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CHAPTER VI
MIXED AND CRACK TYPE PROBLEMS

In this chapter we study the basic mixed BVPs, the crack type prob-
lems, and the mixed interface problems formulated in Chapter II. Applying
the boundary integral equation method we prove the existence theorems
in Sobolev spaces and establish the almost best regularity results for solu-
tions near the boundary of cracks and at the collision curves of changing
boundary and transmission conditions.

Throughout this chapter the interface surfaces, the collision curves and
the crack boundaries are assumed to be C*°-smooth. Moreover, the param-
eters r and w in the steady state oscillation problems are subjected to the
requirement (15.3).

16. Basic Mixep BVPs

16.1 In this subsection we present some results from the theory of elliptic
pseudodifferential equations on manifolds with boundary in Bessel-potential
and Besov spaces. They will be the main tools for proving existence the-
orems for the above mentioned mixed and crack type problems. All the
results outlined below in this subsection can be found, for example, in [4],
[20], [43], [69], [15], [70], [71], [72].

Let S € C* be a compact n-dimensional manifold with the boundary
0S € C* and let A be a strongly elliptic m X m matrix pseudodifferential
operator of order k € IR on S. Denote by o (A)(z,¢) the principal homo-
geneous symbol matrix of the operator A in some local coordinate system.
Here z € S, £ € IR™\ {0}. Consider the following m X m matrix function

AP (2,6) = [€]7 o (A)(z, €', &), (16.1)
where & = (£,,...,&,_1) and 7 belongs to the unit sphere £(*~2) in IR"
It is known that the matrix A%O) in (16.1) admits the factorization
AP (2,6) = A, (2,)D(,2,§) A7 (2,€) for v €3S,

where [A; (z,&)]*! and [A} (2, )] are matrices, which are homogeneous

of degree 0 in ¢ and admit analytic bounded continuations with respect to
&, into the lower and upper complex half-planes, respectively. Moreover,
D(n,x,€) is a bounded lower triangular matrix with entries of the form

En —i[E N0

on the main diagonal; here
§j(z) = 2m) ' In)(z), j=1,..,m,
where A\ (z), ..., Ay (z) are the eigenvalues of the matrix

A(z) = [0(A)(2,0,..0, —1)] Lo (4A)(, 0, ..., 0, +1)].
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The branch in the logarithmic function is chosen with regard to the inequal-
ity 1/p—1 < Red;(z) < 1/p, j =1,...,m, p > 1. The numbers d;(z) do
not depend on the choice of the local co-ordinate system.

Note that, if o(A)(z,€) is a positive definite matrix for every z € S and
& € IR™\ {0}, then

Redj(z) =0 for j=1,..,m, (16.2)

since, in this case, the eigenvalues of the matrix A(x) are positive numbers
for any z € S.

The Fredholm properties of such operators are characterized by the fol-
lowing lemma.

Lemma 16.1. Let 1 < p < o0, s € R, 1 < q < o0, and let A be a
strongly elliptic pseudodifferential operator having a positive definite prin-
cipal homogeneous symbol matriz, i.e., 0(A)(z,€)¢ - ¢ > c|¢|®> for x €
S, £ € R™ with || =1, and ( € T™,
where ¢ is a positive constant.

Then the operators

A o HI(S) — HH(S), (16.3)
B2 (S) = B35 (S), (16.4)

are bounded Fredholm operators of index zero if and only if
I/p—1<s—k/2<1/p. (16.5)

Moreover, the null-spaces and indices of the operators (16.3), (16.4) are
the same for all values of the parameter q € [1,+o0], and for all values of
the parameters p € (1,00) and s € IR satisfying the inequality (16.5).

16.2. First we consider the basic mixed BVP (Pp,;;) for the pseudo-
oscillation equations of thermoelasticity (see (5.9)—(5.10)).

We assume that the boundary data meet the following conditions

1Y e BLS), B e B/P(S:), j=T4, 1<p<oo,  (166)
and look for the solution U in the space W ().

Let fo = (for, +, for)" € Bp3'/P(S) be some fixed extention of the

given vector function f&) = (£, .- fI"T € BL;'/?(S1) onto the whole
surface S = Q7. Then an arbitrary extention, preserving the functional
space, is represented as

f=fot+teeB, (S), (16.7)

where o € Bp,'/?(S,). Clearly, fls, = fols, = fO).
Let us seek the solution of the mixed BVP (P,,,;;) in the form of a single
layer potential
Ule) = Ve(H; ' f)(z), =€ Qt, (16.8)
where V; is given by (11.1), H ! is the operator inverse to H, (see (11.3)

T

and Remark 12.13), and f is given by formula (16.7).
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Applying Theorem 11.3 we can easily see that the conditions (5.9) are
automatically satisfied, while the conditions (5.10) lead to the UDE for the
unknown vector function ¢

[B(D,n)UTt = [-27' I + K1 JH W (fo+ ) = F® on Sy, (16.9)
where fo and F® = (F? ... F)T ¢ B,L/?(S,) are given vector-

functions, and where the operator K; - is defined by (11.4).
Let

N e =127 I + Ky A HT (16.10)
Then the equation (16.9) is written as
Sy N iz = g on Sy, (16.11)
where rg, is the restriction operator on S», and
g=F® —rg, N .. fo € B;}/P(S5). (16.12)
The properties of the operators ./\/’;tmm and rg, ./\/’;tmm are described by the

following lemmata.

Lemma 16.2. The principal homogeneous symbol matriz of the ¥DO
mew is positive definite for arbitrary x € S and ¢ € IR*\ {0}.
Proof. It is verbatim the proof of Lemma 14.2 for the operator N ;. O

Lemma 16.3. The operators
rsa Nimie ¢ By (S2)]* = (B} 4(S2)]", (16.13)
[ (S2)]* = [Hy ()], (16.14)

are bounded for any s € IR, 1 <p < 00,1 <q < o0.
These operators are invertible if the condition

1/p—3/2<s<1/p—1/2 (16.15)
holds.

Proof. The boundedness and Fredholmity of the operators (16.13) and
(16.14) under the restriction (16.15) follow from Lemmata 16.2 and 16.1
with s + 1 and 1 in the place of s and k. Due to these lemmata the Fred-
holm indices of the operators (16.13) and (16.14) are equal to zero and the
dominant, singular part of the operator N7, .. is formally self-adjoint.

It remains to prove that the operators under consideration have the trivial
null-spaces. Obviously, if we are able to find two numbers s; € IR and
p1 € (1,00) satisfying the inequalities (16.15) such that the homogeneous
equation

rs, Nt =0 (16.16)

T,mix

has no nontrivial solutions in the space E;ij;i (S2) [flgll“(&)], then due to
Lemma 16.1 we can conclude that the null-spaces of the operators (16.13),
(16.14) are trivial for all values of the parameters s and p subjected to the

condition (16.15).



To this end let us take
s1=-1/2, p=2 q=2, (16.17)
which satisfy inequalities (16.15). We recall that Eiém (S2) = I?[;d/2 (S2).

Let some vector function ¢q € é; 7/22(52) solve the homogeneous equation
(16.16) and let us construct the single layer potential

Uo(z) = Vo (H " ¢o)(z), = €T, (16.18)
By Theorem 11.3 and Remark 12.13 we have
Uo(z) € Hy (M) = W3 (QF), (16.19)

and, moreover, Uy satisfies the conditions corresponding to the homogeneous

mixed BVP (Ppi;) due to the the homogeneous equation (16.16) and the

inclusion ¢y € 1%7/22(52). With regard to Theorem 8.3 we then infer that

Up = 0 in QF, and, consequently, [Uy]t = ¢o = 0. This completes the

proof. O
Now we can formulate the following existence result.

Theorem 16.4. Let 4/3 < p < 4 and conditions (16.6) be fulfilled.
Then the nonhomogeneous mized problem (Ppiz)t is uniquely solvable in
the space W;(Q*) and the solution is representable in the form of the single
layer potential (16.8), where the density f is given by (16.7) and where ¢ is
the unique solution of the YDE (16.11).

Proof. First we note that, in accordance with Lemma 16.3, the ¥DE (16.11)
is uniquely solvable for s = —1/p and 4/3 < p < 4, where the last inequality
follows from the condition (16.15). This implies the solvability of the prob-
lem (Ppix ) in the space W (QF) with p as above. Next we show that this
problem is uniquely solvable in the space W, () for arbitrary p € (4/3,4)
(for p = 2 it has been proved in Theorem 8.3).

We proceed as follows. Let U € W, (") be some solution of the homo-
geneous problem (P, )+ . Clearly, then

[U]" € BLS'/P(S,). (16.20)

By Remark 12.13 we have the following representation for the vector U (see
(12.55))

Ulr) =V,(H ' [U) (), =€t (16.21)
Since U satisfies the homogeneous conditions (5.10), from (16.21) we get
T5o N in [UIT =0 on S,. (16.22)

Whence [U]T = 0 on S follows due to the inclusion (16.20), Lemma 16.3,
and the inequality 4/3 < p < 4. Therefore, U = 0 in Q7. O

Now we can prove the main regularity result for the solution to the mixed
BVP (Piz)T.



Theorem 16.5. Let the conditions (16.6) be fulfilled,
4/3<p<4, 1<t<o0, 1<qg<o0, 1/t—-3/2<s<1/t—1/2, (16.23)

and let U € W, (Q") be the unique solution to the mized problem (Ppiz)f.
In addition to (16.6),

i) i
fO e BifH(S1), F® € B ,(S»), (16.24)
then
U ez t), (16.25)
i) if
fY e Bt (Sy), F® € B (S2), (16.26)
then
Ue B oy, (16.27)
iii) if
M e c¥sy), FP ¢ B%3(S2), for some a >0, (16.28)
then
U € C(QF) with any v € (0,a0), oo :=min{a,1/2}. (16.29)

Proof. Theorem 11.3 and Remark 12.13 (see (12.53)) together with the
conditions (16.24) [(16.26)] imply g € B} ,(S2) [Bf ,(S2)], where g is defined
by (16.12). Note that fo € ij[l(S) [Bf:gl (S)] is some extension of the
vector f(1) onto the whole of S.

Next, by Lemma 16.3 and conditions (16.23) we conclude that the equa-
tion (16.11) is uniquely solvable in the space Bj{*(S2) [Bi#!(S2)]. There-
fore, we have that in the representation (16.8) of the unique solution U to
the problem (Ppi,);f in the space W, (Q) the density vector f = fo + ¢
satisfies inclusion

f=rfo+eeBf(S) B (9)] (16.30)

as well (together with the inclusion (16.7)).

Applying again Theorem 11.3 and Remark 12.13 concerning the mapping
properties of the single layer operator V, and the ¥DO H-' we find that
(16.25) [(16.27)] holds.

For the last assertion (item iii)) we use the following embeddings (see,
e.g., [78], [79])

C(S) = B 00 (S) C B (S) € BL /(S) C
C B75(S) c Co RS, (16.31)

where € is an arbitrary small positive number, S C IR? is a compact k-
dimensional (k = 2, 3) smooth manifold with smooth boundary, 1 < g < oo,
l<t<oo,a—e—k/t >0, aand a —e — k/t are not integer numbers.
From the assumption iii) of the theorem and the embeddings (16.31), it is
easily seen that the condition (16.26) follows with any s < a —e — 1.



Bearing in mind (16.23), and taking ¢ sufficiently large and e sufficiently
small, we are able to put s =a —e — 1 if

1/t—3/2<a—e—1<1/t—1/2, (16.32)
and s € (1/t —3/2,1/t —1/2) if
1/t—1/2<a—e—1. (16.33)

By (16.27) the solution U belongs then to Bf};lﬂ/t(ﬁ*‘) with s+1+1/t =
a—e+1/tif there holds (16.32), and with s+1+1/t € (2/t—1/2,2/t+1/2)if
there holds (16.33). In the last case we can take s+ 1+ 1/t =2/t+1/2 —¢.
Therefore, we have either U € By, “"/Y (%) or U € B;/™/*7=(QF) in
accordance with inequalities (16.32) and (16.33). Now the last embed-
ding in (16.31) (with k = 3) yields that either U € C**~2*(QF) or
U € CY/?===1/{(QF), which lead to the inclusion

U e G2/t (QF), (16.34)
where ag := min{a, 1/2}. Since ¢ is sufficiently large and ¢ is sufficiently
small, the embedding (16.34) completes the proof. O

16.3. The basic mixed exterior BVP (P, )- (see (5.9)—(5.10)) can be
considered by applying quite the same approach and by the word for word
arguments. Therefore, in this subsection we formulate only the basic results
concerning the existence and regularity of solutions.

Let the boundary data f;l) and FJ@) (j = 1,4) of the BVP (Py:2); sat-
isfy the conditions (16.6), and fo, f, and ¢ be as in the previous subsection.
We again look for the solution in the form of the single layer potential

U)=V,(H ' f)z), z€Q, (16.35)
where
f=fot+peB VP(S), foe BLYP(S), p€BLYP(Sy).  (16.36)

As above fj is the given vector function satisfying the condition fo|s, = (),
while ¢ is the unknown vector function which has to be defined by the YDE

75y Ny iz = g on S, (16.37)

where rg, is again the restriction operator on S», and
Nomiz = 27 L+ Ky M (16.38)
g=F? —rg, N in fo € B,}/P(Ss). (16.39)

Lemma 16.6. The principal homogeneous symbol matriz of the ¥ DO
N nix 18 positive definite for arbitrary x € S and § € R*\ {0}.
Lemma 16.7. The operators
LC N‘;mzz [Egj;l (52)]4 - [B;’q(SQ)][l’
[H P (S2)]* = [Hy ()],

are bounded for any s € IR, 1 <p < 00, 1< q < 0.



These operators are invertible if the condition (16.15) holds.

Theorem 16.8. Let4/3 < p < 4 and let the conditions (16.6) be fulfilled.
Then the nonhomogeneous mized problem (Ppiz), is uniquely solvable in
the space W)(Q1™) and the solution is representable in the form (16.35),
where the density f is given by (16.36) and where ¢ is the unique solution
of the WDFE (16.37).

Theorem 16.9. Let the conditions (16.6) and (16.23) be fulfilled, and
let U € W, (27) be the unique solution to the mized problem (Ppix)5 -

In addition to (16.6),

i) if there hold the inclusions (16.24), then

UeH T,
ii) if there hold the inclusions (16.26), then

Ue B o),
iii) if there hold the inclusions (16.28), then

U e C"(2~) with any v € (0,ap), ap:= min{a,1/2}.

The proofs of these propositions are verbatim the proofs of Lemmata
16.2, 16.3, and Theorems 16.4, 16.5.

16.4. In this subsection we shall study the basic mixed exterior BVP
(Pmiz), for the steady state oscillation equations of the thermoelasticity
theory formulated in Section 5 (see (5.9)—(5.10)). Again let f(, F(3) f,,
f, and ¢ be the same as in Subsection 16.2.

We look for a solution to the BVP (P, )5 in the form

U) = (W +pV) (N7 T N)(e), c€@,  (1640)

where V' and W are the single and double layer potentials given by formulae
(10.1) and (10.2), respectively, po is defined by (13.5),
f=foteeB P (S), foe B, P(S), we B, /P(Sy), (16.41)
and [N;]7! is an elliptic SIO inverse to the operator (cf. (13.6))
Ny = =27 1 + Ko + poH. (16.42)
Note that [AV;7]7! is an elliptic SIO due to Lemma 10.2. Moreover, the
mapping
V172 [BE,(9)] = (B (S)]*, 1<p<oo, 1<g<o0, s€R, (16.43)
is an isomorphism according to Lemma 13.13.
Applying Theorem 10.8, item i), one can easily see that the vector U rep-
resented by formula (16.40) automatically satisfies the boundary conditions

(5.9) on S since [U]~ = f on S and f|s, = fols, = f"). It remains to fulfil
the conditions (5.10) on Sy which lead to the ¥DE for the unknown vector

2
BD,mU]" = [£+po(2 I+ K)INT]  (fo+9) = F on Sy, (16.44)
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where L is defined by (10.36) and (10.6), while K; is given by (10.4).
Next we set

Niiw = —[L+po(27 " Is + K1) [NT] 7, (16.45)
and rewrite the equation (16.44) as
75y Nppiz ¢ = q on Sy, (16.46)

where rg, is again the restriction operator on S», and
q=—F® +rg, N, fo € B, 1/?(Ss). (16.47)

The inclusion (16.47) for the right-hand side vector function ¢ follows from
Theorem 10.8 and the mapping property (16.43). Further, we present the

properties of the operators N, and rg, N,

Lemma 16.10. The principal homogeneous symbol matriz of the ¥ DO
N is positive definite for arbitrary x € S and £ € IR* \ {0}.
Proof. First we note that the principal homogeneous symbol matrix of the

operator reads as
O0(Npia) = —0(L)o (N ]7) =

:_{W“’))lm [Olm} [O(=2 Lk K O)g ks Osur |
4x4 [0]1x3 —2 4x4

0lixs  o(£)
_ l [_U(ﬁ(o))[a(—2_1[3+/*c O~ axs  [0]3x1 ]
[0]1x3 200L") | s’

mix

due to formulae (10.25), (10.30), (10.49). As we have already mentioned in
the proof of Lemma 15.5, the matrix [ — 0(L(®)[o (-2 I3+ K )] 33
is positive definite for arbitrary z € S and € € IR?\ {0} (for details see [59],
[41], [34], [57]), while the function 20(5510)) is positive in accordance with

the inequality (10.50). o(N,,;,) is positive definite. O
Lemma 16.11. The operators

rsy Noia = [By' (D) = [B;,(S2)T", (16.48)

[HP (S2)]* = [Hy(S2)]', (16.49)

are bounded for any s € IR, 1 <p < 00, 1 < q < 0.
These operators are invertible if the condition (16.15) holds.

Proof. Tt is quite similar to the proof of Lemma 16.3. Indeed, the bound-
edness and Fredholmity of the operators in question and that the Fredholm
indices are equal to zero follow from Lemma 16.10 and Lemma 16.1 with
s+ 1 and 1 in the place of s and k.

Further, due to Lemma 16.10 the dominant singular part of the operator
N is formally self-adjoint.

mix
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To prove that their null-spaces are trivial, as in the proof of Lemma 16.3,
we concider the homogeneous VDE

75 Nppiz 9 = 0 on Ss, (16.50)

m

and prove that it has only the trivial solution in the space E%{;(S}) =

H, / *(S,). Tt corresponds to the particular values of the parameters s and
p (and q) given by (16.17).

Let some vector function ¢q € E;Q(Sg) solve the equation (16.50), and
construct the vector

Uo(z) = (W +poV) (N7 ] o)), 2€Q . (16.51)

By Theorem 10.8, Lemma 13.13 and the mapping property (16.43) we con-
clude

Up(z) € Wy o () NSKH(Q7). (16.52)

Moreover, Uy satisfies the boundary conditions of the homogeneous mixed

BVP (Ppiz), due to the homogeneous equation (16.50) and the inclusion

©vo € 1%7/22(52). By virtue of the uniqueness results (see Theorem 9.6) the

vector function (16.51) then vanish in 7, and, consequently, [Up]™ = ¢o =

0 on S. The proof is completed. O
These lemmata imply the foolowing existence results.

Theorem 16.12. Let4/3 < p < 4 and let the conditions (16.6) be fulfilled.
Then the nonhomogeneous mized exterior problem (Ppiz), is uniquely solv-
able in the class Wz},loc(ﬂ_) NSK(27) and the solution is representable in
the form (16.40), where the density f is given by (16.41) and where @ is the
unique solution of the YDE (16.46).

Proof. Again it is quite similar to the proof of Theorem 16.4. If we fix
s = —1/p, then the nonhomogeneous equation (16.46) is uniquely solvable

in the space g;,_pl/p(Sg) for arbitrary p € (4/3,4) which follows from Lemma
16.11 and the inequality (16.15) (with s = —1/p). This implies the solv-
ability of the nonhomogeneous mixed exterior problem (Pp,;,),, in the class
W 100(27) NSK;'(Q27), indicated in the theorem.

Now we show that this problem is uniquely solvable for arbitrary p €
(4/3,4) (for p = 2 it has already been proved in Theorem 9.6).

To this end let us consider the homogeneous problem (Pp,;;), in the

class W1t .(Q7)NSK (™) with p € (4/3,4), and let a vector function U

p,loc

be its arbitrary solution. Since [U]™ € Bll,,;,l/p(S) we conclude that U is
uniquely representable in the form

Uz) = (W +poV) (N U ) (=), ze€Q, (16.53)
due to Theorem 13.14.
Moreover, [U]~ € Bp'/?(S>) and
[B(D7 n)U]EQ =Ts, N

mix [

Ul =0 on Sy, (16.54)
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inasmuch as U is a solution to the homogeneous problem (P, ), . Further,

Lemma 16.11 together with the conditions s = —1/p and p € (4/3,4) implies

that [U]” =0 on S. Now the representation formula (16.53) completes the

proof. O
Finally, we formulate the following regularity results.

Theorem 16.13. Let the conditions (16.6) and (16.23) be fulfilled, and
let the wvector-function U € W, | (27) N SK"(Q~) be the unique solution
to the mized problem (Pmiz),, -

In addition to (16.6),

i) if there hold the inclusions (16.24), then

Ue H TN )nsK™ @ ); (16.55)

JJoc

ii) if there hold the inclusions (16.26), then

Jloc

U e BN O™y A SK™(Q7); (16.56)

t,q,loc

iii) if there hold the inclusions (16.28), then
UeC”(Q)NSK™(Q™) with any v€(0,ap), ap :=min{a,1/2}. (16.57)

The proof of these propositions is verbatim the proof of Theorem 16.5.
We only emphasize here that every solution of the equation (1.10) in 2~ in
the distributional sence, actually, is C*°-regular in the domain Q. There-
fore, the inclusions (16.55)-(16.56) should be established in some compact
(exterior) neighbourhood of the boundary S where we can apply the embed-
dings (16.31) and the arguments employed in the proof of Theorem 16.5.

17. CrRACK TYPE PROBLEMS

In this section we shall investigate the crack type problems (CR.D),, and
(CR.N),, for the steady state oscillation equations of the thermoelastic-
ity theory formulated in Section 6. We note that the crack type problems
(CR.D), and (CR.N), for the pseudo-oscillation equations of the thermoe-
lasticity theory are considered in detail in the reference [16].

17.1. First we treat the problem (CR.D),, (see (6.1)). Let Sy, dSy, f*),

f(i), f](i) (j = 1,4), be the same as in Section 6. Here we again assume
that

1P e B s, [ -7 € B M(Sy), =14, p>1. (1T
We recall that S; is a submanifold of the closed C™-regular surface S sur-
rounding the bounded domain Q*, IR% = IR*\ Sy, and Q™ = IR\ QF.

Let U € W), (IR%,) N SK;" (IR, ) be some solution to the steady state
oscillation equations (1.10). Then U € C*(IR%, ) N SK;"(IR%) and, more-
over,

U1, = [Uls,, [B(D,n)U]§, = [B(D,n)U]g,, (17.2)

where Sy = S\ S;.
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Due to Theorem 10.8 and the representations (3.2)—(3.3) we have the
following formulae

W (1) (@) - v (o) 0 ={ (@O P TEE ans
~W ([U]3) (&) + V (IB(D,n)U]3) (x) :{ OU(w) igi iggf: (17.4)

since Ulg+ € W, () and Ulg- € W, |, .(27)NSK;*(Q7) and A(D, —iw)U
=0in ]R‘}l. Here V and W are single and double layer potentials defined
by (10.1) and (10.2), respectively.

By adding these equations term by term and using the conditions (17.2),
we obtain the following general integral representation of the above vector

function U:

U(z) = W(p)(z) - V(¥)(z), =€ RS, (17.5)

where
p = [UIL, - [Uls, € By;'/7(S1), (17.6)
Y = [B(D,n)U]};, — [B(D,n)U]5, € By L/?(51). (17.7)

We remark that the double and single layer potentials in (17.5) with den-
sities (17.6) and (17.7) are C*-regular vector functions in IR% and belong
to the class W, | .(IR% ) N SK"(IRY ) in accordance with Theorem 10.8.
Furthermore, if the representation (17.5) holds for some vector function

U € W, (IRE,) with ¢ € g;,_pl/p(Sl) and ¢ € E;ll,/p(Sl), then automat-
ically U € SK}"(IR%), and the densities ¢ and ¢ are related to the vector
U by the equations (17.6) and (17.7) (which follow from the jump relations
of the surface potentials involved in (17.5)).

Next, we transform the boundary conditions of the problem (CR.D), to
the equivalent equations on Sj:

UlE, — [Ulg, = £ — £, (17.8)
U1%, + Uls, = FH + £, (17.9)

Now, we look for the solution in the form (17.5), where ¢ and ¢ are
unknown densities having the mechanical sense described by the equations
(17.6)-(17.7) due to the above remark.

It is evident that ¢ is then represented explicitly by formula

p=fH - e BIP(S) (17.10)

in accordance with (17.8), while the second boundary condition (17.9) leads
to the YDE for ¢ on Si:

—rs, ¢ = g on Si; (17.11)
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here the operator  is given by (10.3), rs, is the restriction operator to Si,
and
g=2" (W + ) —rs, K (F) = ) € B VP(S), (17.12)

where the SIO Ky is defined by (10.5).

The inclusion (17.12) follows from Theorem 10.8.

The operator rg, H possesses the following properties.

Lemma 17.1. The principal homogeneous symbol matriz of the pseu-
dodifferential operator —H is positive definite for arbitrary x € Si and

¢ ’*\ {0}.

Proof. Tt follows from Remark 10.4. d
Lemma 17.2. The operators

rs,Ho: [B3,(S1)]* = [BaE(S)] (17.13)

[H2(S1)])* = [H3 (S, (17.14)

are bounded for any s € IR, 1 <p < 00, 1 < q < 0.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties, boundedness, and Fredholmity of the op-
erators (17.13)-(17.14) follow from Theorem 10.8 and Lemma 16.1 (with
k = —1). Further, by Lemma 17.1 we conclude that the Fredholm indices
of the operators in question are equal to zero.

To prove that the null-spaces are trivial, we take again s = —1/2 and p =
¢ = 2 (which satisfy the inequalities (16.15)) and consider the homogeneous
equation

—rs, HY = 0 on S; (17.15)

in the space E;;/2(51) = ﬁ;1/2(51).

Let 9o € E;;/Q(Sl) be some solution to the equation (17.15) and con-
struct the vector function

Up(z) = =V (¢o)(z), =€ IRY,. (17.16)

Obviously, Uy € Wy, (IR, ) N SK"(IR%, ). Moreover, Uy solves the homo-
geneous crack problem (CR.D),, in IR%, due to the choice of the density 1y
and the continuity of the single layer potential (see Theorem 10.8). By The-
orem 9.7 we then infer that Uy = 0 in ZRgl, and, consequently, by Theorem
10.8 we have [B(D,n)Uo]§, — [B(D,n)Uslg, = —1o = 0. This shows that

ker[rs, H] is trivial in B, ,/*(S1). Now by Lemma 16.1 we conclude that,

if s and p satisfy inequality (16.15), the operators (17.13) and (17.14) have

trivial kernels and, therefore, are invertible. a
This lemma implies the following existence theorem.

Theorem 17.3. Let 4/3 < p < 4 and let the conditions (17.1) be fulfilled.
Then the nonhomogeneous crack type problem (CR.D),, is uniquely solvable

in the class W, |, .(IR% ) N SKJ"(IRY,) and the solution is representable in
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the form (17.5), where @ is given by (17.10) and 1 is the unique solution of
the $DE (17.11).

Proof. If we set s = —1/p, then the condition (16.15) yields the inequalities
for p: 4/3 < p < 4. Therefore, due to Lemma 17.2, the nonhomogeneous
equation (17.11) with the right-hand side ¢ given by (17.12) is uniquely
solvable. This shows that the nonhomogeneous crack type problem (CR.D).,
is solvable in the class W 1, .(IR% ) N SK;" (IR%, ), and the vector U defined
by (17.5) represents a solution to the problem in question.

Next, we prove that the problem is uniquely solvable for arbitrary p €
(4/3,4).

Let 4/3 < p < 4 and let U be any solution to the homogeneous problem
(CR.D),, from the class indicated in the theorem. Due to the above men-
tioned results, U is then representable by the formula (17.5) where ¢ and
1) are defined by (17.6) and (17.7). Therefore, ¢ = 0, and

Ulx) = —V()(), =€ RY. (17.17)
Further, the homogeneous boundary conditions on S; yield that
—rs, HY = 0 on Sy, (17.18)
p—1/p

where ¢ € By p'"(S1) with 4/3 < p < 4. From this equation by Lemma
17.2 it follows that » = 0 on Sj, since for s = —1/p and p € (4/3,4)
the condition (16.15) holds and the homogeneous equation (17.18) does not
possess nontrivial solutions. Now by (17.17) we get U = 0 in IR which
completes the proof. O

As in the case of the basic mixed BVPs here we have the following reg-
ularity results.

Theorem 17.4. Let the conditions (17.1) and (16.23) be fulfilled, and
let the vector function U € W), (IR% ) NSK]" (IR%,) be the unique solution
to the problem (CR.D),,.

In addition to (17.1),

,loc

Y FE e B (S1), - fD e B (S, (17.19)
e U e H; 1N IRE, ) N SKT (IR, ); (17.20)
vy fE e Bt (Sy), - e Bit(sy), (17.21)
" Ue Bid (RE,) N SK (RS, ) (17.22)
iii) if
& e 08y, [fH = fss, =0, for some a > 0, (17.23)
then

e V(T
Ulgs € C (gf)’ (17.24)

Ulg= € C*(@) NSKI (")
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with any v € (0,ap), o := min{a, 1/2}.

Proof. Tt is again verbatim the proof of Theorem 16.5 (see also the remark

after Theorem 16.13). O
17.2. In this subsection we consider the problem (CR.N), (see (6.2)).

The corresponding boundary conditions (6.2) we transform to the equivalent

equations on the crack surface Si:

[B(D,n)U§, — [B(D,n)U]5, = F) — F), (17.25)
[B(D,n)Ul%, + [B(D,n)Ulg, = F) + FO), (17.26)
where we assume that
FP e (s, FY—F 7 e Bl/r(s), j=T4, p>1. (17.27)
We look for a solution
U € W, (IRE,) NSK* (IRY, ) (17.28)

in the form (17.5), where the densities ¢ and ¢ are related to the sought
for vector U again by the realations (17.6) and (17.7). Therefore, we can
define 1 explicitly

=Fb —F) e Bol/v(s,), (17.29)

while the boundary condition (17.26) implies the ¥DE (of order 1) for the
unknown vector-function ¢

rs, Lo =g on Si; (17.30)
here the ¥DO L is given by (10.6) and
g=2""(F® + FO) frg, Ky (FD —FO) e BI/P(Sy),  (17.31)

where the SIO K, is defined by (10.4). Note that the inclusion (17.31) for
the right-hand side vector g follows again from Theorem 10.8 and conditions

(17.27).
Now we show that the equation (17.30) is uniquely solvable in the space
B;fpl/ P(S1). To this end we remark that the principal homogeneous symbol

matrix of the operator £ is positive definite for arbitrary = € S, and & €
IR*\{0} due to Lemma 10.7. The basic invertibility property of the operator
rg, L is described by the following proposition.

Lemma 17.5. The operators
rs, £+ [BSEU(S)]IY = (B, (S)]Y, (17.32)
[T (S0)]* = [HE(S)], (17.33)
are bounded for any s € IR, 1 <p < 00, 1< q < 0.

These operators are invertible if the condition (16.15) holds.

Proof. Tt is quite similar to the proof of Lemma 17.2. O

With the help of this lemma and by the arguments employed in the proofs
of Theorems 17.3 and 16.5 one can easily derive the following existence and
uniqueness results and establish the regularity of solutions.
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Theorem 17.6. Let4/3 < p < 4 and let the conditions (17.27) be fulfilled.
Then the nonhomogeneous crack type problem (CR.N),, is uniquely solvable
in the class W, |, (IR ) N SK'(IRY,) and the solution is representable in

the form (17.5), where v is given by (17.29) and ¢ is the unique solution of
the WDE (17.30).

Theorem 17.7. Let the conditions (17.27) and (16.23) be fulfilled, and
let the vector-function U € W;7loc(lR?§1) NSK"(IRY,) be the unique solution
to the problem (CR.N),.

In addition to (17.27),

i) if
F® € B;,(S1), F) —F) € B;,(S),
then
U e H; 1N IRE, ) nSKI(IRY,);
i) if
F(i) € Bts,q(51)7 F(+) - F(i) € Bts,q(Sl)v
then
U e By HIRY ) n SKI(RY,);
iii) if

F® e BLL(S)), FY —F) € BL L (S), for some a >0,

then

Ul € C*(@),

Ulg= € C"(27)NSK"(Q7) with any v € (0,a0), ap := min{a,1/2}.

Remark 17.8. For an arbitrary solution U € W, (IR%,) of the pseudo-
oscillation equation (1.9) there also holds the representation formula by
potential type integrals similar to (17.5) with the densities ¢ and v related
to the vector U by relations (17.6) and (17.7). Therefore, for the crack type
problems (CR.D), and (CR.N). the existence and uniqueness theorems,
and the regularity results analogous to the above ones can be proved with
quite the same arguments (for details see [16]).

18. MIXED INTERFACE PROBLEMS OF STEADY STATE OSCILLATIONS

In this section first we shall prove the existence and uniqueness theorems
for the mixed interface problems for the steady state oscillation equations of
the thermoelasticity theory formulated in Section 7. Afterwards, as in the
previous sections, we shall establish the smoothness properties of solutions.
Throughout this section we shall keep and employ the notations of Section
15.

18.1. Problem (C—DD),. To examine the existence of solutions to the
problem in question (see (7.13)—(7.14)) we shell exploit the representation
formulae (15.61)—(15.62), and use again the Fredholm properties of ¥DOs
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on manifold with boundary described by Lemma 16.1. First, let us note
that the conditions (7.14) on Sy are equivalent to the following equations

UMD — U] = o) — ) UM £ [UPD]™ = o) + () on S,.
According to (7.21) and (7.23) we require that
fW e BLYP(Sy), oF) e BL VP(Sy), FV e B L/P(Sy),  (18.1)
and, moreover,
U —[UP] = f e By ,7(S),

f(l) on Sl)

where f = { o — o) on S (18.2)

Clearly, this last inclusion is the necessary compatibility condition for the
problem (C — DD),.
In view of the third inclusion in (18.1), the vector F") can be extended

from S; onto S preserving the functional space B;;/p(S). Denote some
fixed extension by F©,

F° e B,1/%(S), F°ls, = FW. (18.3)

Evidently, any arbitrary extension F of F(!) onto the whole of S which
preserves the functional space can be represented as

F=F4+¢pc¢ BI;;,/”(S), where ¢ € gpfll)/p(SQ). (18.4)

Now we can reformulate the interface problem (C — DD), in the following
equivalent form: Find a pair of vector functions

UM, U®) = (WhHQ), W, 1,.(2%) NSK(Q?)) (18.5)

Jloc

satisfying the differential equations (7.2) and the interface conditions

[U(l)]+ _ [U(2)]* — f on S, (186)
[BY(D,n) U]~ [BP(D,n)UP)” =F on S, (18.7)
[U(l)]+ n [U(2)]’ =™ + o) on S, (18.8)

where B (D, n) is defined by (1.25), f and F are given by (18) and (18.4),
respectively. Let us note that f and F° are considered now as the known
vector functions on the whole of S, while F' is given only on S; (F|s, =
FOlg, = FM), and ¢*) are given vector functions on Ss.

We look for the solution to the problem (C — DD), in the form (cf.
(15.61)—(15.62))

UM (z) =W (T[FO + o] — T T, &, f) (), (18.9)
U@ (z) = (W(2> +po V<2>) (351 @1 W [F° + ] —
—0, [ VU, @, + 1) f) (2), (18.10)
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where ¢ € B, /?(S,) is the unknown vector-function, and F° and f are as
above. Furthermore, W) and V) are the double and single layer poten-
tials of steady state oscillations, the complex number py and the boundary
operators ¥, ¥;, ®; are defined by equations (13.5) and (15.58), (15.9),
(15.10).

It is easy to verify that the interface conditions (18.6) and (18.7) are
satisfied automatically, since from (18.9) and (18.10) it follows that

[UWF U]~ = £, [BY(D,n) UM =[B®(D,n)UP]~ = FO+¢ on S.
It remains only to satisfy the condition (18.8) which leads to the YDE for
14
BT+ U] =@ U[F* + ] — & T U &5 f+ & U[F° + ¢ —
—[®, T T, B, + I f =) + o) on Sy, (18.11)
which can be rewritten as
rs, [P1 Pl =rs, Kmyp =¢q on Ss, (18.12)

where rg, is the restriction operator on Sy, the ¥DO (of order —1) Kg has
been defined by (15.105), while the given right-hand side ¢ reads as follows

g=2""(e" + 7)) —rs, {, T F—
—[®, T U, &, +27" 1] f} € BL,P(Ss). (18.13)

Due to Lemma 15.14 the principal homogeneous symbol matrix of the
operator Ky = ®; V¥ is positive definite. Therefore, we can apply Lemma
16.1 to study the equation (18.12).

Lemma 18.1. The operators
re, K+ [B3,(S2)]* = [B3E(S2)]", (18.14)
[H3(S2)]" = [H ' (S2)]%, (18.15)

are bounded for any s € IR, 1 <p < 00,1 < q < o0.
These operators are invertible if the condition (16.15) holds.

Proof. The mapping properties (18.14) and (18.15), boundedness and Fred-
holmity of the above operators follow from equations Ky = &, ¥, &; =
271, + KV, @ = [¥, — U, ;' &)=, and Corollary 15.6, Theorem 10.8
and Lemma 16.1 (with x = —1). From the positive definiteness of the
principal homogeneous symbol matrix o (Kg) it follows that the Fredholm
indices of the operators (18.14) and (18.15) are equal to zero.

It remains to prove that the corresponding null-spaces are trivial. To this
end, let us take s = —1/2 and p = ¢ = 2, which meet inequalities (16.15),
and show that the homogeneous equation

rs, Kme =0 on Sy (18.16)

has no nontrivial solutions in the space E;;/Q(SE) = ﬁ;1/2(52).
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Let p € g;;/2(52) be any solution to the equation (18.16) and construct
the vector functions

UM (@) = WO (T ) (), z €, (18.17)
U (@) = (W(Q) + po V(Q)) (9,1 @, W) (z), z€ Q>  (18.18)

Clearly, T ¢ € B;/;(S) and &, @, Wy € B;{;(S). Therefore, by Theorem
10.8 we have

(U5, U37) € (W3(Q"), W3 10c(27) NSKH(Q)). (18.19)

Moreover, these vectors satisfy homogeneous differential equations of steady
state oscillations (7.2) in the corresponding domains Q! and Q2, and the
homogeneous interface conditions of the problem (C — DD),, on S, since

Ws"1E = 0”15, BV, mUs 1S, - [B(DmUs”l5, = ¢ls =0,
U515, +W5™T5, = rss Kt =0 on S5,

These conditions follow from the formulae (18.17), (18.18), definition of
the operator ¥ (see (15.58)) and the fact that ¢ solves the homogeneous
equation (18.16).

Therefore, by Theorem 9.12 we conclude that Uél) =0in Q! and Ué2) =0
in Q2. Whence ¢ = 0 on S follows. Thus, the null-spaces of the operators
(18.14) and (18.15) are trivial in the space B, 5/*(S2) = H, "/*(S2). Now,
Lemma 16.1 completes the proof for arbitrary p and s satisfying the in-
equalities (16.15), and arbitrary ¢ € [1, c0]. O

This lemma implies the following existence theorems.

Theorem 18.2. Let 4/3 < p < 4 and let the conditions (18.1)—(18) be
fulfilled. Then the nonhomogeneous problem (C — DD),, is uniquely solvable
in the class (W, (Q"), WI}JOC(QQ) N SK™(9?)) (with the parameters r and
w as in (15.3)) and the solution is representable in the form (18.9)—(18.10),

where @ is the unique solution of the YDE (18.12).

Proof. First we observe that, if s = —1/p, then the inequality (16.15)
yields 4/3 < p < 4. Therefore, by Lemma 18.1 the nonhomogeneous YDE
(18.12) with the right-hand side ¢ given by (18.13) is uniquely solvable
in the space §11)7;1/ P(Ss). This shows that the nonhomogeneous problem
(C — DD),, is solvable under the conditions indicated in the theorem, and
the pair (UM, U?)) defined by (18.9)-(18.10) represents a solution to the
problem in question.

Further, we prove that the problem is uniquely solvable for any p €
(4/3,4).

Let some pair (UM),U®) e (WH(Q), W, ,.(2%) N SK]*(92?)) (with
the parameters p, r, and w as in the theorem) represents a solution to the
homogeneous problem (C —DD),,. In accordance with (18.6)-(18.7) then we
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have
U~ U5 =0,
[BV(D,mUNE = [BO(D,mUP]5 = F € By, (), (18.20)

[UOF + U]~ =0 on Ss.

Clearly, F' may differ from zero only on the submanifold Ss due to the
homogeneous condition (18.7).

Further, by Theorem 15.8 we conclude that the vector functions U(") and
U®) are uniquely representable in the form

U (z) =wWB (B F)(2), zeQl,
U (z) = (W<2> +po V<2>) (851 @, U F) (), = € Q2

where F' is defined by the second equation in (18.20).
The third equation in (18.20) then yields

7'52ICHF:0 on 52,

where F € E,;,l,/p(Sg) and p € (4/3,4). Therefore, F = 0 on S due to
Lemma 18.1 (with s = —1/p) which implies U*) =0in Q* (p=1,2). O

Now we can formulate the following regularity results.

Theorem 18.3. Let the conditions (18.1), (18), and (16.23) be fulfilled,
and let the pair (UM, UR) = (W (1), W, 1,.(92%) N SK (%)) be the
unique solution to the problem (C — DD),,.

In addition to (18.1)—(18),

i) if
FO e By (S1), o) € Bii'(S), FU € B, (S1), f € Bif'(S),
(18.21)
then
UD,UP) e @Y, BTN nSKI(@Q?); (18.22)
i) if
e B (S1), ¢ € Bt (S:), FU e By (S1), fe BiE(9),
(18.23)
then
U, Uy e BTVNQY, BIE IO nSKMN©Q?);  (18.24)
iit) f

f e c¥(Sy), o e C¥(Sy), F e BEL(S1), feCS), (18.25)
for some a > 0, then

UM, U™) e (C"(@QD), C"(22) NSKM(2%))

with any v € (0,a9), ap:=min{a,1/2}. (18.26)
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Proof. Here it is again verbatim the proof of Theorem 16.5 (see also the
remark after Theorem 16.13). O

18.2. Problem (C — NA),. As in the previous subsection we start
with the reformulation of the problem. In particular, the conditions (7.13)
and (7.15) are equivalent to the following equations

[BY(D,n) UMt — [BP(D,n)UP]” =F on S, (18.27)
U —[U®] = f on S, (18.28)
[BY(D,m) UV + [BP(D,n)UP]” = &+ + 87 on S, (18.29)
where
FO on S, —1 (£) - p-1/
= {@H) - &) on S,. FeB,, "(5), @ €B,, P(52),(18.30)

fi=f+eeBP(S), f2eBLP(S), pe B, P(S:); (18.31)

here f° is some fixed extension of the vector f(!) from S; onto S, preserving
the functional space: f°|s, = f(!), and, therefore, f = f° + ¢ with ¢ as
in (18.31), represents an arbitrary extension of f(!) onto the whole of S:
f|51 = f0|51 = f(l)

Obviously, the inclusion F' € By, 11,/ P(8) is the necessary compatibility
condition for the problem under consideration.

Let us now look for the solution to the problem (C — N'N), in the form
(cf. (15.61)-(15.62))

UD(z) = WD (T F - 00,357 [0+ ¢]) (), (18.32)
U (z) = (W<2> + o V(2>) (3, @, T F —
—®;' (@ T TL B + I][f0 +¢)) (2), (18.33)
where f° and F are the given vector functions on S, while ¢ is the unknown
vector function.

It can be easily seen that the conditions (18.27) and (18.28) are satisfied
automatically, since

U - U =+,
[BY(D,n) UV — [BP(D,n)UP]~" =F on S.
due to the above representations.

It remains only to fulfil the condition (18.29) which yields the following
UDE on S, for the unknown vector :

[BM(D,n)UM]+ + [BE(D,n)UP]~ =
=0 UF -0 U0y, [fO 4]+ T d,' B U F —
—Uy &5 (B, T Uy By + T [0 +¢] = @) +0) (18.34)
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With the help of equations (15.9), (15.10), (15.58) we can simplify this
equation:

re, UL U T g =rg, Kap=¢q on S, (18.35)
where the UDE (of order +1) K¢ has been defined by (15.86), while the
right-hand side vector function ¢ reads as follows

q=2"1(@®M+3)) —rg, {U1 ¥ — 27 ' |[F+Kcf°} € B, }/7(S2). (18.36)

According to Lemma 15.9 the principal homogeneous symbol matrix of
the operator K¢ is positive definite. Therefore, we can again apply Lemma
16.1 to examine the equation (18.35), and employ the same arguments as
in the previous section to prove the following propositions.

Lemma 18.4. The operators

rs, Ka + [BitH(S)]' — (B3 ,(S2)]*, (18.37)
[ (Se)]* — [HE(S2)]Y, (18.38)

are bounded for any s € IR, 1 <p < 00,1 <q < o0.
These operators are invertible if the condition (16.15) holds.

Theorem 18.5. Let 4/3 < p < 4 and let the conditions (18.30)—(18.31) be
fulfilled. Then the nonhomogeneous problem (C—NN),, is uniquely solvable
in the class of vector functions (W, ('), Wp1710c(92) NSK™(Q?)) (with the
parameters r and w as in (15.3)) and the solution is representable in the

form (18.32)—(18.33), where ¢ is the unique solution of the YDE (18.35).

Theorem 18.6. Let the conditions (18.30), (18.31), and (16.23) be
fulfilled, and let the pair (UMD, UP)) € (W}(Q'), W} .(9%) N SK]"(2%))
be the unique solution to the problem (C — NN),.

In addition to (18.30)—(18.31),
i) if
FV e BF(S), U € By, (S1), 8% € By, (S:), F e Bi,(S), (1839)
then there holds the inclusion (18.22);

i) if
FV e BN (S), FY e B; (S), @) € Bj,(S:), F € B,(S),
(18.40)
then there holds the inclusion (18.24);
iii) if
feC(s), FOeBIL(S1), 2 eBIL(S:), FEBLL(S),
(18.41)

for some a > 0, then there holds the inclusion (18.26).

The proofs of the above assertions are verbatim the proofs of Lemma
18.1 and Theorems 18.2 and 16.5.
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18.3. Problem (C —DC),,. In this case the interface conditions read as
follows (see Subsection 7.2):

(1)]+ [u (2)]7 = fi,

[u
(18.42)
NO(D,n)u{VTF — NP (D, n)u{?]™ = Fy on S,
O — [ = FO
u
S - (18.43)
[PO(D, UM —[P (2)(D nUP"=F" on 8,
Mt =3, W®]" =) on S, (18.44)
where
fie BioVP(S), Fye By/P(S),
@(i) — ((pgi) (i),(pgi)) €[B 171/1)(52)]3, (18.45)

IO =15 £ € By, PSP,
FO = (R Y EO)T € (B3 (1)

Let FO = (F9, F9, F)T be some fixed extension of the vector F(!) from S
onto Sy preserving the functional space, i.e.,

F° ¢ [B, /P (S)P, F°ls, = F. (18.46)

Then an arbitrary extension of F® onto the whole of S preserving the
functional space can be written as follows

F=(R,RF) =F +3¢c[B, 9P, (18.47)
where @ is an arbitrary vector function with the support in Ss, i.e.,
= (p1.02,05)" € B, /7(S2)I". (18.48)
Next we set
F=(F, - ,F)" =F +ype[B1/PS3)", (18.49)
where
FO=(F° Fy)" €[B;}/P(S)* (18.50)

is the given vector function, and
e = (3,0 €[B,2/"(S)]* (18.51)

with @ subjected to the condition (18.48).
It is easily seen that the conditions (18.42)-(18.44) are equivalent to the
equations

UM —[UP]"=f on S (18.52)

BW(D,n) UMD — [BO(D,n)UP]7 =F, on Si, k=1,2,3, (18.53
k k

BW(D,n)UMF = [B®(D,n) U] = F; on S, 18.54
4 4

[U(l)]fér + [U(2)]k = 4,05c ) + go,(e ) on Ss, k=1,2,3, (18.55)
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where f is the given vector function

F) T n
F=f, )7 ::{ %H;J})@(_),ﬂ)T zn g; (18.56)

satisfying the following necessary compatibility condition (cf. (7.25))
f € 1B, P (9", (18.57)

P.p
and F, and @* are as above.

After this reformulation of the problem in question let us look for the
solution in the form (18.9)-(18.10), where f, F°, and ¢ are defined by
formulae (18.56), (18.50), and (18.51), respectively. These representations
imply

U - U] =,
[BY(D,n) UV — [BP(D,n)UP]™ = F* + .

Therefore, the conditions (18.52), (18.53), and (18.54) are satisfied auto-
matically. It remains to meet the conditions (18.55) which, by virtue of
(18.11) and (18.12), lead to the system of WDEs for the vector function
v =(%,0)" on Sy:

rs, [P1 ¥l =rs, (Ka)kjejl =q on S, k=1,2,3, (18.59)

where the summation over the repeated index j is meant from 1 to 3, and
(see (18.13))

(18.58)

o =27 + ) —rs, {81 W FO-

— [ WUy &, + 271 1] 1y, € BLVP(Sh); (18.60)
here K is again the ¥DO of order —1 defined by (15.105) with properties
described by Lemmata 15.14 and 18.1.

Let

EH = [(ICH)kj]3><37 k:] = 172737 (7:: (q17q27q3)T' (1861)
Then (18.59) can be written in the matrix form as

re, Ku@ = q (18.62)
where @ = (1,92, 03)" € [Ep_,zl,/p(sg)]B is the sought for vector.

The following properties of the ¥DO Kg are immediate consequences of
Lemmata 15.14 and 18.1.

_Lemma 18.7. The principal homogeneous symbol matriz of the operator
Ky is positive definite for arbitrary x € S and € € IR?\ {0}. The following
operators

re, Kir + [B3,(S2)]® = [B3E(S2)P?, (18.63)
[H3(S2)) = [H ' (S2)P, (18.64)
are bounded for any s € IR, 1 <p < 00, 1< q < 0.
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These operators are invertible if the condition (16.15) holds.

Proof. The first assertion of the lemma follows from the proof of Lemma
15.14 (see (15.106)—(15.107)), since 0(Kpg) = X, where X is the positive
definite 3 x 3 matrix given by formula (15.107) (for arbitrary x € S and
£ € R?\ {0}).

The boundedness of the operators (18.63)-(18.64) is a consequence of
Lemma 18.1.

It is evident that the Fredholm indices of these operators are equal to
zero. This follows from the positive definiteness of the principal symbol
matrix O’(IEH). Therefore, to prove the last proposition of the lemma, we
have to show that the corresponding null-spaces are trivial for any s and p
satisfying the inequalities (16.15).

Again, we take s = —1/p and p = ¢ = 2 to prove that the homogeneous
UDE

re, Ku@ =0 (18.65)

has no nontrivial solutions. Let @y = (@01, P02, P03) € [ 1/’)(S2)]
any solution to the equation (18.65) and using the formulae (18.17) and
(18.18) construct the vector functions Uél) and Ué2), where the density ¢
is represented as follows

0= ($0,0)7 € [Bs,/*(S2)]".

Therefore, the inclusion (18.19) remains valid, and, moreover, U ) and U0
satisfy the homogeneous interface conditions (18. 52) (18.55):

vt =P on S,
BY(D,n) UMV — [BA(D,n) U] = por, on Sy, k=1,2,3,
BY(D,n)UMF = [B@Q(D,n)UP]; =0 on S,

[
[
[
O+ 10T = [rs, @1 Pl =[re, Ku @l =0 on Sy, k=1,2,3.

Due to Theorem 9.12 we infer Ué“) in Q* (u = 1,2), which, in turn, yields
that por = 0, ¥ = 1,2,3. Thus the null-spaces of the operators (18.63)-
(18.64) are trivial in the spaces By 5/*(S2) = H, /?(S»). Now Lemma 16.1
completes the proof. O

This lemma implies the following existence and regularity results.

Theorem 18.8. Let 4/3 < p < 4 and let the conditions (18.45), (18.57)
be fulfilled. Then the nonhomogeneous problem (C — DC),, is uniquely solv-
able in the class of vector functions (W, (Q'), W ,,.(2*) NSK*(2?)) (with
the parameters r and w as in (15.3)) and the solution is representable by
formulae (18.9)~(18.10), where f, F°, and ¢ are given by (18.56), (18.50)

and (18.51), respectively, and @ is the unique solution of the ¥DE (18.62).
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Theorem 18.9. Let the conditions (18.45), (18.57), and (16.23) be
fulfilled, and let the pair (U, UR) € (WE(Q'), W} 1,.(9%) N SK" (%))
be the unique solution to the problem (C — DC),, .

In addition to (18.45), (18.57),
i) if
fre BiH(S), Fue By (S), @) € [Bii'(S2)P,

,loc

~ ~ 18.66
Fo e (B (sr, FO e Brsor, femgon, 0
then there holds the inclusion (18.22);
i) if
f4 € BS+1(‘?)? F ng(S)a (’)b/(i) € [Bts,jt;l(52)]317 (1867)
FO e B (SOF, FU € [B; (S0P, fe[Biy' (S
then there holds the inclusion (18.24);
iii) if
« a—1 (%) «a 3
f4 E C (S)a Fy e Boo,oo(S)a 4 € [C (52)] ’ (1868)

fO e [C(S)P, FO e BL LSO, fel[CH (9]

for some a > 0, then there holds the inclusion (18.26).

The proofs of these theorems are again verbatim the proofs of Theorems
18.2 and 16.5.

18.4. Problem (C — NC),. The investigation of this problem can be
carried out by quite the same approach as in the previous subsection. The
interface conditions of the problem now have the following form:

(1)]+ [ ]7 = fi,
AD(D, n)uiPTH = N2 (D, n)u{P]” = Fy on S,
uMF — [w®]” = ),

(18.69)

[u
[
[ (18.70)
[PO(D,n) UM — [PP(D,n)UP]~ = FD on S,
[PO(D,n) UM =) [PO(D,n)UP]" =3, on S,,(18.71)
where
f1€ By, '"(S), Fye Byy/"(9),
3 = (2", 80", 8(9)T € (B, 17 (S,)F,
fo (f“) £ BT € By P (S,
) — (F! (1) F(l) F( )) €[B ;})/p(sl)]s_

(18.72)

Let 0 = (9,19, f9)T be some fixed extension of the vector f(1) from S
onto Sy preserving the functional space, i.e.,

P eBLYPSP, Pls, = F. (18.73)
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Again an arbitrary extension of f(l) onto the whole of S preserving the
functional space can be represented as the sum

F=Ufof)T =P+ BLYPS)P, fls, = s, = fY, (18.74)

where @ is an arbitrary vector function supported on S

&= (p1,02,03)" € [By, 7 (S). (18.75)
Further, let us introduce the notations
— T ._ 40 1-1 4
F= (i )=+ eB (9], (18.76)
where

=" elB S (18.77)

is the given vector function, and
p:=(3,0)" €[B},/7(S)]" (18.78)

with @ subjected to the condition (18.75).
Next we reduce the conditions (18.69)-(18.71) to the following equivalent
equations

[BY(D,n) U - [BA(D,n)UP]" =F on S, (18.79)
U —[U®]y = f1 on S, (18.80)
[UO]F = U], = fr, on 81, k=1,2,3, (18.81)
[B(l)(D,n)U(l)]z + [3(2) (D,n)U(Q)],; =
=P +37 on Sy, k=1,2,3, (18.82)
where F' is the given vector function
FM )T on S
F=(R, - F)T =] EF) b 18.83
(B, Fa) { (@) — o) F)T on S, (18.83)
satisfying the necessary compatibility condition (cf. (7.26))
F e B, 7S, (18.84)

and fi and ®* are as above.

Now we look for a solution to the reformulated problem (18.79)-(18.82) in
the form (18.32)-(18.33), where the density vectors f°, F', and ¢ are defined
by formulae (18.77), (18.83), and (18.78), respectively. By virtue of these
representations we have

U —[UP]™ =2+,
[BY(D,n) UM — [BP(D,n)UP]” = F.

Therefore, the conditions (18.79), (18.80), and (18.81) are fulfilled auto-
matically. The remaining conditions (18.82), in accordance with the equa-
tion (18.34), lead to the system of WDEs for the unknown vector function

(18.85)
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v =(%,0)" on Sy:
s, [0 WUy &5 )y = rs, [(Ka)rj ¢j] = qx on S, k=1,2,3, (18.86)

where Ko = —¥ ¥ U, <I>2_1 is the same ¥DO of order +1 as in Subsection
16.2 (see also (15.86)), the summation over the repeated index j is again
meant from 1 to 3, and (see (18.36))

g =271 (@ + 7)) —rg, {[U1 ¥ — 27 1] F 4+ K¢ f}i €

€ B, /7(Ss), k=1,2,3. (18.87)
Next we set
IEG = [(’CG)kj]3X37 ka] = 172737 q:: (q17q27q3)—r' (1888)
The system (18.86) can be then rewritten in the matrix form as follows
rs.Ka® =1 (18.89)

where @ = (1,92, 03)" € [E;;,l/p(Sg)]3 is the sought for vector function.

_Lemma 18.10. The principal homogeneous sgmbol matriz of the operator
K¢ is positive definite for arbitrary x € S and & € IR?\ {0}. The operators

rs, K = [BSEU(S)P — (B (o), (18.90)
[T (S2)]P — [H3(S2)P, (18.91)

are bounded for any s € IR, 1 <p < 00, 1 < q < 0.
These operators are invertible if the condition (16.15) holds.

Proof. 1t is quite similar to the proof of Lemma 18.7 and follows from
Lemmata 15.9, 18.4, and 16.1. g

With the help of this lemma one can easily derive the following exictence
and regularity results.

Theorem 18.11. Let 4/3 < p < 4 and let the conditions (18.72) and
(18.84) be fulfilled. Then the nonhomogeneous problem (C—NC),, is uniquely
solvable in the class of vector functions (W, (Q'), W, (Q%) N SKT"(2%))
(with the parameters r and w as in (15.3)) and the solution is representable
by formulae (18.32)-(18.33), where F, f°, and ¢ are given by (18.83),
(18.77) and (18.78), respectively, and @ is the unique solution of the VDE

(18.89).

Theorem 18.12. Let the conditions (18.72), (18.84), and (16.23) be
fulfilled, and let the pair (UMD, UR) € (W}(Q'), W} .(9%) N SK]" (%))
be the unique solution to the problem (C — NC),.

In addition to (18.72), (18.84),

i) if
fo € B{TU(S), Fie By (S), %) €[Bf,(S:)P,
O e BITH(SYP, FW e (B, (SO, F € [Bg,(S)*
then there holds the inclusion (18.22);

(18.92)
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i) if
f’:fl € Bf,;l(‘?)a F, e ?f,q(s)a (i(:t) € [Bg,q(s2)]37
e [B (S0P, FU e By, (S)P, Fe[B,(9),
then there holds the inclusion (18.24);
iii) if
f1 €CY(S), Fye BLL(S), ®%) € [BLL(S:)P,
FWe[C(SyP, FW e [ByL L (SO, F e [BL LN,

,00
for some a > 0, then there holds the inclusion (18.26).

The proofs of these propositions are again word for word of the proofs of
Theorems 18.2 and 16.5.

18.5. Problem (C — G),. The interface conditions of the problem
(C — G). read as (see Subsection 7.2):

(18.93)

(18.94)

w1t — W)™ = fi, 595)

AO(D,n)u"T = A (D, n)u]” = Fi on S, '
I+ _ 1,271 — f(l)

u U = ,

S - (18.96)

[PO(D,n) UMD — [P (D,n)UP]~ = FO) on S,

[u® - n]* —[u® 0]~ = £,

PO(D,n)UD - n]* — [PA(D,n)U? -n]~ = F?,
[P(l)(D,n)U(l) X l]+:(i>l(+), [P(l) (D,n)U(l) . m]+ :(i)grj‘), on 527(1897)
[

PAOD,n)UD - 1]- =37, [PO(D,n)U? -m]- =3\,
where the boundary data belong to the following natural spaces

FO =, 50, BT € By PSP, fa € By (),
FO = (R, BV FT € (B, (8P, Fi € By/”(5),  (18.98)
3%, 85, B € Byy/"(8:), £ € By (Sy),

These interface conditions imply that the vector function

(ﬁ(l),F4)T on Si,
= ~ . - ~ ~ T 18.99
([@,(*)—<I>§*)]l+[<1>£,$>—¢>£;>]m+F,S2>n,F4) on S, (18.99)
represents the difference [B() (D, n)UM]+ — [B®)(D,n)UP]~ on S, and,
therefore, we assume the following natural compatibility condition (cf.

(7.28))
F=(F,--,F)" €[B;}P(9))" (18.100)

p.p
Analogously, the function
- {fu).n on S,

n ‘= 18.101
f n on 52, ( )
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represents the difference [u(") -n]t — [u® -n]~ on S, and, we again provide
the natural compatibility condition

fn € BLVP(S). (18.102)
Further, let us represent the boundary vector functions f(l) in the form
FO = FD 14 fDm 4 fDp ons,, (18.103)

where
f0 = fO g fD = O, fD = fO (18.104)

We denote by f}o) and ﬂ,? some fixed extensions of the functions ﬂl)

and ﬂnl) from S; onto S preserving the functional space. Then arbitrary
extensions can be represented as

=70 +0, fn=79 +om, (18.105)
where
Fis B, Fons TS € f?;,;”p(sx 21, om € By 2P (S2),
/i " P
fils = FOs, = 1 Fanlse = )50 = £

Clearly, here ; and ¢,y are arbitrary scalar functions of the space Bp pl/ P(S,).
Finally, let us set

F=f o ) =+ e BV F=(fifo. )7, (18.107)

where fy is the same function as in (18.95), while

(18.106)

=014 FOm+ fun, )7 € [BLVP(S) (18.108)
o= (pil+pmm, 0) €[BL,17(S2)] (18.109)

here f(©) = ]?(0 [+ O m+ fon and f, is given by (18.101).
It can be easily seen that (see (18.101) and (18.103))

fls, = fOls, = f on 8, (18.110)
fonls, =9 nlsg, =fun=F? on S. (18.111)

Now we are able to reduce the interface conditions (18.95)-(18.97) to the
following equivalent equations in terms of the above introduced functions:

[B<1>(D n) UMW — [BA(D,n)UP]” =F on S, (18.112)
(UMD — [0y = f4 on S, (18.113)
[UO — U, = fi, £=1,2,3, on Sy, (18.114)
[ - n]t —[u® -n]" =f-n on S, (18.115)
[POD, )TV - * + [PA(D,n)U? 1] =37 + &) on S,, (18.116)
[P“)(D,n)U(l) m]T+[PP(D,n)U? -m]” =3 + &) on S, ,(18.117)

where F, f, and f;, are given by (18.99), (18.107)-(18.109).
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After this reformulation we look for the solution of the problem under
consideration in the form (18.32)-(18.33), where now F and f° defined by
(18.99) and (18.108) are the given vector functions on S, while the vector
function ¢ given by (18.109) is unknown. We observe that the conditions
(18.112), (18.113), (18.114), and (18.115) are satisfied automatically, since
the repesentations (18.32)-(18.33) yield

U =P =+, ( )
18.118
[BY(D,n) UM — [BP(D,n) U]~ = F.

It remains only to meet conditions (18.116) and (18.117) which lead to the
following system of ¥DEs on Sy for the unknown functions ¢; and ¢, (see
Subsection 15.2, formulae (15.73), (15.74))

[PO(D,n)UD -] + [PA(D,n)UP 1]~ =
= [BY(D,n)UD . 1*]t + [B®(D,n)U? . "]~ =
=[O UF - T, TU, &5 (O + )] - 1* +
[T BT F — Uy &1 (D, T, &5 + 1)(fO 4+ )] - 1* =
= B + 8,

[PO(D,n)UY )t + [PO(D,n)UP -m]” =
= [BYD,n)UY - m*|* + [BP(D,n)U? -m*]~ =
=T UF -0, TUy &, (0 + )] -m* +
TP, BT F — Uy &, (B, T T, B, + 1)(f0 4+ )] -m* =
= o0 + 8,

where I* = (I1,15,13,0)T and m* = (m,ms, ms3,0)" are the 4-vectors in-

troduced in Section 14 (see (14.48)).
With the help of (15.80) we arrive at the system of equations

s, Ka (o™ + omm™) -m* = gm,
where the YDE K¢ is defined by (15.86), and
g =21 +37) — re, {U, ¥ — 271 F+
+Ka f°} - 1* € Byy/"(Sa),
G =271 + 34)) — rg, {T, U — 2711 Ft
+Ka f°} -m* € Bpy/"(Sh).

Now, taking into account the formula (15.85), we can rewrite the above
system in the matrix form

rs, Mgh=g¢g on Ss, (18.121)

rs, Ka (¢id* + omm*) -1* = qi, } on S, (18.119)

(18.120)

where g = (q,qm)" € [Bp_,zl,/p(Sg)]2 is the given vector on Sy, and h =

(o1, 0m)" € [E;,‘pl/”(s2)]2 is the unknown vector. Due to Lemma 15.9
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the principal homogeneous symbol matrix of the ¥DO My is positive defi-
nite. Therefore, by quite the same arguments as in the previous subsections
and invoking Theorem 9.12 and Lemma 16.1, one can prove the following
propositions.

Lemma 18.13. The operators
re, Mg+ [BitH(S2)]? — [Bs,(S2))?, (18.122)
[HSHY(So)]? — [H3(S:)]?, (18.123)

are bounded for any s € IR, 1 <p < 00, 1 <q < o0.
These operators are invertible if the condition (16.15) holds.

Theorem 18.14. Let 4/3 < p < 4 and let the conditions (18.98),
(18.100), and (18.102) be fulfilled. Then the nonhomogeneous problem (C —
G).o is uniquely solvable in the class of vector functions (W, (Q'), WI} e ()N
SK™(02)) (with the parameters v and w as in (15.3)) and the solution is
representable by formulae (18.32)—(18.33), where F, f°, and ¢ are given
by (18.99), (18.108) and (18.109), respectively, and (o1, om) ' is the unique
solution of the YDE (18.121).

Theorem 18.15. Let the conditions (18.98), (18.100), (18.102), and

(16.23) be fulfilled, and let the pair (UMD, UR) € (W)(Q'), W} (%) N
SKT'(0?)) be the unique solution to the problem (C — G).,.
In addition to (18.98), (18.100), (18.102),
i) if
fa € Bs+1(S), Fy € B ,(9),
FE FB #E ) ¢ £(2) 541
p 1 o s+1F 3 ~( 2), fn B;m (S2), (18.124)
f( Ve BT (S0, € [Bf (5],
Fe B, (S, fne Bs+1(5),
then there holds the inclusion (18.22);
i) if
Bsgl ) F4 € B (S)
ﬂ:) £) 7(2) s+l
T o § BL‘J(S2) f” € By (S2), (18.125)
f() € [Bi, ( ol%, € [Bi (SO,
F e By, (S, fn EBSH(S),
then there holds the inclusion (18.24);
iii) if
f4 € Ca(S)a Fy € Bgojolo(s)a
&E) FE 72 a—1 £(2) o
(I)l , P, Fr € Boo,oo(SQ)’ m’eC (52), (18126)

FO ecSnP, FY e [BEL(S)P,
F e [BL L), faeC(S),

for some a > 0, then there holds the inclusion (18.26).
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18.6. Problem (C —H),. Again we start with the reformulation of the
original interface conditions (see Subsection 7.2):

w1 — W1 = fa, s
18.127

MO (D, n)ulVTH = AO(D,n)u{?]” = Fy on S,

( 2)71- — f

u u

T = e - (18.128)

[PO(D, n)UNF —[PP(D,n)UP]” =F on S,

u“) ]t —[u® - = £,

[

[PO(D,n) UM . n]+ [P®(D,n)UP -n]- =F?,
[u(l) l]+—(p( ) [u(1) ]+_¢(+)

[w® 1)~ = >, [w® . m]~ =34,

on S», (18.129)

where
7O =01 B, £)T € By (S0P, fu€ Byt (S),
FO = (FO Y EONT ¢ [ByAP (S0P, Fie Bya/P(S),  (18.130)
(pl(ﬂ:), "’(:l: f(? c Bl 1/p(52) F( ) c B 1/p(52).

The vector function
f {(fl f4)T on Sl,

- ~( v T 18.131
([%H) ]H‘[ ) @gﬂ)]m_‘_ﬂf)nafél) on Sy, ( )

represents the difference [U(V]+ — [U(®]~ on the interface S, and, therefore,
we require the natural compatibility condition (cf. (7.28))
f=(fu f)T €BGPS)]" (18.132)

Moreover, the function

~ {ﬁ(l)n on Sl, (18133)

F, = ~
Fy(f) on 52,

corresponds to the difference [P (D, n)UM -n]* — [PP)(D,n)U® -n]~ on
S, and, we again assume the natural compatibility condition

F, € B;}/7(S). (18.134)
Next, let us represent the boundary vector function FO in the form
FO=FY 14 FOm+ FDn on S, (18.135)
where
EW =FO .1 FO = FO . FOD = FO) g, (18.136)

Denote by 1:;[(0) and 1?}(,? ) some fixed extensions of the functions ﬁ'l(l) and
A

from S; onto Sy preserving the functional space. Arbitrary extensions
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then can be represented as

B=F"+¢, Fn=F9 +0,, (18.137)
where
B, B, F, B € Boy/"(S), o, om € Byy/"(S2),
= 'm0 5O _ F) (18.138)
‘Fl|51:}71 |51:F}7 F|1_F |1—m-
Obviously, here ¢; and ¢, are arbitrary functions from gp_ ;/ P(Sy).
Further, we set
F= (R, ,F))  =F+pe BP9, F=(F,FF)", (18.139)
where F} is the same function as above, while
FO = (FO U+ FOm+ Fyn, Fy)T € [B/P(S)] (18.140)
with
p=@l* +pmm* = (ol +pmm, 0) € [B,1/7(S:)]". (18.141)

Moreover, FO) = ﬁl(o) l-l-l?}(,?) m+F, n, the function F, is given by (18.133),
and the 4-vectors [*, m*, and n* are defined by (14.48).

We note that (see (18.135))

Fls, = ~(0)|5 =F® on Sy,
(18.142)
Fn|5 = FO n|5 —Fn—F()onsg.

Now we can easily see that the original interface conditions (18.127)-
(18.129) are equivalent to the equations:

[UWF — U]~ =f on S, (18.143)
[BY(D,n) UM — [BP(D,n)UP]; =F4 on S, (18.144)
[BO(D,n) UM - [BO(D,n)UP]; = F,on Sy, k=1,2,3, (18.145)
[BY(D,n)UD - n*|F — B (D, n)UP -n*]~ = F-n* on Sy, (18.146)

1 * 2 *]— ~(+ ~(—
L N U L N BN S (18.147)
U me )+ U] =G + B,
where f and F' are given by (18.131) and (18.139), respectively.
Let us look for the solution of the reformulated problem in the form
(18.9)-(18.10), where now f, F°, and ¢ are defined by (18.131), (18.140),
and (18.141). These representation formulae imply

W — U@ = f, [BYD,n) U — [BA(D,n)UP]” = F° + ¢,

which show that the conditions (18.143)-(18.146) are satisfied automatically.
The remaining conditions (18.147) yield the following system of ¥DEs
on Sy for the unknown scalar functions ¢; and @, (see (18.11))

rs, &1 U - I* = g,
e mr e [ o0 S (18.148)
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where

@ =2 +oi7) -

— 15, {®1 U FO — [ U0 + 27 1] £} - 1%,
gm =271 (o) + o)) -

—rg, {®) WFO — [®, U 0,5 +2711] f} -m*.

(18.149)

In accordance with the formula (15.104) this system can be written also

as
rs, Mph=g on Ss, (18.150)
where g = (q1,qm)" € [Bll,;,l/p(52)]2 is the given vector on Sz, and h =

(o1, 0m) " € [E;ll)/p(52)]2 is the unknown vector.

By virtue of Lemma 15.14 the principal homogeneous symbol matrix of
the ¥DO My is positive definite which together with Theorem 9.12 and
Lemma 16.1 implies the following existence and regularity results.

Lemma 18.16. The operators

rs, Mg+ [Bs ,(S2)]? — [BiH1(S2)P?, (18.151)
[HE(S2)]? — [H(S2))?, (18.152)

are bounded for any s € R, 1 <p < 00, 1< q < 0.
These operators are invertible if the condition (16.15) holds.

Theorem 18.17. Let 4/3 < p < 4 and let the conditions (18.130),
(18.132), and (18.134) be fulfilled. Then the nonhomogeneous problem (C —
H)., is uniquely solvable in the class of vector functions (W, (Q'), WI}JOC(Q2)F‘|
SK™(Q?)) (with the parameters r and w as in (15.3)) and the solution is
representable by formulae (18.9)—(18.10), where f, F°, and o are given by
(18.131), (18.140), and (18.141), respectively, and (o, pm)" is the unique
solution of the YDE (18.150).

Theorem 18.18. Let the conditions (18.130), (18.132), (18.134), and

(16.23) be fulfilled, and let the pair (UM, UP) € (WL(QY), W 10e(22) N
SK*(02)) be the unique solution to the problem (C —H),,.
In addition to (18.130), (18.132), (18.134),
i) if
fa € BiT'(S), Fi€ B,(S),
~(+) ~(+) F2 s =(2 s
801( g Qﬁgn)a fi2) e B;{'(Ss), F? e B; 1(S2), (18.153)

FO e B (S0P, FW € [Bfy(S)P,

fe B (9N, Fu € B} y(S),

then there holds the inclusion (18.22);
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f1€ BiiN(S), Fie Bi,(S),

20, ow), I € BiiN(S:), FP € B (S),
FO e BT (SHE, FO e [B,(S1)P,
FEeBIF (SN, F. € B;,(9),

then there holds the inclusion (18.24);
iii) if

(18.154)

fa € C*(S), Fy € Bgojgo(S),

2, g, 1) € 0(Sy), FY € BEL(Se),
FU e e (S)P, FY e [BL LS,
felCc(s), F, e BLL(S),

for some a > 0, then there holds the inclusion (18.26).

(18.155)

19. MIXED INTERFACE PROBLEMS OF PSEUDO-OSCILLATIONS

The mixed interface problems for the system of pseudo-oscillation equa-
tions are investigated by the approach developed in the previous section. In
this case we have to apply the “explicit” representation formulae (14.24)—
(14.25), obtained for the solution of the basic interface problem (C);, to re-
duce the mixed interface problems to the corresponding YDEs. For illustra-
tion of the method in this section we consider only the problems (C — DD),
and (C — NN);. The other mixed problems of pseudo-oscillations can be
studied quite analogously.

19.1. Problem (C — DD),. Let S, Si, and S3, be the same as in
Section 18. The original formulation of the problem (C — DD). is the fol-
lowing (see Section 7): Find the pair of vector-functions (U™, U®)) ¢
(W, (Q"), W, (Q)) satisfying the differential equations

AW(D AU =0in QW p=1,2, (19.1)

and the mixed interface conditions on S
O - ] = f,

19.2
[BY(D,n) UMt — [BD(D,n) U]~ = F on S, (19-2)
OO =™, [UP]7 =9 on Sy (19.3)
moreover, U satisfies the decay condition (1.30) at infinity.
Here p > 1 and
f(l) — f(l), ,f(l) T c Blfl/p S ,
( 1 4 ) p,p ( 1) (194)

F(l) = (Fl(l)a t 7F4(1))T € B;;/p(sl)a
P = (o) T e By LY(Ss). (19.5)
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Further, we assume that the vector function

M on Si,

meets the necessary compatibility condition

feBIYP(S). (19.7)

Next, denote by F° € B, 11,/ ?(8) some fixed extension of the vector function
F® from the submanifold S; onto the whole surface S (i.e., F0|g, = F(!)
on Sy).

Evidently, an arbitrary extension (preserving the functional space) can
be then represented as

F=F"+¢peB,l/*S9), (19.8)

where ¢ = (@1, - ,p4)" € E;;,/p(52) is an arbitrary function supported
on ?2.

Now we can reformulate the interface conditions (19.2)-(19.3) in the fol-
lowing equivalent form:

[UOF —[UP]~=f on S, (19.9)
[BY(D,n) UM — [B®(D,n)UP]” =F on S, (19.10)
[UOTF + U] =) + ) on S, (19.11)
where B (D, n) is defined again by (1.25), and f and F are given by (19.6)

and (19.8), respectively.
Let us now look for the solution (U"),U(?) to the problem (C — DD),
as follows (cf. (14.24)—(14.25))

U (@) = VI ()T N (F + ) + Moy f]) (), @ €0, (19.12)
U (@) = Vi (D) N (F + ) = N f]) (), @ € 0%, (19.13)

where ¢ € E;;/p(Sg) is the unknown vector function, W and V") are the
double and single layer potentials of pseudo-oscillations (see (11.1)—(11.2)),

the boundary operators 7—[5“), N:, Ni,-, and N> ; are the same as in Section
14 (see (14.12)). Note that here and in what follows we keep all notations
of Sections 11 and 14.

One can easily check that the interface conditions (19.9) and (19.10) are
satisfied automatically, since (19.12) and (19.13) together with (14.12) imply

U - U =,
[BY(D,n) UV — [BP(D,n)UP]~ =F° +¢ on S.

It remains only to fulfil the condition (19.11) which yield the ¥DE for the
unknown vector function ¢

rs, N1 o=¢q on S, (19.15)

(19.14)
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where rg, is again the restriction operator on Sa, the right-hand side vector
q is given by

q=2"1(p"M + o) —rg, NP FO+ 27N (Nor —N12) f] € BEYP(S0).
The operator rs, N.=! possesses the following properties.

Lemma 19.1. The operators
rs, NoU e (B (S — (B (S:)]' (19.16)
[H5(S2)]* = [Hy T (S)]*, (19.17)

are bounded for any s € IR, 1 <p < 00, 1 <q < 0.
These operators are invertible if the condition (16.15) holds.

Proof. Due to Theorem 11.3 and Lemma 14.2 we conclude that the map-
pings (19.16)-(19.17) are bounded and that their Fredholm indices equal
zero, since the principal homogeneous symbol matrix of the operator A ~1
is positive definite for arbitrary z € S and fNE IR?*\ {0}. It remains to prove
that the corresponding null-spaces are trivial, i.e., we have to show that the
homogeneous equation

rs, N Lo =0 on S, (19.18)

has only the trivial solution in the spaces Ef,’q(Sg) and fI;(SQ) with s and
p satisfying the inequalities (16.15). We again consider the particular case
s = —1/2 and p = ¢ = 2 for which the condition (16.15) is fulfilled. Further,
let p € E;;m(SQ) = fI;l/2(SQ) be some solution to the equation (19.18),
and construct the potentials:

U (@) =V (D) TN p) (1), w el (19.19)
U (z) = V@ ((H@)*lj\/;l ¢) (z), z€ Q% (19.20)

Theorem 11.3 implies that the pair (U(l),U@)) represents a solution to
the homogeneous problem (C — DD), in the space (W3(Q'), W1(Q?)).
By Theorem 8.6 we then conclude U™ = 0 in Q*, p = 1,2, whence
[BW(D,n)UMD]F—[B®(D,n)UP]~ = ¢ = 0 follows. Therefore, the above
homogeneous equation has no nontrivial solutions in the space E; ;/ > (S2).
Now Lemma, 16.1 completes the proof. a

Theorem 19.2. Let 4/3 < p < 4 and let the conditions (19.4), (19.5),
and (19.7) be fulfilled. Then the problem (C — DD), is uniquely solvable in
the class (W, (Q'), W) (2?)) and the solution is representable in the form
(19.12)—(19.13), where ¢ is the unique solution of the YDE (19.15).

Proof. First we note that the condition (16.15) with s = —1/p implies the
inequality 4/3 < p < 4. Next, Lemma 19.1, with s = —1/p and 4/3 <
p < 4, shows that the YDE (19.15) is uniquely solvable. This together
with the representation formulae (19.12)-(19.13) yields the solvability of the
nonhomogeneous problem (C —DD); in the space indicated in the theorem.
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It remains to prove the uniqueness of solution for 4/3 < p < 4. Let
W, U@y e WLHQL), WE(Q?) be some solution of the homogeneous
problem (C — DD),. Clearly, then [UM]+ [UP]~ € Bp,"(S) and
[BO(D,n)UD]*, [B®(D,n)UP]|~ € B, +/*(S). In addition, f :=[UMD]+—
[UP)]~ =00n S and F := [BM(D,n) UMD+ ~[B®(D,n)UP]~ =0on S,.
Therefore, F' € E;},/p(&). Due to Theorem 14.6, such solution is uniquely

representable by formulae (14.24)—(14.25) which in the case in question read
as

U (z) = v ((H@)*l/\/;l F) (x), z€Q, p=1,2,  (19.21)

with F € By /7(Ss).
The homogeneous versions of the conditions (19.2)-(19.3) (i.e., (19.9)-
(19.11)) then shows that F' has to satisfy the equation

rs, Ny F =0 on So,

from which F' = 0 on S, follows for arbitrary p € (4/3,4) due to Lemma
19.1. Therefore, U*) = 0in Q* (u = 1,2) in view of (19.21). This completes
the proof. O

The next theorem deals with the smoothness of solutions to the mixed
interface problem (C — DD),.

Theorem 19.3. Let the conditions (19.4), (19.5), (19.7), and (16.23) be
fulfilled, and let the pair (UM, U?) € (WHQL), WL(Q?)) be the unique
solution to the problem (C — DD),.

In addition to (19.4), (19.5), (19.7),

i) if conditions (18.21) are satisfied, then

U, UR) e @Y, 1T @));
ii) if conditions (18.23) are satisfied, then
UM, U) e (BN @Y, B 92);
iii) if conditions (18.25) are satisfied for some a > 0, then
UM, u®) e (@), C(@2))

with any v € (0,a0), o := min{«,1/2}.

Proof. Tt is verbatim the proof of Theorem 16.5. d
19.2. Problem (C — NN),. The original interface conditions for the
problem (C — NN); read as

[U(l)]+ _ [U@)], — f(l),
[BY(D,n) UM — [B®(D,n)UP]” = FY on S,
[BY(D,n)UMT = &) B (D,n)UP]~ = &) on Sy, (19.23)

(19.22)
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where
f(l) e B;;l/p(Sl), FO ¢ Bp_;,/p(Sl),
7 ’ (19.24)
+ + -
¢ = (27, @[T € B, }/7(S,).
We require that the vector function
F on Si,
_ { 20 s B (19.25)
satisfies the necessary compatibility condition
F € B, /7(S). (19.26)

Denote by f° € B;,;,l/p(S) some fixed extension of the vector function
f® from the submanifold S; onto the whole surface S. Then an arbitrary
extension preserving the functional space is represented by formula

f=r"+peBLS), (19.27)
where p € By, /7 (S,).

Next, we again reduce the above original interface conditions (19.22)-
(19.23) to the equivalent equations:

[BY(D,n) UM — [BP(D,n)UP]" =F on S, (19.28)

O — [P~ =f on Sy, (19.29)

[BY(D,n) UMt + [BP(D,n) U]~ = &) + 8 on S,, (19.30)
where F' and f are given by (19.25) and (19 7) respectively.

Further, we look for the solution (U(1),U(?)) to the problem (C — N'N),
in the form (cf. (14.24)-(14.25))

UM (@) = VI (D) T NTHF + Moy (£ +9)]) (), @ €0, (19.31)
U®(z) = v ((H@)—w;l [F = Nio (f°+ go)]) (z), = €02, (19.32)

where fO and F are the given vector functions on S and ¢ € B1 1/”(52) is
the unknown vector function.

The conditions (19.28) and (19.29) are then satisfied automatically, while
the condition (19.30) leads to the ¥DE for the unknown vector ¢

75y IM - NP No ] = ¢ on S, (19.33)
where the right-hand side vector ¢ € B;;/p(&) reads as
g=2"1@F) +8)) 4+ rg, 27 (Noyr — N1 )N F—
— M- N7Y N s £ (19.34)

In the proof of Lemma 14.8 it has been shown that the principal ho-
mogeneous symbol matrix of the DO N; . N 7' N; ;- is positive definite.
Therefore, by the arguments employed above one can prove the following
assertion (see the proof of Lemma 19.1).
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Lemma 19.4. The operators
res Nip N7V N, o [BSEN(So)]* — [Bs,(S2)]*, (19.35)
[H3 T (So)]* = [H5(S5)]", (19.36)
are bounded for any s € R, 1 <p < 00, 1 < q < 0.

These operators are invertible if the condition (16.15) holds.

This lemma implies the existence and regularity results quite in the same
way as in the previous subsection.

Theorem 19.5. Let 4/3 < p < 4 and let the conditions (19.24) and
(19.26) be fulfilled. Then the nonhomogeneous problem (C—NN). is uniquely
solvable in the class of vector functions (W, (Q'), W (Q?)) and the solution
is representable in the form (19.31)-(19.32), where ¢ is the unique solution
of the WDFE (19.33).

Theorem 19.6. Let the conditions (19.24), (19.26), and (16.23) be
fulfilled, and let the pair (UD,U®) € (WH(Q), W}H(Q?)) be the unique
solution to the problem (C — N'N)..

In addition to (19.24), (19.26),

i) if conditions (18.39) hold, then

U,U) e (RN, HT9R);
ii) if conditions (18.40) hold, then
O U) e (BN@Y, B 92);
iii) if conditions (18.41) hold for some a > 0, then
UM, U®) e (cr(@h), C(@?))
with any v € (0,ap), ap := min{a,1/2}.
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