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Abstra
t. A wide 
lass of basi
, mixed, and 
ra
k type boundary value

and interfa
e problems for the steady state and pseudo-os
illation equations

of the thermoelasti
ity theory of anisotropi
 bodies are 
onsidered. The gen-

eralized Sommerfeld{Kupradze type thermo-radiation 
onditions are formu-

lated and uniqueness and existen
e theorems are proved by the potential

method and the theory of pseudodi�erential equations on manifold. The

almost best regularity properties of solutions are established.
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CHAPTER VI

MIXED AND CRACK TYPE PROBLEMS

In this 
hapter we study the basi
 mixed BVPs, the 
ra
k type prob-

lems, and the mixed interfa
e problems formulated in Chapter II. Applying

the boundary integral equation method we prove the existen
e theorems

in Sobolev spa
es and establish the almost best regularity results for solu-

tions near the boundary of 
ra
ks and at the 
ollision 
urves of 
hanging

boundary and transmission 
onditions.

Throughout this 
hapter the interfa
e surfa
es, the 
ollision 
urves and

the 
ra
k boundaries are assumed to be C

1

-smooth. Moreover, the param-

eters r and ! in the steady state os
illation problems are subje
ted to the

requirement (15.3).

16. Basi
 Mixed BVPs

16.1 In this subse
tion we present some results from the theory of ellipti


pseudodi�erential equations on manifolds with boundary in Bessel-potential

and Besov spa
es. They will be the main tools for proving existen
e the-

orems for the above mentioned mixed and 
ra
k type problems. All the

results outlined below in this subse
tion 
an be found, for example, in [4℄,

[20℄, [43℄, [69℄, [15℄, [70℄, [71℄, [72℄.

Let S 2 C

1

be a 
ompa
t n-dimensional manifold with the boundary

�S 2 C

1

and let A be a strongly ellipti
 m�m matrix pseudodi�erential

operator of order � 2 IR on S. Denote by �(A)(x; �) the prin
ipal homo-

geneous symbol matrix of the operator A in some lo
al 
oordinate system.

Here x 2 S; � 2 IR

n

n f0g. Consider the following m�m matrix fun
tion

A

(0)

�

(x; �) = j�j

��

�(A)(x; j�

0

j�; �

n

); (16.1)

where �

0

= (�

1

; :::; �

n�1

) and � belongs to the unit sphere �

(n�2)

in IR

n�1

.

It is known that the matrix A

(0)

�

in (16.1) admits the fa
torization

A

(0)

�

(x; �) = A

�

�

(x; �)D(�; x; �)A

+

�

(x; �) for x 2 �S;

where [A

�

�

(x; �)℄

�1

and [A

+

�

(x; �)℄

�1

are matri
es, whi
h are homogeneous

of degree 0 in � and admit analyti
 bounded 
ontinuations with respe
t to

�

n

into the lower and upper 
omplex half-planes, respe
tively. Moreover,

D(�; x; �) is a bounded lower triangular matrix with entries of the form

�

�

n

� ij�

0

j

�

n

+ ij�

0

j

�

Æ

j

(x)

; j = 1; :::m;

on the main diagonal; here

Æ

j

(x) = (2�i)

�1

ln�

j

(x); j = 1; :::;m;

where �

1

(x); :::; �

m

(x) are the eigenvalues of the matrix

A(x) = [�(A)(x; 0; :::0;�1)℄

�1

[�(A)(x; 0; :::; 0;+1)℄:
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The bran
h in the logarithmi
 fun
tion is 
hosen with regard to the inequal-

ity 1=p � 1 < Re Æ

j

(x) < 1=p; j = 1; :::;m; p > 1: The numbers Æ

j

(x) do

not depend on the 
hoi
e of the lo
al 
o-ordinate system.

Note that, if �(A)(x; �) is a positive de�nite matrix for every x 2 S and

� 2 IR

n

n f0g, then

Re Æ

j

(x) = 0 for j = 1; :::;m; (16.2)

sin
e, in this 
ase, the eigenvalues of the matrix A(x) are positive numbers

for any x 2 S .

The Fredholm properties of su
h operators are 
hara
terized by the fol-

lowing lemma.

Lemma 16.1. Let 1 < p < 1; s 2 IR, 1 � q � 1; and let A be a

strongly ellipti
 pseudodi�erential operator having a positive de�nite prin-


ipal homogeneous symbol matrix, i.e., �(A)(x; �)� � � � 
 j�j

2

for x 2

S; � 2 IR

n

with j�j = 1; and � 2 CI

m

;

where 
 is a positive 
onstant.

Then the operators

A :

e

H

s

p

(S)! H

s��

p

(S); (16.3)

:

e

B

s

p;q

(S) ! B

s��

p;q

(S); (16.4)

are bounded Fredholm operators of index zero if and only if

1=p� 1 < s� �=2 < 1=p: (16.5)

Moreover, the null-spa
es and indi
es of the operators (16:3), (16:4) are

the same for all values of the parameter q 2 [1;+1℄, and for all values of

the parameters p 2 (1;1) and s 2 IR satisfying the inequality (16:5).

16.2. First we 
onsider the basi
 mixed BVP (P

mix

)

+

�

for the pseudo-

os
illation equations of thermoelasti
ity (see (5.9){(5.10)).

We assume that the boundary data meet the following 
onditions

f

(1)

j

2 B

1�1=p

p;p

(S

1

); F

(2)

j

2 B

�1=p

p;p

(S

2

); j = 1; 4; 1 < p <1; (16.6)

and look for the solution U in the spa
e W

1

p

(


+

).

Let f

0

= (f

01

; � � � ; f

04

)

>

2 B

1�1=p

p;p

(S) be some �xed extention of the

given ve
tor fun
tion f

(1)

= (f

(1)

1

; � � � ; f

(1)

4

)

>

2 B

1�1=p

p;p

(S

1

) onto the whole

surfa
e S = �


+

: Then an arbitrary extention, preserving the fun
tional

spa
e, is represented as

f = f

0

+ ' 2 B

1�1=p

p;p

(S); (16.7)

where ' 2

e

B

1�1=p

p;p

(S

2

): Clearly, f j

S

1

= f

0

j

S

1

= f

(1)

:

Let us seek the solution of the mixed BVP (P

mix

)

+

�

in the form of a single

layer potential

U(x) = V

�

(H

�1

�

f)(x); x 2 


+

; (16.8)

where V

�

is given by (11.1), H

�1

�

is the operator inverse to H

�

(see (11.3)

and Remark 12.13), and f is given by formula (16.7).
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Applying Theorem 11.3 we 
an easily see that the 
onditions (5.9) are

automati
ally satis�ed, while the 
onditions (5.10) lead to the 	DE for the

unknown ve
tor fun
tion '

[B(D;n)U ℄

+

= [�2

�1

I

4

+K

1;�

℄H

�1

�

(f

0

+ ') = F

(2)

on S

2

; (16.9)

where f

0

and F

(2)

= (F

(2)

1

; � � � ; F

(2)

4

)

>

2 B

�1=p

p;p

(S

2

) are given ve
tor-

fun
tions, and where the operator K

1;�

is de�ned by (11.4).

Let

N

+

�;mix

:= [�2

�1

I

4

+K

1;�

℄H

�1

�

: (16.10)

Then the equation (16.9) is written as

r

S

2

N

+

�;mix

' = g on S

2

; (16.11)

where r

S

2

is the restri
tion operator on S

2

, and

g = F

(2)

� r

S

2

N

+

�;mix

f

0

2 B

�1=p

p;p

(S

2

): (16.12)

The properties of the operators N

+

�;mix

and r

S

2

N

+

�;mix

are des
ribed by the

following lemmata.

Lemma 16.2. The prin
ipal homogeneous symbol matrix of the 	DO

N

+

�;mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Proof. It is verbatim the proof of Lemma 14.2 for the operator N

1;�

. �

Lemma 16.3. The operators

r

S

2

N

+

�;mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (16.13)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (16.14)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition

1=p� 3=2 < s < 1=p� 1=2 (16.15)

holds.

Proof. The boundedness and Fredholmity of the operators (16.13) and

(16.14) under the restri
tion (16.15) follow from Lemmata 16.2 and 16.1

with s + 1 and 1 in the pla
e of s and �. Due to these lemmata the Fred-

holm indi
es of the operators (16.13) and (16.14) are equal to zero and the

dominant singular part of the operator N

+

�;mix

is formally self-adjoint.

It remains to prove that the operators under 
onsideration have the trivial

null-spa
es. Obviously, if we are able to �nd two numbers s

1

2 IR and

p

1

2 (1;1) satisfying the inequalities (16.15) su
h that the homogeneous

equation

r

S

2

N

+

�;mix

' = 0 (16.16)

has no nontrivial solutions in the spa
e

e

B

s

1

+1

p

1

;p

1

(S

2

) [

e

H

s

1

+1

p

1

(S

2

)℄, then due to

Lemma 16.1 we 
an 
on
lude that the null-spa
es of the operators (16.13),

(16.14) are trivial for all values of the parameters s and p subje
ted to the


ondition (16.15).
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To this end let us take

s

1

= �1=2; p

1

= 2; q = 2; (16.17)

whi
h satisfy inequalities (16.15). We re
all that

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

).

Let some ve
tor fun
tion '

0

2

e

B

1=2

2;2

(S

2

) solve the homogeneous equation

(16.16) and let us 
onstru
t the single layer potential

U

0

(x) = V

�

(H

�1

�

'

0

)(x); x 2 


+

: (16.18)

By Theorem 11.3 and Remark 12.13 we have

U

0

(x) 2 H

1

2

(


+

) =W

1

2

(


+

); (16.19)

and, moreover, U

0

satis�es the 
onditions 
orresponding to the homogeneous

mixed BVP (P

mix

)

+

�

due to the the homogeneous equation (16.16) and the

in
lusion '

0

2

e

B

1=2

2;2

(S

2

). With regard to Theorem 8.3 we then infer that

U

0

= 0 in 


+

, and, 
onsequently, [U

0

℄

+

= '

0

= 0: This 
ompletes the

proof. �

Now we 
an formulate the following existen
e result.

Theorem 16.4. Let 4=3 < p < 4 and 
onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed problem (P

mix

)

+

�

is uniquely solvable in

the spa
e W

1

p

(


+

) and the solution is representable in the form of the single

layer potential (16:8), where the density f is given by (16:7) and where ' is

the unique solution of the 	DE (16:11).

Proof. First we note that, in a

ordan
e with Lemma 16.3, the 	DE (16.11)

is uniquely solvable for s = �1=p and 4=3 < p < 4, where the last inequality

follows from the 
ondition (16.15). This implies the solvability of the prob-

lem (P

mix

)

+

�

in the spa
e W

1

p

(


+

) with p as above. Next we show that this

problem is uniquely solvable in the spa
e W

1

p

(


+

) for arbitrary p 2 (4=3; 4)

(for p = 2 it has been proved in Theorem 8.3).

We pro
eed as follows. Let U 2 W

1

p

(


+

) be some solution of the homo-

geneous problem (P

mix

)

+

�

. Clearly, then

[U ℄

+

2

e

B

1�1=p

p;p

(S

2

): (16.20)

By Remark 12.13 we have the following representation for the ve
tor U (see

(12.55))

U(x) = V

�

(H

�1

�

[U ℄

+

)(x); x 2 


+

: (16.21)

Sin
e U satis�es the homogeneous 
onditions (5.10), from (16.21) we get

r

S

2

N

+

�;mix

[U ℄

+

= 0 on S

2

: (16.22)

When
e [U ℄

+

= 0 on S follows due to the in
lusion (16.20), Lemma 16.3,

and the inequality 4=3 < p < 4. Therefore, U = 0 in 


+

. �

Now we 
an prove the main regularity result for the solution to the mixed

BVP (P

mix

)

+

�

.
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Theorem 16.5. Let the 
onditions (16:6) be ful�lled,

4=3 < p < 4; 1 < t <1; 1 � q �1; 1=t� 3=2 < s < 1=t� 1=2; (16.23)

and let U 2 W

1

p

(


+

) be the unique solution to the mixed problem (P

mix

)

+

�

.

In addition to (16:6),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); F

(2)

2 B

s

t;t

(S

2

); (16.24)

then

U 2 H

s+1+1=t

t

(


+

); (16.25)

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); F

(2)

2 B

s

t;q

(S

2

); (16.26)

then

U 2 B

s+1+1=t

t;q

(


+

); (16.27)

iii) if

f

(1)

2 C

�

(S

1

); F

(2)

2 B

��1

1;1

(S

2

); for some � > 0; (16.28)

then

U 2 C

�

(


+

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g: (16.29)

Proof. Theorem 11.3 and Remark 12.13 (see (12.53)) together with the


onditions (16.24) [(16.26)℄ imply g 2 B

s

t;t

(S

2

) [B

s

t;q

(S

2

)℄, where g is de�ned

by (16.12). Note that f

0

2 B

s+1

t;t

(S) [B

s+1

t;q

(S)℄ is some extension of the

ve
tor f

(1)

onto the whole of S.

Next, by Lemma 16.3 and 
onditions (16.23) we 
on
lude that the equa-

tion (16.11) is uniquely solvable in the spa
e

e

B

s+1

t;t

(S

2

) [

e

B

s+1

t;q

(S

2

)℄. There-

fore, we have that in the representation (16.8) of the unique solution U to

the problem (P

mix

)

+

�

in the spa
e W

1

p

(


+

) the density ve
tor f = f

0

+ '

satis�es in
lusion

f = f

0

+ ' 2 B

s+1

t;t

(S) [B

s+1

t;q

(S)℄ (16.30)

as well (together with the in
lusion (16.7)).

Applying again Theorem 11.3 and Remark 12.13 
on
erning the mapping

properties of the single layer operator V

�

and the 	DO H

�1

�

we �nd that

(16.25) [(16.27)℄ holds.

For the last assertion (item iii)) we use the following embeddings (see,

e.g., [78℄, [79℄)

C

�

(S) = B

�

1;1

(S) � B

��"

1;1

(S) � B

��"

1;q

(S) �

� B

��"

t;q

(S) � C

��"�k=t

(S); (16.31)

where " is an arbitrary small positive number, S � IR

3

is a 
ompa
t k-

dimensional (k = 2; 3) smooth manifold with smooth boundary, 1 � q � 1,

1 < t < 1, � � " � k=t > 0, � and � � " � k=t are not integer numbers.

From the assumption iii) of the theorem and the embeddings (16.31), it is

easily seen that the 
ondition (16.26) follows with any s � �� "� 1:
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Bearing in mind (16.23), and taking t suÆ
iently large and " suÆ
iently

small, we are able to put s = �� "� 1 if

1=t� 3=2 < �� "� 1 < 1=t� 1=2; (16.32)

and s 2 (1=t� 3=2; 1=t� 1=2) if

1=t� 1=2 < �� "� 1: (16.33)

By (16.27) the solution U belongs then to B

s+1+1=t

t;q

(


+

) with s+1+1=t=

��"+1=t if there holds (16.32), and with s+1+1=t 2 (2=t�1=2; 2=t+1=2) if

there holds (16.33). In the last 
ase we 
an take s+1+1=t = 2=t+1=2� ".

Therefore, we have either U 2 B

��"+1=t

t;q

(


+

) or U 2 B

2=t+1=2�"

t;q

(


+

) in

a

ordan
e with inequalities (16.32) and (16.33). Now the last embed-

ding in (16.31) (with k = 3) yields that either U 2 C

��"�2=t

(


+

) or

U 2 C

1=2�"�1=t

(


+

), whi
h lead to the in
lusion

U 2 C

�

0

�"�2=t

(


+

); (16.34)

where �

0

:= minf�; 1=2g: Sin
e t is suÆ
iently large and " is suÆ
iently

small, the embedding (16.34) 
ompletes the proof. �

16.3. The basi
 mixed exterior BVP (P

mix

)

�

�

(see (5.9){(5.10)) 
an be


onsidered by applying quite the same approa
h and by the word for word

arguments. Therefore, in this subse
tion we formulate only the basi
 results


on
erning the existen
e and regularity of solutions.

Let the boundary data f

(1)

j

and F

(2)

j

(j = 1; 4) of the BVP (P

mix

)

�

�

sat-

isfy the 
onditions (16.6), and f

0

, f , and ' be as in the previous subse
tion.

We again look for the solution in the form of the single layer potential

U(x) = V

�

(H

�1

�

f)(x); x 2 


�

; (16.35)

where

f = f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

): (16.36)

As above f

0

is the given ve
tor fun
tion satisfying the 
ondition f

0

j

S

1

= f

(1)

;

while ' is the unknown ve
tor fun
tion whi
h has to be de�ned by the 	DE

r

S

2

N

�

�;mix

' = g on S

2

; (16.37)

where r

S

2

is again the restri
tion operator on S

2

, and

N

�

�;mix

= [2

�1

I

4

+K

1;�

℄H

�1

�

; (16.38)

g = F

(2)

� r

S

2

N

�

�;mix

f

0

2 B

�1=p

p;p

(S

2

): (16.39)

Lemma 16.6. The prin
ipal homogeneous symbol matrix of the 	DO

N

�

�;mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Lemma 16.7. The operators

r

S

2

N

�

�;mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

;

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

;

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.
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These operators are invertible if the 
ondition (16:15) holds.

Theorem 16.8. Let 4=3 < p < 4 and let the 
onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed problem (P

mix

)

�

�

is uniquely solvable in

the spa
e W

1

p

(


�

) and the solution is representable in the form (16:35),

where the density f is given by (16:36) and where ' is the unique solution

of the 	DE (16:37).

Theorem 16.9. Let the 
onditions (16:6) and (16:23) be ful�lled, and

let U 2 W

1

p

(


�

) be the unique solution to the mixed problem (P

mix

)

�

�

.

In addition to (16:6),

i) if there hold the in
lusions (16:24), then

U 2 H

s+1+1=t

t

(


�

);

ii) if there hold the in
lusions (16:26), then

U 2 B

s+1+1=t

t;q

(


�

);

iii) if there hold the in
lusions (16:28), then

U 2 C

�

(


�

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

The proofs of these propositions are verbatim the proofs of Lemmata

16.2, 16.3, and Theorems 16.4, 16.5.

16.4. In this subse
tion we shall study the basi
 mixed exterior BVP

(P

mix

)

�

!

for the steady state os
illation equations of the thermoelasti
ity

theory formulated in Se
tion 5 (see (5.9){(5.10)). Again let f

(1)

, F

(2)

, f

0

,

f , and ' be the same as in Subse
tion 16.2.

We look for a solution to the BVP (P

mix

)

�

!

in the form

U(x) = (W + p

0

V ) ([N

�

1

℄

�1

f)(x); x 2 


�

; (16.40)

where V andW are the single and double layer potentials given by formulae

(10.1) and (10.2), respe
tively, p

0

is de�ned by (13.5),

f = f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

); (16.41)

and [N

�

1

℄

�1

is an ellipti
 SIO inverse to the operator (
f. (13.6))

N

�

1

:= �2

�1

I

4

+K

2

+ p

0

H: (16.42)

Note that [N

�

1

℄

�1

is an ellipti
 SIO due to Lemma 10.2. Moreover, the

mapping

[N

�

1

℄

�1

: [B

s

p;q

(S)℄

4

! [B

s

p;q

(S)℄

4

; 1 < p <1; 1 � q �1; s2IR; (16.43)

is an isomorphism a

ording to Lemma 13.13.

Applying Theorem 10.8, item i), one 
an easily see that the ve
tor U rep-

resented by formula (16.40) automati
ally satis�es the boundary 
onditions

(5.9) on S

1

sin
e [U ℄

�

= f on S and f j

S

1

= f

0

j

S

1

= f

(1)

. It remains to ful�l

the 
onditions (5.10) on S

2

whi
h lead to the 	DE for the unknown ve
tor

'

[B(D;n)U ℄

�

= [L+ p

0

(2

�1

I

4

+K

1

)℄[N

�

1

℄

�1

(f

0

+') = F

(2)

on S

2

; (16.44)
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where L is de�ned by (10.36) and (10.6), while K

1

is given by (10.4).

Next we set

N

�

mix

:= �[L+ p

0

(2

�1

I

4

+K

1

)℄ [N

�

1

℄

�1

; (16.45)

and rewrite the equation (16.44) as

r

S

2

N

�

mix

' = q on S

2

; (16.46)

where r

S

2

is again the restri
tion operator on S

2

, and

q = �F

(2)

+ r

S

2

N

�

mix

f

0

2 B

�1=p

p;p

(S

2

): (16.47)

The in
lusion (16.47) for the right-hand side ve
tor fun
tion q follows from

Theorem 10.8 and the mapping property (16.43). Further, we present the

properties of the operators N

�

mix

and r

S

2

N

�

mix

.

Lemma 16.10. The prin
ipal homogeneous symbol matrix of the 	DO

N

�

mix

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g.

Proof. First we note that the prin
ipal homogeneous symbol matrix of the

operator N

�

mix

reads as

�(N

�

mix

) = ��(L)�([N

�

1

℄

�

) =

=�

�

[�(L

(0)

)℄

3�3

[0℄

3�1

[0℄

1�3

�(L

(0)

4

)

�

4�4

"

[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

3�3

[0℄

3�1

[0℄

1�3

�2

#

4�4

=

=

"

[� �(L

(0)

)[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

℄

3�3

[0℄

3�1

[0℄

1�3

2�(L

(0)

4

)

#

4�4

;

due to formulae (10.25), (10.30), (10.49). As we have already mentioned in

the proof of Lemma 15.5, the matrix [ � �(L

(0)

)[�(�2

�1

I

3

+

�

K

(0)

)℄

�1

℄

3�3

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g (for details see [59℄,

[41℄, [34℄, [57℄), while the fun
tion 2�(L

(0)

4

) is positive in a

ordan
e with

the inequality (10.50). �(N

�

mix

) is positive de�nite. �

Lemma 16.11. The operators

r

S

2

N

�

mix

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (16.48)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (16.49)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 16.3. Indeed, the bound-

edness and Fredholmity of the operators in question and that the Fredholm

indi
es are equal to zero follow from Lemma 16.10 and Lemma 16.1 with

s+ 1 and 1 in the pla
e of s and �.

Further, due to Lemma 16.10 the dominant singular part of the operator

N

�

mix

is formally self-adjoint.
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To prove that their null-spa
es are trivial, as in the proof of Lemma 16.3,

we 
on
ider the homogeneous 	DE

r

S

2

N

�

mix

' = 0 on S

2

; (16.50)

and prove that it has only the trivial solution in the spa
e

e

B

1=2

2;2

(S

2

) =

e

H

1=2

2

(S

2

). It 
orresponds to the parti
ular values of the parameters s and

p (and q) given by (16.17).

Let some ve
tor fun
tion '

0

2

e

B

1=2

2;2

(S

2

) solve the equation (16.50), and


onstru
t the ve
tor

U

0

(x) = (W + p

0

V ) ([N

�

1

℄

�1

'

0

)(x); x 2 


�

: (16.51)

By Theorem 10.8, Lemma 13.13 and the mapping property (16.43) we 
on-


lude

U

0

(x) 2W

1

2;lo


(


�

) \ SK

m

r

(


�

): (16.52)

Moreover, U

0

satis�es the boundary 
onditions of the homogeneous mixed

BVP (P

mix

)

�

!

due to the homogeneous equation (16.50) and the in
lusion

'

0

2

e

B

1=2

2;2

(S

2

). By virtue of the uniqueness results (see Theorem 9.6) the

ve
tor fun
tion (16.51) then vanish in 


�

, and, 
onsequently, [U

0

℄

�

= '

0

=

0 on S. The proof is 
ompleted. �

These lemmata imply the foolowing existen
e results.

Theorem 16.12. Let 4=3 < p < 4 and let the 
onditions (16:6) be ful�lled.

Then the nonhomogeneous mixed exterior problem (P

mix

)

�

!

is uniquely solv-

able in the 
lass W

1

p;lo


(


�

)\SK

m

r

(


�

) and the solution is representable in

the form (16:40), where the density f is given by (16:41) and where ' is the

unique solution of the 	DE (16:46).

Proof. Again it is quite similar to the proof of Theorem 16.4. If we �x

s = �1=p, then the nonhomogeneous equation (16.46) is uniquely solvable

in the spa
e

e

B

1�1=p

p;p

(S

2

) for arbitrary p 2 (4=3; 4) whi
h follows from Lemma

16.11 and the inequality (16.15) (with s = �1=p). This implies the solv-

ability of the nonhomogeneous mixed exterior problem (P

mix

)

�

!

in the 
lass

W

1

p;lo


(


�

) \ SK

m

r

(


�

), indi
ated in the theorem.

Now we show that this problem is uniquely solvable for arbitrary p 2

(4=3; 4) (for p = 2 it has already been proved in Theorem 9.6).

To this end let us 
onsider the homogeneous problem (P

mix

)

�

!

in the


lass W

1

p;lo


(


�

) \ SK

m

r

(


�

) with p 2 (4=3; 4), and let a ve
tor fun
tion U

be its arbitrary solution. Sin
e [U ℄

�

2 B

1�1=p

p;p

(S) we 
on
lude that U is

uniquely representable in the form

U(x) = (W + p

0

V ) ([N

�

1

℄

�1

[U ℄

�

)(x); x 2 


�

; (16.53)

due to Theorem 13.14.

Moreover, [U ℄

�

2

e

B

1�1=p

p;p

(S

2

) and

[B(D;n)U ℄

�

S

2

= r

S

2

N

�

mix

[U ℄

�

= 0 on S

2

; (16.54)
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inasmu
h as U is a solution to the homogeneous problem (P

mix

)

�

!

. Further,

Lemma 16.11 together with the 
onditions s = �1=p and p 2 (4=3; 4) implies

that [U ℄

�

= 0 on S. Now the representation formula (16.53) 
ompletes the

proof. �

Finally, we formulate the following regularity results.

Theorem 16.13. Let the 
onditions (16:6) and (16:23) be ful�lled, and

let the ve
tor-fun
tion U 2 W

1

p;lo


(


�

) \ SK

m

r

(


�

) be the unique solution

to the mixed problem (P

mix

)

�

!

.

In addition to (16:6),

i) if there hold the in
lusions (16:24), then

U 2 H

s+1+1=t

t;lo


(


�

) \ SK

m

r

(


�

); (16.55)

ii) if there hold the in
lusions (16:26), then

U 2 B

s+1+1=t

t;q;lo


(


�

) \ SK

m

r

(


�

); (16.56)

iii) if there hold the in
lusions (16:28), then

U 2C

�

(


�

) \ SK

m

r

(


�

) with any �2(0; �

0

); �

0

:=minf�; 1=2g: (16.57)

The proof of these propositions is verbatim the proof of Theorem 16.5.

We only emphasize here that every solution of the equation (1.10) in 


�

in

the distributional sen
e, a
tually, is C

1

-regular in the domain 


�

. There-

fore, the in
lusions (16.55)-(16.56) should be established in some 
ompa
t

(exterior) neigbourhood of the boundary S where we 
an apply the embed-

dings (16.31) and the arguments employed in the proof of Theorem 16.5.

17. Cra
k Type Problems

In this se
tion we shall investigate the 
ra
k type problems (CR:D)

!

and

(CR:N )

!

for the steady state os
illation equations of the thermoelasti
-

ity theory formulated in Se
tion 6. We note that the 
ra
k type problems

(CR:D)

�

and (CR:N )

�

for the pseudo-os
illation equations of the thermoe-

lasti
ity theory are 
onsidered in detail in the referen
e [16℄.

17.1. First we treat the problem (CR:D)

!

(see (6.1)). Let S

1

, �S

1

, f

(�)

,

e

f

(�)

, f

(�)

j

(j = 1; 4), be the same as in Se
tion 6. Here we again assume

that

f

(�)

j

2 B

1�1=p

p;p

(S

1

); f

(+)

j

� f

(�)

j

2

e

B

1�1=p

p;p

(S

1

); j = 1; 4; p > 1: (17.1)

We re
all that S

1

is a submanifold of the 
losed C

1

-regular surfa
e S sur-

rounding the bounded domain 


+

, IR

3

S

1

= IR

3

n S

1

, and 


�

= IR

3

n


+

.

Let U 2 W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) be some solution to the steady state

os
illation equations (1.10). Then U 2 C

1

(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and, more-

over,

[U ℄

+

S

2

= [U ℄

�

S

2

; [B(D;n)U ℄

+

S

2

= [B(D;n)U ℄

�

S

2

; (17.2)

where S

2

= S n S

1

.
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Due to Theorem 10.8 and the representations (3.2){(3.3) we have the

following formulae

W

�

[U ℄

+

S

�

(x) � V

�

[B(D;n)U ℄

+

S

�

(x) =

�

U(x) for x 2 


+

;

0 for x 2 


�

;

(17.3)

�W

�

[U ℄

�

S

�

(x) + V

�

[B(D;n)U ℄

�

S

�

(x) =

�

0 for x 2 


+

;

U(x) for x 2 


�

;

(17.4)

sin
e U j




+
2W

1

p

(


+

) and U j




�
2 W

1

p;lo


(


�

)\SK

m

r

(


�

) and A(D;�i!)U

= 0 in IR

3

S

1

. Here V and W are single and double layer potentials de�ned

by (10.1) and (10.2), respe
tively.

By adding these equations term by term and using the 
onditions (17.2),

we obtain the following general integral representation of the above ve
tor

fun
tion U :

U(x) = W (')(x) � V ( )(x); x 2 IR

3

S

1

; (17.5)

where

' = [U ℄

+

S

1

� [U ℄

�

S

1

2

e

B

1�1=p

p;p

(S

1

); (17.6)

 = [B(D;n)U ℄

+

S

1

� [B(D;n)U ℄

�

S

1

2

e

B

�1=p

p;p

(S

1

): (17.7)

We remark that the double and single layer potentials in (17.5) with den-

sities (17.6) and (17.7) are C

1

-regular ve
tor fun
tions in IR

3

S

1

and belong

to the 
lass W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) in a

ordan
e with Theorem 10.8.

Furthermore, if the representation (17.5) holds for some ve
tor fun
tion

U 2 W

1

p;lo


(IR

3

S

1

) with ' 2

e

B

1�1=p

p;p

(S

1

) and  2

e

B

�1=p

p;p

(S

1

), then automat-

i
ally U 2 SK

m

r

(IR

3

S

1

), and the densities ' and  are related to the ve
tor

U by the equations (17.6) and (17.7) (whi
h follow from the jump relations

of the surfa
e potentials involved in (17.5)).

Next, we transform the boundary 
onditions of the problem (CR:D)

!

to

the equivalent equations on S

1

:

[U ℄

+

S

1

� [U ℄

�

S

1

= f

(+)

� f

(�)

; (17.8)

[U ℄

+

S

1

+ [U ℄

�

S

1

= f

(+)

+ f

(�)

: (17.9)

Now, we look for the solution in the form (17.5), where ' and  are

unknown densities having the me
hani
al sense des
ribed by the equations

(17.6)-(17.7) due to the above remark.

It is evident that ' is then represented expli
itly by formula

' = f

(+)

� f

(�)

2

e

B

1�1=p

p;p

(S

1

) (17.10)

in a

ordan
e with (17.8), while the se
ond boundary 
ondition (17.9) leads

to the 	DE for  on S

1

:

�r

S

1

H = g on S

1

; (17.11)
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here the operator H is given by (10.3), r

S

1

is the restri
tion operator to S

1

,

and

g = 2

�1

(f

(+)

+ f

(�)

)� r

S

1

K

2

(f

(+)

� f

(�)

) 2

e

B

1�1=p

p;p

(S

1

); (17.12)

where the SIO K

2

is de�ned by (10.5).

The in
lusion (17.12) follows from Theorem 10.8.

The operator r

S

1

H possesses the following properties.

Lemma 17.1. The prin
ipal homogeneous symbol matrix of the pseu-

dodi�erential operator �H is positive de�nite for arbitrary x 2 S

1

and

e

� 2 IR

2

n f0g.

Proof. It follows from Remark 10.4. �

Lemma 17.2. The operators

r

S

1

H : [

e

B

s

p;q

(S

1

)℄

4

! [B

s+1

p;q

(S

1

)℄

4

; (17.13)

: [

e

H

s

p

(S

1

)℄

4

! [H

s+1

p

(S

1

)℄

4

; (17.14)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. The mapping properties, boundedness, and Fredholmity of the op-

erators (17.13)-(17.14) follow from Theorem 10.8 and Lemma 16.1 (with

� = �1). Further, by Lemma 17.1 we 
on
lude that the Fredholm indi
es

of the operators in question are equal to zero.

To prove that the null-spa
es are trivial, we take again s = �1=2 and p =

q = 2 (whi
h satisfy the inequalities (16.15)) and 
onsider the homogeneous

equation

�r

S

1

H = 0 on S

1

(17.15)

in the spa
e

e

B

�1=2

2;2

(S

1

) =

e

H

�1=2

2

(S

1

).

Let  

0

2

e

B

�1=2

2;2

(S

1

) be some solution to the equation (17.15) and 
on-

stru
t the ve
tor fun
tion

U

0

(x) = �V ( 

0

)(x); x 2 IR

3

S

1

: (17.16)

Obviously, U

0

2 W

1

2;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

). Moreover, U

0

solves the homo-

geneous 
ra
k problem (CR:D)

!

in IR

3

S

1

due to the 
hoi
e of the density  

0

and the 
ontinuity of the single layer potential (see Theorem 10.8). By The-

orem 9.7 we then infer that U

0

= 0 in IR

3

S

1

, and, 
onsequently, by Theorem

10.8 we have [B(D;n)U

0

℄

+

S

1

� [B(D;n)U

0

℄

�

S

1

= � 

0

= 0: This shows that

ker[r

S

1

H℄ is trivial in

e

B

�1=2

2;2

(S

1

). Now by Lemma 16.1 we 
on
lude that,

if s and p satisfy inequality (16.15), the operators (17.13) and (17.14) have

trivial kernels and, therefore, are invertible. �

This lemma implies the following existen
e theorem.

Theorem 17.3. Let 4=3 < p < 4 and let the 
onditions (17:1) be ful�lled.

Then the nonhomogeneous 
ra
k type problem (CR:D)

!

is uniquely solvable

in the 
lass W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and the solution is representable in
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the form (17:5), where ' is given by (17:10) and  is the unique solution of

the 	DE (17:11).

Proof. If we set s = �1=p, then the 
ondition (16.15) yields the inequalities

for p: 4=3 < p < 4. Therefore, due to Lemma 17.2, the nonhomogeneous

equation (17.11) with the right-hand side q given by (17.12) is uniquely

solvable. This shows that the nonhomogeneous 
ra
k type problem (CR:D)

!

is solvable in the 
lass W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

), and the ve
tor U de�ned

by (17.5) represents a solution to the problem in question.

Next, we prove that the problem is uniquely solvable for arbitrary p 2

(4=3; 4).

Let 4=3 < p < 4 and let U be any solution to the homogeneous problem

(CR:D)

!

from the 
lass indi
ated in the theorem. Due to the above men-

tioned results, U is then representable by the formula (17.5) where ' and

 are de�ned by (17.6) and (17.7). Therefore, ' = 0, and

U(x) = �V ( )(x); x 2 IR

3

S

1

: (17.17)

Further, the homogeneous boundary 
onditions on S

1

yield that

�r

S

1

H = 0 on S

1

; (17.18)

where  2

e

B

�1=p

p;p

(S

1

) with 4=3 < p < 4. From this equation by Lemma

17.2 it follows that  = 0 on S

1

, sin
e for s = �1=p and p 2 (4=3; 4)

the 
ondition (16.15) holds and the homogeneous equation (17.18) does not

possess nontrivial solutions. Now by (17.17) we get U = 0 in IR

3

S

1

whi
h


ompletes the proof. �

As in the 
ase of the basi
 mixed BVPs here we have the following reg-

ularity results.

Theorem 17.4. Let the 
onditions (17:1) and (16:23) be ful�lled, and

let the ve
tor fun
tion U 2 W

1

p;lo


(IR

3

S

1

)\SK

m

r

(IR

3

S

1

) be the unique solution

to the problem (CR:D)

!

.

In addition to (17:1),

i) if

f

(�)

2 B

s+1

t;t

(S

1

); f

(+)

� f

(�)

2

e

B

s+1

t;t

(S

1

); (17.19)

then

U 2 H

s+1+1=t

t;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

); (17.20)

ii) if

f

(�)

2 B

s+1

t;q

(S

1

); f

(+)

� f

(�)

2

e

B

s+1

t;q

(S

1

); (17.21)

then

U 2 B

s+1+1=t

t;q;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

); (17.22)

iii) if

f

(�)

2 C

�

(S

1

); [f

(+)

� f

(�)

℄

�S

1

= 0; for some � > 0; (17.23)

then

U j




+

2 C

�

(


+

);

U j




�

2 C

�

(


�

) \ SK

m

r

(


�

)

(17.24)
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with any � 2 (0; �

0

), �

0

:= minf�; 1=2g.

Proof. It is again verbatim the proof of Theorem 16.5 (see also the remark

after Theorem 16.13). �

17.2. In this subse
tion we 
onsider the problem (CR:N )

!

(see (6.2)).

The 
orresponding boundary 
onditions (6.2) we transform to the equivalent

equations on the 
ra
k surfa
e S

1

:

[B(D;n)U ℄

+

S

1

� [B(D;n)U ℄

�

S

1

= F

(+)

� F

(�)

; (17.25)

[B(D;n)U ℄

+

S

1

+ [B(D;n)U ℄

�

S

1

= F

(+)

+ F

(�)

; (17.26)

where we assume that

F

(�)

j

2 B

�1=p

p;p

(S

1

); F

(+)

j

� F

(�)

j

2

e

B

�1=p

p;p

(S

1

); j = 1; 4; p > 1: (17.27)

We look for a solution

U 2 W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) (17.28)

in the form (17.5), where the densities ' and  are related to the sought

for ve
tor U again by the realations (17.6) and (17.7). Therefore, we 
an

de�ne  expli
itly

 = F

(+)

� F

(�)

2

e

B

�1=p

p;p

(S

1

); (17.29)

while the boundary 
ondition (17.26) implies the 	DE (of order 1) for the

unknown ve
tor-fun
tion '

r

S

1

L' = g on S

1

; (17.30)

here the 	DO L is given by (10.6) and

g = 2

�1

(F

(+)

+ F

(�)

) + r

S

1

K

1

(F

(+)

� F

(�)

) 2 B

�1=p

p;p

(S

1

); (17.31)

where the SIO K

1

is de�ned by (10.4). Note that the in
lusion (17.31) for

the right-hand side ve
tor g follows again from Theorem 10.8 and 
onditions

(17.27).

Now we show that the equation (17.30) is uniquely solvable in the spa
e

e

B

1�1=p

p;p

(S

1

). To this end we remark that the prin
ipal homogeneous symbol

matrix of the operator L is positive de�nite for arbitrary x 2 S

1

and

e

� 2

IR

2

nf0g due to Lemma 10.7. The basi
 invertibility property of the operator

r

S

1

L is des
ribed by the following proposition.

Lemma 17.5. The operators

r

S

1

L : [

e

B

s+1

p;q

(S

1

)℄

4

! [B

s

p;q

(S

1

)℄

4

; (17.32)

: [

e

H

s+1

p

(S

1

)℄

4

! [H

s

p

(S

1

)℄

4

; (17.33)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 17.2. �

With the help of this lemma and by the arguments employed in the proofs

of Theorems 17.3 and 16.5 one 
an easily derive the following existen
e and

uniqueness results and establish the regularity of solutions.
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Theorem 17.6. Let 4=3 < p < 4 and let the 
onditions (17:27) be ful�lled.

Then the nonhomogeneous 
ra
k type problem (CR:N )

!

is uniquely solvable

in the 
lass W

1

p;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

) and the solution is representable in

the form (17:5), where  is given by (17:29) and ' is the unique solution of

the 	DE (17:30).

Theorem 17.7. Let the 
onditions (17:27) and (16:23) be ful�lled, and

let the ve
tor-fun
tion U 2 W

1

p;lo


(IR

3

S

1

)\SK

m

r

(IR

3

S

1

) be the unique solution

to the problem (CR:N )

!

.

In addition to (17:27),

i) if

F

(�)

2 B

s

t;t

(S

1

); F

(+)

� F

(�)

2

e

B

s

t;t

(S

1

);

then

U 2 H

s+1+1=t

t;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

);

ii) if

F

(�)

2 B

s

t;q

(S

1

); F

(+)

� F

(�)

2

e

B

s

t;q

(S

1

);

then

U 2 B

s+1+1=t

t;q;lo


(IR

3

S

1

) \ SK

m

r

(IR

3

S

1

);

iii) if

F

(�)

2 B

��1

1;1

(S

1

); F

(+)

� F

(�)

2

e

B

��1

1;1

(S

1

); for some � > 0;

then

U j




+

2 C

�

(


+

);

U j




�

2 C

�

(


�

) \ SK

m

r

(


�

) with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

Remark 17.8. For an arbitrary solution U 2 W

1

p

(IR

3

S

1

) of the pseudo-

os
illation equation (1.9) there also holds the representation formula by

potential type integrals similar to (17.5) with the densities ' and  related

to the ve
tor U by relations (17.6) and (17.7). Therefore, for the 
ra
k type

problems (CR:D)

�

and (CR:N )

�

the existen
e and uniqueness theorems,

and the regularity results analogous to the above ones 
an be proved with

quite the same arguments (for details see [16℄).

18. Mixed Interfa
e Problems of Steady State Os
illations

In this se
tion �rst we shall prove the existen
e and uniqueness theorems

for the mixed interfa
e problems for the steady state os
illation equations of

the thermoelasti
ity theory formulated in Se
tion 7. Afterwards, as in the

previous se
tions, we shall establish the smoothness properties of solutions.

Throughout this se
tion we shall keep and employ the notations of Se
tion

15.

18.1. Problem (C�DD)

!

. To examine the existen
e of solutions to the

problem in question (see (7.13){(7.14)) we shell exploit the representation

formulae (15.61){(15.62), and use again the Fredholm properties of 	DOs
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on manifold with boundary des
ribed by Lemma 16.1. First, let us note

that the 
onditions (7.14) on S

2

are equivalent to the following equations

[U

(1)

℄

+

� [U

(2)

℄

�

= '

(+)

� '

(�)

; [U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

; on S

2

:

A

ording to (7.21) and (7.23) we require that

f

(1)

2 B

1�1=p

p;p

(S

1

); '

(�)

2 B

1�1=p

p;p

(S

2

); F

(1)

2 B

�1=p

p;p

(S

1

); (18.1)

and, moreover,

[U

(1)

℄

+

� [U

(2)

℄

�

= f 2 B

1�1=p

p;p

(S);

where f =

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

:

(18.2)

Clearly, this last in
lusion is the ne
essary 
ompatibility 
ondition for the

problem (C � DD)

!

.

In view of the third in
lusion in (18.1), the ve
tor F

(1)


an be extended

from S

1

onto S

2

preserving the fun
tional spa
e B

�1=p

p;p

(S). Denote some

�xed extension by F

0

;

F

0

2 B

�1=p

p;p

(S); F

0

j

S

1

= F

(1)

: (18.3)

Evidently, any arbitrary extension F of F

(1)

onto the whole of S whi
h

preserves the fun
tional spa
e 
an be represented as

F = F

0

+ ' 2 B

�1=p

p;p

(S); where ' 2

e

B

�1=p

p;p

(S

2

): (18.4)

Now we 
an reformulate the interfa
e problem (C � DD)

!

in the following

equivalent form: Find a pair of ve
tor fun
tions

(U

(1)

; U

(2)

) = (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

)) (18.5)

satisfying the di�erential equations (7.2) and the interfa
e 
onditions

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.6)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S

1

; (18.7)

[U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

on S

2

; (18.8)

where B

(�)

(D;n) is de�ned by (1.25), f and F are given by (18) and (18.4),

respe
tively. Let us note that f and F

0

are 
onsidered now as the known

ve
tor fun
tions on the whole of S, while F is given only on S

1

(F j

S

1

=

F

0

j

S

1

= F

(1)

), and '

(�)

are given ve
tor fun
tions on S

2

.

We look for the solution to the problem (C � DD)

!

in the form (
f.

(15.61){(15.62))

U

(1)

(x) =W

(1)

�

	 [F

0

+ '℄�		

2

�

�1

2

f

�

(x); (18.9)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	 [F

0

+ '℄ �

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ f

�

(x); (18.10)
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where ' 2

e

B

�1=p

p;p

(S

2

) is the unknown ve
tor-fun
tion, and F

0

and f are as

above. Furthermore, W

(�)

and V

(�)

are the double and single layer poten-

tials of steady state os
illations, the 
omplex number p

0

and the boundary

operators 	, 	

j

, �

j

are de�ned by equations (13.5) and (15.58), (15.9),

(15.10).

It is easy to verify that the interfa
e 
onditions (18.6) and (18.7) are

satis�ed automati
ally, sin
e from (18.9) and (18.10) it follows that

[U

(1)

℄

+

�[U

(2)

℄

�

= f; [B

(1)

(D;n)U

(1)

℄

+

�[B

(2)

(D;n)U

(2)

℄

�

= F

0

+' on S:

It remains only to satisfy the 
ondition (18.8) whi
h leads to the 	DE for

'

[U

(1)

℄

+

+ [U

(2)

℄

�

= �

1

	 [F

0

+ '℄��

1

		

2

�

�1

2

f +�

1

	 [F

0

+ '℄�

�[�

1

		

2

�

�1

2

+ I ℄ f = '

(+)

+ '

(�)

on S

2

; (18.11)

whi
h 
an be rewritten as

r

S

2

[�

1

	'℄ = r

S

2

K

H

' = q on S

2

; (18.12)

where r

S

2

is the restri
tion operator on S

2

, the 	DO (of order �1) K

H

has

been de�ned by (15.105), while the given right-hand side q reads as follows

q = 2

�1

('

(+)

+ '

(�)

)� r

S

2

f�

1

	F

0

�

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg 2 B

1�1=p

p;p

(S

2

): (18.13)

Due to Lemma 15.14 the prin
ipal homogeneous symbol matrix of the

operator K

H

= �

1

	 is positive de�nite. Therefore, we 
an apply Lemma

16.1 to study the equation (18.12).

Lemma 18.1. The operators

r

S

2

K

H

: [

e

B

s

p;q

(S

2

)℄

4

! [B

s+1

p;q

(S

2

)℄

4

; (18.14)

: [

e

H

s

p

(S

2

)℄

4

! [H

s+1

p

(S

2

)℄

4

; (18.15)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. The mapping properties (18.14) and (18.15), boundedness and Fred-

holmity of the above operators follow from equations K

H

= �

1

	, �

1

=

2

�1

I

4

+ K

(1)

2

, 	 = [	

1

� 	

2

�

�1

2

�

1

℄

�1

, and Corollary 15.6, Theorem 10.8

and Lemma 16.1 (with � = �1). From the positive de�niteness of the

prin
ipal homogeneous symbol matrix �(K

H

) it follows that the Fredholm

indi
es of the operators (18.14) and (18.15) are equal to zero.

It remains to prove that the 
orresponding null-spa
es are trivial. To this

end, let us take s = �1=2 and p = q = 2, whi
h meet inequalities (16.15),

and show that the homogeneous equation

r

S

2

K

H

' = 0 on S

2

(18.16)

has no nontrivial solutions in the spa
e

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

).
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Let ' 2

e

B

�1=2

2;2

(S

2

) be any solution to the equation (18.16) and 
onstru
t

the ve
tor fun
tions

U

(1)

0

(x) =W

(1)

(	') (x); x 2 


1

; (18.17)

U

(2)

0

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	'

�

(x); x 2 


2

: (18.18)

Clearly, 	' 2 B

1=2

2;2

(S) and �

�1

2

�

1

	' 2 B

1=2

2;2

(S). Therefore, by Theorem

10.8 we have

(U

(1)

0

; U

(2)

0

) 2 (W

1

2

(


1

) ; W

1

2;lo


(


2

) \ SK

m

r

(


2

)): (18.19)

Moreover, these ve
tors satisfy homogeneous di�erential equations of steady

state os
illations (7.2) in the 
orresponding domains 


1

and 


2

, and the

homogeneous interfa
e 
onditions of the problem (C � DD)

!

on S, sin
e

[U

(1)

0

℄

+

S

= [U

(2)

0

℄

�

S

; [B

(1)

(D;n)U

(1)

0

℄

+

S

1

� [B

(2)

(D;n)U

(2)

0

℄

�

S

1

= 'j

S

1

=0;

[U

(1)

0

℄

+

S

2

+ [U

(2)

0

℄

�

S

2

= r

S

2

K

H

'=0 on S

2

:

These 
onditions follow from the formulae (18.17), (18.18), de�nition of

the operator 	 (see (15.58)) and the fa
t that ' solves the homogeneous

equation (18.16).

Therefore, by Theorem 9.12 we 
on
lude that U

(1)

0

= 0 in 


1

and U

(2)

0

= 0

in 


2

. When
e ' = 0 on S follows. Thus, the null-spa
es of the operators

(18.14) and (18.15) are trivial in the spa
e

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

). Now,

Lemma 16.1 
ompletes the proof for arbitrary p and s satisfying the in-

equalities (16.15), and arbitrary q 2 [1;1℄. �

This lemma implies the following existen
e theorems.

Theorem 18.2. Let 4=3 < p < 4 and let the 
onditions (18:1){(18) be

ful�lled. Then the nonhomogeneous problem (C �DD)

!

is uniquely solvable

in the 
lass (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

)) (with the parameters r and

! as in (15:3)) and the solution is representable in the form (18:9){(18:10),

where ' is the unique solution of the 	DE (18:12).

Proof. First we observe that, if s = �1=p, then the inequality (16.15)

yields 4=3 < p < 4. Therefore, by Lemma 18.1 the nonhomogeneous 	DE

(18.12) with the right-hand side q given by (18.13) is uniquely solvable

in the spa
e

e

B

1�1=p

p;p

(S

2

). This shows that the nonhomogeneous problem

(C � DD)

!

is solvable under the 
onditions indi
ated in the theorem, and

the pair (U

(1)

; U

(2)

) de�ned by (18.9)-(18.10) represents a solution to the

problem in question.

Further, we prove that the problem is uniquely solvable for any p 2

(4=3; 4).

Let some pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

)) (with

the parameters p, r, and ! as in the theorem) represents a solution to the

homogeneous problem (C�DD)

!

. In a

ordan
e with (18.6)-(18.7) then we
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have

[U

(1)

℄

+

S

� [U

(2)

℄

�

S

= 0;

[B

(1)

(D;n)U

(1)

℄

+

S

� [B

(2)

(D;n)U

(2)

℄

�

S

= F 2

e

B

�1=p

p;p

(S

2

);

[U

(1)

℄

+

+ [U

(2)

℄

�

= 0 on S

2

:

(18.20)

Clearly, F may di�er from zero only on the submanifold S

2

due to the

homogeneous 
ondition (18.7).

Further, by Theorem 15.8 we 
on
lude that the ve
tor fun
tions U

(1)

and

U

(2)

are uniquely representable in the form

U

(1)

(x) =W

(1)

(	F ) (x); x 2 


1

;

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F

�

(x); x 2 


2

;

where F is de�ned by the se
ond equation in (18.20).

The third equation in (18.20) then yields

r

S

2

K

H

F = 0 on S

2

;

where F 2

e

B

�1=p

p;p

(S

2

) and p 2 (4=3; 4). Therefore, F = 0 on S due to

Lemma 18.1 (with s = �1=p) whi
h implies U

(�)

= 0 in 


�

(� = 1; 2): �

Now we 
an formulate the following regularity results.

Theorem 18.3. Let the 
onditions (18:1), (18), and (16:23) be ful�lled,

and let the pair (U

(1)

; U

(2)

) = (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

)) be the

unique solution to the problem (C � DD)

!

.

In addition to (18:1){(18),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); '

(�)

2 B

s+1

t;t

(S

2

); F

(1)

2 B

s

t;t

(S

1

); f 2 B

s+1

t;t

(S);

(18.21)

then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t;lo


(


2

) \ SK

m

r

(


2

)); (18.22)

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); '

(�)

2 B

s+1

t;q

(S

2

); F

(1)

2 B

s

t;q

(S

1

); f 2 B

s+1

t;q

(S);

(18.23)

then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q;lo


(


2

) \ SK

m

r

(


2

)); (18.24)

iii) if

f

(1)

2 C

�

(S

1

); '

(�)

2 C

�

(S

2

); F

(1)

2 B

��1

1;1

(S

1

); f 2 C

�

(S); (18.25)

for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

) \ SK

m

r

(


2

))

with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

(18.26)
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Proof. Here it is again verbatim the proof of Theorem 16.5 (see also the

remark after Theorem 16.13). �

18.2. Problem (C � NN )

!

. As in the previous subse
tion we start

with the reformulation of the problem. In parti
ular, the 
onditions (7.13)

and (7.15) are equivalent to the following equations

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.27)

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S

1

; (18.28)

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

= �

(+)

+�

(�)

on S

2

; (18.29)

where

F :=

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

:

F 2B

�1=p

p;p

(S); �

(�)

2B

�1=p

p;p

(S

2

);(18.30)

f := f

0

+ ' 2 B

1�1=p

p;p

(S); f

0

2 B

1�1=p

p;p

(S); ' 2

e

B

1�1=p

p;p

(S

2

); (18.31)

here f

0

is some �xed extension of the ve
tor f

(1)

from S

1

onto S

2

preserving

the fun
tional spa
e: f

0

j

S

1

= f

(1)

, and, therefore, f = f

0

+ ' with ' as

in (18.31), represents an arbitrary extension of f

(1)

onto the whole of S:

f j

S

1

= f

0

j

S

1

= f

(1)

.

Obviously, the in
lusion F 2 B

�1=p

p;p

(S) is the ne
essary 
ompatibility


ondition for the problem under 
onsideration.

Let us now look for the solution to the problem (C �NN )

!

in the form

(
f. (15.61){(15.62))

U

(1)

(x) =W

(1)

�

	F �		

2

�

�1

2

[f

0

+ '℄

�

(x); (18.32)

U

(2)

(x) =

�

W

(2)

+ p

0

V

(2)

�

�

�

�1

2

�

1

	F �

��

�1

2

[�

1

		

2

�

�1

2

+ I ℄ [f

0

+ '℄

�

(x); (18.33)

where f

0

and F are the given ve
tor fun
tions on S, while ' is the unknown

ve
tor fun
tion.

It 
an be easily seen that the 
onditions (18.27) and (18.28) are satis�ed

automati
ally, sin
e

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S:

due to the above representations.

It remains only to ful�l the 
ondition (18.29) whi
h yields the following

	DE on S

2

for the unknown ve
tor ':

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

=

= 	

1

	F �	

1

		

2

�

�1

2

[f

0

+ '℄ + 	

2

�

�1

2

�

1

	F �

�	

2

�

�1

2

[�

1

		

2

�

�1

2

+ I ℄ [f

0

+ '℄ = �

(+)

+�

(�)

; (18.34)
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With the help of equations (15.9), (15.10), (15.58) we 
an simplify this

equation:

r

S

2

[�	

1

		

2

�

�1

2

'℄ = r

S

2

K

G

' = q on S

2

; (18.35)

where the 	DE (of order +1) K

G

has been de�ned by (15.86), while the

right-hand side ve
tor fun
tion q reads as follows

q=2

�1

(�

(+)

+�

(�)

)� r

S

2

f	

1

	� 2

�1

I ℄F+K

G

f

0

g 2 B

�1=p

p;p

(S

2

): (18.36)

A

ording to Lemma 15.9 the prin
ipal homogeneous symbol matrix of

the operator K

G

is positive de�nite. Therefore, we 
an again apply Lemma

16.1 to examine the equation (18.35), and employ the same arguments as

in the previous se
tion to prove the following propositions.

Lemma 18.4. The operators

r

S

2

K

G

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (18.37)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (18.38)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Theorem 18.5. Let 4=3 < p < 4 and let the 
onditions (18:30){(18:31) be

ful�lled. Then the nonhomogeneous problem (C�NN )

!

is uniquely solvable

in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

)) (with the

parameters r and ! as in (15:3)) and the solution is representable in the

form (18:32){(18:33), where ' is the unique solution of the 	DE (18:35).

Theorem 18.6. Let the 
onditions (18:30), (18:31), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C �NN )

!

.

In addition to (18:30){(18:31),

i) if

f

(1)

2 B

s+1

t;t

(S

1

); F

(1)

2 B

s

t;t

(S

1

); �

(�)

2 B

s

t;t

(S

2

); F 2 B

s

t;t

(S); (18.39)

then there holds the in
lusion (18.22);

ii) if

f

(1)

2 B

s+1

t;q

(S

1

); F

(1)

2 B

s

t;q

(S

1

); �

(�)

2 B

s

t;q

(S

2

); F 2 B

s

t;q

(S);

(18.40)

then there holds the in
lusion (18.24);

iii) if

f

(1)

2C

�

(S

1

); F

(1)

2B

��1

1;1

(S

1

); �

(�)

2B

��1

1;1

(S

2

); F 2B

��1

1;1

(S);

(18.41)

for some � > 0, then there holds the in
lusion (18:26).

The proofs of the above assertions are verbatim the proofs of Lemma

18.1 and Theorems 18.2 and 16.5.
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18.3. Problem (C �DC)

!

. In this 
ase the interfa
e 
onditions read as

follows (see Subse
tion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.42)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

�[P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.43)

[u

(1)

℄

+

= e'

(+)

; [u

(2)

℄

�

= e'

(�)

on S

2

; (18.44)

where

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

e'

(�)

= ('

(�)

1

; '

(�)

2

; '

(�)

3

)

>

2 [B

1�1=p

p;p

(S

2

)℄

3

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

;

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

:

(18.45)

Let

e

F

0

= (F

0

1

; F

0

2

; F

0

3

)

>

be some �xed extension of the ve
tor

e

F

(1)

from S

1

onto S

2

preserving the fun
tional spa
e, i.e.,

e

F

0

2 [B

�1=p

p;p

(S)℄

3

;

e

F

0

j

S

1

=

e

F

(1)

: (18.46)

Then an arbitrary extension of

e

F

(1)

onto the whole of S preserving the

fun
tional spa
e 
an be written as follows

e

F = (F

1

; F

2

; F

3

)

>

=

e

F

0

+ e' 2 [B

�1=p

p;p

(S)℄

3

; (18.47)

where e' is an arbitrary ve
tor fun
tion with the support in S

2

, i.e.,

e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

: (18.48)

Next we set

F = (F

1

; � � � ; F

4

)

>

:= F

0

+ ' 2 [B

�1=p

p;p

(S)℄

4

; (18.49)

where

F

0

= (

e

F

0

; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

(18.50)

is the given ve
tor fun
tion, and

' = (e'; 0)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

4

(18.51)

with e' subje
ted to the 
ondition (18.48).

It is easily seen that the 
onditions (18.42)-(18.44) are equivalent to the

equations

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.52)

[B

(1)

(D;n)U

(1)

℄

+

k

� [B

(2)

(D;n)U

(2)

℄

�

k

= F

k

on S

1

; k = 1; 2; 3; (18.53)

[B

(1)

(D;n)U

(1)

℄

+

4

� [B

(2)

(D;n)U

(2)

℄

�

4

= F

4

on S; (18.54)

[U

(1)

℄

+

k

+ [U

(2)

℄

�

k

= '

(+)

k

+ '

(�)

k

on S

2

; k = 1; 2; 3; (18.55)
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where f is the given ve
tor fun
tion

f = (f

1

; � � � ; f

4

)

>

=:

�

(

e

f

(1)

; f

4

)

>

on S

1

;

(e'

(+)

� e'

(�)

; f

4

)

>

on S

2

;

(18.56)

satisfying the following ne
essary 
ompatibility 
ondition (
f. (7.25))

f 2 [B

1�1=p

p;p

(S)℄

4

; (18.57)

and F

k

and e'

�

are as above.

After this reformulation of the problem in question let us look for the

solution in the form (18.9)-(18.10), where f , F

0

, and ' are de�ned by

formulae (18.56), (18.50), and (18.51), respe
tively. These representations

imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ':

(18.58)

Therefore, the 
onditions (18.52), (18.53), and (18.54) are satis�ed auto-

mati
ally. It remains to meet the 
onditions (18.55) whi
h, by virtue of

(18.11) and (18.12), lead to the system of 	DEs for the ve
tor fun
tion

' = (e'; 0)

>

on S

2

:

r

S

2

[�

1

	'℄

k

= r

S

2

[(K

H

)

kj

'

j

℄ = q

k

on S

2

; k = 1; 2; 3; (18.59)

where the summation over the repeated index j is meant from 1 to 3, and

(see (18.13))

q

k

= 2

�1

('

(+)

k

+ '

(�)

k

)� r

S

2

f�

1

	F

0

�

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg

k

2 B

1�1=p

p;p

(S

2

); (18.60)

here K

H

is again the 	DO of order �1 de�ned by (15.105) with properties

des
ribed by Lemmata 15.14 and 18.1.

Let

e

K

H

:= [(K

H

)

kj

℄

3�3

; k; j = 1; 2; 3; eq := (q

1

; q

2

; q

3

)

>

: (18.61)

Then (18.59) 
an be written in the matrix form as

r

S

2

e

K

H

e' = eq (18.62)

where e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

is the sought for ve
tor.

The following properties of the 	DO

e

K

H

are immediate 
onsequen
es of

Lemmata 15.14 and 18.1.

Lemma 18.7. The prin
ipal homogeneous symbol matrix of the operator

e

K

H

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g. The following

operators

r

S

2

e

K

H

: [

e

B

s

p;q

(S

2

)℄

3

! [B

s+1

p;q

(S

2

)℄

3

; (18.63)

: [

e

H

s

p

(S

2

)℄

3

! [H

s+1

p

(S

2

)℄

3

; (18.64)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.
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These operators are invertible if the 
ondition (16:15) holds.

Proof. The �rst assertion of the lemma follows from the proof of Lemma

15.14 (see (15.106){(15.107)), sin
e �(

e

K

H

) = X , where X is the positive

de�nite 3 � 3 matrix given by formula (15.107) (for arbitrary x 2 S and

e

� 2 IR

2

n f0g).

The boundedness of the operators (18.63)-(18.64) is a 
onsequen
e of

Lemma 18.1.

It is evident that the Fredholm indi
es of these operators are equal to

zero. This follows from the positive de�niteness of the prin
ipal symbol

matrix �(

e

K

H

). Therefore, to prove the last proposition of the lemma, we

have to show that the 
orresponding null-spa
es are trivial for any s and p

satisfying the inequalities (16.15).

Again, we take s = �1=p and p = q = 2 to prove that the homogeneous

	DE

r

S

2

e

K

H

e' = 0 (18.65)

has no nontrivial solutions. Let e'

0

= ('

01

; '

02

; '

03

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

3

be

any solution to the equation (18.65) and using the formulae (18.17) and

(18.18) 
onstru
t the ve
tor fun
tions U

(1)

0

and U

(2)

0

, where the density '

is represented as follows

' = (e'

0

; 0)

>

2 [B

�1=2

2;2

(S

2

)℄

4

:

Therefore, the in
lusion (18.19) remains valid, and, moreover, U

(1)

0

and U

(2)

0

satisfy the homogeneous interfa
e 
onditions (18.52)-(18.55):

[U

(1)

0

℄

+

= [U

(2)

0

℄

�

on S;

[B

(1)

(D;n)U

(1)

0

℄

+

k

� [B

(2)

(D;n)U

(2)

0

℄

�

k

= '

0k

on S

1

; k = 1; 2; 3;

[B

(1)

(D;n)U

(1)

0

℄

+

4

� [B

(2)

(D;n)U

(2)

0

℄

�

4

= 0 on S;

[U

(1)

0

℄

+

k

+ [U

(2)

0

℄

�

k

= [ r

S

2

�

1

	' ℄

k

= [ r

S

2

e

K

H

e' ℄

k

= 0 on S

2

; k = 1; 2; 3:

Due to Theorem 9.12 we infer U

(�)

0

in 


�

(� = 1; 2), whi
h, in turn, yields

that '

0k

= 0, k = 1; 2; 3: Thus the null-spa
es of the operators (18.63)-

(18.64) are trivial in the spa
es

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

). Now Lemma 16.1


ompletes the proof. �

This lemma implies the following existen
e and regularity results.

Theorem 18.8. Let 4=3 < p < 4 and let the 
onditions (18:45), (18:57)

be ful�lled. Then the nonhomogeneous problem (C � DC)

!

is uniquely solv-

able in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p;lo


(


2

)\SK

m

r

(


2

)) (with

the parameters r and ! as in (15:3)) and the solution is representable by

formulae (18:9){(18:10), where f , F

0

, and ' are given by (18:56), (18:50)

and (18:51), respe
tively, and e' is the unique solution of the 	DE (18:62).
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Theorem 18.9. Let the 
onditions (18:45), (18:57), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C � DC)

!

.

In addition to (18:45), (18:57),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S); e'

(�)

2 [B

s+1

t;t

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

; f 2 [B

s+1

t;t

(S)℄

4

;

(18.66)

then there holds the in
lusion (18.22);

ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S); e'

(�)

2 [B

s+1

t;q

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

; f 2 [B

s+1

t;q

(S)℄

4

;

(18.67)

then there holds the in
lusion (18.24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S); e'

(�)

2 [C

�

(S

2

)℄

3

;

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

; f 2 [C

�

(S)℄

4

;

(18.68)

for some � > 0, then there holds the in
lusion (18:26).

The proofs of these theorems are again verbatim the proofs of Theorems

18.2 and 16.5.

18.4. Problem (C � NC)

!

. The investigation of this problem 
an be


arried out by quite the same approa
h as in the previous subse
tion. The

interfa
e 
onditions of the problem now have the following form:

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.69)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.70)

[P

(1)

(D;n)U

(1)

℄

+

=

e

�

(+)

; [P

(2)

(D;n)U

(2)

℄

�

=

e

�

(�)

; on S

2

; (18.71)

where

f

4

2 B

1�1=p

p;p

(S); F

4

2 B

�1=p

p;p

(S);

e

�

(�)

= (�

(�)

1

;�

(�)

2

;�

(�)

3

)

>

2 [B

�1=p

p;p

(S

2

)℄

3

;

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

;

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

:

(18.72)

Let

e

f

0

= (f

0

1

; f

0

2

; f

0

3

)

>

be some �xed extension of the ve
tor

e

f

(1)

from S

1

onto S

2

preserving the fun
tional spa
e, i.e.,

e

f

0

2 [B

1�1=p

p;p

(S)℄

3

;

e

f

0

j

S

1

=

e

f

(1)

: (18.73)
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Again an arbitrary extension of

e

f

(1)

onto the whole of S preserving the

fun
tional spa
e 
an be represented as the sum

e

f = (f

1

; f

2

; f

3

)

>

:=

e

f

0

+ e' 2 [B

1�1=p

p;p

(S)℄

3

;

e

f j

S

1

=

e

f

0

j

S

1

=

e

f

(1)

; (18.74)

where e' is an arbitrary ve
tor fun
tion supported on S

2

e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

3

: (18.75)

Further, let us introdu
e the notations

f = (f

1

; � � � ; f

4

)

>

:= f

0

+ ' 2 [B

1�1=p

p;p

(S)℄

4

; (18.76)

where

f

0

= (

e

f

0

; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

(18.77)

is the given ve
tor fun
tion, and

' := (e'; 0)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

4

(18.78)

with e' subje
ted to the 
ondition (18.75).

Next we redu
e the 
onditions (18.69)-(18.71) to the following equivalent

equations

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.79)

[U

(1)

℄

+

4

� [U

(2)

℄

�

4

= f

4

on S; (18.80)

[U

(1)

℄

+

k

� [U

(2)

℄

�

k

= f

k

; on S

1

; k = 1; 2; 3; (18.81)

[B

(1)

(D;n)U

(1)

℄

+

k

+ [B

(2)

(D;n)U

(2)

℄

�

k

=

= �

(+)

k

+�

(�)

k

on S

2

; k = 1; 2; 3; (18.82)

where F is the given ve
tor fun
tion

F = (F

1

; � � � ; F

4

)

>

:=

(

(

e

F

(1)

; F

4

)

>

on S

1

;

(

e

�

(+)

�

e

�

(�)

; F

4

)

>

on S

2

;

(18.83)

satisfying the ne
essary 
ompatibility 
ondition (
f. (7.26))

F 2 [B

�1=p

p;p

(S)℄

4

; (18.84)

and f

k

and

e

�

�

are as above.

Now we look for a solution to the reformulated problem (18.79)-(18.82) in

the form (18.32)-(18.33), where the density ve
tors f

0

, F , and ' are de�ned

by formulae (18.77), (18.83), and (18.78), respe
tively. By virtue of these

representations we have

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F:

(18.85)

Therefore, the 
onditions (18.79), (18.80), and (18.81) are ful�lled auto-

mati
ally. The remaining 
onditions (18.82), in a

ordan
e with the equa-

tion (18.34), lead to the system of 	DEs for the unknown ve
tor fun
tion
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' = (e'; 0)

>

on S

2

:

r

S

2

[�	

1

		

2

�

�1

2

'℄

k

= r

S

2

[(K

G

)

kj

'

j

℄ = q

k

on S

2

; k = 1; 2; 3; (18.86)

where K

G

= �	

1

		

2

�

�1

2

is the same 	DO of order +1 as in Subse
tion

16.2 (see also (15.86)), the summation over the repeated index j is again

meant from 1 to 3, and (see (18.36))

q

k

= 2

�1

(�

(+)

k

+�

(�)

k

)� r

S

2

f[	

1

	 � 2

�1

I ℄F +K

G

f

0

g

k

2

2 B

�1=p

p;p

(S

2

); k = 1; 2; 3: (18.87)

Next we set

e

K

G

:= [(K

G

)

kj

℄

3�3

; k; j = 1; 2; 3; eq := (q

1

; q

2

; q

3

)

>

: (18.88)

The system (18.86) 
an be then rewritten in the matrix form as follows

r

S

2

e

K

G

e' = eq (18.89)

where e' = ('

1

; '

2

; '

3

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

3

is the sought for ve
tor fun
tion.

Lemma 18.10. The prin
ipal homogeneous symbol matrix of the operator

e

K

G

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

n f0g. The operators

r

S

2

e

K

G

: [

e

B

s+1

p;q

(S

2

)℄

3

! [B

s

p;q

(S

2

)℄

3

; (18.90)

: [

e

H

s+1

p

(S

2

)℄

3

! [H

s

p

(S

2

)℄

3

; (18.91)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. It is quite similar to the proof of Lemma 18.7 and follows from

Lemmata 15.9, 18.4, and 16.1. �

With the help of this lemma one 
an easily derive the following exi
ten
e

and regularity results.

Theorem 18.11. Let 4=3 < p < 4 and let the 
onditions (18:72) and

(18:84) be ful�lled. Then the nonhomogeneous problem (C�NC)

!

is uniquely

solvable in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

))

(with the parameters r and ! as in (15:3)) and the solution is representable

by formulae (18:32){(18:33), where F , f

0

, and ' are given by (18:83),

(18:77) and (18:78), respe
tively, and e' is the unique solution of the 	DE

(18:89).

Theorem 18.12. Let the 
onditions (18:72), (18:84), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \ SK

m

r

(


2

))

be the unique solution to the problem (C �NC)

!

.

In addition to (18:72), (18:84),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e

�

(�)

2 [B

s

t;t

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

; F 2 [B

s

t;t

(S)℄

4

;

(18.92)

then there holds the in
lusion (18:22);
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ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e

�

(�)

2 [B

s

t;q

(S

2

)℄

3

;

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

; F 2 [B

s

t;q

(S)℄

4

;

(18.93)

then there holds the in
lusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e

�

(�)

2 [B

��1

1;1

(S

2

)℄

3

;

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

; F 2 [B

��1

1;1

(S)℄

4

;

(18.94)

for some � > 0, then there holds the in
lusion (18:26).

The proofs of these propositions are again word for word of the proofs of

Theorems 18.2 and 16.5.

18.5. Problem (C � G)

!

. The interfa
e 
onditions of the problem

(C � G)

!

read as (see Subse
tion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.95)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.96)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

;

[P

(1)

(D;n)U

(1)

� n℄

+

� [P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

;

[P

(1)

(D;n)U

(1)

� l℄

+

=

e

�

(+)

l

; [P

(1)

(D;n)U

(1)

�m℄

+

=

e

�

(+)

m

;

[P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(�)

l

; [P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(�)

m

;

9

>

>

>

=

>

>

>

;

onS

2

;(18.97)

where the boundary data belong to the following natural spa
es

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

; f

4

2 B

1�1=p

p;p

(S);

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

; F

4

2 B

�1=p

p;p

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

�1=p

p;p

(S

2

);

e

f

(2)

n

2 B

1�1=p

p;p

(S

2

);

(18.98)

These interfa
e 
onditions imply that the ve
tor fun
tion

F :=

8

<

:

(

e

F

(1)

; F

4

)

>

on S

1

;

�

[

e

�

(+)

l

�

e

�

(�)

l

℄l+[

e

�

(+)

m

�

e

�

(�)

m

℄m+

e

F

(2)

n

n; F

4

�

>

on S

2

;

(18.99)

represents the di�eren
e [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

on S, and,

therefore, we assume the following natural 
ompatibility 
ondition (
f.

(7.28))

F = (F

1

; � � � ; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

: (18.100)

Analogously, the fun
tion

e

f

n

:=

(

e

f

(1)

� n on S

1

;

e

f

(2)

n

on S

2

;

(18.101)
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represents the di�eren
e [u

(1)

� n℄

+

� [u

(2)

� n℄

�

on S, and, we again provide

the natural 
ompatibility 
ondition

e

f

n

2 B

1�1=p

p;p

(S): (18.102)

Further, let us represent the boundary ve
tor fun
tions

e

f

(1)

in the form

e

f

(1)

=

e

f

(1)

l

l +

e

f

(1)

m

m+

e

f

(1)

n

n onS

1

; (18.103)

where

e

f

(1)

l

=

e

f

(1)

� l;

e

f

(1)

m

=

e

f

(1)

�m;

e

f

(1)

n

=

e

f

(1)

� n: (18.104)

We denote by

e

f

(0)

l

and

e

f

(0)

m

some �xed extensions of the fun
tions

e

f

(1)

l

and

e

f

(1)

m

from S

1

onto S

2

preserving the fun
tional spa
e. Then arbitrary

extensions 
an be represented as

e

f

l

=

e

f

(0)

l

+ '

l

;

e

f

m

=

e

f

(0)

m

+ '

m

; (18.105)

where

e

f

l

;

e

f

(0)

l

;

e

f

m

;

e

f

(0)

m

2 B

1�1=p

p;p

(S); '

l

; '

m

2

e

B

1�1=p

p;p

(S

2

);

e

f

l

j

S

1

=

e

f

(0)

l

j

S

1

=

e

f

(1)

l

e

f

m

j

S

1

=

e

f

(0)

m

j

S

1

=

e

f

(1)

m

:

(18.106)

Clearly, here '

l

and '

m

are arbitrary s
alar fun
tions of the spa
e

e

B

1�1=p

p;p

(S

2

).

Finally, let us set

f = (f

1

; � � � ; f

4

)

>

:= f

0

+ ' 2 [B

1�1=p

p;p

(S)℄

4

;

e

f = (f

1

; f

2

; f

3

)

>

; (18.107)

where f

4

is the same fun
tion as in (18.95), while

f

0

= (

e

f

(0)

l

l+

e

f

(0)

m

m+

e

f

n

n; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

; (18.108)

' = ('

l

l + '

m

m; 0)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

4

; (18.109)

here

e

f

(0)

=

e

f

(0)

l

l +

e

f

(0)

m

m+

e

f

n

n and

e

f

n

is given by (18.101).

It 
an be easily seen that (see (18.101) and (18.103))

e

f j

S

1

=

e

f

(0)

j

S

1

=

e

f

(1)

on S

1

; (18.110)

e

f � nj

S

2

=

e

f

(0)

� nj

S

2

=

e

f

n

=

e

f

(2)

n

on S

2

: (18.111)

Now we are able to redu
e the interfa
e 
onditions (18.95)-(18.97) to the

following equivalent equations in terms of the above introdu
ed fun
tions:

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (18.112)

[U

(1)

℄

+

4

� [U

(2)

℄

�

4

= f

4

on S; (18.113)

[U

(1)

℄

+

k

� [U

(2)

℄

�

k

= f

k

; k = 1; 2; 3; on S

1

; (18.114)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f � n on S

2

; (18.115)

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

e

�

(+)

l

+

e

�

(�)

l

on S

2

; (18.116)

[P

(1)

(D;n)U

(1)

�m℄

+

+[P

(2)

(D;n)U

(2)

�m℄

�

=

e

�

(+)

m

+

e

�

(�)

m

onS

2

;(18.117)

where F ,

e

f , and f

k

are given by (18.99), (18.107)-(18.109).
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After this reformulation we look for the solution of the problem under


onsideration in the form (18.32)-(18.33), where now F and f

0

de�ned by

(18.99) and (18.108) are the given ve
tor fun
tions on S, while the ve
tor

fun
tion ' given by (18.109) is unknown. We observe that the 
onditions

(18.112), (18.113), (18.114), and (18.115) are satis�ed automati
ally, sin
e

the repesentations (18.32)-(18.33) yield

[U

(1)

℄

+

� [U

(2)

℄

�

= f

0

+ ';

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F:

(18.118)

It remains only to meet 
onditions (18.116) and (18.117) whi
h lead to the

following system of 	DEs on S

2

for the unknown fun
tions '

l

and '

m

(see

Subse
tion 15.2, formulae (15.73), (15.74))

[P

(1)

(D;n)U

(1)

� l℄

+

+ [P

(2)

(D;n)U

(2)

� l℄

�

=

= [B

(1)

(D;n)U

(1)

� l

�

℄

+

+ [B

(2)

(D;n)U

(2)

� l

�

℄

�

=

= [	

1

	F �	

1

		

2

�

�1

2

(f

0

+ ')℄ � l

�

+

+[	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(f

0

+ ')℄ � l

�

=

=

e

�

(+)

l

+

e

�

(�)

l

;

[P

(1)

(D;n)U

(1)

�m℄

+

+ [P

(2)

(D;n)U

(2)

�m℄

�

=

= [B

(1)

(D;n)U

(1)

�m

�

℄

+

+ [B

(2)

(D;n)U

(2)

�m

�

℄

�

=

= [	

1

	F �	

1

		

2

�

�1

2

(f

0

+ ')℄ �m

�

+

+[	

2

�

�1

2

�

1

	F �	

2

�

�1

2

(�

1

		

2

�

�1

2

+ I)(f

0

+ ')℄ �m

�

=

=

e

�

(+)

m

+

e

�

(�)

m

;

where l

�

= (l

1

; l

2

; l

3

; 0)

>

and m

�

= (m

1

;m

2

;m

3

; 0)

>

are the 4-ve
tors in-

trodu
ed in Se
tion 14 (see (14.48)).

With the help of (15.80) we arrive at the system of equations

r

S

2

K

G

('

l

l

�

+ '

m

m

�

) � l

�

= q

l

;

r

S

2

K

G

('

l

l

�

+ '

m

m

�

) �m

�

= q

m

;

�

on S

2

; (18.119)

where the 	DE K

G

is de�ned by (15.86), and

q

l

= 2

�1

(�

(+)

l

+�

(�)

l

) � r

S

2

f	

1

	 � 2

�1

I ℄F+

+K

G

f

0

g � l

�

2 B

�1=p

p;p

(S

2

);

q

m

= 2

�1

(�

(+)

m

+�

(�)

m

) � r

S

2

f	

1

	 � 2

�1

I ℄F+

+K

G

f

0

g �m

�

2 B

�1=p

p;p

(S

2

):

(18.120)

Now, taking into a

ount the formula (15.85), we 
an rewrite the above

system in the matrix form

r

S

2

M

G

h = g on S

2

; (18.121)

where g = (q

l

; q

m

)

>

2 [B

�1=p

p;p

(S

2

)℄

2

is the given ve
tor on S

2

, and h =

('

l

; '

m

)

>

2 [

e

B

1�1=p

p;p

(S

2

)℄

2

is the unknown ve
tor. Due to Lemma 15.9
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the prin
ipal homogeneous symbol matrix of the 	DOM

G

is positive de�-

nite. Therefore, by quite the same arguments as in the previous subse
tions

and invoking Theorem 9.12 and Lemma 16.1, one 
an prove the following

propositions.

Lemma 18.13. The operators

r

S

2

M

G

: [

e

B

s+1

p;q

(S

2

)℄

2

! [B

s

p;q

(S

2

)℄

2

; (18.122)

: [

e

H

s+1

p

(S

2

)℄

2

! [H

s

p

(S

2

)℄

2

; (18.123)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Theorem 18.14. Let 4=3 < p < 4 and let the 
onditions (18:98),

(18:100), and (18:102) be ful�lled. Then the nonhomogeneous problem (C �

G)

!

is uniquely solvable in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p;lo


(


2

)\

SK

m

r

(


2

)) (with the parameters r and ! as in (15:3)) and the solution is

representable by formulae (18:32){(18:33), where F , f

0

, and ' are given

by (18:99), (18:108) and (18:109), respe
tively, and ('

l

; '

m

)

>

is the unique

solution of the 	DE (18:121).

Theorem 18.15. Let the 
onditions (18:98), (18:100), (18:102), and

(16:23) be ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \

SK

m

r

(


2

)) be the unique solution to the problem (C � G)

!

.

In addition to (18:98), (18:100), (18:102),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

s

t;t

(S

2

);

e

f

(2)

n

2 B

s+1

t;t

(S

2

);

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

;

F 2 [B

s

t;t

(S)℄

4

;

e

f

n

2 B

s+1

t;t

(S);

(18.124)

then there holds the in
lusion (18:22);

ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

s

t;q

(S

2

);

e

f

(2)

n

2 B

s+1

t;q

(S

2

);

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

;

F 2 [B

s

t;q

(S)℄

4

;

e

f

n

2 B

s+1

t;q

(S);

(18.125)

then there holds the in
lusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e

�

(�)

l

;

e

�

(�)

m

;

e

F

(2)

n

2 B

��1

1;1

(S

2

);

e

f

(2)

n

2 C

�

(S

2

);

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

;

F 2 [B

��1

1;1

(S)℄

4

;

e

f

n

2 C

�

(S);

(18.126)

for some � > 0, then there holds the in
lusion (18:26).
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18.6. Problem (C �H)

!

. Again we start with the reformulation of the

original interfa
e 
onditions (see Subse
tion 7.2):

[u

(1)

4

℄

+

� [u

(2)

4

℄

�

= f

4

;

[�

(1)

(D;n)u

(1)

4

℄

+

� [�

(2)

(D;n)u

(2)

4

℄

�

= F

4

on S;

(18.127)

[u

(1)

℄

+

� [u

(2)

℄

�

=

e

f

(1)

;

[P

(1)

(D;n)U

(1)

℄

+

� [P

(2)

(D;n)U

(2)

℄

�

=

e

F

(1)

on S

1

;

(18.128)

[u

(1)

� n℄

+

� [u

(2)

� n℄

�

=

e

f

(2)

n

;

[P

(1)

(D;n)U

(1)

� n℄

+

�[P

(2)

(D;n)U

(2)

� n℄

�

=

e

F

(2)

n

;

[u

(1)

� l℄

+

= e'

(+)

l

; [u

(1)

�m℄

+

= e'

(+)

m

;

[u

(2)

� l℄

�

= e'

(�)

l

; [u

(2)

�m℄

�

= e'

(�)

m

;

9

>

>

>

=

>

>

>

;

on S

2

; (18.129)

where

e

f

(1)

= (f

(1)

1

; f

(1)

2

; f

(1)

3

)

>

2 [B

1�1=p

p;p

(S

1

)℄

3

; f

4

2 B

1�1=p

p;p

(S);

e

F

(1)

= (F

(1)

1

; F

(1)

2

; F

(1)

3

)

>

2 [B

�1=p

p;p

(S

1

)℄

3

; F

4

2 B

�1=p

p;p

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

1�1=p

p;p

(S

2

);

e

F

(2)

n

2 B

�1=p

p;p

(S

2

):

(18.130)

The ve
tor fun
tion

f :=

8

<

:

(

e

f

(1)

; f

4

)

>

on S

1

;

�

[e'

(+)

l

� e'

(�)

l

℄l+[e'

(+)

m

� e'

(�)

m

℄m+

e

f

(2)

n

n; f

4

�

>

on S

2

;

(18.131)

represents the di�eren
e [U

(1)

℄

+

� [U

(2)

℄

�

on the interfa
e S, and, therefore,

we require the natural 
ompatibility 
ondition (
f. (7.28))

f = (f

1

; � � � ; f

4

)

>

2 [B

1�1=p

p;p

(S)℄

4

: (18.132)

Moreover, the fun
tion

e

F

n

:=

(

e

F

(1)

� n on S

1

;

e

F

(2)

n

on S

2

;

(18.133)


orresponds to the di�eren
e [P

(1)

(D;n)U

(1)

�n℄

+

� [P

(2)

(D;n)U

(2)

�n℄

�

on

S, and, we again assume the natural 
ompatibility 
ondition

e

F

n

2 B

�1=p

p;p

(S): (18.134)

Next, let us represent the boundary ve
tor fun
tion

e

F

(1)

in the form

e

F

(1)

=

e

F

(1)

l

l +

e

F

(1)

m

m+

e

F

(1)

n

n on S

1

; (18.135)

where

e

F

(1)

l

=

e

F

(1)

� l;

e

F

(1)

m

=

e

F

(1)

�m;

e

F

(1)

n

=

e

F

(1)

� n: (18.136)

Denote by

e

F

(0)

l

and

e

F

(0)

m

some �xed extensions of the fun
tions

e

F

(1)

l

and

e

F

(1)

m

from S

1

onto S

2

preserving the fun
tional spa
e. Arbitrary extensions
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then 
an be represented as

e

F

l

=

e

F

(0)

l

+ '

l

;

e

F

m

=

e

F

(0)

m

+ '

m

; (18.137)

where

e

F

l

;

e

F

(0)

l

;

e

F

m

;

e

F

(0)

m

2 B

�1=p

p;p

(S); '

l

; '

m

2

e

B

�1=p

p;p

(S

2

);

e

F

l

j

S

1

=

e

F

(0)

l

j

S

1

=

e

F

(1)

l

;

e

F

m

j

S

1

=

e

F

(0)

m

j

S

1

=

e

F

(1)

m

:

(18.138)

Obviously, here '

l

and '

m

are arbitrary fun
tions from

e

B

�1=p

p;p

(S

2

).

Further, we set

F = (F

1

; � � � ; F

4

)

>

:= F

0

+ ' 2 [B

�1=p

p;p

(S)℄

4

;

e

F = (F

1

; F

2

; F

3

)

>

; (18.139)

where F

4

is the same fun
tion as above, while

F

0

:= (

e

F

(0)

l

l +

e

F

(0)

m

m+

e

F

n

n; F

4

)

>

2 [B

�1=p

p;p

(S)℄

4

(18.140)

with

' = '

l

l

�

+ '

m

m

�

= ('

l

l + '

m

m; 0)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

4

: (18.141)

Moreover,

e

F

(0)

=

e

F

(0)

l

l+

e

F

(0)

m

m+

e

F

n

n; the fun
tion

e

F

n

is given by (18.133),

and the 4-ve
tors l

�

, m

�

, and n

�

are de�ned by (14.48).

We note that (see (18.135))

e

F j

S

1

=

e

F

(0)

j

S

1

=

e

F

(1)

on S

1

;

e

F � nj

S

2

=

e

F

(0)

� nj

S

2

=

e

F

n

=

e

F

(2)

n

on S

2

:

(18.142)

Now we 
an easily see that the original interfa
e 
onditions (18.127)-

(18.129) are equivalent to the equations:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (18.143)

[B

(1)

(D;n)U

(1)

℄

+

4

� [B

(2)

(D;n)U

(2)

℄

�

4

= F

4

on S; (18.144)

[B

(1)

(D;n)U

(1)

℄

+

k

� [B

(2)

(D;n)U

(2)

℄

�

k

= F

k

on S

1

; k = 1; 2; 3; (18.145)

[B

(1)

(D;n)U

(1)

� n

�

℄

+

� [B

(2)

(D;n)U

(2)

� n

�

℄

�

= F � n

�

on S

2

; (18.146)

[U

(1)

� l

�

℄

+

+ [U

(2)

� l

�

℄

�

= e'

(+)

l

+ e'

(�)

l

;

[U

(1)

�m

�

℄

+

+ [U

(2)

�m

�

℄

�

= e'

(+)

m

+ e'

(�)

m

;

)

on S

2

; (18.147)

where f and F are given by (18.131) and (18.139), respe
tively.

Let us look for the solution of the reformulated problem in the form

(18.9)-(18.10), where now f , F

0

, and ' are de�ned by (18.131), (18.140),

and (18.141). These representation formulae imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f; [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ';

whi
h show that the 
onditions (18.143)-(18.146) are satis�ed automati
ally.

The remaining 
onditions (18.147) yield the following system of 	DEs

on S

2

for the unknown s
alar fun
tions '

l

and '

m

(see (18.11))

r

S

2

�

1

	' � l

�

= q

l

;

r

S

2

�

1

	' � m

�

= q

m

;

�

on S

2

; (18.148)
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where

q

l

= 2

�1

('

(+)

l

+ '

(�)

l

)�

� r

S

2

f�

1

	F

0

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg � l

�

;

q

m

= 2

�1

('

(+)

m

+ '

(�)

m

)�

�r

S

2

f�

1

	F

0

� [�

1

		

2

�

�1

2

+ 2

�1

I ℄ fg �m

�

:

(18.149)

In a

ordan
e with the formula (15.104) this system 
an be written also

as

r

S

2

M

H

h = g on S

2

; (18.150)

where g = (q

l

; q

m

)

>

2 [B

1�1=p

p;p

(S

2

)℄

2

is the given ve
tor on S

2

, and h =

('

l

; '

m

)

>

2 [

e

B

�1=p

p;p

(S

2

)℄

2

is the unknown ve
tor.

By virtue of Lemma 15.14 the prin
ipal homogeneous symbol matrix of

the 	DO M

H

is positive de�nite whi
h together with Theorem 9.12 and

Lemma 16.1 implies the following existen
e and regularity results.

Lemma 18.16. The operators

r

S

2

M

H

: [

e

B

s

p;q

(S

2

)℄

2

! [B

s+1

p;q

(S

2

)℄

2

; (18.151)

: [

e

H

s

p

(S

2

)℄

2

! [H

s+1

p

(S

2

)℄

2

; (18.152)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Theorem 18.17. Let 4=3 < p < 4 and let the 
onditions (18:130),

(18:132), and (18:134) be ful�lled. Then the nonhomogeneous problem (C �

H)

!

is uniquely solvable in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p;lo


(


2

)\

SK

m

r

(


2

)) (with the parameters r and ! as in (15:3)) and the solution is

representable by formulae (18:9){(18:10), where f , F

0

, and ' are given by

(18:131), (18:140), and (18:141), respe
tively, and ('

l

; '

m

)

>

is the unique

solution of the 	DE (18:150).

Theorem 18.18. Let the 
onditions (18:130), (18:132), (18:134), and

(16:23) be ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;lo


(


2

) \

SK

m

r

(


2

)) be the unique solution to the problem (C �H)

!

.

In addition to (18:130), (18:132), (18:134),

i) if

f

4

2 B

s+1

t;t

(S); F

4

2 B

s

t;t

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

s+1

t;t

(S

2

);

e

F

(2)

n

2 B

s

t;t

(S

2

);

e

f

(1)

2 [B

s+1

t;t

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;t

(S

1

)℄

3

;

f 2 [B

s+1

t;t

(S)℄

4

;

e

F

n

2 B

s

t;t

(S);

(18.153)

then there holds the in
lusion (18:22);
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ii) if

f

4

2 B

s+1

t;q

(S); F

4

2 B

s

t;q

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 B

s+1

t;q

(S

2

);

e

F

(2)

n

2 B

s

t;q

(S

2

);

e

f

(1)

2 [B

s+1

t;q

(S

1

)℄

3

;

e

F

(1)

2 [B

s

t;q

(S

1

)℄

3

;

f 2 [B

s+1

t;q

(S)℄

4

;

e

F

n

2 B

s

t;q

(S);

(18.154)

then there holds the in
lusion (18:24);

iii) if

f

4

2 C

�

(S); F

4

2 B

��1

1;1

(S);

e'

(�)

l

; e'

(�)

m

;

e

f

(2)

n

2 C

�

(S

2

);

e

F

(2)

n

2 B

��1

1;1

(S

2

);

e

f

(1)

2 [C

�

(S

1

)℄

3

;

e

F

(1)

2 [B

��1

1;1

(S

1

)℄

3

;

f 2 [C

�

(S)℄

4

;

e

F

n

2 B

��1

1;1

(S);

(18.155)

for some � > 0, then there holds the in
lusion (18:26).

19. Mixed Interfa
e Problems of Pseudo-Os
illations

The mixed interfa
e problems for the system of pseudo-os
illation equa-

tions are investigated by the approa
h developed in the previous se
tion. In

this 
ase we have to apply the \expli
it" representation formulae (14.24){

(14.25), obtained for the solution of the basi
 interfa
e problem (C)

�

, to re-

du
e the mixed interfa
e problems to the 
orresponding 	DEs. For illustra-

tion of the method in this se
tion we 
onsider only the problems (C �DD)

�

and (C � NN )

�

. The other mixed problems of pseudo-os
illations 
an be

studied quite analogously.

19.1. Problem (C � DD)

�

. Let S, S

1

, and S

2

, be the same as in

Se
tion 18. The original formulation of the problem (C � DD)

�

is the fol-

lowing (see Se
tion 7): Find the pair of ve
tor-fun
tions (U

(1)

; U

(2)

) 2

(W

1

p

(


1

) ; W

1

p

(


2

)) satisfying the di�erential equations

A

(�)

(D; �)U

(�)

= 0 in 


(�)

; � = 1; 2; (19.1)

and the mixed interfa
e 
onditions on S

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

on S

1

;

(19.2)

[U

(1)

℄

+

= '

(+)

; [U

(2)

℄

�

= '

(�)

on S

2

;
(19.3)

moreover, U

(2)

satis�es the de
ay 
ondition (1.30) at in�nity.

Here p > 1 and

f

(1)

= (f

(1)

1

; � � � ; f

(1)

4

)

>

2 B

1�1=p

p;p

(S

1

);

F

(1)

= (F

(1)

1

; � � � ; F

(1)

4

)

>

2 B

�1=p

p;p

(S

1

);

(19.4)

'

(�)

= ('

(�)

1

; � � � ; '

(�)

4

)

>

2 B

1�1=p

p;p

(S

2

): (19.5)
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Further, we assume that the ve
tor fun
tion

f :=

�

f

(1)

on S

1

;

'

(+)

� '

(�)

on S

2

;

(19.6)

meets the ne
essary 
ompatibility 
ondition

f 2 B

1�1=p

p;p

(S): (19.7)

Next, denote by F

0

2 B

�1=p

p;p

(S) some �xed extension of the ve
tor fun
tion

F

(1)

from the submanifold S

1

onto the whole surfa
e S (i.e., F

0

j

S

1

= F

(1)

on S

1

).

Evidently, an arbitrary extension (preserving the fun
tional spa
e) 
an

be then represented as

F = F

0

+ ' 2 B

�1=p

p;p

(S); (19.8)

where ' = ('

1

; � � � ; '

4

)

>

2

e

B

�1=p

p;p

(S

2

) is an arbitrary fun
tion supported

on S

2

.

Now we 
an reformulate the interfa
e 
onditions (19.2)-(19.3) in the fol-

lowing equivalent form:

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S; (19.9)

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S

1

; (19.10)

[U

(1)

℄

+

+ [U

(2)

℄

�

= '

(+)

+ '

(�)

on S

2

; (19.11)

where B

(�)

(D;n) is de�ned again by (1.25), and f and F are given by (19.6)

and (19.8), respe
tively.

Let us now look for the solution (U

(1)

; U

(2)

) to the problem (C � DD)

�

as follows (
f. (14.24){(14.25))

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

[(F

0

+ ') +N

2;�

f ℄

�

(x); x 2 


1

; (19.12)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

[(F

0

+ ')�N

1;�

f ℄

�

(x); x 2 


2

; (19.13)

where ' 2

e

B

�1=p

p;p

(S

2

) is the unknown ve
tor fun
tion,W

(�)

�

and V

(�)

�

are the

double and single layer potentials of pseudo-os
illations (see (11.1){(11.2)),

the boundary operatorsH

(�)

�

, N

�

, N

1;�

, and N

2;�

are the same as in Se
tion

14 (see (14.12)). Note that here and in what follows we keep all notations

of Se
tions 11 and 14.

One 
an easily 
he
k that the interfa
e 
onditions (19.9) and (19.10) are

satis�ed automati
ally, sin
e (19.12) and (19.13) together with (14.12) imply

[U

(1)

℄

+

� [U

(2)

℄

�

= f;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

0

+ ' on S:

(19.14)

It remains only to ful�l the 
ondition (19.11) whi
h yield the 	DE for the

unknown ve
tor fun
tion '

r

S

2

N

�1

�

' = q on S

2

; (19.15)
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where r

S

2

is again the restri
tion operator on S

2

, the right-hand side ve
tor

q is given by

q = 2

�1

('

(+)

+'

(�)

)�r

S

2

[N

�1

�

F

0

+2

�1

N

�1

�

(N

2;�

�N

1;�

)f ℄ 2 B

1�1=p

p;p

(S

2

):

The operator r

S

2

N

�1

�

possesses the following properties.

Lemma 19.1. The operators

r

S

2

N

�1

�

: [

e

B

s

p;q

(S

2

)℄

4

! [B

s+1

p;q

(S

2

)℄

4

; (19.16)

: [

e

H

s

p

(S

2

)℄

4

! [H

s+1

p

(S

2

)℄

4

; (19.17)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

Proof. Due to Theorem 11.3 and Lemma 14.2 we 
on
lude that the map-

pings (19.16)-(19.17) are bounded and that their Fredholm indi
es equal

zero, sin
e the prin
ipal homogeneous symbol matrix of the operator N

�1

�

is positive de�nite for arbitrary x 2 S and

e

� 2 IR

2

nf0g. It remains to prove

that the 
orresponding null-spa
es are trivial, i.e., we have to show that the

homogeneous equation

r

S

2

N

�1

�

' = 0 on S

2

(19.18)

has only the trivial solution in the spa
es

e

B

s

p;q

(S

2

) and

e

H

s

p

(S

2

) with s and

p satisfying the inequalities (16.15). We again 
onsider the parti
ular 
ase

s = �1=2 and p = q = 2 for whi
h the 
ondition (16.15) is ful�lled. Further,

let ' 2

e

B

�1=2

2;2

(S

2

) =

e

H

�1=2

2

(S

2

) be some solution to the equation (19.18),

and 
onstru
t the potentials:

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

'

�

(x); x 2 


1

; (19.19)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

'

�

(x); x 2 


2

: (19.20)

Theorem 11.3 implies that the pair (U

(1)

; U

(2)

) represents a solution to

the homogeneous problem (C � DD)

�

in the spa
e (W

1

2

(


1

) ; W

1

2

(


2

)).

By Theorem 8.6 we then 
on
lude U

(�)

= 0 in 


�

, � = 1; 2; when
e

[B

(1)

(D;n)U

(1)

℄

+

�[B

(2)

(D;n)U

(2)

℄

�

= ' = 0 follows. Therefore, the above

homogeneous equation has no nontrivial solutions in the spa
e

e

B

�1=2

2;2

(S

2

).

Now Lemma 16.1 
ompletes the proof. �

Theorem 19.2. Let 4=3 < p < 4 and let the 
onditions (19:4), (19:5),

and (19:7) be ful�lled. Then the problem (C � DD)

�

is uniquely solvable in

the 
lass (W

1

p

(


1

) ; W

1

p

(


2

)) and the solution is representable in the form

(19:12){(19:13), where ' is the unique solution of the 	DE (19:15).

Proof. First we note that the 
ondition (16.15) with s = �1=p implies the

inequality 4=3 < p < 4. Next, Lemma 19.1, with s = �1=p and 4=3 <

p < 4, shows that the 	DE (19.15) is uniquely solvable. This together

with the representation formulae (19.12)-(19.13) yields the solvability of the

nonhomogeneous problem (C �DD)

�

in the spa
e indi
ated in the theorem.
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It remains to prove the uniqueness of solution for 4=3 < p < 4. Let

(U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p

(


2

)) be some solution of the homogeneous

problem (C � DD)

�

. Clearly, then [U

(1)

℄

+

; [U

(2)

℄

�

2 B

1�1=p

p;p

(S) and

[B

(1)

(D;n)U

(1)

℄

+

; [B

(2)

(D;n)U

(2)

℄

�

2B

�1=p

p;p

(S). In addition, f :=[U

(1)

℄

+

�

[U

(2)

℄

�

= 0 on S and F := [B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= 0 on S

1

.

Therefore, F 2

e

B

�1=p

p;p

(S

2

). Due to Theorem 14.6, su
h solution is uniquely

representable by formulae (14.24){(14.25) whi
h in the 
ase in question read

as

U

(�)

(x) = V

(�)

�

�

(H

(�)

�

)

�1

N

�1

�

F

�

(x); x 2 


�

; � = 1; 2; (19.21)

with F 2

e

B

�1=p

p;p

(S

2

).

The homogeneous versions of the 
onditions (19.2)-(19.3) (i.e., (19.9)-

(19.11)) then shows that F has to satisfy the equation

r

S

2

N

�1

�

F = 0 on S

2

;

from whi
h F = 0 on S

2

follows for arbitrary p 2 (4=3; 4) due to Lemma

19.1. Therefore, U

(�)

= 0 in 


�

(� = 1; 2) in view of (19.21). This 
ompletes

the proof. �

The next theorem deals with the smoothness of solutions to the mixed

interfa
e problem (C � DD)

�

.

Theorem 19.3. Let the 
onditions (19:4), (19:5), (19:7), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p;

(


2

)) be the unique

solution to the problem (C � DD)

�

.

In addition to (19:4), (19:5), (19:7),

i) if 
onditions (18:21) are satis�ed, then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t

(


2

));

ii) if 
onditions (18:23) are satis�ed, then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q

(


2

));

iii) if 
onditions (18:25) are satis�ed for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

))

with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:

Proof. It is verbatim the proof of Theorem 16.5. �

19.2. Problem (C � NN )

�

. The original interfa
e 
onditions for the

problem (C �NN )

�

read as

[U

(1)

℄

+

� [U

(2)

℄

�

= f

(1)

;

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F

(1)

on S

1

;

(19.22)

[B

(1)

(D;n)U

(1)

℄

+

= �

(+)

; [B

(2)

(D;n)U

(2)

℄

�

= �

(�)

on S

2

; (19.23)
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where

f

(1)

2 B

1�1=p

p;p

(S

1

); F

(1)

2 B

�1=p

p;p

(S

1

);

�

(�)

= (�

(�)

1

; � � � ;�

(�)

4

)

>

2 B

�1=p

p;p

(S

2

):

(19.24)

We require that the ve
tor fun
tion

F :=

�

F

(1)

on S

1

;

�

(+)

��

(�)

on S

2

:

(19.25)

satis�es the ne
essary 
ompatibility 
ondition

F 2 B

�1=p

p;p

(S): (19.26)

Denote by f

0

2 B

1�1=p

p;p

(S) some �xed extension of the ve
tor fun
tion

f

(1)

from the submanifold S

1

onto the whole surfa
e S. Then an arbitrary

extension preserving the fun
tional spa
e is represented by formula

f = f

0

+ ' 2 B

1�1=p

p;p

(S); (19.27)

where ' 2

e

B

1�1=p

p;p

(S

2

).

Next, we again redu
e the above original interfa
e 
onditions (19.22)-

(19.23) to the equivalent equations:

[B

(1)

(D;n)U

(1)

℄

+

� [B

(2)

(D;n)U

(2)

℄

�

= F on S; (19.28)

[U

(1)

℄

+

� [U

(2)

℄

�

= f on S

1

; (19.29)

[B

(1)

(D;n)U

(1)

℄

+

+ [B

(2)

(D;n)U

(2)

℄

�

= �

(+)

+�

(�)

on S

2

; (19.30)

where F and f are given by (19.25) and (19.27), respe
tively.

Further, we look for the solution (U

(1)

; U

(2)

) to the problem (C �NN )

�

in the form (
f. (14.24){(14.25))

U

(1)

(x) = V

(1)

�

�

(H

(1)

�

)

�1

N

�1

�

[F +N

2;�

(f

0

+ ')℄

�

(x); x 2 


1

; (19.31)

U

(2)

(x) = V

(2)

�

�

(H

(2)

�

)

�1

N

�1

�

[F �N

1;�

(f

0

+ ')℄

�

(x); x 2 


2

; (19.32)

where f

0

and F are the given ve
tor fun
tions on S and ' 2

e

B

1�1=p

p;p

(S

2

) is

the unknown ve
tor fun
tion.

The 
onditions (19.28) and (19.29) are then satis�ed automati
ally, while

the 
ondition (19.30) leads to the 	DE for the unknown ve
tor '

r

S

2

[N

1;�

N

�1

�

N

2;�

'℄ = q on S

2

; (19.33)

where the right-hand side ve
tor q 2 B

�1=p

p;p

(S

2

) reads as

q = 2

�1

(�

(+)

+�

(�)

) + r

S

2

[2

�1

(N

2;�

�N

1;�

)N

�1

�

F�

�N

1;�

N

�1

�

N

2;�

f

0

℄: (19.34)

In the proof of Lemma 14.8 it has been shown that the prin
ipal ho-

mogeneous symbol matrix of the 	DO N

1;�

N

�1

�

N

2;�

is positive de�nite.

Therefore, by the arguments employed above one 
an prove the following

assertion (see the proof of Lemma 19.1).
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Lemma 19.4. The operators

r

S

2

N

1;�

N

�1

�

N

2;�

: [

e

B

s+1

p;q

(S

2

)℄

4

! [B

s

p;q

(S

2

)℄

4

; (19.35)

: [

e

H

s+1

p

(S

2

)℄

4

! [H

s

p

(S

2

)℄

4

; (19.36)

are bounded for any s 2 IR, 1 < p <1; 1 � q � 1.

These operators are invertible if the 
ondition (16:15) holds.

This lemma implies the existen
e and regularity results quite in the same

way as in the previous subse
tion.

Theorem 19.5. Let 4=3 < p < 4 and let the 
onditions (19:24) and

(19:26) be ful�lled. Then the nonhomogeneous problem (C�NN )

�

is uniquely

solvable in the 
lass of ve
tor fun
tions (W

1

p

(


1

) ; W

1

p

(


2

)) and the solution

is representable in the form (19:31){(19:32), where ' is the unique solution

of the 	DE (19:33).

Theorem 19.6. Let the 
onditions (19:24), (19:26), and (16:23) be

ful�lled, and let the pair (U

(1)

; U

(2)

) 2 (W

1

p

(


1

) ; W

1

p

(


2

)) be the unique

solution to the problem (C �NN )

�

.

In addition to (19:24), (19:26),

i) if 
onditions (18:39) hold, then

(U

(1)

; U

(2)

) 2 (H

s+1+1=t

t

(


1

) ; H

s+1+1=t

t

(


2

));

ii) if 
onditions (18:40) hold, then

(U

(1)

; U

(2)

) 2 (B

s+1+1=t

t;q

(


1

) ; B

s+1+1=t

t;q

(


2

));

iii) if 
onditions (18:41) hold for some � > 0, then

(U

(1)

; U

(2)

) 2 (C

�

(


1

) ; C

�

(


2

))

with any � 2 (0; �

0

); �

0

:= minf�; 1=2g:
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