_ﬁf/z. This
implies that the function P, 1 (€, y) is differentiable with respect to the vari-
able ¢, and for the derivative of that function the estimate |( Py, 1((£, y))’5| <

M (14 €m=1)e=VEE/2 i valid.

To obtain the estimates for the derivatives of the function Py 1(€,y)
appearing in the left-hand side of inequality (13), it is sufficient to note that,
as is shown in Lemma 1, the estimate (13) is valid for the derivatives of the
function Py(€,y) with respect to the variable y of any order. Supposing
that analogous estimates are valid for the corresponding derivatives of the
function Pp,_1,1, without any difficulty we obtain the desired estimates for
the derivatives of the function P, (€, y) with respect to the above-mentioned
variables. [

4. The existence of solutions of the problems (6), (8) and (7), (8) and the
boundary layer character of variation of the functions v (,7), wm(&,n)
are obvious. Therefore the following assertion is valid.

Lemma 3. For the functions vam (2, 1) and wn(€,n) the estimates

|02 (2, D+ V10 (2, 1) | [V (2, 0) | [V (2, ) [ < M (1" )e =00,
S M(l + €m+1 + nm+1)6_77_\/?§/2

are valid.
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In proving the lemma it suffices only to take into account that by virtue
of Hélder’s inequality, &' < [jfj‘l'l + lnj‘H] G+0~t

Consider now the problem (9), (10). Passing to the function R, ({,n) =
Qm(¢,m)e="? we obtain in the quarter of the plane 0 < ¢ < 00,0 < 7 < o0
the problem for the elliptic equation with fixed coefficients:

ARm =47 Ry = @m(¢, m)e"? = Rin((, ), (16)
Rpn(¢,0) =0, Rin(0,1) = gm(n)e"?. (17)
),

Note that as it directly follows from the relations (5), (8), (10), the boundary
values of the functions @, (¢, ) for any m > 0 are consistent with continu-
ity. Moreover, direct calculations show that ¢o(n) = ¢1(n) = 0, ¢2(n) Z 0;
in this connection the identities Qo(¢,n) =0, Q1(¢, n) = 0 are fulfilled.

We can write out the solution of the problem (16), (17) explicitly by
using McDonald’s function Ko(r) of the zero order. Thus the fact that a
solution of the problem (9), (10) exists for m = 2, becomes obvious.

To estimate the rate by which the function Q2(¢,7n) tends to zero as
17+ { — oo, we will use the maximum principle.

Lemma 4. For the functions Qm((,n) for 0 < { < 00, 0 < < oo the
estimates

chn ‘+‘8chn ‘<Mexp( amC = Bmn)

Q&)+ |
are valid, where o, = 2_3/2—Am, Bpp = 271427312 0 < Ay, < 273/2
are some constants.

Proof. Obviously, there takes place the inequality
la2(m)| < M(1+9%)e™". (18)

Consider the function ®2(¢,n) = M exp (—azl — fan), where Ms, aa, fo
are some positive constants, and estimate the function @2(¢,n) and its
derivatives. It is readily seen that L. ,®> = (a% + 62 - 62) ®,. Let us
choose constants as, 2 such that the inequality a2 + 87 — B2 < 0 be
fulfilled. We choose the constant M, is such a way that for §s < 1 there
would take place the relation ®3(0,7) > |g2(n)|. Under these conditions the
functions ®2(¢, ) £ Q2(¢,n) admit nonnegative values on the boundary of
the domain D¢ ,{({,7) |0 < { < 00, 0 < 57 < oo}, and at the points of the
domain Dy ,, itself the inequalities L , ($2 £ ()2) < 0 are valid. Owing to
the maximum principle, everywhere in the closure of the domain D¢ , there
takes place the estimate |Q2(¢, )| < Az exp (—az( — B27).

Let us now estimate derivatives of the function Q2(¢,n) (see [33]). Con-
sider an auxiliary function ¥3((,n) = N exp (—N1n — aa(), where the pos-
itive constants N, Ny are to be defined. Obviously, L¢ ,¥3 = (N — Ny +
a?)Ws(¢,n). For n = 0, the function ¥3(¢,n) + Q2(¢,n) takes a positive
value Ne~2¢. Let the constant N be so large that for n = N1_1 the
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inequality 0 < Nexp(—1—a2() + Q2(¢, NT1) < N is fulfilled; for that
inequality to be valid, it suffices to take N > Ay/[e¥2¢ —e™ 1] > Ase/(e—1).
Now we choose a constant Ny > 1 so large that for ¢ = 0 the function
Vo (¢, 1) + Q2(¢, 1) decreases on the segment 5 € [0, N7 ']; we can see that
such a choice of the constant | is quite possible; under such a choice the
constants N and N the function ¥5((,n) + @2((,n) on the boundary of
the half-strip 0 < n < Nl_l, 0 < ¢ < oo takes its largest value for n = 0.
Moreover, increasing (if necessary) the constant Nj, we can assume that
the inequality L¢ , (W2 + Q2) = (N7 — N1+ a3)¥, > 0 holds at the interior
points of that half-strip. According to the maximum principle, the function
Ua(¢, 1) + @2(¢,n) cannot take its largest value at the above-mentioned
points. Consequently, the function reaches its largest positive value for
n =0, and therefore (¥3, + Ql277>|77:0 < 0, whence Q/2n|n:0 < NNje ¢,

In a similar way one can obtain lower bound to the function Q’m7 for
1n = 0. Evidently, exponential estimate for that derivative is valid for { =0
as well. Reasoning as above, we can estimate on the boundary of the domain
Dy, the derivative of the function ()2(¢,n) with respect to the variable
(. Differentiating now both parts of equation (9) for m = 2 with respect
to the appropriate variable and using the maximum principle, we obtain
exponential estimates for the first derivatives of the function Q2(¢, n). Thus,
everywhere in D¢ , the estimates

1Qa2(C, M + @5 (¢, m)| 4 |Q2, (¢, m)| < M exp (—as — Ban)
hold.

When we estimate functions @, (¢, n) for m > 2, it is more convenient
to consider problems (16), (17). Suppose the inequalities

1Qm (¢, m)] < ML+ ™ 4+ 9™ ) exp (—amC — Bmn)

hold, where a,, and §,, are some constants. Under such a choice of con-
stants o, and S, the right-hand side of equation (16) will be a function,
decreasing exponentially; moreover, in this case there takes place the in-
equality |Rm(C, n)| < M exp [—am (¢ + n)]. Represent a solution of problem
(16), (17) in terms of the sum R, (¢, ) = Rm1(¢,n) + Rm 2(¢,n), where
the function R, 1(¢, n) satisfies equation (16) and the homogeneous bound-
ary conditions (17), while the function R, »({, n) satisfies the homogeneous
equation (16) and the boundary conditions (17). Make a change of variables
Zm2(¢,m) = Rm 2((,n) — e~ ¥mC Ry, (0,m). The function Z,, (¢, n) satisfies
the homogeneous boundary conditions for ( = 0, n = 0. For ¢ > 0, n > 0,
this function satisfies the equation AZ,, » — 4717, , = Zm(C,n), where
Zom (¢, n) decreases exponentially as ( + 7 — oo and is uniformly bounded
for (¢,n) € 3@7. Hence, to estimate derivatives of the function R, (¢, ) in
the domain D¢ ,, it is sufficient to estimate derivatives of solutions of the
equation

AZ —47Y72 = Z(¢,m), (¢, n) € D¢y, (19)



135

whose right-hand side is uniformly bounded, decreases exponentially as { +
17 — oo and has uniformly bounded derivatives of the first order which
vanish exponentially as ( + n — oo. Moreover, the function Z(¢,n) on the
boundary of the domain Dy , satisfies zero boundary conditions of the first
kind.

Let us write a solution of problem (16), (17) in the form

Z(¢,n) =

1 [ [~ L (TN . (T2 . (T3\ .. (T4
- (st [f (—) _K (—) K (—) K (—)]d dt, (20
[ 2o (3) R ()~ () s (5 Jasa, e0)
== =12 =)+ (n+ 1)
rs=V([C+5)+ (=12 ra=V(C+9)2 +(n+ 12
Ky(r) is the McDonald’s function of zero order.
Using the representation (20) and taking into account asymptotic repre-
sentations of the McDonald’s functions and also the properties of the func-

tions Rm(c,n), we can conclude by induction that the functions Z2(¢, n)
exist, are differentiable in the domain D, , and for them the estimates

|\ Zs| + |ZL(C )| + |2 (¢ m)| < M exp [—am(¢ + 1)

are valid, where «,, are constants chosen by the above-mentioned manner.
The above inequality implies that the assertions of the lemma are valid. O

Thus the formal construction of the asymptotic representation (2) can
be considered to be fulfilled.

We will now proceed to the error estimation of the above-constructed
asymptotic representation.

Theorem 1. If a(z,y) = yb(x), where b(x) is a function which is infinitely
differentiable and positive for x € [0, 1], then the solution of the problem (1)
has the asymptotic representation (2) for which the estimate

Ju(z,y) — u™(z, y)llcr < M
15 valid.

The proof of the theorem is carried out by means of the maximum prin-
ciple.

5. Let us consider the case a(x,y) = —yb(x). In that case, in the repre-
sentation (2) we suppose that vem, (2, 1) = wn(&,n) = Qm(¢,n) = 0 and the

condition k > N m[gui] b(x) is fulfilled. In this connection the coefficients of
ze|0,

the asymptotic representation (2) will be considered only for those values
of m for which the inequality 2m < N — 3 is fulfilled.

The asymptotic behavior of the solution of the problem under considera-
tion is well-known; for the coefficients of the expansion to remain bounded
as they reach an angular point of the domain, we require that the function
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flz,y) as well as all its derivatives up to order N be vanishing at the angular
points of the domain D.

Just as in the previous case, the functions ugp, (2, y) are found in terms of
the solutions of the equations (3). However, solutions of these equations in
the case under consideration will be sought under the following additional
conditions:

tam (2, —1) =0, wam(x,1)=0. (21)

As follows from the results of [1], solutions of the problems (3), (21)
exist and are N — 2m times differentiable everywhere in the rectangle D.
To eliminate residual exerted in the boundary condition by the functions
tam (2, y) for x = 0, the functions P, (€, y) will be constructed in terms of
solutions of the problems

~ 9?P,, 0P,
9% Py

m ) n 0P, _; ~
= g D ki) P — )b = PalEy), (22)
j=1 ji=1

Pu(€,=1) = Pu(&,1) =0, Pu(0,y) = —um(0,y) = pmly). (23)

Note that the equality ppm(—1) = pm (1) = 0 holds by virtue of the conditions
(23). Moreover, the derivatives up to the order N —m of the function pn,(y)
vanish for y = £1.

Let us consider the problem (22), (23) for m = 0. To solve that problem,
we again make use of the Fourier sine-transformation. For the Fourier image
ﬁo(s, y) we obtain the problem

yPoy =[5> + ko(y)] Po = spo(y)v/2/, (24)
Py(s,—1) =0, Py(s,1)=0. (25)

Writing out the solution of the problem (24), (25) and using the inverse
Fourier sine-transformation, we obtain the solution of the problem (22), (23)

for m = 0:
Po(&,y) = @/ﬁw po(yw) exp [/yi kOT(t)dt - rz] dr, (26)

o6 =&/2¢/—Iny|, w = exp (52/47“2). As before, it is not difficult to get the

estimate
[Po€,9)| < M exp (—VEE/2). (27)

Let us pass now to the estimation of the derivative of the function Py(€, y)
with respect to the variable y. Obviously,

IP (€, y) ~ & k&, -
‘T‘SM‘/UG exp{ﬁ—ﬁ—r }drgMeXp —/k1£/2],
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k1 = k — 1. Analogously, we can obtain the estimate for the second and
third derivatives of the function Py(€,y) with respect to the variable y. We
have

62]3307@52“/) - % ) {z)fJ’(z/W)w2 +pp(yw)w [kog(/y) ko(;/w)] +
+p0(yw){k6(y) —ywké(yw) _ ko(y) —yzko(yw)] N ko(y) _yko(yw) )

X [pg(yw)m +P0(3/W)M]}exp [/y kolt) gy rz]dr.

y w 1

Taking into account the relation pg(yw) = yw fol pp(Byw)do, it is not difficult
to get the inequalities

PR <ot [ e[ B i< aroe (V)

4r2
PRt [ o[- B e <arenn (- V) 0

ko =k — 2, ks < ko. Finally, we obtain the estimate for the derivatives of

the functions Py(&, y), Py, (&, y), Poy, (€, y) with respect to the variable €. If
&> —2v/ky In|y|, then from the latter relation we immediately obtain the

estimate ‘Pég(f,y)‘ < M exp (—\/%15/2). If, however, ¢ < —2v/k11n|y|,

then in that case we can write a chain of inequalities
Vi€ N3 ky€*
|P6§|§MGXP(_ 9 )+M‘/UG -2 OXp [_ 47”2] r<
\Y Elf)
—5 )

< M exp (— (30)

For the derivative of the function Py(&,y)/0& with respect to the variable
y we will have

6]527(51/3/) N {Po (yw)w + po(yw)ko(y) — ko(yw)] +

ko(y) — ko(yW)] y

)
ko(yw)\ € ¢ /y ko(t) 2
X " }2r2 exp | 7 + o dt — r*|dr.

Evidently, just in the same way as in estimating the function 9Py (€, y)/0¢,
we can obtain the inequality

+6(yw) — po(yw) kg (yw) — [po(yW)w + po(yw)

| Poey (&, 9)| < Mexp (- \/?15/2) (31)
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and exactly the same estimate for the function 92 Py(€,y)/¢0y*.

Before passing to the functions Py, (&, ), first of all it should be noted
that it suffices for us to estimate only those components of the functions
which are generated by the right-hand sides of the equations (22). Using the
Fourier sine-transformation, these components can be written as follows:

Y ko(2) ]
Pni(&y) = /slgnyr 771’111“//7“/ m(s,7)exp [/T . dz| x

s —¢&)? s+¢&
e [~ )~ - 41n+r/yd s =

x/ooo ﬁm(n,p){exp [-%} —exp [_%]}dndt, (32)

p = ye'. Taking into account the type of the right-hand side of the equation
(22) and also the estimates (27)—(32), we can assume that the functions

pm(f,y) satisfy the inequality |]5m(€,y)| < M exp (—\/kmf/Q). Conse-

quently, we can obtain for the function P, 1(£,y) the following relations:

e y|<M/ In Jy| t—l/ze_m/oooexp[—@—M]dndt‘F

2 41
In |y| _ o) \/z 2
—I—M/ t_l/ze_kt/ eXp[—Tn—%]dndt:A—l—B.
0 0

Simple transformations result in

— —1In|y| _ o0 —
A< Me—ﬁg/z/ ! t—1/26—3kt/4dt/ e ds < Me—\/;E/Z’

0 )

—In|y| &2 _
B§M/ exp[———kt]dtg
0 4t

o9 2 o0 _
< M/ exp (—i—t)dt + M/ exp (—kt)dt <
0 09

o0 2 = —
< M/\/_ f—ze_zdz + ]\46_\/;5/2 < Me—ﬁg/z’
ke/2 R

o5 = (VEE = )/(2VD), 00 = £/(2VE). Thus, | Pr(E, y)| < Me=VFE Tt we
take into consideration the circumstance that for 2m < N — 3 the functions
P, 1(€, y) and their derivatives up to the third order vanish for y = £1, then
we will see that estimates of the derivatives with respect to the variable y are
of the form (28), and therefore for these derivatives the estimates of the same
type are valid, if only we replace the constant & by the constants k1, ko, ks
when differentiating with respect to y one, two or three times, respectively.
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The functions 9Py, 1(€,y)/0¢, 8* P (€, y)/ 08Dy, 8PPy 1(&,y)/060%y. can
be estimated analogously.

Error estimation for the above-constructed asymptotic representation can
be performed exactly in the same manner as it was done in the aforegoing
case. Therefore the following theorem is valid.

Theorem 2. Let a(x,y) = —yb(x), where b(z) is an infinitely differen-
tiable positive for ¢ € [0, 1] function, k > N m[ax] b(x), where N is a natural
z€[0,1

number, and the function f(x,y) and its derivatives up to order N vanish at
the angular points of the domain D. Then for the asymptotic representation
of the type (4) the estimate

[u(z, ) = ™M (@, y)ller < MY (33)
forvopm = wym =Qm =0, 2m < N — 3 s valid.

We can make similar constructions for the cases a(z,y) = y?b(x), a(z, y) =
—y?b(z),, where the function b(z) possesses the above-mentioned properties.
Moreover, we can construct asymptotic representations for an arbitrary
number N, if the function f(x,y) and its derivatives up to order N + 3
vanish at the points (0,—1), (1,—1), when a(x,y) = y*b(z), and at the
points (0,1), (1,1), when a(z,y) = —y?b(x). One can also write out a kind
of asymptotic representation in the neighborhood of either of the portions
of the boundary of the rectangle D, taking into account the sign of the
function a(z,y) by analogy with the above considered cases. Estimate of
the closeness of the asymptotic representation to the exact solution under
the above-mentioned assumptions has the type (33).

6. The problem (1) can be considered analogously in the case where
the function a(x,y) vainshes on the lines y; = ¢;(2), i =1,2,... ,m, 0 <
|¢i(x)] < 1 for & € [0,1]. The lines y; = ¢;(x) may intersect at the points
of the interval (0,1). Note that all the constructions in that case maintain
the same singularities as in the above-considered cases; a type of asymptotic
representation in the neighborhood of either lines y = —1, y = 1 depends on
the sign of the coefficient a(x,y) in the neighborhood of the corresponding
line. Just in the same way one can consider the case where the function
a(x,y) vanishes, for example, for y = 1. Note that the construction of an
asymptotic representation of order N does not differ from that in the cases
where the function f(z,y) and all its derivatives up to order N + 3 vanish
fory = 1.

2.3. BOUNDARY VALUE PROBLEMS FOR EQUATIONS OF
ELLipTic-PARABOLIC TYPE

In this section we construct asymptotic expansions of solutions of bound-
ary value problems which are connected with elliptic-parabolic equations.
Problems of similar type can arise in the cases where stationary processes
of heat conductivity are described mathematically.
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1. Let D be a rectangle {(z,2) | 0 < ¢ < 1, 71 < z < Zy}, D1 =
Dn{z <0}, Ds = DN {z> 0}. Consider the boundary value problem

EAu— K (x, 2 )u=—fi(x,2), (x,2)€ Dy, (1)
ezgxu € g—z—bz(v 2)u=—faw,2), (x,2)€ Dy, (2)
U(O’Z)—¢0( )’ u(l’z):¢1(z)’ z € [Zl’ZZ]’ (3)
w(z, Z1) = ¢(x), = €][0,1]. (4)

Here « is a nonnegative integer, the coefficients and right-hand sides of the
equations (1), (2) as well as boundary functions in the relations (1), (2) are
infinitely differentiable functions which are bounded along with their deriva-
tives everywhere in the closure of the corresponding domains of definition,
k($’z) Z E > Oa b(m,z) Z E > 0, ¢1(0) = 1/)(0)a ¢2(0) = 1/)(1)

By a solution of the problem (1)-(2) will be meant a function u(z, z)
such that

u(z,z) € C(D)NCHD)NC*(Dy U Ds),

satisfies in the domains Dy and Ds the equations (1), (2), respectively, while
on the lateral and lower faces of the rectangle D it satisfies the conditions
(3)-(4). The existence of a solution of the problem (1)—(4) follows from the
results presented in the monograph [22].

2. Let a« = 2. An asymptotic representation of the solution of the
problem (1)—(4) will be sought in the form

U(N)szZiem[umxz—l—vm( )—i—rm(f,z)—l—
=0

tu (3,7 )wn(1 =) Pu(50) R (52 ) +
(52 (A waen. @
UM (2, z,6) = Zji: [ﬂm(aj,z)—i—f}m( , 2)—|—rm(f,z)+

() (5 D) (L )] eoeno

As throughout before, it will be assumed that if at least one of the arguments
of an arbitrary function takes unbounded values as ¢ — 0, then that function
is of a boundary layer character as a small parameter tends to zero.

Using a customary procedure, we can write out problems which later will
be applied for determining successively the coefficients of the representations
(5) and (6); note that the functions with negative indices will be assumed to
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be identically equal to zero. By A, ; we denote the Laplace operator with
independent variables 7, s.

um(z, 2) = bo,m f1(z, 2) [k (x, 2) + [k(=, z)]_zAxyzum_z, (7)
- _ fa(w, z) 1 lm—s(w,2)  Oupm_o(x,2)]
(2, 2) = do,m b2(x,z)  b*(x, z) [ Ox? B 0z ’
Prm(€,2) 4 - rms(é, 2)
T,z—k(o»zrmﬁ, Zkzogrm Zga ) f’ (8)
O m(€,2) OPm—2(€, 2)
T—b(Oz szogrm (& )+ T,(IO)
m(O,Z) —60,m¢0( )—um(O,z) (11)

Here k; g, b; o are the coefficients of the expansions of the functions k?(z, z),
b%(z, z) in powers of the variable z in the neighborhood of the point z = 0;

O?Vp—a(x, T)

o (2, T) =k (x, 2)um(x, T) ZkOZ T i T)_Ta (12)
m/2 ~
3 0pm_a(z,

mp(xp)—l—b(xOvmxp ZboZ pvm 22(1‘P)+%’
Oo(x,0) 0 81}1(1‘,0) _ Ovo(x,0)
op op ot

Gom(2,0)  Jvm—1(2,0)  Oum_o(x,0)  Otm—_2(z,0)
- _ >
5 e 5. M2 2 (13)

where ko (), boi(x) are the coefficients of the expansions of the functions
k*(z, z), b*(x, z) in powers of the variable z in the neighborhood of the point
z = 0;

Agr P = K(0,0)Pn(€,7) = Y ki€ e/ Pmimj(€,7),  (15)
iri=1
azp aP m .~
m___bZOO — E bi'l Pm—i— &, p), 16
0¢? dp (0,01 i+2j=1 o uie) 1

Pp(0,7) = —vpn (0, 7), pm(oap) = —9m(0, p),
Prn(€,0) = Pn(€,0) = #m(€,0) — rm(€,0),

OPo(&,0) _ OPi(&,0) _ 9P(€,0)
op ap — Or
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apm(gao) _ aPm—l(gaO) + arm—2(€a0) _ afm—2(€a0)
dp o or 0z 0z ’

here k; ;, b; ; are the coeflicients of the expansions of the functions k*(z, z),
b%(z, z) in powers of the variables z, z;

8wy, " O? Wy —a2(2, W)
R k (x, Z1)w ZZ: Jw' W (x,w) — a2

wn (2,0) = —um (@, Z1) + bom (),

Awam - kz(oa Zl)Rm = Z k?ijiijm—i—j(gaw)a
i+j=1
Rm(O,W) :—wm(O,w), Rm(gao): —Tm(g,Zl);

in these equalities by k;(z), k?,j we have denoted the coefficients of the
expansions of the functions k?(x, z) in the neighborhood of the straight line
z = 71 and of the point (0, Z;), respectively.

It is evident that the problems for determining the remaining coefficients
of the expansions (5) and (6) are similar to those written out by us above.

3. As is easily seen, the functions (€, 2), #m (&, z) exist, are infinitely
differentiable with respect to either variable and tend exponentially to zero,
as the corresponding independent variable tends in its absolute value to
infinity. To clarify the properties of the function R, (£,w), it should be
noted that the conditions for continuity of boundary and initial values of
these functions are fulfilled at the angular point of the boundary of the
domain of definition. Therefore the estimates obtained in the second section
of Chapter II for the function R, (&, w) are valid:

(€,w)‘+ ‘8}3

OR
R (€,0)] + | | < Mespl-ane +)]

where «, 1s a positive constant.
_ Let us pass to the problems which determine the functions P, (¢, 7),
Pn(&, p). Obviously, Py(€, p) = 0. The function Py(€, 7) is a solution of the
problem
AETPO - ]C(%PQ == 0,
Po(0,7) = —(0, 7) = [uo(0,0) — @o(0, 0)]e™FoE,
Po(€,0) = [¢0(0) — 1i0(0,0)]e™"* — [$0(0) — uo(0, 0)]e "¢,

ko = k(0,0), by = b(0,0). As is known, a solution of that problem exists,
and since the values of the boundary functions at the angular points of the
boundary are compatible, there take place the following estimates:

1P, T)ller < Mexp[—a(€ + 7)),
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(o < ko//2 is a positive constant). Without restriction of generality we
may assume that ag < by. Consequently, the function Pi(¢, p) is found in
terms of the solution of the problem

P&, p) 0PI p)

agz ap _bOpl(gap):Oa
. k 2 APL(E,0)  APy(E,0

To solve the problem, we introduce into consideration the function Py =
~ 2 . - . .
Pl’pebﬂp. The function Py (€, p) satisfies the equation

azﬁl(gap) aﬁl(gap)

_ -0
g2 dp
as well as the additional conditions
_ B — 0Py(&,0
PA(0.) = kalio(0.0) = w(0,0)], Pr(e,0) = ZoED,

Hence the function Py(€, p) can be written out as follows:
Pi(Es) = o /pk [70(0,0) — uo(0, 0)] — [ <
= — U —u — — —exp|— —
IS NG o[UolVY, olY, (p— 0 )12 p A(p—o)

2
3P0 (7,0 exp [_ (54 ")
p

]da—l—

2¢—/ ]d”_

aPO 77a [ (€ + 77)2
eXp “ T

dn=1,+ 1, — Is.
2\/_/ ]77 1+ 12 3

First let us estimate each of summands on the right-hand side of the last

equality. We have
kolt - o0 2
0|U0(0,0) U0(0,0)| € —0' dO’ < Mexp |: g :|
VT ¢ 2\/_ 4p

where (1 = £/(2,/p). Taking into account the estimates for the functions
Py(€, 1), we obtain

|[1] =2

oQ

|12(8, p)| < Mexp [—aof + a%p]/ =" dn,

Y1

1 = —=&/(2y/p) + aoy/p. IF & < 2a0p, then |I(E, p)| < M exp[—£7/(4p)].
If, however, & > 2aqp, then [I2(€, p)] < M exp (—aoé + a3p). The integral
I3(&, p) can be estimated analogously:

oQ

m@MSMwm%awm/emeﬂwSmeémm,

Y2
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where v2 = £/(2\/p) + @o\/p, Thus we are able to get for the function
P{p(g, p) the following estimate:

| P, (& p)| < M expl=bop — £ /(4p)] + M exp[—aoé — (b — aj)p].
Since € >0, p> 0 b2p+E2/(4p) > aof + (b3 — a3)p, the estimate

|PLo(€, p)| < M exp[—ao€ — (b5 — a5)p]
holds, and thus there exists a constant «y > 0 such that the inequality

|]51’p(€,p)| < Mexp[—a1(€+ p)] is valid. By virtue of that inequality,

|]51(€,p)| < Mexp[—ai1(§ + p)]. Using the equation (16), we can get for
the derivative of the function Pi(£,p) with respect to the variable £ the
inequality

‘8P177p ‘_/ ‘82P177P ‘dn<MeXp[ a1 (E+p)].

It is readily seen that for m > 1 the estimates of similar type can be ob-
tained for the functions P, (€,7), Pn(£, p) under a suitable choice of the
constants a,,.

Theorem 1. For the asymptotic representation (5), (6) of a solution of
the problem (1)—(4) in case o = 2 the estimate

[|u(z, 2, €) — U(N)(x, 2,6)|ler < MeNT1
1s valid, where the constant M does not depend on ¢.

Proof. The function U(N)(x, z,€) is, generally speaking, not continuous at
the points of the straight line z = 0. It is not difficult to see that the
relations

an(w, €)= UM (2, 40,6) — UN) (2, —0,¢) = O(NH),

_ QUM (2, 40,¢) UM (2, -0, ¢ _
un(x,€) = (3,2 ) — (3,2 ) =0V

hold. Introduce the function

wn(z,z,€) = U(N)(x, z,€) —0(2)[un(z, €) + 2un . (2, €)],

where 6(z) is the Heaviside’s function, equal to zero for z < 0 and to 1 for
z > 0. Suppose Gy (x,z,¢) = u(x, z) — wn(z, z,€). Obviously, the function
G (z, z,¢€) is continuous and continuously differentiable everywhere in the
rectangle D. Making use of the maximum principle, without any difficulty
we can prove the assertion of the theorem. [
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4. Consider now the problem (1)—(4) for & = 0. In this case the functions
é0(2), ¢1(z) will be assumed to be identically equal to zero, and the right-
hand sides of the equations (1), (2) to vanish along with their derivatives of
high enough order at the points (0,0) and (1,0).

As an asymptotic representation, U(N)(l‘, z,€) will be sought in the form
(5) for the rectangle Dy and in the form (6) for the rectangle Dsy; however,
the functions o, (z, p), pm(x,p), Qm(x,p) in the rectangle Dy will be as-
sumed to be identically equal to zero. The remaining functions are defined
and estimated similarly to what we have done above. Therefore there takes
place the following assertion.

Theorem 2. For the asymptotic representation (5), (6) of the solution of
the problem (1)~(4) the function vpm(x,p), ﬁm(f,p), Qm(n,p) for o = 0
s wdentically equal to zero. Under these conditions, for that asymptotic
representation the inequality

[|u(z, 2, €) — U(N)(l‘, 2,6)|ler < MeNT1

s fulfilled, where the constant M does not depend on ¢.

The proof of the theorem is analogous to that of Theorem 1.

Note that if the additional conditions imposed on the boundary functions
and on the right-hand sides of the equations (1), (2) are not fulfilled, then
the boundary layer components of the asymptotic representation of the
solution of the problem under consideration do not possess the character
we have supposed by the construction (5), (6). In this case it is necessary
to complement the asymptotic representation with functions describing the
behavior of the solution in the neighborhood of the points (0,0), (1,0) for
z < 0. It should be noted that to construct an asymptotic expansion of
a solution of the problem it 1s necessary to apply the method of matching
asymptotic expansions [31].

5. Consider the problem (1)-(4) for &« = 1. An asymptotic representation
of the solution of the problem under consideration will be sought in the form
(5) for the domain D; and in the form

for the domain Ds.

Not dwelling on the description of the problems which determine the func-
tions um (2, 2), tm (2, 2), rm(€,2), vm(2,7), Im(z, 7)), wnlz,v), gn(n, 2),
Im(n, 2), Rm(€,v), Qm(n, 7), Qm(n, T), Sm(n,v), we pass to the problems
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specifying the functions Pp (&, 7), pm(f,r) These functions satisfy the
equations

AETPm_k(%Pm = Z ki,jgiTij—i—j(gaT)a (18)
i+j=1
azpm pm I - i _J D
S~ e P = 20 b€ Py (€7) (19)
i+j=1

and also the additional conditions
Pp(0,7) = =vm(0,7),  Pn(0,7) = =5 (0,7),
Pm(ga 0) - Pm(ga 0) = fm(ga 0) - rm(ga O)a

OPn(,0)  0Pn(€,0) _ 0Fm(€,0)  9rm(&,0) 1)
or or 0Oz oz

Let us show that the functions P, (€, 7), P, (&, 1) exist and are the boundary
layer functions with respect to a collection of variables. For m = 0 we have

(20)

92P,  92P,
a—€2+w_kgP0:0aT<0a€>0a (22)
Py 0Py 45
W—a—T—bOPO_O, >0, &>0,
N . OPy(€,0) 0P,
PYE.0) — Pu(E,0) = o€, 0) - rof€, 0), ZTUEDL_ 0T o
PO(Oa T) = _UO(Oa T)a po(o, T) = _60(0’ T)' (24)

Note that the equality #(0,0) — vg(0,0) = #5(0,0) — r¢(0,0) is fulfilled
at the origin of coordinates of the plane of the variables & 7. To solve
the obtained problem, we will apply the Fourier sine-transformation of the
functions Py(&, 1), po(é’, 7) with respect to the variable £&. For the images
Py p(t,7), ISOVF(t, 7) we obtain the following system of equations:

PP p(t,7) 4 f 5 10(0,0) — @p(0,0) -
o (ks +t)Pyp(t,7) = ;tbo Fo 10 e’ (25)
Py r(t,7) 0 o5 f ug(0,0) — @ip(0,0) _,e
—— 12 4 by + )Py p(t, 7) =/ —tk o7 (26
or + (bg +1°)Po,p(t,7) —tho Fo + 52 € ,(26)
and also the additional conditions
Py b(0.0) = By (1.0) = [80(0) = 00,0 2 oy
0,F\t, 0,F\t, — 0 UolV, T bg ¥ )
000 0,00y (21)
— —u z_-
0 0\Y, ju k% + tza

9Py r(1,0) 0Py p(t,0)
or o or

. (28)
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As is easily seen,the problem (25)—(28) has a unique solution vanishing as
|7| — oo. Moreover, one can apply to that solution, as a function of the
parameter ¢, the Fourier sine-transformation, and its image is a continuous
function which tends to zero as ¢ — co. Consequently, we can write out a
solution of either of the equations (22), and for these solutions the estimates

1Po(&, Plles + [ Po(€, m)ller < M exp [~ao(é + |7))]

will be valid; here «g 1s a positive constant which can be defined with the
help of the constants kg and bg.

The problems (18)-(21) for m > 1 can be considered analogously. More-
over, the same kind estimates as for m = 0 will be valid for solutions of
these problems.

Theorem 3. For the asymptotic representation (5), (7) of the solution of
the problem (1)—(4) for o = 1 the estimate

[|u(z, 2, €) — u(N)(a:, z )| < MeNTL
where the constant M does not depend on ¢, is valid.

Remark 1. Having introduced into consideration the function p(¢) =
9Py(&€,0)/07, we can write the solution of the problem (22)-(24) for the
domains {£ > 0, 7 > 0} and {£€ > 0, 7 < 0} separately by means of the cor-
responding Green’s functions and then obtain a singular integral equation
with respect to the function p(§):

/OOO () {[Ko(kolé — nl) — Kol(kol€ +nl)] — 7 [exp (—bol€ — nl)—
—exp (=bolé + n|)]} dn = Aexp (=bof) 4+ Bexp (—koé) —

0
—2/ w( A K, (km/gz n /\2) _A

. NaEve
where Ky(t), K1(t) are the McDonald’s functions, and A, B are some con-
stants. Following V. A. Fok (see [2]), the above-given integral equation
can be solved by the Fourier transformation. Integral equations connected
with solutions of the problems (18)—(21) for m > 0 are solved in a similar
manner.

6. Consider in the rectangle D the boundary value problem

e Au+ a(z, z)g—u —k*(x, 2)u = —fi(x,2), (x,2) € Dy, (29)
z
0?u Ou
EZw —c(z, z)a—z — b (2, 2)u = —folx, 2), (x,2) € Do, (30)

with homogeneous boundary conditions (3) and (4). It will be assumed that
the coefficients k(z, z), b(x, z) and the functions fi(z, z), f2(z, z) satisfy the
above-formulated requirements, and also that the functions a(z, z), ¢(z, 2)
are infinitely differentiable and positive in the closure of the corresponding
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domains of definition. Moreover, it will be supposed that the functions
fi(w, 2), fao(z, z) along with their partial derivatives of high enough order
vanish at the points (0,0) and (1,0); as it will follow from our further
considerations, these conditions are necessary for the boundedness of the
coefficients of asymptotic (for the chosen collection of asymptotic sequences)
representation of the solution of the problem under consideration.

As asymptotic representation of a solution of the problem (29), (30) will
be sought in the form

N
1 —
u(N)sz E em[umxz—l—rm(x, )—i—sm( x,z)—i—
€ €

7 — 7 — 7 —
o ) (£ 25 (557
€2 € €2 €2 €2

e A2 s (A waen o

uN (e, z, €)= i\f: [ﬂm(x, 2)+Tm (%, z) +5m (1_%, z)], (x,z)€Dy. (32)

The functions um(z,z) and @m (2, z) can be found in a standard way.
It can be easily seen that problems for determining these functions are
solvable in a class of sufficiently smooth functions; note that under the
above-formulated requirements imposed on the functions fi(x, z), fa(z, 2),
the functions wy,(#, ), 4m(z, z) and their partial derivatives of high enough
order vanish at the points (0,0), (0, 1).

The functions rp (€, z) and 7, (&, z) are needed for the boundary condi-
tion to be fulfilled at # = 0, and also for preserving the continuity of the
asymptotic representation and its derivative with respect to the variable z
at z = 0; these functions must satisfy the following relations:

8%r,

0€?

2
+ a(0, z)ag—;n — k%0, 2)rp = 0 5;2_2 —

m

—Z%wﬁ@%ﬁ;+2mogmxamww,<w
i=1 i=1
6;? — ¢(0, z)ag—j — 520, )P =

ZCZ,O Mz(g’) +sz,0(z)€l7zm—z(€az)a (34)
i=1

i=1
(. 0) = e 0), ZmE0 OnlE0) (39)

rm(0,2) = —um(0,2), 7m(0,2) = —tn(0,2). (36)

Let us introduce the notation r,,(&,0) = 2 (€). As it follows from the
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relations (33)-(36), the function r2, (¢) satisfies the relation

m

1 1 o [E(0,0) 570,001 5
a<o,o>+c<o,o>]<7°m> ‘[a<o,o> 10,0 /" = (&) 37)

for some function 6,,(€) defined both by the right-hand sides of the equa-
tions (33), (34) for z = 0 and by the initial condition r2,(0) = —u,(0,0).
Obviously, the equation (37) under that condition has a unique solution
which vanishes as ¢ — co. Having found the function r2,(€), we can write
out the corresponding solutions of the equations (33), (34).

We will now proceed to investigating properties of the problems under
consideration. Tt can be easily seen that solutions of the problems (33)- (36)
exist, tend exponentially to zero as & — oo and possess bounded derivatives

of the first order which tend exponentially to zero as & — oo. Moreover,
by virtue of restrictions imposed on the functions fi(x,z), fz(x,z) and
owing to the properties of the functions uy, (2, z) and @, (z, z), the function
rm (€, z) possesses bounded derivatives up to some order which tend to zero
as £ — 0. The conclusions made earlier for the functions 7, (€, z) hold true
for the functions m > 0 as well.

Thus we can reckon that for the functions r,, (€, 2), #m (€, z) in the closure
of the corresponding domains of definition the estimates

I7m (&, 2)ller +1[Pm (€, 2)ller < M exp (—amé),
are fulfilled, where a,,, m = 0,1, ... are some positive constants.

Remark 2. Tt is easy to see that to construct the coefficients ry, (&, z),
7m (€, z) of the asymptotic representation (31), (32),with bounded first and
second order derivatives, it is sufficient that the functions fi(xz, 2), fa(z, 2)
and their derivatives up to the order N + 2 inclusive vanish at the points
(0,0), (0,1).

The definition and investigation of properties of the functions vy, (z, v),
wm(&,v) and Ry, (¢, v) do not cause difficulties, and therefore without any
trouble we can prove the following assertion.

Theorem 4. For the asymptotic representation (31), (32) of the solution
of the problem (29), (30), (3), (4) there takes place the estimate

[|u(z, 2, €) — U(N)(l‘, 2,)|ler < MeNTL
where the constant M does not depend on ¢.

Solution of the equations (29), (30) for the case a(x, z) < 0 can be studied
in a similar way. Tt should be noted that the functions u,,(z, z) satisfy the
initial conditions for z = 77, and therefore vy, (2, 2) = 0. An algorithm for
constructing an asymptotic representation of the solution of the problem
under investigation consists of successive fulfilment of the following steps:
first we introduce into consideration the functions hy,(z, z/€e?) which would
guarantee the fulfilment of the condition (4); then, to fulfil the condition (3),
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we define the functions @(xz, z) by means of the initial conditions prescribed
for z = 0. Since all the estimates taking place in the case a(z,z) > 0 hold
true, there also takes place the assertion similar to that of Theorem 4.

7. Consider, finally, the problem

e Au — pa(z, z)g—u —k*(x, 2)u=—fi(x,2), (x,2)€ Dy, (38)
z
5, 0% du

i “e(x, z)a—z — bz, 2)u = —fo(x,2), (x,2) € Dy, (39)
under the boundary conditions (3), (4). Here 1 > 0 is an independent small
parameter, and a(z, z) > 0, ¢(z, z) > 0, o is a positive constant. The type of
an asymptotic representation of the solution of the given problem depends
essentially on the ratio of small parameters g and €. According to what has
been said as well as depending on the value of the parameter «, the questions
of solvability of the problems which specify the coefficients of asymptotic
representations are reduced either to the question of solvability of a certain
singular integral equation, or to a series of breaking up problems for one
of the three types of differential equations — ordinary, elliptic or parabolic.
Because of a large number of possible cases we will not describe in detail
the process of constructing an asymptotic approximation of a solution for
each case separately, but only indicate typical peculiarities which arise in
the course of constructing.

When constructing asymptotic expansions it is convenient to introduce
one more parameter § = (e, ) and then construct the expansion with
respect to three small parameters.

Let first 0 < g < € < 1. An asymptotic representation of the solution
for (x,z) € Dy will be sought in the form

u(N)(x’Z’ﬂ,g,(s): i (%)iEj(sm[Uiyjym(l‘,Z)—i—ri’j’m(%,Z)+

7,7,m=0

z 1 —z 1—x
+i 5,m (l‘, —) + Wi jm (l‘, —) + qz’,j,m( ,Z) +
€ € €

r z l—2z =z r L1—=z
+Pijm = =)+ Qijm )R (55 +
€ € €

€€ €
+55 i m (1_%, Zlg_z)], (x,z) € Dy, (40)
N . .
U(N)(l‘, Z,py €,8) = i]; 0 (%) e em [ﬂiyjym(x, z)+ Fijom (z, z) +

1—x

Higan (2 ) +iogm () + P (5o ) +

Vigm\&, — i,5,m ) % i5m\ Ty T

) s 4ig, Jm\
l—2 =z

+Qm,m( - E—a)] (z,2) € Do. (41)
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If « = 1, then 6 = €. For all functions appearing in the representation
(40), (41), except the functions P; ; (€, 7), Pgiyjym(n,r) and Qi jm(n,7),
Qz’,j,m(ﬁ, T), we obtain a series of breaking up problems (i.e., a family of
problems whose solutions at every step of constructing depend only on
those coefficients of the asymtotic representation which by that moment
have already been defined). Problems of each series are similar to the above-
considered ones, and therefore it is not difficult to determine conditions for
their solvability and to investigate properties of the corresponding coeffi-

cients of the asymptotic representation.

In constructing the functions P; ; ,(&,7) and ]Siyjym(f, 7) either the use
can be made of the Fourier sine-transformation, or one can obtain for the
values of the derivative of one of these functions with respect to the variable
7 for 7 = 0 a singular integral equation of the type indicated in Remark 1.
Consequently, as is quoted in subsection 5 of the present section, using the
Fourier transformation, we can find the functions P; ; (€, 7), ]Siyjym(f, T)
for any values of the indices . The functions Q; ;j m(n,7), Qi,j,m(ﬁa T) can
be determined in a similar manner.

If « = 0, then 6§ = ¢. In the representation (40), (41) we have ¥; ; (2, 7) =
0, and the continuity of the asymptotic representation for z = 0 is achieved
by the choice of initial conditions for first order ordinary differential equa-
tions determining the functions @; ; , (2, z). The functions P; ; (&, 7) and
Qi ; m(n, ) are constructed in terms of solutions of elliptic equations with
constant coefficients and given boundary conditions of the second kind on
the straight lines £ = 0, 7 = 0. Finally, the functions ﬁiyjym(f,r) and
Qz’,j,m(ﬁ, 7) in the case under consideration are identically equal to zero for
any set of indices 7, 7, m.

If 0 < a < 1, then § = €%, and for P ; (&, 7), ]Siyjym(f,p), p = z/e®
we easily obtain the problems where we first solve an elliptic equation with
prescribed boundary condition of second kind for 7 = 0 and then we seek
for the solution of a parabolic equation with the given initial condition for
p = 0. The problems determining the functions @; ; »(&, 7), Qiyjym(f, p) are
considered analogously.

If & > 1, then in the representation (41) the functions ¥; ; » depend on
the arguments (2, z/¢), the functions P; ; ,, on the arguments (z/¢, z/¢) and
the functions Qm'ym on the arguments ((1 —z)/e, z/€), § = ¢*~1. Moreover,
to determine the functions P; ; (&, 7) and piyjym(f, 7), we obtain the prob-
lems analogous to those which were applied for determination of similar

functions in case o = 1.

Let now 0 < € <« pp < 1. The asymptotic representation is in this case of
more complicated type which depends not only on the ratio of coefficients
e and g, but also on the ratio of the parameters € and pu. The asymptotic
representation of the solution of the problem (38), (39), (3), (4) will be
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sought in the form

N .
U(N)(I,Z,/,L,E,(S)I E (i) /’L](Sm [ui,j,m(x,z)+ri,j,m (f’z) +
. H €
t,j,m=1

wz 71—z 1—2
+Vij,m (l‘, 6—2) + Wi jm (l‘, T) + i jm (T’ Z) +

T 2 1l—z zu xr 1 —z
+Pi,j,m(€_2a_) +Qi,j,m(ﬂ€—2,€—2) +Ri,j,m(za ) +

€2

r
l—2 71 —=
+Si,j,m(—a ! ):|a (I,Z) EDla (42)
¢ ﬂ
N NE x
B CENRIENDY (;) pe [ﬂi,j,m(w’Z)Jrfi,yym (;Z) +
1,j,m=1
2
. z N z ~ z z - Ty 2
i,5,m y T i, im\ le(_a_) Hlm(_’ )
+ij, (x Ea)—I—q,y, (e Z)"‘ dm\ + 1y, 2 cat? +

+Qi,j,m(1_7x,z)+§i7j,m(x“ 0 ) @aen. @

pry T opat?

If « =1, then 6 = €. For all the functions appearing in the representa-
tion (42), (43) we obtain a breaking up system of analogous problems which
enable one to indicate without any additional complications the conditions
for solvability of these problems and to investigate properties of the corre-
sponding coefficients of the asymptotic representation. Moreover, it should
be noted that for determination of the functions R; ; ,, and S; ; , we obtain
parabolic equations whose boundedness and smoothness of solutions depend
on the boundedness and smoothness of derivatives with respect to the time
variable of the same functions with smaller indices. This means that the
initial data of the problem which affect the boundedness and smoothness of
the functions R; ; », and S; ; ,, must possess high enough degree of smooth-
ness and compatibility (of initial and boundary functions, for example), and
on that degree of smoothness and compatbility of the corresponding initial
data depends the number of the terms of the asymptotic representation (42),
(43) we are able to construct. Tt is not difficult to formulate the conditions
imposed on the initial data of the problem, which enable one to construct
the required number of coefficients of the asymptotic representation.

For the other values of the parameter « the situation is analogous.

If « =0, then 6 = ¢, ¥;;m = pm.ym = Qm'ym = 0. For each unknown
function we get the initial and boundary value problem with given initial
and boundary conditions.

If 0 < a <1, then 6 = ¢, and the type of the asymptotic representa-
tion depends on the ratio of the parameters y and €*. If g = O(e®), then
the functions F; ; ,, and f[iyjym are defined respectively from elliptic and
parabolic equations, and they are continuous along with the first derivative



153

with respect to the time variable on the common boundary of the two sub-
domains. If, however, the orders of smallness of u and ¢* differ, then for the
determination of the coefficients of the asymptotic representation we obtain
a breaking up system of problems.

Finally, if & > 1, then § = ¢*~ !, and for the determination of the coeffi-
cients of the asymptotic representation we also obtain a breaking up system
of problems.

Using the methods described in the present and the previous sections,
we can prove the following assertion.

Theorem 5. To a solution of the problem (38), (39), (3), (4) one can con-
struct an asymptotic representation in powers of the small parameters in the
form (40), (41) or (42), (43); moreover, when additional conditions imposed
on the initial data and guaranteeing the boundedness of the coefficients of
the representation are fulfilled, then the estimate

[|u(z, 2z, p, €) — U(N)(l‘, z, iy €, 8| < M(eﬁ(N) + pﬂ(N))

hold, where B(N), v(N) are some constants increasing unboundedly as the
number N increases.

The problems (38), (39), (3), (4) can be considered analogously for the
case where the coefficient a(x, z) is negative for z € [77,0].

Remark 3. For certain relations between the small parameters included
in the problem for elliptico-parabolic equations as multipliers of derivatives,
the functions a(x, z), ¢(#, z) may be assumed to vanish on some lines none
of which intersect the straight lines z = 0, z = Z; (although the case of
the coincidence of a line, at the points of which the coefficient vanishes,
with the straight lines z = 0 or Z = 7; is quite possible). In such cases,
for the coefficients of the asymptotic representation there arise, as a rule,
problems analogous to those we have considered in the present section and
in Section 2.
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