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Abstract. In the present monograph, on the basis of the Cauchy type in-
tegral theory discontinuous boundary value problems for analytic functions
with oscillating conjugacy coefficients and boundaries are studied. For ana-
lytic functions from Smirnov classes, the complete solution of the Riemann-
Hilbert problem in domains with arbitrary piecewise smooth boundaries is
presented. On the basis of the investigation of the linear conjugation prob-
lem, the boundary properties of derivatives of functions conformally map-
ping the unit circle onto a domain admitting a boundary with tangential
oscillation less than 7, are studied. From new representations derived for
the above-mentioned functions, some well-known results of Lindelof, Kellog
and Warschawski as well as their generalizations are obtained; the Dirich-
let and Neumann problems for harmonic functions from Smirnov classes
are investigated; the picture of solvability is described completely; the non-
Fredholm case is exposed; an influence of geometric properties of boundaries
on the solvability is revealed; in all cases of solvability explicit formulas for
the solutions in terms of Cauchy type integrals and conformally mapping
functions are given.
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INTRODUCTION

The idea of writing this monograph was stimulated by the authors’ latest
investigations on two ranges of problems. The first includes boundary value
problems for analytic and harmonic functions in domains with piecewise
smooth boundaries, while the second is related with finding new properties
of conformal mappings of the unit circle onto simply connected domains with
non-smooth boundaries using solutions of the above-mentioned problems.

Below we describe our investigations against the background of the theory
of boundary value problems for analytic functions. These problems are first
encountered in B. Riemann [136]. Tmportant results in this direction have
been obtained by Yu.V. Sokhotskii, D. Hilbert, I. Plemelj and T. Carleman.

Let T denote either a curve or a finite family of nonintersecting curves.
The main objects of our study are the following problems:

(a) The Riemann problem: find a function ¢ from a given class A of the
functions, analytic on the plane cut along I', whose boundary values satisfy
the conjugacy condition

¢t (1) = G()o™ (1) + 9(1),

where G and ¢ are functions prescribed on I', and ¢t and ¢~ are the
boundary values of ¢ on I .

(b) The Riemann-Hilbert problem: in the domain bounded by T, find
an analytic function ¢(z) such that its boundary values ¢*(¢) satisfy the
condition

Re[G(1)6+(t)] = £(t), teT,
where G and f are functions given on I'.

Depending on the assumptions imposed on the unknown functions, the
boundary value problems are conditionally divided into three groups: (i)
continuous problems with a continuous (up to the boundary) solution; (ii)
plecewise continuous problems, when the continuity is violated only at a
finite number of boundary points; (iii) all other problems of discontinuous
type.

Fundamental results which stimulated intensive research of these prob-
lems were obtained by F.D. Gakhov [37] and N.I. Muskhelishvili [103]. In
their first works, F.D. Gakhov considered the problem for the continuous
case, whereas N.I. Muskhelishvili investigated it in a more general, piecewise
continuous form. Subsequently, I.N. Vekua [160-161] suggested a new ap-
proach for investigating a general, continuous, linear boundary value prob-
lem of Hilbert type. Using Plemelj’s results, N.I. Muskhelishvili and N.P.
Vekua studied the continuous boundary value problem for several unknown
functions.

The discontinuous boundary value problem has mainly been treated in
classes of analytic functions representable by Cauchy type integrals with
densities from Lebesgue spaces. It was [.I. Privalov who first considered
this problem in a particular case.



Systematic investigations of these problems are connected with the name
of B.V. Khvedelidze. In his works, the conjugacy coefficients were assumed
to be continuous or piecewise continuous and the boundary to belong to
the Lyapunov class. Later on, discontinuous boundary value problems with
piecewise continuous coefficients and related singular integral equations were
studied by many authors.

The most general results related to the spectral theory of singular in-
tegral operators with piecewise continuous coefficients on regular curves in
Lebesgue weighted spaces are presented by A. Bottcher and Ju.l. Karlovich
in the monograph [7] (therein one can also find an extensive bibliography
on the above-mentioned problems).

The investigation of discontinuous boundary value problems with oscil-
lating conjugacy coefficients has always been regarded as one of challenging
tasks. The problems on complete characterization of the coefficients G ad-
mitting a factorization and on construction of solutions of discontinuous
boundary value problems in classes of Cauchy type integrals remains still
unsolved.

An essential progress in this direction has been achieved by I.B. Simo-
nenko [141] and I.I. Danilyuk [18]. In their works, the coefficients of bound-
ary value problems were assumed to be functions having an infinite set
of discontinuity points, at which, generally speaking, at least one of the
one-sided limits does not exist. At the same time, as boundary curves I.I.
Danilyuk investigated the curves with bounded rotation.

All the above-mentioned investigations were accompanied by the im-
provement of the techniques of Cauchy type singular integrals and oper-
ators, the derivation of new weighted inequalities for these operators, and
the development of some methods of Functional Analysis.

Of the tools applied to discontinuous boundary value problems for ana-
lytic functions, the basic are the methods of factorization of functions given
on the boundary, as well as the theory of Cauchy type integrals with densi-
ties from Lebesgue spaces.

As for the methods and results of investigations achieved in this area,
the monographs by B.V. Khvedelidze [68] and I.I. Danilyuk [21] are worth
mentioning.

Another important method of treating the boundary value problems is
that of singular integral equations. The point is that these problems for vari-
ous classes of analytic functions are equivalently reduced to singular integral
equations. We mean the well-known Carleman-Vekua method applied to
continuous and piecewise continuous problems, as well as I.B. Simonenko’s
theorem on the equivalence of factorization of the coefficient &G in the class
of Cauchy type integrals with density from LP(T) and noetherianness of a
linear singular integral equation in this space. In a number of cases, we
employ a combination of these two methods.

On the basis of investigations connected with the boundedness of a sin-
gular operator in a weighted space and with the belonging to a Smirnov



class of the exponential function of a Cauchy type integral with a bounded
density, we have managed (in the case of general boundaries) to widen the
class of admissible coefficients in discontinuous boundary value problems
and the class of domains in which these problems are posed (see [78-79]).

Recently it became clear ([65, 117, 120]) that using the above-mentioned
results, one can determine properties of the derivative and the argument
of the derivative of the function which maps conformally the unit circle
onto a domain with a non-smooth boundary. Representations of conformal
mappings and their derivatives are given, providing us with information
about their global properties and the behaviour near angular points of the
boundary. Results generalizing the well-known Warszawski theorem are also
presented. We obtained a new, lucid proof even in the case studied by the
above-mentioned author.

Using the solution of the problem of linear conjugation, we managed
to describe boundary properties of the derivative and the argument of the
derivative of the function which maps conformally the unit disk onto a
domain whose boundary admits tangential oscillations not greater than .
The obtained result involves, as a particular case, the E. Lindelof theorem
on the continuity in the closed circle of the argument of the derivative of the
conformally mapping function, when the boundary of the domain is smooth.

One of the central places in the present monograph is given to the
Riemann-Hilbert boundary value problem in domains with piecewise smooth
boundaries. First we consider in these domains the Dirichlet and Neumann
boundary value problems in classes of harmonic functions which are nothing
but real parts of analytic functions from Smirnov classes.

A great interest to boundary value problems for ellyptic equations in
domains with non-smooth boundaries is motivated by the fact that such
domains are the most natural ones in many physical processes described by
these equations.

The study of the above-mentioned problems in domains with Lyapunov
boundaries goes back to G. Giraud and S. Mikhlin.

The period starting from 1977 is marked by intensive investigations car-
ried out in this direction. The Dirichlet problem with boundary conditions
from the class L? (1 < p < oo) was solved by B.E. Dahlberg for C''-domains
[16], whereas for domains with Lipschitz boundaries (when the boundary
function belongs to the class ILF, 2 — ¢ < p < oo, with ¢ depending on the
domain), E.B. Fabes, M. Jodeit Jr. and N. Riviere [33], using the well-
known A.P. Calderon theorem on the boundedness of a singular operator
over C''-curves, transferred successfully the classical potential methods to
the C'l-domains. As E.B. Fabes, M. Jodeit Jr. and T.E. Lewis [34] have
shown, the picture becomes more complicated in the case of non-smooth
boundaries. The point is that the integral equations, to which elliptic equa-
tions are reduced, are found unsolvable in the above-mentioned domains for
some p depending on the extent of non-smoothness of the boundary.

The most significant results referring to boundary value problems for



elliptic equations in domains with non-smooth boundaries are contained in
the works of V.G. Maz’ya and A.A. Soloviev [93-95], V.G. Maz’ya, S.A.
Nazarov and B.A. Plamenevskii [96], V.A. Kondrat’ev and O.A. Oleinik
[85], M. Dauge [22], etc.

A tight connection between harmonic (in a plane domain) and analytic
functions made it possible to extend the methods and results stated for
boundary value problems for analytic functions to those for harmonic func-
tions. A method developed in this direction by N.I. Muskhelishvili has been
successfully applied by us to basic boundary value problems for harmonic
functions in domains with non-smooth boundaries.

We obtained a complete picture of solvability for the above-mentioned
problems and found that it depends mainly on the geometry of the bound-
ary. The presence of angular points is occasionally the reason of their un-
solvability or many-valued solvability. The most effective tool in studying
the problem is provided by the above-mentioned properties of derivatives of
functions mapping conformally the unit circle onto a domain with a piece-
wise smooth boundary, as well as by two-weight inequalities for singular
integrals ([30], [80]). The latter allow one to point out for the boundary
functions the Lebesgue spaces with logarithmic weight, for which the prob-
lem becomes solvable.

In all the cases of solvability, the solutions of the Dirichlet and the Neu-
mann problems are constructed in quadratures by means of the Cauchy type
integrals and conformally mapping functions.

Next, in Smirnov classes we investigated the more general Riemann-
Hilbert problem for functions, analytic in domains with a piecewise smooth
boundary. A picture illustrating the solvability of the problem is presented;
the influence of the coefficient and the boundary geometry on the character
of solvability is shown; in all the cases of solvability, the solutions are given
in quadratures.

Revert now to two-sided discontinuous boundary value problems for an-
alytic functions. When investigating the problem of linear conjugation, as
unknowns we usually consider Cauchy type integrals with densities from the
Lebesgue class LF for 1 < p < oo. To the same class must belong the func-
tion g in the boundary condition of the Riemann problem. If the latter is
only summable, then the boundary value problem has, as is seen, no solution
even in the simplest cases. This is connected with the fact that the bound-
ary function of the Cauchy type integral is not always summable; and hence
a Cauchy type integral with a summable density fails to be representable
by the Cauchy integral.

Here naturally arises the problem of extending the notion of the Lebesgue
integral in such a way that the functions mentioned above would be inte-
grable in a new sense. Such an extension takes its origin in the work of
A.N. Kolmogorov [84] in which he proves that the function conjugate to
a 2m-periodic summable function is B-integrable, and hence the conjugate
trigonometric series is a Fourier B-series. An analogous result for the A-



integral has been proved by E.S. Titchmarsh [154]. Further, P.L. Ul’yanov
[156—158] has shown that the boundary values of the Cauchy type integral
on Lyapunov contours are always A-integrable, and the Cauchy type in-
tegral itself is representable by the Cauchy A-integral. An application of
the A-integral to the theory of Cauchy type integrals and to the solution
of a boundary value problem and the associated singular integral equation
is given in [59]. On the other hand, it is known that the A-integral has a
number of significant shortcomings preventing it to be a convenient tool.

In [60-61], it has been shown with the aid of the A- and B-integrals
that most of the results obtained for conjugate functions and for Cauchy-
Lebesgue type integrals do not depend on specific properties of these in-
tegrals. They hold true for any generalization of the Lebesgue integral in
whose sense the conjugate function is integrable and its integral equals zero.
This is the way how the notion of the so-called L-integral originated.

In [58] it is stated that if the density of the Cauchy type integral is
summable, then its angular boundary values are E—integrable, and the Cau-
chy type integral is representable in the domain by the Cauchy L-integral.
On the basis of the L-integration, we established many new properties of the
Cauchy type integral. Namely, we generalized the well-known formulas of
inversion of the singular Cauchy integral which allowed us to investigate the
discontinuous problem of linear conjugation in the case where the function g
is Lebesgue summable, and the conjugacy coefficient G is Holder continuous,
differing from zero. Solutions of the problem are sought in the class of
Cauchy type L-integrals. Moreover, all the solutions of the problem are
constructed explicitly. The new point in our work is that the boundary
curve is regular (Carleson curve).

All these results are reflected in the present monograph. We endevoured
to reproduce as complete a picture as possible of authors’ investigations
connected with discontinuous boundary value problems and with the theory
of conformal mappings.

Chapter I is devoted to the investigation of boundary value problems on
the basis of the function theory. Results from nonlinear harmonic analysis
are presented herein, including continuous operators generated by singular
integrals on general contours, one- and two-weight inequalities for these
operators and a theorem on belonging a Smirnov class of a Cauchy type
integral. In terms of the so-called p-mean singular integrals for an individual
function, criteria for the representability by the Cauchy type integral are
found. B

The notion of generalized L-integral is introduced, and a number of new
properties of Cauchy type L-integrals are established.

Chapter II proposes results obtained for discontinuous Riemann-Privalov
boundary value problems in the case of more general, oscillating coefficients
in the boundary conditions. Simultaneously the class of boundary curves is
expanded.

Discontinuous boundary value problems in classes of analytic functions



representable by Cauchy type integrals with densities from weighted Lebes-
gue spaces are treated by reducing them to analogous non-weighted prob-
lems. Boundary value problems on infinite lines are considered as well.

In the same chapter, the Riemann-Hilbert problem in a class of Cauchy
type integrals with densities from weighted Lebesgue spaces is reduced to
the problem of linear conjugation for a circle, with coefficients reflecting all
singularities of the weight, boundary curve and initial coefficients. The lat-
ter allows one (varying sets of unknown functions, coefficients and boundary
curves) to investigate the Riemann-Hilbert problem in various statements,
using the results of §§2-4 of Chapter I and the properties of conformally
mapping functions. One of such possibilities is realized in Chapter IV where
the problem is considered in a domain with an arbitrary piecewise smooth
boundary.

At the end of Chapter II, we study boundary value problems of linear
conjugation in a class of functions representable by Cauchy L-integrals,
when the boundary curve satisfis Carleson condition and the non-vanishing
coefficient is of the Holder class.

Results of Chapter II are found to be very efficient for revealing new
properties of functions which map conformally the unit circle onto a simply
connected domain with a non-smooth boundary. Just to these questions
is devoted Chapter III. The main point here is to represent a conformally
mapping function, its derivative and the argument of the derivative, and
to illustrate their behaviour in the neighbourhood of angular points (in-
cluding cusps). Some properties of these functions are described for curves
admitting tangential oscillations.

Chapter IV gives the complete solution of the Riemann-Hilbert problem
in domains with an arbitrary piecewise smooth boundary; a comprehensive
treatment of the Dirichlet and the Neumann problems for real parts of ana-
lytic functions from Smirnov classes, is carried out. Non-Fredholm cases are
considered; a picture of the solvability is described completely; the solutions
are given in quadratures.

It should be noted that in the present work we do not touch upon such
important areas as: boundary value problems and singular integral equa-
tions with matrix coefficients and shifts; the cases of the infinite index; the
problems in classes of generalized analytic functions, etc.

Some of the results presented here are scattered in authors’ earlier papers,
mainly in the announced form. A substantial part of the monograph involves
latest results, some of them still not published. As we see it, the exposition
of all these results in a unified form clarifies their influence on each other.

Chapters in the present work are divided into sections which in their
turn are subdivided into subsections. Formulas in each section are supplied
with a pair of numbers, the first one indicating the section number and the
second one formula’s ordinal number. References within each chapter are
given as the section number and the formula number; while references to
results from other chapters have additionally the chapter number.



References contain papers and monographs which are connected directly
with the problems under consideration. The list is by no means complete.

We would be very pleased if this monograph will give the reader an
impulse to further interest in this area. At the same time, we would be very
grateful if the reader will point out imperfections or mistakes of any kind,
which inevitably occur.

Note finally that the authors’ interest to the subject matter has in many
respects been stimulated by a many-year collaboration (within the frame-
work of one department) with Academician B.V. Khvedelidze, a well-known
specialist of discontinuous boundary value problems and singular integral
equations.
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BAsic INGREDIENTS

In this section we present definitions, notation and propositions which
will be used throughout the paper. Definitions within separate chapters or
section will be given in appropriate places.

0.1. C is the extended complex plane. R = (—o0, +00).

02.U={z:|z|< 1}, y=A{z:]2] = 1}.

0.3. H(), 0 < o < 1 is the class of functions satisfying Holder condition
with the exponent o; H = Ugepo1)H (o) is the Holder class; H(1) is the
Lipschitz class.

0.4. C(F) is the Banach space of all continuous on F functions with
usual norm.

0.5. Under a curve is meant an oriented, rectifiable, Jordan curve on
which as a parameter the arc length is chosen starting from any fixed point.
The equation of the curve in this case is t = #(s), 0 < s <[, where [ is its
length. The parameter s is called the arc abscissa. The function ¢t = #(s) is
assumed to be periodically extended on R.

Every curve on the plane C generates the set of I-images of the segment
[0,1] for the mapping ¢ = #(s). The curve will often be identified with this
set. In particular, by saying that a closed Jordan curve divides the plane
into two connected sets we mean that the set I' possesses this property.
An analogous remark refers to the expressions such as “a curve bounds a
domain D”, “a function is given on a curve”, etc.

0.6. We will say that the function f = f(¢) defined on T is almost
everywhere finite, integrable, and so on, if the function f.(s) = f(t(s))
possesses the corresponding property on [0, []. If f is integrable, we assume

/f(t)dt:/f(t(s))t’(s)ds. (0.1)

0.7. LP(T"), p > 1 is the space of summable in the p-th degree functions
f with the norm

i/p
Il =il = [ 1670s) 0:2)
r

If w is a measurable, almost everywhere finite and different from zero
function, then LP(T', w) is the space of functions with the norm

1 llpw = [[fwllp,  L2@) = {f [ fllee = eSjesruplf(t)l < oo}

Suppose L(T') = LY(T), L(T;w) = LY(T; w).
The spaces LP(T;w) and LpI(F;w_l), p>1,p = 1% are conjugate
ones.
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0.8. Let f € L(T') and g = t(sg) € T'. Denote by T'.(tg), ¢ < % the
portion of the curve T left after removing a small arc with the ends t(sg—¢)

and t(sg +¢). If

MJf/jmﬁﬂmiiTBEﬁﬁﬁzi f(t)dt

t(s) — t(so0) i) t—ty’
r

T'(to) sot+e

then we say that there exists the singular Cauchy integral (or the singular
integral) of the function f at the point ¢p.
In the sequel we put

(scht) = [

t)dt
Bt er. (0.3)
t—1p

0.9. D(Sr) is the set of those functions f € L(T) for which (Srf)(to)
exists for almost all {5 € T'. As is known (see also, Ch.I, §3), for rectifiable T

D(Sr) = L(T). (0.4)
0.10. The operator
S f—5nf (0.1)

is called the Cauchy operator. Sometimes instead of Sp we will write S. A
norm of the operator Sr, when it acts boundedly (continuously) from L7 (T')
to L°(T'), p > s > 0, will be denoted by ||St]|p s-

If T is a straight line, then Spf is usually called the Hilbert transform.
When I' = 7, assuming 7 = exp ic, t = exp is, we have

dr _(1 ; 0'—5+i)d
F—i1 \g“TT Tyl

and therefore

(Sy)(e™) = (=if)(s) + 376s), (0.6)
where
f(s) = —% / flo)ctg % do (0.7)

The function fis called the function conjugate to f.

0.11. Classes of Curves. Let t = #(s), 0 < s < [, be the equation
of the curve T'. Tt will be called: (a) a smooth curve if ¢ is continuous
(and in the case of its closedness, t'(0) = t/()); (b) Lyapunov curve, if
t' € H; (c) a piecewise smooth curve, if ¢’ is piecewise continuous, and a
piecewise Lyapunov curve, if ¢’ is a piecewise Holder function; (d) a curve
with bounded rotation (Radon’s curve) if ¢’ is of finite variation.
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K 1s the set of those curves I' for which
t1 —ta]
S(tl ) tZ)

where s is the length of the arc T' (the smaller one if " is closed) connecting
the points t; and 5.

A closed Jordan curve T is called Smirnov curve, if the finite domain D
bounded by this curve is a Smirnov domain, i.e., the function w = In |2'(w)|
is representable by a Poisson integral, where z = z(w) is a conformal map-
ping of U onto D.

Any curve of the class K is a Smirnov curve [131].

Rp s, p>1, s <p,is the set of all Jordan curves for which the operator
St is continuous from LP(T) to L*(T).

inf

=k >0, (0.8)

R, =R,,. (0.9)
R= NR,. 0.10
AR (0.10)

0.12. The operator S is of a strong type (p,s), if it is continuous from

1
LP(T) to L*(T), and of a weak type (p,p), if Vf € LP(T) and VA > 0,

it |SHOI> N < 55 [ s (0.11)

where ¢ does not depend on A and f, and m is the Lebesgue measure.
If for any converging in LP(T'), p > 1, sequence f, the sequence Srf,
converges in measure, then we will say that St is continuous in measure.
0.13. W,(T), p > 1, is the set of weighted (i.e., measurable, almost every-
where finite and different from zero) functions w such that Vf € LP(T; w),

/|(Spf)w|pd5 < M, / |fwlPds, (0.12)
r r

where M, does not depend on f.
Ap is the Muckenhoupt class, the set of given on y weighted positive
functions w such that

slip (|17|/wd5) (ﬁ/w_?—%ds)p_l < 00, (0.13)

I I

where I C v is an arbitrary arc of length less than 2w, |I| is its length.
0.14. Let T be a closed Jordan curve bounding a finite domain DT, and
let D~ be a complement to € of the set DT UT'. A curve lying in DT
(D7) and ending at the point ¢ is said to be a non-tangential path, if in the
neighbourhood of ¢ it lies in some angle of size less than 7, with the vertex
at the point ¢ and the bisectrix coinciding with the normal to I'. If the
function ¢ = ¢(z) defined in D*(D™) tends along any non-tangential path
to the limit ¢*(¢) (¢~ (¢)) as z € DT (D7), z — t, then this limit is called
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the angular boundary value from the left (from the right) of the function
¢ at the point ¢. If ¢ (¢) (¢~ (¢)) exists almost everywhere on T, then the
function ¢t = ¢+ (¢) will be called an angular boundary value of ¢ on T
from the left (from the right).

0.15. Let T be a closed, rectifiable Jordan curve, and let f € L(T'). The

function
1 f()dt _
o) =2 S
r

(Krf)(z) =

bl

is termed a Cauchy-type integral with density f.
If ¢(z) = (Krf)(z) and ¢*(¢) = f(t) almost everywhere on T, that is,

6(z) = (Kr¢¥)(2), z€ DY,

then we will say that ¢ is represented in the domain Dt by the Cauchy

integral. The Cauchy integral in D™ is defined analogously.
The Cauchy type integral has angular boundary values ¢ and ¢~ which

are defined by the Sokhotskii-Plemelj formulas
1 1 f(r)dr
+
)= 2= f(t) + —
o= (1) 2f<)+27ri T—1
r

, ter. (0.14)

This statement is valid by Privalov’s lemma ([133], p. 190) and the equality
(0.4).

In order for a Cauchy type integral ¢ = Krf to be representable in DT
(D7) by a Cauchy integral, it is necessary and sufficient that ¢ belong to
L(T') and the equality Sp¢t = ¢+ (Spr¢~ = —¢~) take place ([68], p. 100).

27 t—2z’

016 k(0 = {05 6() = 5 [ E0%, 2w, per@miuf.

KP(T;w) ={{¢: ¢ = ¢o+ const, ¢y € KP(T;w)}.

NE

Eﬁ(r;w):{fﬁifﬁ:fﬁo-i-qm ¢o € KV (T w), qn = akzk}.
k=0

When w = 1, these classes will be denoted, respectively, by K£P(T), EP(F)
and EZ(F)

0.17. H?, p > 0, is the Hardy class, the set of analytic in U functions ¢
for which

re(0,1)

2w
sup /|¢(rei€)|pd9 < 0. (0.15)
0

0.18. Let D be a simply connected domain bounded by a rectifiable curve
T'. Then EP(D) or EP, p > 0, is the Smirnov class of analytic in D functions
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¢ for which there exists a sequence of closed curves I',, C D converging to
I' such that

sup/ |o(2)|P|dz| < . (0.16)
Ly

If D is an infinite domain bounded by I', then EP(D) is a set of analytic
in D functions ¢ for which ¥(w) = qb(% + zo) € Ep(ﬁ), where D is the

finite domain into which the function w = ﬁ, z0€D, maps D (this class
obviously does not depend on the choice of zp).
0.19. Basic properties of the functions from E?:

(1) ¢ € EP(D) if and only if

sup/ |o(2)|P|dz| < o0, (0.17)
r,

where T, is the image of the circumference |z| = » under a conformal map-
ping of U onto D (see, e.g., [133]).

(2) The function ¢ € EP(D) possesses angular boundary values on T,
and the boundary function belongs to L*(T') ([133], p. 205).

(3) The class E*(D) coincides with the class of functions representable
in D by the Cauchy integral ([133], p. 205-206).

(4) Smirnov’s theorem. If D is a Smirnov domain, ¢ € EP(D) and
¢t € LY(D), q > p, then ¢ € F1(D).

(5) Let D be a simply connected domain with the boundary T', e C T,
mese > 0 and let ¢, be a sequence of analytic in D functions. If ¢, €
EF(D), sup ||¢;f|l, < oo and ¢ converges in measure on ¢ to the function
f, then ¢, converges in D to the function ¢ € EP(D), and on e we have
¢t = [ (see, e.g., [133], pp. 268-9).

0.20. Stein’s interpolation theorem ([150]). If M is a linear operator
acting from one space of measurable functions into the other,

L<r,rg,81,80 <00, r7h= (1=t +try ",
sTh=(1-t)s7! +ts3!, 0<t<1,

and

(M f)k:

s < Gl fug

iz 1,2,
then

(M f)k||s < el full, (0.19)

— pi-tpt _ =t e _ 1-t 3
where k= k1 7'k}, u=wu;""uh, ¢ = ¢;” ey,

0.21. Let a linear operator A map the Banach space X into the Banach
space Y. We will say that A is a Noetherian operator if: (i) the equation
Az = y 1s solvable for any right-hand side of y which satisfies the condition
fly) = 0, where f is an arbitrary solution of the conjugate homogeneous
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equation A* f = 0; (ii) zero subspaces N(A4) and N(A4*) of the operators A
and A" are finite-dimensional. If A is a Noetherian operator, and A and p
are the dimensions of the subspaces N(A) and N(A*), then the difference
3 = A — p is called the index of the operator A (ind 4).

If A is a Noetherian operator, and V is a compact operator acting from
X to Y, then the operator A + V is likewise Noetherian, and ind(A+V) =
ind 4 ([3]).
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CHAPTER 1
ON SINGULAR AND CAUCHY TYPE INTEGRALS

8 1. ON THE DEFINITION OF CAUCHY SINGULAR INTEGRAL

In the literature we meet with two seemingly different notions of the
principal value of the Cauchy integral of the function f(¢)(t — ¢5)~!, when
the integral is taken along the curve I' and ¢y € I'. According to the first
approach, the arc 4:(#g) which is the part of T' contained in the circle of
radius € > 0 with center at 7o is cut off the curve, then the integral is taken
over the remaining part and its limit as ¢ — 0 is considered. When using
the second approach, the arc ¥.(¢p) in the above definition is replaced by
the symmetric with respect to ¢y arc of the length 2¢. In subsection 1.2 we
will show that these integrals exist in almost all points simultaneously and
have equal values.

In determining the curvilinear integral, under the notion of a curve we
usually mean a family of equivalent in a certain sense paths. Below 1t will
be shown how one can obtain the definition of the same character for a
singular integral.

Recall first some conventional definitions.

We say that the paths 1 : 0 — t1(0) = 2z1(0) + iy1 (o), ¢ € [a1, 5]
and pg @ 7 — ta(7) = @a(T) + tya(7), T € [va, Fa] are equivalent (or ps
is obtained from p; by a change of parameter) if there exists a strongly
increasing absolutely continuous function ¢ = o(7) which maps [az, 52]
onto [ay, f1] and satisfies t5(7) = t1(o(1)).

A class {u} = T of equivalent paths will be called a curve T'. General
image on C of segments [, ,] for the mapping p will also be denoted by
. If T is a rectifiable curve, t = #(o), 0 € [«, 5], is the equation of an
arbitrary path of g from I' and

s(0) = / /() d,

then the path ps : s — t(o(s)), s € [0,{], | = s(f), where ¢ = o(s) is the
function inverse to s = s(¢), does not depend on the choice of y. This path
will be called the arc path. The arc path equation { = ((s) is called the
equation of T' with respect to the arc abscissa. Almost everywhere on [0, (]
we have |{'(s)] = 1.

We say that the set e C T' (T-image of the curve on C) is measurable if
the set (71(e) C R is Lebesgue measurable ((~! is the function inverse to
¢); the measure of e is assumed to be equal to that of the set (~1(e).

Let p: o — (o), o € [a, 3] be a path in which ¢ = t(o) is an absolutely
continuous function, and t; = t(0yp), 0 < ¢ < (8 — «)/2. Denote by p.(to)
the image of the set (00 — ¢,00 + ¢) and let T'y (to) = T\p-(t0). If there
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exists

lim — / Jwdt_

c=0 i t—tg
Fu,s(tﬂ)
/
e—0 e t(o) —t(oo) i t—1g
cote<o<ogt+f—a—¢ T(w)

then we will say that at the point ¢y there exists a singular integral along
the path u, and will denote it by

S, (k) = [ L0t

T t—1ty
T(u)

(1.2)

Along with the above-said, consider also the following definition of a singular
integral. Let ¢ = ¢(s), 0 < s < {, be the equation of the curve I' with respect
to the arc abscissa, 0 < sg < [, ¢ < %. Denote by vo < (t0) the least connected
arc T' passing through ¢y with the ends on the circumference |t — tg| = ¢,
and let T'y, (to) = T'\pwo < (t0). Denote

(59 £)(to) = lim — fydt 1 [ f(b)dt

e—0 71 t—ty mi t—to’
Pug,e(®) T'(po)

(1.3)

1.1. Independence of a singular integral on the curve parametrization.

Theorem 1.1. Let T = {u} be a rectifiable Jordan curve and f € L(T). If
ps 18 —((8), 0 < s <lisan arc path and p : 0 — t(c), a < o < § is
an arbitrary, absolulely continuous path from {u}, then from the existence
almost everywhere of either of the two singular integrals S(ps, f)(C(s0)) or
S, [)(t(o0)), it follows the existence of the other and their equality.

Proof. Let ty = t(on) = ((so) and let the relations

( / |t'<u>|du)/ = It(o0)] #0, (1.4)

so+06

lim [ 1£(C)Ids = (o) (L5)

be fulfilled. Let us show that for such points ¢y the existence of a singular
integral along either of the paths ps or p results in the existence along the
other and their equality.
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Let o < 0p < 8 and let ¢ > 0 be an arbitrary number, provided o <

oo — € < op+ ¢ < 3. Denote
= / [t/ (u)]du. (1.6)

The function n = 5(s) is decreasing. Let ¢ = ¢(n) be an inverse to it function
and

oo+e(n)
vy = [ Iwlde (L7)

Go

The functions ¢ and t will be assumed to be extended periodically on R
with periods [ and [ — «, respectively.
Consider the difference
so+l—n co+f—a—¢
f(C(s))¢ (s)ds / f(t(a)t' (o)do (1.8)
((s) —C(s0) (o) —t(o0) '

so+n oo+te

I(e) =

and prove that I(¢) — 0 as ¢ — 0. Since p, and p are paths from an
equivalence class, there exists a function ¢ = o(s), 0 < s < [, such that
t(o(s)) = ((s). Change the variable o in the second integral of (1.8) by the
equality o = o(s). Then

e)| = ‘ F(C(5))¢ (5)ds ’ (1.9)

C(s) = C(s0)

where I is the interval with the ends sy + 1 and sg + v(n). By virtue of
(1.4), it can be easily verified that

lim H)—Hoo) o Ho)—Hoo) o—00 _ t(00)
o—o0 5(0) — s(og) o—o0 o —0g s(o)— s(og) [t/(c0)]

(1.10)

This implies the existence of a positive number k = k(oy) such that if &
lies in the small neighbourhood of the point ¢y, then

k< |t(a) —t(oo)||s(0) — s(a0)| 7. (1.11)

Denote p(n) = min(n, v(n)). Then, taking into account (1.11) and (1.9),
we get

so+v(n)

:ﬁ)\ | isconias

so+n

1
1) < W\ / F(C(s))lds
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sotn sotv(n)
1 1 1
:W‘U;/If(C(S))IdS—V(n)W / IF(C(s)lds|.  (1.12)

According to the assumption (1.5), we have

so+7
% / 1F(C(sDds = [ F(C(50))] + o),
) sotv(n)
) / 1F(C(s)]ds = | F(C(s0)] + B(n),

where «(n) and 3(n) are infinitely small together with ». This and (1.12)
yield

|77—1/(77)||f(C(50))|Jr Do) + v(n)

p(n) k kp(n) kp(n)
From (1.6) and (1.7), by virtue of (1.4) we have v(n)n~! — 1. There-
fore, if ¢ — 0, then |n — v(n)|p~1(n) — 0, and np~1(n) and v(n)p~1(n) are
bounded. But then from (1.13) we conclude that lim7(¢) = 0. This and
(1.8) imply that the integrals S(u, f)(t(c0)) and S(us, £)({(so)) in condi-
tions (1.4)—(1.5) exist only simultaneously. Since the set of those points
tg € T for which equalities (1.4) and (1.5) are fulfilled simultaneously has a
complete measure, we can conclude that the theorem is valid. W

()] <

Bln). (113

Remark. The above proven theorem can be regarded as justification of
the formula of change of variables in the singular integral. Namely, because
of (0.4) and by Theorem 1.1, the following assertion is valid:

Proposition 1.1. If s = s(o) is an absolutely continuous, increasing func-
tion mapping [«, 8] onto [0,1] and {(s(o)) = t(c), then

L[l 1 [ieiiae

for almost all sq € [0,1].

It follows from Theorem 1.1 that if the curve I' is a class of equivalent,
absolutely continuous paths and for any path pg from this class the singular
integral S(po, f)(to) exists on a set of complete measure, then for any other
path g from T the set of those points at which the integral S(y, f)(to)
exists, also possesses a complete measure. The integrals along these paths
have the same values. Hence, for all the paths we introduce the unique
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notation S(T'; f) or Srf, and for every separate point (5 = {(sg) we assume

that
I
1 f( (5 ds
(St f)(<o) —T—/ () — C .
0

1.2. Integrals Sl(ﬂo)f and Srf = S(us, f) coincide almost everywhere.

Theorem 1.2. If f € L(T') and conditions (1.4) and (1.5) are fulfilled,
then for almost allty € I' the equality

S, Nto) = (7 )(to)
holds.
Proof. Let ¢ > 0 and let po.(tg) be a least connected arc of the path p,
passing through ¢y with the ends on the circumference [t — ¢g| = €. Denote
these ends by ¢ and ¢/. Then po.(to) = t't". Let ¢/ = t(s'), t"" = t(s").

Suppose n = min(|s' —sg|, |s" —s0|), A = max(|s’'—so|, |s” —so|) and consider
the difference

0y _ f(b)dt f@)dt [ fE(s)t' (s)ds
o) = / t—tg / t—to_/t(s)—

T'(to) T\ uo,=(to)

where I is the interval with the ends sg +¢, s +A. We have to prove that
lim._o I%°(¢) = 0. Just as in proving Theorem 1.1, we obtain the estimate

0 In— /\| A
[17(e)| < T | (n )|+n—k|ﬁ(77)|~ (1.15)

But for a rectifiable curve having a tangent at almost every points, the
quantities A and n as ¢ — 0 are equivalent to the chords [t — #y| and
[t — to]. By virtue of the above-said |p — A|lnp~! — 0 and from (1.15) we
conclude that I°(e) vanishes. This completes the proof of the theorem. B

§ 2. MEASURE CONTINUITY OF THE OPERATOR S AND ITs
CONSEQUENCES

When considering the operator St in different spaces of summable func-
tions, it 1s impossible to say something about integral properties of functions
Srf without some additional assumptions imposed on I'. For instance, we
know examples of rectifiable curves I'y and T'; and function f; € C'(T'y) such

that S, fo€L(T) and Sr,(1)€ L>J0 LP(T'y) (see [51], [62] and also subsection
»
3.4).

However one can state that in the case of arbitrary rectifiable curves I
the operator Sr is continuous in measure (see 0.12).
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Let M(T') be a metric space of measurable almost everywhere finite on
I’ functions with the metric

{

TRy OIS ()

| ds
L+ p(t(s)) — F(t(s)]

As is known, the convergence of the sequence f, to fin M(T') is equiv-
alent to the convergence of f, to f in measure.

Theorem 2.1. IfT' is a rectifiable Jordan’s curve, p > 1 and % € LpI(F),
p = %, then the operator Sr is continuous from LP(T;w) to M(T).

Proof. 1t follows from the condition % € LpI(F) that LP(T;w) C L(T'). For
any natural n consider the operator

Lo nf nm= [ 127 er
Ti(t)
and show that
my = inf |r—t|>0. (2.1)

= mn
tel, 7€l 1 ()

Indeed, if we assume that m, = 0, then there exists convergent sequences
o®) and s*) such that

(0 ®) = (s = 0, + < o) = s <1 - 1
n n

If the limits of these sequences are equal to ¢* and s*, then from the
latter inequalities we respectively obtain ¢(¢*) = #(s*) and ¢* # s*, which
is impossible because I' is the Jordan curve.

Thus m, > 0. Therefore the operators I,, are continuous from LP(T; w)
to M(T'). Since for rectifiable curves D(St) = L(T") (see 0.4), the sequence
I, f for every f € LP(T';w) C L(T) converges to Srf almost everywhere,
and hence in measure too. This means that the sequence I, f converges
to Spf in M(T). The spaces LP(T';w) and M(T') are of the type F' and
therefore, owing to the well-known principle (see, e.g., [17]), we conclude
that St is continuous from L?(T;w) to M(T). N

Theorem 2.2. If the operator Sr maps the space LP(T';wy) into L*(T'; wa),
p>s>1 wte LpI(F) then the St is continuous from LP(T;wy) to
L (T we).

Proof. The continuity of the operator Sp from LP(T;wy) to L*(T;ws) is

equivalent to that of the operator

ws () f(r) dr

Tt wi(r) T —t
r

T:f—=Tf (TH(E) =
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from LP(T') to L*(T).

Let us show that the operator T is closed from LP(T') to L*(T), i.e., the
assumptions ||f, — fll, — 0, ||[Tfa — ¥|ls — 0 imply Tf = ¢. Indeed,
the sequence fnwl_1 converges in L(T') to fwl_l. Then by Theorem 2.1,
Sr(fawh) converges in measure to Sp(fwy'). Hence, there exists a se-
quence ny such that szp(fnkwl_l) converges in measure to szp(fwl_l),
i.e., to T'f. Consequently, ¢» = T'f and hence the operator T is closed from
LP(T) to L*(T"). From the closed graph theorem it now follows that the
operator T' is continuous from LP(T') to L*(T'). W

§ 3. ON THE CONTINUITY OF THE OPERATOR Spr IN LEBESGUE SPACES

There is a vast literature devoted to the questions of continuity of the
Cauchy operator in Lebesgue spaces. N.Luzin proved that .S, is continuous
in L?(7). M. Riesz showed that S, is continuous in LP(7) for every p > 1
(M. Riesz’s theorem), i.e., v € R. Later it was established that curves
of continuous curvature, Lyapunov and piecewise-Lyapunov curves, curves
with bounded rotation and so on, belong to the class R ([98], [66], [45],
[20]). Substantial progress in this direction has been achieved in a work by
A. Calderon, who proved that smooth curves belong to R [9].

This result implies that [28]

D(Sr) = L(I). (3.1)

As is shown in [51]:

If ' is a closed, rectifiable curve from R, s, s > 1, then I' is a Smirnov
curve.

Let p > 0, T be a rectifiable curve and ¢ € I'. Denote by l;(p) the
linear measure of that part of I' which falls into the circle with center ¢ and
radius p.

Theorem 3.1 (David [23]). In order for the curve T to belong to the class
R, it is necessary and sufficient that condition

sup le(p)p~t < o0 (3.2)
Cel,p>0

be fulfilled. If it is satisfied, then the operator St is of weak type (1,1).

The curves satisfying the condition (3.2) are called as regular.
It is easy to see that if St is of weak type (1,1), then the inequality

</|Swf|5d5) "< M5/|f|ds (3.3)
¥ ¥

holds for any é < 1. Consequently,

if TeR then I'e N Ris. (3.4)



23

Theorem 3.1 provides us with a complete characteristic of curves of the class
R. Despite this fact, it is useful to have conditions of belonging of curves to
the class R proceeding from their other characteristics. Theorems facilitat-
ing the treatment of Sp from this point of view are apparently of interest.
The more so that in a number of cases they give additional information on
this operator. In the remaining part of §3, we will present some of results
obtained in this direction. They will be used in Chapter II when studying
boundary value problems.

3.1. Classes of curves J and J*. We will consider the following classes of
curves.

Class Jy. A rectifiable Jordan curve T' with the equation ¢ = ¢(s), 0 <
s <[ belongs to the class Jy if there exists a smooth Jordan curve p with
the equation g = u(s), 0 < s <, such that

{

o) W) o
65252?0/‘t<a>—t<5) (o) — p(s) do < co. (3.5)

Class J. J=JonK. (3.6)

Class J*. A Jordan curve I' € K belongs to the class J* if it can be
divided into a finite number of arcs from the class J with tangents at the
ends.

Smooth curves obviously belong to the class J. To the same class belong
the curves with bounded rotation not involving cusps (details for the con-
ditions from the definition of J with p(s) = s to be fulfilled for such curves
see in [21], p. 146-147). By definition, any piecewise smooth curve with no
cusps belong to the class J* | as well as curves of the class K composed of
unclosed smooth curves and of curves with bounded variation.

Show that .Jo C R. Moreover, the following theorem is valid.

Theorem 3.2. Let I' C Jg, and
‘ / f(t(a))t' (o)do
; .

a<|s—a|<15

(Spf)(s) = sup

€

Then the operator St : f — S{f is continuous in LP(T'), p > 1.

Since (St (s F)(s)| < [(SEf)(s)| for any e > 0, and Sr,f converges
almost everywhere to Spf as ¢ — 0 (since f € D(Sr)), from the inequality
[|15t. fllp < |SEfl| and from the assertion of the theorem we obtain that
Vp>1TI€ Ry, and hence I' € R.

Proof of Theorem 3.2. First of all we note that A. P. Calderon has proved
in [9] that the operator Sy, in the case of smooth curves y is of strong type
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(p,p), p > 1 and of weak type (1,1). On this basis, we show first that S} is
of weak type (1,1). We have

=10 =
— t'(s) B w(s) e ” t'(o) 1 (o)
(t(S)—t(O') ﬂ(s)—ﬂ(a))t( )‘1'#()”( ) ( ) () (37)
Since |t'(s)] = 1, |¢/(¢)] = 1 almost everywhere on [0,!], from (3.7) it

follows that

+sup
e>0

Denote
1

(Nf)(s) = / ‘t(s)t—t(a) (s

0

The second summand in (3.8) is equal to S;(f;—l,) Furthermore, we have

{ {
e =0 <5 f </ T~ 7 s e
Inverting the order of integration on the right-hand side, we get
mi{s: (Nf)(s) > A %/ (/ ‘t (S;J/_(SZL(U) ds) |f(o)|do.

The condition (3.5) implies that

mls s (VP > A < 5 [ If0)lder (3.9)

The latter means that the operator N : f — N f is of weak type (1,1). By
the above-mentioned Calderon’s theorem, we have

mis : S3(f :)( ) > A} < —/|f J\do. (3.10)

On the basis of (3.8)—(3.10), we conclude that S} is of weak type (1.1).
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Consider the operator Ny : f — Ny f.

(N f)(s) = SUalp ‘ / (t(at)/(—azf(s) - N(U/;/EUL(S))f(U)dU .

a<|s—a|<15

Obviously,
(NP)(s) < (SEN(8) + (Sa)().
By virtue of the above-proved result, N; is also of weak type (1,1). On
the other hand, the operator Ny by (3.5) is of strong type (o0, 00). Therefore

Stein’s interpolation theorem (see 0.20) allows one to conclude that Ny is
continuous in LP(T') for any p > 1. Next, owing to the representation

) _ (; /(o) Hio) Ly, . (o)

(o) = 1(s) o) —t(s)  u(o) = p(s)

we have
(SE(s) < (N1f)(s) + (Spf)(s).
Since S}, is continuous in the spaces L? (1), it follows that S} is continuous

in LP(T') for arbitrary p, 1 <p < oc. B
Consider now some properties of the curves from the classes J and J*.

Proposition 3.1. Let I' € J*. Then for every point ¢ € I' there exists an
arc ', C T such thatcel', and ', € J.

Proof. Let I' = U7, I, I'j = Tcj ;. CJ. It suffices to verify the validity
of the assertion for the points ¢ = ¢;. Denote by y; and p; 11 those smooth
curves which satisfy the condition (3.5) for the curves I'; and I';4q. Since
the condition (3.5) along with u(s) is also fulfilled for the function Ay + B,
by the choice of the variables A and B we can find that p; and p;41 have
tangents at the point ¢; coinciding with one-sided tangents of I'; and I'; 4.
The curve = p; U pj41 will be piecewise smooth, the smoothness being
violated at the point ¢; only. It follows from the condition I' € K that
¢; is an angular point (different from the cusp). Moreover, p may be self-
intersecting. Choose the arcs /J;» C p; and /i}+1 C ftj+1 with the ends at
¢; so that they would lie in non-intersecting small angles with the vertex
at ¢; and one-sided tangents as bisectrices at ¢;. The piecewise smooth arc
p' = p; Uy, will be a Jordan are.

Let p = y1j(s) be the equation of the arc y;. Replace the arc u} by 67 in
whose equation 6]’» = ayt; +b and the constants a and b are chosen in such a
way that 67 Uy’ is a smooth arc passing through c¢;. Let now I'; and I}
be the arcs respectively on I'; and I'j 41 such that I'; NI ., = {¢;} and their
length is equal to that of the arcs ¢; and yj . The arc I'; UL, = T,
satisfies the conditions of our assertion.

Moreover, from the proof we can derive the existence of I', with tangents
at the ends. W
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Proposition 3.2. Let the open curves L'y and Ty, of the class J have no
common points except b, and let I'y. C K. Then T'y. C J.

Proof. Let t = t;(s), 0 < s < l;, i = 1,2, be equations with respect to the
arc coordinate of the curves I'y; and ['y., respectively. As far as they belong
to J, there exist smooth Jordan curves p;, ¢ = 1,2, with the equations
w=pi(s), 0 < s <, for which

li
M; = ess sup/
0<o<l;
0

Let g = p1 U pta. Since the condition (3.11) is also satisfied by Ap; + B,
without restriction of generality one can assume that p passes through b
and has a tangent at this point, i.e., p 18 a smooth curve.

Let

o) e |,
ti(s) = ti(o) ui(s)—m(g)d< : (3.11)

tz(S—ll), 11<5§11—|—1221.

o) = {“(5)’ D<s<h,

(5 _ ﬂl(s)a Ogsglla
a o /,Lz(S—ll), 11<5§11—|—1221.

Show that the inequality (3.5) is fulfilled for ¢ and p. As the curve p is
smooth, it follows that I';. € J.
For the validity of (3.5) it suffices to show that

ess su / t'(s) _ H'(s) s < 00
ogaglpo/ ‘t(s) —t(o)  u(s)—p(o) ds < o0, (3.12)
and
ergy IIHQ‘ LGN G N AP (3.13)
erst ) o —t@) o) = uto)

I

Prove the validity of the inequality (3.12). If 0 < o < [, then the
inequality

[
/‘ t'(s)
ess su —
veosh, ) 1) =1(e) ~ uls) = (o)
follows from (3.11). Let now o > l3. We have

ly

_ t(s) W)
= / ‘t(s) —t(o)  p(s) — p(o)

0

ds =




27

t'(s) fsa i (u)du — 1/ (s) sa t'(u)du
(t(s) = t(e))(p(s) — p(e))

=

ds.

0

Select a number s, 0 < s; < {1, such that I — sy <o — ;. Then

) S () — i (5) J7 0 )
1_0/ T e
Ft(s) [t (u)du — ' (s) [ ¢ (u)du
+ | (1(s) — UoN(us) — (o) 1T

+/ ‘t/(u) Jig (e = p(s) fy Uy 0 (3.14)

Since I'y. € K and the curve y 1s smooth, there exists m > 0 such that
[t(s) —t(o)| > m|s — |, |u(s) — u(o)| > m|s — o], s,0 € (0,{). Then

) J2 (o) du = ' (s) [ 1 )du 1(s) = t(s1) pi(s) — (1)

11_0/ (e >—t<51>><ﬂ<5>—u<51>> 1)~ 1(0) #s) —plo) =
() J () = () [ () s = sy 2 1
Sb/ (t( )_t(sl))(ﬂ(s)—ﬂ(sl)) s — o mzd . (315)

By virtue of our assumption that [; —s; <o —1[;, we have sup | 2= | <1,

0<s<ly
and therefore
I < Mym™2. (3.16)
Further,
Fols—hlds _ 2si— L] 21
51 —|as §51— 0 1 1
I, < < < — 3.17
2_/m2(5—0)2_ m?2 o—1 — m?’ ( )
0
b oolo—1 2
< [ Ho=hl o = (3.18)

m2(s—o)2 —m
0
The inequality (3.12) follows immediately from (3.14) and (3.16)-(3.18).

The inequality (3.13) can be proved analogously. This completes the proof
of the proposition. W
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3.2. Continuity of the operator St in the Lebesgue spaces is equivalent to
belonging to Smirnov classes of the Cauchy type integral. First we present
some assertions which are concerned with a continuous extension of the
operator St from the set to its closure.

Lemma 3.1. Let [ be a closed, rectifiable Jordan curve bounding the finite
domain D and let B(T') be a linear set from L*(T'), s > 1, such that for any
¢ € B(T) the function Kry belongs to EP(D) and there exists a number
My s such that

15rell, < M s lslls- (3.19)

Then for every ¢ from the closure of the set B(T') in the space L*(T) (i.e.,
for Yo € By(I")), we have: (i) Kpyp € EP(D); (i) the inequality (3.19) is
valid.

Proof. By (3.19), the operator Sr admits a continuous extension up to

B (T). Denote it by Sp. Then for every ¢ € B;(T') we have

1Sreell < My sl el (3.20)

Let [|en — ¢lls — 0, on € B(I'), ¢ € By(I'). Suppose ¢n(z) = (Krpn)(2).
By the assumption of the lemma, ¢,, € EP(D), while ¢} = %gpn + %Spgon,
by the Sokhotskii~Plemelj formula. This implies that ¢} converges in L? (T)
to the function (¢ + gpgp). Now, all the assumptions of Theorem (5) from
0.19 in which e =T, f = %(gp + gpgp), may be regarded to be fulfilled for

the sequence ¢,. According to this theorem, the sequence ¢, converges in
D to some function ¢ € EP(D), for which

6% = Lo+ Brg) (321)

But the sequence ¢, converges in D to the function ¢(z) = (Kre)(z)
which thus turns out to be a function of the class EP(D). Hence the assertion
(i) of the lemma is valid. Since (Kr)T = (¢ + Sry), from (3.21) we

obtain the equality Srp = §rg0, ¢ € B;(T") which proves the assertion (ii)
as well. H

Lemma 3.2. If a closed curve I' € Ry, p > 1, then I' belongs to R, .

Proof. Let )., be the set of rational functions of the type

n n

o(z) = Zak(z — zo)k + Z ap(z — zo)k =p(z)+q(2), z€ DT, (3.22)

k=0 k=—1
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where DT is a finite domain bounded by the curve T'. Then Srp = p — g,
and the equality

/ oSrdt = — / USrpdt, o0 € Q. (3.23)
T

T

can be easily verified.
On the basis of the equality

lelly = sup \/Wdt\,

lellp<t 1)

using (3.23), we obtain

15 eller < IS1pllellys ¢ € Q-

Applying now Lemma 3.1 to the set B(T") = @,, since (Qzu)p/ = LpI(F),
we conclude that St is continuous in LpI(F), le. 'eR,. N

Theorem 3.3. If the curve I', bounding the finite domain D, belongs to
R, ,, s> 1, then for any ¢ € L*(T') the Cauchy type integral Kre belongs
to EP(D).

Indeed, if we take again B(T') = Q.,, then (3.19) is considered to be
fulfilled by the condition I' € R, ,, and since (Q).,)s = L*(T'), the assertion
of the theorem is the consequence of Lemma 3.1.

Corollary. If ' € R, ¢ € LP(T') then Kryp € EP(D). In particular, if
o € L*°(T), then Krp € Nys1 EP(DT). If T € Nyc1 Ry s (in particular, if
T € R (see (3.4)), then for any ¢ € L(T') the Cauchy type integral Krp €
Ns<1E%(D).

Let us prove now an analogue of Lemma 3.1 for an arbitrary curve.

Lemma 3.3. Let T' be a simple, rectifiable curve and let B(T') be a linear
set from L*(T). If

I15rell, < Mpsllells, ¢ € B(T), 521, (3.24)
then this inequality is also valid on Bs(T'). In particular, if B(T') is dense
everywhere in L°(T), then T € R, .

Proof. By (3.24), Sr extends on B,(T') and the extended operator Sr is
continuous from B;(T') to LP(T). On the other hand, St is continuous in

measure by Theorem 2.1. Let now ¢ € By(T) and ||¢n — ¢||s — 0. Then

Sten, converges in LP(T') to Spy and to St in measure. Hence St = Ste,
which implies that the assertion of the lemma is valid. W
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Along with Theorem 3.3, we present here one more assertion showing a
tight connection between the continuity of the operator Sr in the Lebesgue
spaces and the belonging to Smirnov classes of the Cauchy type integral.

Theorem 3.4. Let I' be a simple, closed curve bounding the domains DT
and D~. For the function ¢ = Kry to belong to the class EP (D) for any
p € L*(T), it is necessary and sufficient that the operator Sp be continuous
from L*(T') to LP(T). In the case this condition is fulfilled and p > 1, then
Kty belongs to EP(D™) as well.

Proof. As for the sufficiency, this theorem is a consequence of Theorem 3.3.
The necessity follows from Theorem 2.2, since from the belonging to the
class EP(D%1) of Krep for ¢ € L*(T) it follows that St is defined on the
entire L*(T') and maps it onto LP(T).

Show that if I' € R,, and ¢ = Kre, ¢ € L*(T'), then ¢ belongs to
EP(D7). We have

_ 1 1
Sr¢~ = —3 Sre + 551%@.

But from the condition ¢ € EP(D%), p > 1 there follows the equality
Sreét = ¢T [68] which implies that S?¢ = ¢. Consequently, Sp¢~ =
—%(Spgp—gp) = —¢~. Therefore ¢ can be represented by the Cauchy integral
in the domain D™, [68]. Hence ¢ € E*(D~). Moreover, ¢~ LP(T'). From
the above-said, according to Smirnov theorem (see 0.19), we can conclude
that ¢ € EP(D™), since I from R, p is a Smirnov curve. W

3.3. Connection between the classes R, and R. For the curves subject to
condition the (3.1), the operator St is bounded in all the spaces LP(T),
p > 1. In the general case we often encounter diverse pictures of continuity
violation, among them the curves belonging to Ny<pRp 4 but not to R, (=
R,) (see [62] and subsection 3.4). Moreover, there are no curves which
belong to R,, but not to R,,, p1 # p2, p1 > 1, p» > 1. Thus the following
theorem is valid.

Theorem 3.5. For any p > 1,
R, = R. (3.25)
To prove the theorem, we will need the following

Lemma 3.4. If an open curve I' = Ty belongs to Ry, ; and has tangents
at its ends, then there exists a broken line 6 = 8y, such that u =T U6 1s a
closed curve of the class R, ;.

Proof. For the normals drawn at the points @ and b there exist points a’
and ' such that the segments aa’ and bb’ do not intersect the curve T.
Connect the points a’ and b by a broken line & which lies wholly in C\T.
Let 6§ = 6’ Uaa’ Ubb'. Then u =T US§ is a closed Jordan curve.
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Prove now that there are a neighbourhood of the point a and a constant
k > 0 such that if we take { € I' and ¢y € 6 from this neighbourhood, then

|t—t0| Z ks(t,to). (326)

Since there exists a tangent at the point a, one can for a given € > 0
indicate numbers p; > 0, m > 0 such that for [t — a| < p1 we will have

[t —a| > ms(t,a), |arg(t —a)—argt'(sq.)] < e. (3.27)

Suppose £ < a < § and draw straight lines p1; and ps passing through the
point a and forming with the tangent an angle a. One of the straight lines,
say p1, passes through the angle formed by the tangent and the normal.
Obviously, for |t — a| < p1 the points of the curve T lie in the angle formed
by p1 and pa. Denote by dsr the least of the diameters of ¢ and I' and
assume p < min(|aa’[, p1, 2ds ). Draw the circle of radius p with the center
at a . Let I'y and é; be the portions of the curves contained within the
circle (if these sets are unconnected, we take the components containing a).
Show that I'y U 8; is a neighbourhood we are seeking for.

Denote orthogonal projections of the points ¢ and ¢y onto a straight line
p1 by 7 and 7p, respectively. Then

[t —to| > |t — 7| + [0 — 70, (3.28)
[to — 70| = |to — a| cosa = s(tg, a) cos (3.29)
[t — 7] = [t — a|sin ay, (3.30)

where «; 1s the angle lying between the vector at and p;y.
By (3.27), for [t—a| < p we have sin «; > sin a—gy for some gg € (0, sin @),
and therefore

[t —7| > s(t,a)my, my =m(sina —¢). (3.31)

Denoting k¥ = min(my,cos ) and taking into account (3.29) and (3.31),
from (3.28) we obtain (3.26).

Just as above we construct a neighbourhood of the point b (on p) which
is a union of arcs I'y C I', 65 C 8 such that if ¢ € I's and ¢, € 65, the
inequality (3.26) is valid.

Now we are able to prove that y € R, ;.

Let f € LP(T'). We have

[1surras <
r

gA[ ISeflds + [ |Ssf|Pds+ [ |Srfl*ds + |55f|8d5]. (3.32)
[usrans [ st |



32

Since I' and ¢ belong to R, ;, we have
/ |Sef|ds < M NI, /|Séf|5ds <M\ (333)
r 5

Estimate the second summand on the right-hand side of (3.32).
Suppose I's = T\(T';y UT3), b3 = 6\(61 U é2). Then T = U?Ilfj, 6 =
U7_10;. Consider the quantities

e

If k=1,¢=2,3, then the distance between the sets ['; and §; is taken to
be positive and therefore in this case |t —tg| > ma > 0. The same estimate

isvalidfork=2,i=1,3,and k =3,i=1,2,3.

In all these cases,
/ /f(t)dt ’
t—1o
Ty &

It remains to consider the cases ¥ = 1, ¢ = 1 and k¥ = 3, ¢ = 3. The
above-proven inequality (3.26) allows one to apply the well-known method
of proving convenient for their estimation (see, for e.g., [45]).

We have
/‘/t—to
_ks/‘ 5—50 /‘ 5—50

N R FIUE)) R A=
/ (5)_{0, teT\6,.

dso < ep || 115 (3.34)

dOa

where

Using Riesz theorem for s > 1 and Kolmogorov’s inequality for s < 1

(see (3.2)), we get

o2 1/s
(18210 <o ] s i,

Analogously, we have

Sso f| dso < ep sl 115 (3.36)

/

s
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From (3.32)—(3.36) it follows directly that ||S, f|ls < Mps||fllp, p € Rps. W

Proof of Theorem 3.5. Let first I' be a closed curve. For an arbitrary
rational function ¢ € Q.,, ¢ = p(z) + q(z), zo € D*, where Dt is a
domain bounded by the curve I', we have Srep = p — q. Proceeding from
the above, the validity of the equality

(Sre)? = —¢” + 250(pSre), ¢ € Qy, (3.37)

1s easily verified.
Since T' € R, assuming that ||Sr||, = M, we have

1Srells, < llells, + 2My lleSrelly < llellz, + MpllellzpllSrellzp,

that is,
[1Srellz, = Mpllellzp 1S ellzp = llell, < 0.
Consequently,

15r¢llap < (Mp 4+ 1/1+ MP)¢llop, ¢ € Qup- (3.38)

According to Lemma 3.1, we conclude that I' € Ra,. Applying the Stein
interpolation theorem (see 0.20), we establish that I' € N,>,R,. Now by
Lemma 3.2 we also have I' € N <4<, Ry, whence it immediately follows that
reRr.

Let now I' be an open curve. Since in this case we are unable to obtain
(3.37) for some dense in LP(T') set by direct calculation, we deduce it be
means of Lemma 3.4.

Thus, let first I' = I'qy € R, and let it have a tangent at the ends. Let
also g = I'U 8 be the curve constructed in Lemma 3.4. Since p € R, we can
easily obtain from (3.37) the equality

(Sut)? = =9 + 28, (¥Su¥), ¢ € L*(I). (3.39)

Let ¢ € L*(I'). Taking in (3.39) the functions ¢ coinciding with ¢ on
I' and equal to zero on 6, we obtain for the curves under consideration the
desired equality

(Sr)? = —p® + 250(pSre), @ € LX(T). (3.40)

Let now I' = I'y; be an arbitrary open curve of the class R, and ¢ € Q.
Consider on I' sequences of points a, and b, at which I' has tangents and
which satisfy a, — a, b, — b. For Ty, the equality (3.40) holds. Write it
in the form

(StxXn®)? = =(Xn9)” + 25T (Xn PSTXR P),

where x, i1s the characteristic function of the arc I'y 5, . Assuming ¢, =
Xn, we write this equality as

(Sren)? = —(#n)? + 2Sr(9nSren). (3.41)
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Since the sequence ¢, in the space LP(T') converges to ¢, while ¢, STpn,
with regard for the inclusion I' € R, converges to ¢Sr¢, from (3.41) we
obtain (3.40) for ¢ € @,,. Having this equality in hand and using Lemma
3.1, we complete the proof just as it has been done in the case of closed
curves. Hl

3.4. On singular Cauchy integrals on nonregular curves. According to The-
orem 3.1, a class of regular curves describes completely the R class. Beyond
this set the behaviour of the operators St is very diverse. Below we shall cite
some examples giving an idea of this matter. The criteria for the continuity
of the operators St from LP(T') to LY(T), p > ¢ > 1 will also be indicated,
when I' is a countable union of concentric circumferences. The interest to
the latter result 1s due to the fact that it may point to a way which would
greatly facilitate the solution of the problem of complete characterization
of the class R, 4, p > q.

1) Non-Smirnov curves. Let T' be an arbitrary, simple, closed rectifiable
non-Smirnov curve bounding a finite domain . Then, as is known, there
exists a function ¢ € E'1(G) such that ¢t € L°°(T') and ¢€pL>J1Ep(G) ([133],

p. 258). But the operator St fails to be continuous even from L*(T') to
LP(T) for some p > 1. Indeed, if the curve T would belong to the class
Reo po» po > 1, then the function ¢(z) = (Kpr¢™T)(z), according to Theorem
3.3, would belong to EP°((), but it is not the case. Thus, if T is the non-
Smirnov curve, then

I'eUpst Reo p- (3.42)
2) Example of the curve T' for which
s(r,t)

su < o0 3.43

1] 4

for any ¢ € ', but I'éR.

From condition (3.43) we, in particular, find that p=!

sup p~ 1l (p) < oo,
p>0

t € T. But condition (3.43) is more rigid than the last one. Further, (3.43)is
fulfilled for wide subclasses of curves from the class R (curves with bounded
ratio of the arc length to the spanning chord and also piecewise smooth
curves with cusps). Despite this fact it appears that condition (3.43) fails
to guarantee the belonging of the curve to the class R.

Let {a,}, {@n} be decreasing sequences of the points tending to zero,
provided n(a, — ap) < @pq1 — an. Suppose Tg, = a, + kn~(a, — ay),
k = 1,n. Draw through the point «, a ray which forms with the Ox axis
an angle a, 0 < o < %, and draw the arcs of the circumference of radius
Tpn — ap with center at a,, which lie between the ray and the Ox axis.
Connecting the ends of these arcs alternately on the ray and on the axis, we

obtain a continuous arc %,. Let v, = ¥, U[an—1,a,], T = Ole'yn. On the
n=

basis of the inequality n(a, — ap) < an41 — an we can readily verify that
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|7 —0|715(0,7) < 2, 7 € T i.e., condition (3.43) is fulfilled for the point
t = 0. Analogous inequality for the other points ¢ € T' is obvious.

Show that 'ER. Indeed, from the construction of the curve I' it follows
that

"1
n n_lloz n — tn R
(an — an) (a oz)>a;k,

that is, sup p~lli(p) = oo, and hence I'ER.
tel’, p>0

3) Example of the curve T' for which
(St ()€ Upso LP(T). (3.44)

Let {6,}52, be a sequence of positive numbers with the condition

(o]
Op > bpy1, n>2, Zén < 00,
n=2

oQ oQ

bo = Z(_l)k_162k’ o =1- Z(_l)k52k+1~ (3.45)

k=1 k=1
Suppose t, = (n,yn), n=10,1,2,... where

oQ

Top = Z(—l)k_152k+1, Toan41 = Ton,
k=n
(o)
Yo =0, yam_1= Z(—l)k_lézk, n=12,..., Y =Yn_1.
k=n

Let further Ay = [th,th41], n =0,1,...,;and ' = ( OLjOAn) u{0}.
Direct calculation gives

= |arg(t(s)) — arg(l — t(s)) + now|F, (3.46)

(S > [ [

where p > 0, and the continuous branches of argt(s) and arg(1 —¢(s)) and
the number ng are chosen such that argt(0) = 0.

Let s, = > p_g6k, k =0,1,2,.... Since argt(so) is the angle described
by the vector Ot(:;) upon variation of the parameter s from 0 to sg, 1t can
be easily verified that for s € [sg, s,41) We have nf < argt(s) < (n+1)7.
Consequently,

[e%e) sntl [e%e)
T\P
P P _ P
/|argt(5)| ds > E_O: / |argt(s)|Pds > (2) E_O:n Spgi.  (3.47)
F n= Sn n=—
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As far as arg(1—1(s)) is the function bounded on T, taking 6, = n="In? n,
n=2,3, ... from (3.46) and (3.47), we find that (Sp1)(2)€ L>JO LP(T) for the
P

corresponding curve.
4) Example of the curve T' with the properties
I'e 0<ﬂ< R,p_. forany p, 1<p<oo and TER. (3.48)
e<p
Let ¢, = exp(—+/n), n = 1,2,... and let T be a broken line consisting of
segments A, = [—en,ep + i6n], Ay = [—€n +i€n,6n41], (R =0,1,...) and
[0,1], ie, T = OLjO(An U ﬁn) U [0,1]. This curve possesses the property
(3.48) (see [62], Theorem 4).

5) Operator St for T' being a countable family of concentric circumfer-
ences. Let {r,}5%, be a strictly decreasing sequence of positive numbers
satisfying the condition ) ;7 r; < oo, and let I' be a family of concen-
tric circumferences Ty, = {z : |z| = r,}. Consider the following functions
connected with I'.

Let t € T, p > 0 and l;(p) be the length of that part of ' which gets into
the circle of radius p and center at the point ¢. Let V,(¢) be the variation
of the function arg(r —t) on I',(t), where T',(¢t) = T'N{r : |7 —t| > p}. Put

D(t) =sup li(p)p™", V(t) = lim V,(¢).
>0 p—0

Theorem 3.6. Let 1 < ¢ < p < o0 and

-1
pe(p—q)~", p<oo,
c=o0(p,q)= ( )
q, p=o00.

Then the following statements are equivalent:
(i) the operator Sr is bounded from LF(T') to LY(T);

[ee] (o) g
er;l) rn < 00;

(i) 3 (
n=1‘k=n
(iil) > n%r, <oo; (iv) D e Lo(T); (v) V € L7(T).
n=1
The proof of the equivalence of conditions (i)—(iii) can be found in [64].
The remaining statements of the theorem are proved analogously.
It has been shown [64], [127] that in order for the operator Sr to be
bounded in LP(T), p > 1 it is necessary and sufficient that the condition

(o]
S e <Crny n=12,..., (3.49)
k=n
be fulfilled, where C'is an absolute constant.
A family of concentric circumferences ”simulates” principally rectifiable
curves with isolated singularities. Taking into account the above-said, we
assume that for an arbitrary rectifiable curve the following statement is
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valid: T' € Rp 4, 1 < ¢ < p < oo, iff D(t) belongs to L?(I') (an analogue of
Theorem 3.6).

In favour of such an assumption speaks the fact that condition (3.49) for
p = ¢ 1s analogous to I’ David’s condition. Its correctness is partially proved
by the following

Proposition 3.3 ([127]). Let T be a simple, closed, rectifiable curve. Then
the following statements are valid:

(1) fTERy,, 1 <g<p<2or2<qg<p<oo, then D e L°5(T) for
arbitrary € € (0,0);

(i1) if Sr is continuous from L°(T) {0 LI(T), ¢ > 0 then D € Li(T).

§ 4. ON THE CONTINUITY OF THE OPERATOR Sp IN WEIGHTED
LEBESGUE SPACES

J. Hardy and Y. E. Littlewood [50] were the first who established the
boundedness of the conjugacy operator (Hilbert transform) in the spaces
LP(Tsw), (1 < p < o0), with a power weight w. Later on, various proofs of
the above-mentioned result were proposed by other authors. The theorem
below has been proved independently.

Theorem (Khvedelidze [66]). Operator St is bounded in the space
LP(T,w), 1 < p < oo, where T is the Lyapunov curve, and

wt) = T[1— 6™, el —<ap<l ()
k=1 p p

A full description of weights w ensuring the boundedness of the conjugacy
operator in L?(y;w) has been obtained by Helson and Szego.

Theorem (Helson, Szegé [52]). In order that w € Wa(y), it is necessary
and sufficient that it be representable in the form

w(x) = U@+ (4.2)
where u and v are real bounded functions with ||v||eo < .

The last condition is equivalent to the condition of sufficiency found
earlier by V. F. Gaposhkin [39].

Some subsets of weight functions of the class W,(I') with singularities
distributed over the entire curve were found by I. B. Simonenko [141], I. T.
Danilyuk [19] and I. I. Danilyuk and V. Yu. Shelepov [20]. The first of the
above-mentioned authors has obtained his result by solving the boundary
value problem of linear conjugation.

A complete solution of a one-weight problem for conjugate in L (v, w)
(1 < p < o0) functions is given by the following assertion.
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Theorem (Hunt, Muckenhoupt and Wheeden [53]). A 27-periodic func-
tion w € Wy () (1 < p < o) if and only if

1
lwllzrnll =z ) < elil, (4.3)

where I is an arbitrary interval of length |I| < 27, and the constant ¢ does
not depend on I.

An analogue of the Helson and Szegd criterion for arbitrary L? (v, w) was
first obtained in [54].

Theorem (Jones [54]). A function w belongs to W,(T') if and only if

w ="t (4.4)

bl

where
weL®, Imy; =0, |jo;]| < 21 and ¥, € BLO, j=1,2. (45)
p

(for definition of the class BLO see [28], p. 279).

4.1. On the functions from W/, allowing one to construct weights from 45,
The main results of this section are Theorem 4.1 and its Corollaries 3 and
5. Let us start with formulation of two simple lemmas.

Lemma 4.1. An operator St is continuous from L (T, w) to LP(T,w) if
and only if the operator

Tip—T, (T,))= w@/W) dr (4.6)

w(r)yr—t

is continuous from LP(T') to LP(T).

Lemma 4.2. If w € W,(T), then w € LF(T), L € L¥'(T) and = € W,(T).
Moreover, I € R.

Proof. Show first that I' € R. The use will be made of Stein’s theorem
(0.20). Suppose in this theorem M = Sp, 711 = s =p,ra=ss=p', t = %,
k1 = w, ks = % Then s = r = 2, k = v = 1 and hence ST is continuous
in L*(T'). By Theorem 3.5, ' € R. The proof of the first part of the above
theorem when T is a straight line or a Lyapunov curve, is given in [168]
and [141], respectively. Word for word these proofs can be applied to the
general case by using the Riesz equality (which is valid, since ' € R) and
the fact that if St is defined on LP(T, w), then we must necessarily have
IPT,bw)yCc L(T). N

Theorem 4.1. Let I be a rectifiable Jordan curve. If w? € W,(I'), 1 <
p < oo, and (wSpL) € LP(T), then w € Wy, (T).
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Proof. Note that by Lemma 4.2, I' € R. Since, according to the same
lemma, as w™? € W,/(I'), we have % € LZPI(F). Let now ¢ € Q.,, 20€L.
Then = € e L (T') € L*(T). Since I' € R, we can apply to this function the
formula (3.40). Therefore

[w@ [ et ] s Ly

i w(r)yr—t w

2
¥ ¥ ¥
:wz{_ﬁmsp[;sp(;)]}. (4.7)
If we suppose that T, = wSr =, then (4.7) yields
(T,)! = =" + 20”Sp(-5 1), (4.8)

Show that T, € LP(T"). Indeed, we have

(Ty /:T_tdwr /w = (4.9)

T

Next, the condition w? € W,(T) implies that w? € LP(L), i.e, w €
L?(T') C LP(T), and since ¢ € Q,,, the first summand on the right-hand
side of (4.9) belongs to LP(T'), while the second one belongs to LP(T'), by
the assumption (wSp%) € LA(T).

Thus T, € LP(T'). Consequently, ¢T, € LP(I'). This, according to the
condition w? € W, ('), results in the inclusion [w?Sr(-57,)] € LP(T). From
the equality (4.8) for ¢ € Q,, we conclude now that T € L%(T).

Moreover, on the basis of (4.8) we have

T, l13, < (/Isolz”do) +2</‘w251“ )‘pda)%. (4.10)

The last summand is calculated with regard for the condition w? € W, ().

108y < ol + 2, [ 167 )" < ol +
r

—|—2Ap</|go|2pda) ’ </|T,,|2pda) Ay = 1Sl (411)
I I

and hence

1 Tellzp < (Ap + /A7 + Dllellzp = Azpllpllp- (4.12)

The obtained relation (4.12) is valid for rational functions only.
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Show that it is valid for arbitrary ¢ € L?(T). Let g € L?(I') and
let ¢, be a sequence of functions from @., such that ||¢, — @o|l2p — 0,

llenllzp < [l#oll2p- By (4.12),
I n||2p < AZpHSDnHZp < A2p||300||2p~ (4.13)

Since % € LZPI(F), Z= converges in L(I') to the function £2. By Theorem
2.1, the sequence (Sp fv—") converges in measure to Sp2%. Therefore there
exists a sequence ny such that SF% converges almost everywhere on I' to
Sr£t. But then T'py = wSr22. Moreover, the inequality (4.13) is fulfilled

for T'p,,. By the Fatou theorem,

/|T800|2pd5 < Ek—»oo/|T§0nk|2pdS <
r r

< Azp/lsonklz”ds < Azp/lsoo|2pds (4.14)
r r

which implies that w € Wy, (I'). W

Remark. As the power function shows, the inclusion w? € Wa,(I') does
not, generally speaking, follow from the condition w € W,(I'). On the other
hand, it follows from the condition w € Wa,(I') that (wSrZ) € L?P(T) if
¢ € L?(T). Therefore, assuming ¢ = 1, we obtain (wSr1) € L?(T) C
LP(T). Thus the assumption of the theorem that the function wSp % belongs
to the class LP(T') is a necessary one.

Corollary 1. If w? € W,(I), (wSp%) € LP(T), p < r < 2p then, wF €
W.(T).

Proof. Bearing in mind Theorem from 0.20, we assume that M = Sp, r; =
s1=p1, 70 =82 =2p, k1 = up = w?, ks = us = w. By Lemma 4.2 and
from the assumptions of the corollary, this theorem is applicable and for

t=2— Zr—p we have k = u = w?(1=Dw! = 2=t = w¥. Thus the inequality

¥

2p
T

2p
HwTSr

< Mpu?, (4.15)
1s valid. W

Corollary 2. If w € W,(), where 1 < p < 2, then w = exp(u+7), where
u and v are bounded real functions, and ||v||e < I
Proof. By Corollary 1, we have \/ETP € W,(y). Since 2 € [p,2p], we
can take r = 2. Then /uw” € Wa(y). According to Helson-Szegd’s theo-
rem, w® = exp(uy + 1), where u; and vy are bounded real functions, and
|o1]]oc < &. But then w = eXp(Z%—I—(%)) =exp(u+7), u= 2;%1, v= 2%1.
Clearly, ||v]|co < 7, W
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Corollary 3. The function of the kind w = exp(u+7), where v and v are

the bounded real functions and ||v||e < W(pp,), belongs to W,(7).

Proof. (i) Let first p = 4, ie. w = exp(u + V), ||vl]]oc < F. Since w? =
exp(2u + 27), ||20]|cc < I, by Helson-Szegd’s theorem, w? € Wa(y). More-
over, as w” and L belong to L?(7), then wSrw™"' € L(y). Therefore, owing
to the theorem, we conclude that w € Wy(T).

(ii) Let 2 < p < 4 and w = exp(u + ), ||v]|oc < 75+ The function wi,
because of (i), belongs to Wy(y). Assuming p = 4, r = p in Corollary 1, we
find that w € W, (7).

Hence, Corollary 3 is valid for p € [2,4]. Repeating the above reasoning,
by induction we prove that the corollary is valid when p € [2, co].

(ii)) If 1 < p < 2, then since ||v|| < W, we have that = € W(y),

and by virtue of Lemma 4.2, w € W,(I'). N

Corollary 4. If the operator T ts bounded with respect to the norm of the
space LP(T') for rational functions from Q,,, then it is bounded in LP(T).

It suffices to see that part of the proof of Theorem 4.1 which implies
(4.12).

Corollary 5. If w € W,(y), then w = exp(u + ), where u and v are the
bounded real functions, and ||v||co < WQ’%P’)'
Proof. Tf 1 < p < 2, then using Corollary 2, we obtain w = exp(u + ?),
where ||v]|oo < %. If, however, p > 2, then applying again Corollary 2, but
now to the function % € Wpi(y), we obtain w = exp(u+7), where this time
[|]]ec < 77 B

In subsection 4.5 we will prove that the result of Corollary 5 remains also

valid in the case of Lyapunov curves.

4.2. Criteria of boundedness of St in L7 (T, w) for regular curves I'. In this
section we assume that Jordan curve I' is regular that is,

vI(z,r)<er, z€T,

where T'(z,7) = B(z,r) N T, B(z,r) is a circle with center in z € T and of
radius 7, v i1s an arc length measure on I'. As it was noted in §3, the class
of regular curves completely describes the class R.

Introduce the following notation:

1
Ve = s s [ sl
O0<r<diam I’ T'(z,r)
MP() = (MrlfIP)3 (0),
1
#04) = —
o= s [ 10 - sl

T'(z,r)
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1 /
vE
/ dl/ for any measurable E C T.

Definition 1. A measurable non-negative function w € A (T') if there
exists § > 0 such that

/w(t)dy < c(yr”(f’r))é / w(t)dv

E T'(z,r)

for every I'(z,r) and measurable E C T'(z, 7).
Definition 2. A weight function w € A4,(T'), 1 < p < oo, if

w o ory [ oGy [ o) <

O<r<diaml’ T'(z,r) T'(z,r)

)

In the sequel, we will need two facts: (i) if w € A,(T") for some p > 1,
then w € Ao (T); (ii) the class A,(T') is open, i.e. there exists some ¢ > 0
such that w € A,_.(T') and w € 4, (T') for arbitrary p1 > p.

As far as a regular curve is one of examples of a homogeneous type
space, the above-mentioned properties of A,(I') as well as the proof of the
propositions below can be found in [40], Chapters 1, 5 and 7.

Proposition A. Let 1 < p <oo, I'€ R and w € A,(T'). Then

Jonsoy e < e [110reoi (4.16)

where ¢ does not depend on f.
The principle of the proof is well known (cf., e.g., [153], p.3). Tt is based
on the following covering

Lemma 4.3. Let I' be a regular curve and let ¥ C T be a bounded set.
Assume that every point t € E is endowed with a positive number r(1).
Then there exists not more than a countable set of pownis t; € F such that
T; =T(t;,r(t;)) are mutually disjoint and E C UT;.

J

Proof. Assume that sup{r(¢),t € '} < co. Otherwise, there exists a point
t € E such that £ C B(t,r(t)) N T, which proves the lemma.

Let us take the point ¢; € E such that r(¢1) > sup{r(¢),t € E} and
suppose that the points t1,t5,...,f,_1 are already chosen. Now we select a

n—1
point t, € E,, = E\ 'Ul B(t;,3r(t;)) with the condition
]:

r(ty) > %sup{r(t) teE,}.
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It is clear that I'(¢,,r(t,)) N B(t;,r(t;)) = @ for j < n. Otherwise,
[tj — tal < 3r(t;).

Indeed, for j < n we have r(¢;) > %sup{r(t) ‘t € E;} >
T € B(t,,r(tn)) N B(t;,r(t;)) N T, then

r(ty), and if

[t; —tal < |t; — 7|+ |7 —ta| < r(t;) + r(tn) < 3r(3).

The latter contradicts the fact that ¢, € B(t;,3r(t;)), j < n. Hence
I(t,, 7(tn)) N B, r(t;)) = @ for j < n.

Thus there may occur two cases:

(1) If after our choice of a finite number of points ¢;, j = 1,...,n we find

that E\ 'G1B(tj ,3r(t;)) = @, then the set 'G1B(tj ,3r(t;)) covers the set E.
j= j=

(2) If this process continues infinitely, then we will have lim r(¢,) = 0.

Indeed, let for some ¢ > 0 and for the subsequence (¢;,)r of (¢;) we have
r(tir) > €. On the other hand, these points belong to the bounded set E,
and therefore they may find themselves in some ball B. Moreover, the sets
I'(t;,r(t;)) are mutually disjoint, and therefore

s(tiy,ti,,) > r]?ins(tik,tim) >e> 0.

)

This means that a portion of ', having an infinite length, appears in the
ball B. But this contradicts the regularity of I'.

Assume now that there exists a point ¢ € E such that ¢ € E\ '61
]:
B(t;,3r(t;)). Then there exists ng such that r(t) > 2r(t,,). On the
other hand, r(t) < sup{r(t) : t € E,,} < 2r(tn,), and we conclude that
E\ ,GlB(tj,?)r(tj)):@. u
]:

Along with the above lemma we will also need the Whitney type covering
lemma.

Lemma 4.4. Let ' be a regular curve, ¥ C ', F # T be a bounded, open
set in the sense of the topology of I' and the number ¢ > 1. Then there exists
a set of balls {B; }; = {B(t;, R;)}, t; € E such that the following conditions
are fulfilled:

(a) E= %JF]', Iy =5B; NI,

(b) there exists a positive number n = n(c) such that every pointt € T
belongs at least to n balls B; = B(t;,cR;);

(¢) Ej N(T\E) # @ for every j, where Ej = B(t;,3¢cR;).
Proof. Let t € E and r(t) = &=d(t,T\E) = & inf{|t — 7| : 7 ¢ E} > 0. By

virtue of Lemma 4.3, there exists a set of balls {B(¢;,r(¢;))} such that the
sets T'(t;, r(t;)) are mutually disjoint, and E C UB(¢;, 3r(t;)).
J
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For 7 € T'(¢;, 3cr(t;)) we have
[t; — 7| < 3er(t;) = 3céd(tj, I\FE)= %d(tj, I\E) < d(t;, T\E).
Let R; = 3r(¢;) and B; = B(t;, R;). Then, obviously,
B;NT C B(t;,eR;)NT C E.
This implies that
EC(UjB;)NT CU;B;NT C E.

Consequently, £ = UB; NT'. Thus item (a) is proved.

Further, since 3ch]: 9er(t;) = 2d(t;,I\E) > d(t;,I'\E), we obtain
Ej N (T\E) # @. Tt remains to prove (b). Notice first that there exists
a number h > 0 such that every ball B(t,r) cannot contain more than A"
points {t;} for which [t; — ;| > 55, i # j.

Let now ¢t € B;NI', B; = B(t;, cR;). Show that ¢R; < d(¢,T\E). Indeed,

2eR; = 2¢3r(t;) = 6er(t;) = d(t;, T\E) <
<|t; —t|+d(t,T\E) < cR; + d(t,T\E),
whence it follows that
eR; < d(t,T\E).
Moreover, Ej NT C B(t,2d(t, T\E)). Really, let 7 € Ej N T. Then
[t —7| <|r—t;|+|t; —t| < cRj + cR; < 2¢R; < 2d(t,T\E),

which denotes the required inclusion.
Moreover,

dit,T\E) < [t — t]'| + d(t]', T\FE) < cR; + 2¢t; = 3cR;,
which implies that
d(t,T\E)

;>
= 3¢

Fort € B; N Ej NI, i#j, we have B,NT C B(t,2d(t,T\F)). Indeed, if
7€ B; NI, then we have

Ir—t| < |7 —t;|+ |t; — t| < 2¢R; < 2d(t, T\E).

Thus all the centers ¢; of the balls B; containing ¢ lie in B(¢, 2d(¢, T\ E))N
I'. But on the other hand,

FﬂB(ti,T(ti))ﬂB(t]',T(tj))I@ for i#£j

and

1
[ti = ;] > min{r(t;), r(t;)} = g min{f;, R} >



45

1 d(t,T\E)
> ——d(t, T\E) = =

Consequently, there is a h, h > 0, such that a number of balls containing
the point ¢ does not exceed h'%8262,

Note that in the previous inequality we have used the fact that |¢; —
t;| > min{r(t;),r(t;)}. The latter holds because t; ¢ B(t;,7(t;)) N T and
t; % B(ti, T(ti)) Nr. MW

Lemma 4.5. Let T' be a reqular curve, 1 < p < 0o, and w € A,(T'). Then
there exists b > 1 such that for any r > 0 and z € I' we have

wl(z,2r) < bwl'(z,r)

(the doubling condition).

Proof. From the definition of A,(T'), regularity of I' and Holder inequality,
we have

wr(z,zr)g(yr(z,zr))p( / wl—p’(t)dy)l_pg

I'(z,2r)

§b1/F(z,r)< / wl—p’(t)dy)l_pg

T'(z,r)

gb( / w(t)dy)( / wl_p'(t)dy)p_lx

T'(z,r) T'(z,r)
1 1_p
x( / whP (t)dy) =bwl(z,r). W
I'(z,r)
Lemma 4.6. Let p be a nonnegative Borel measure on C, ul' < oo, and
there exist b > 0 such that

pL(t,2r) < bul'(t,r)

foranyt €T and r > 0. Then for an arbitrary pownt to € I there exists a
number R > 0 such that T C B(to, R).

Proof. Suppose to the contrary that there exists a number g € I' such that
for an arbitrary R > 0 the set T'\ B(%g, R) is empty. Fix some R > 0 and let
z € T\ B(ty, 2R). Tt is evident that

|t0—Z| |t0—Z|
o (L PO et Y
o5 )N EE TS

Moreover,

|t0—Z| 3
(= =2y ¢ b1, 2 - ).
z 7 C 02|0 Z|
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In fact, let 7 € B (z, @) Then, obviously,

to—Z 3
|t0—7'|§|t0—z|—|—|z—r|§|t0—z|+%:§|t0—z|,

Moreover,

|t0—Z| 3|t0—Z|
B(t, ) B( 7)
I A G

Indeed, for 7 € B(ty, |*5%]) we have

lto — 2| 3

|z =7 <le—to|+[to—7[ < +lto — z[ = S lto — =[.

Therefore

|t0—Z| 3|t0—Z|
Pty 22 <pr (2, 2222 ) <
B 0 5 S plbis 5 =
0

to— 2
§b1uf(z,| 9 |)a

and thus we obtain

3 tg — g —
(o S =) 2o D) (- o)

|t0—Z| 1 |t0—2’|
> F(t, ) - F(t, ):
> pl{to 7 +b1ﬂ 0 9

|t0—Z

= (1+6)uT (to, ) > (L4 8)ul(to, R).

If we assume that R; = %|t0 — z|, then from the latter we can conclude that

Continuing this process, we get a sequence (Rj)i of positive numbers
such that
pl(to, Ry) > (14 8) ul(to, R), k=1,2,....
Passing to the limit as ¥ — oo, from the above inequality we find that
p#I' = oo, which contradicts our assumption. B

Corollary. Let T' be a regular curve, w € Ap(T'), 1 <p < co. Ifw(l) <
oo, then for an arbitrary tg € T there exists a number R > 0 such that
I' C B(te, R).

Let ' be a regular curve and w be a weight function. For every summable
function f : T'— R we define on (0, 00) an equimeasurable function

fo(@)=mf{A>0:w{t:|f(t)] > A} <z}

We can readily show the validity of the following
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Lemma 4.7. For cvery x > 0 we have

w{t : [f(O)] > f(2)} < 2.

Lemma 4.8. Let w € Aoo(T), and let Q be a measurable subset of T,
wQ > 0. Then there exists an open (in the sense of the T' topology) set
G D Q such that

wG < cwll,

where the constant ¢ does not depend on €.

Proof. Let G = {t €T : M(xq)(t) > %}, where
B v(T(t,r)NQ)
Mxalh) =00 =k )

We can easily see that (G is an open set in the topology of I', and © C G
From the condition w € A,(I') and also from the inequality of the weak
type (p,p) we deduce for the operator M that

wG = w{t: M(xa)(t) > %} < c2?wQ2. W

Lemma 4.9. Let T' be an unbounded regular curve, and let w € A (T).
Then wl' = co.

Proof. Suppose to the contrary that wl' < co. Then owing to Lemmas 4.5
and 4.6, the curve T' may appear in some ball B(t,r), t € T, r > 0. On
the strength of the regularity we obtain vT' = vI'(¢,r) < ¢r < oo, which
contradicts our assumption on the unboundedness of the curve I'' W

Lemma 4.10. Let T' be an unbounded regular curve, and let w € A (T).
Then there exists a number ¢ > 0 such that for every > 0 we have

(Mrf);, (x) < e(f#);,(22) + (Mr f);, (22).
Proof. Fix # > 0 and assume
Q={t: fH(t) > (F#)5,(20)} U {t : Mpf(t) > (M f);, (22)}.
By Lemma 4.7, we have

wQ < wit: fF () > (%), (22)} +
+w{t: Mrf(t) > (Mrf),(2¢)} < 4z < .

By virtue of Lemma 4.8, there exists an open (in the sense of the T
topology) set G D Q such that

wG < eqwk) < co.

Since I' is unbounded, using Lemma 4.9 we find that wl' = oo and,

obviously, ['\Q # @.
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Apply now Lemma 4.4 owing to which there exists for ¢ = 1 a sequence
(B;); of balls with centers on I' such that G = %J(Bj NI), > xB,;nr(t) <m

J
and B;N(T\G) # @,j = 1,2,..., where B; = B({j,r;) and B; = B(l;, 3r;).
The lemma will be considered to be proved, if we show that there exists
¢1 > 0 such that

w{t : M f(t) > er(f#),,(22) + (Mrf);, (22)} <

for an arbitrary x > 0.
Suppose

Ej={te B; NI : Mpf(t) > e1(F#); (22) + (Mrf);, (2x)}.

Fix j and let f = g+ h, where h = (f — f5 Ap)XF.Ap- As is easily seen,
for t € B; N I' we have

g9(t) = f(t) = (f = f5,ar)XB,ar (1) = f5,ar < (Mrf), (22),

since B; N(I'\G) # 2.
On the other hand, for ¢t € T\G we have

g9(t) = f(t) < Mrf(t) < (Mrf), (2x),
and we can conclude that
llglles < (Mrf)y, (22).
Consequently,
My f(t) < Mrh(t) + Mrg(t) < Mrh(t) + [|gllc < Mrh(t) + (Mrf),, (22).

Further, by virtue of the weak type inequality and the definition of the
set €2, we obtain the estimates

vE; <v{t € B; 0T : Mph(t) > e (f%)5(22)} <

= _ e L
: W/ O = s [ 10~ faerlar <
BjﬂF
<22 ymar), j=12,....
C1

In the above estimate we have used the fact that B; N (T\G) # @.
Next, by virtue of the condition w € Ao (T'), we have

I 5
ij§C4( s )) w(B; NT) <

I/(B]'ﬂ
é
§c4(%) w(Bjmr)), i=1,2,....
C1
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Thus we obtaln

w{t : M f(t) > er(F#), (22) + (Mrf);, (22)} <

5
< ZI/E]' < mb(%) wG < bC4(%)éw(F nQ) <
J

C1 C1

< mbey (%)610(9) < 4dmbey (%)61‘.

€1 €1
Take now ¢; so large that

5
4bmey (%) < 1.
C1

Then from the previous inequality we conclude that

w{t : Mrf(t) < es(f#);, (22) + (Mr f);,(22)} < @
for an arbitrary x > 0. W

Lemma 4.11. Let T be an unbounded regular curve, and let w € A (T).
Then the inequality

oQ

(@) S e [R5 + lim (M) (o)

holds, where ¢1 does not depend on x and f.

Proof. Since T' is unbounded, by Lemma 4.9 we have wl' = co.
Applying now Lemma 4.10, we obtain the following estimates:

(Mr )y, (x) < e(F#);,(22) + (Mrf);, (22) <

2z

< () 2e)y [ D (e 22 <

dX

< 2e [ + ()i (20) <

< 2¢ [(PFL005 + (M) (40) + (), (40) <

<oe [t e [urn ot +

T 2z
2z

ey (o) < 2[R 0T +2e [T +

T 2z
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HMe () < <20 [ URLNT + Ot (20a)

xr

for arbitrary n and with ¢ independent of f, x and n.
Consequently,

(Mrf)(z) <2c¢ lim [ (f#)5(0)~ +

+lim (V) () = e [R5 + lim (M) ()

xr

Proposition B. Let ' be an unbounded regular curve, 1 < p < oo, and let
w € Ao (T'). Then there exists ¢, > 0 such that for any f with the condition
limy oo (M f)5 () = 0 the inequality

(/ (Mrf)(t))pw(t)dV)l/p <o (f#(t))”w(t)dV)l/p (4.17)

holds.
Proof. By Lemma 4.11 and Hardy’s inequality, we deduce the estimate
1/p 7 1/p
(Jmn@yewa)” = [amnera) " <
r 0

oo o0

<ol [(Jurnm DY w)" <o [inmprs) =
0 0

_ cp(/(f#(t))pw(t)dy)l/p.

Proposition C. Let T' be an unbounded regular curve, and let w € A, (T)
and p > po. Then there exists the constant c¢p > 0 such that

(/ (Mrf)p(t)w(t)dV)l/p <o (f#(t))pw(t)du)l/p,

Proof. Let f € LV (T'). Since w € A,(T'), we have Mrf € L (T'), and hence
lim (Mt f)s, (x) = 0.

The remainder follows from Proposition B, since w € Ao (T).
Proposition C' is the analogue of the well-known theorem due to C. Fef-
ferman and E. M. Stein [35].
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Proposition D. Let 1 < p < oo, and I' € R. Then the following pointwise
estimation s valid:

(SeH* (1) < eMPF(t) (4.18)
almost everywhere on T for arbitrary f € L(T).

Proof. Let tg € T, r > 0 if T is unbounded and ¢ € B(tg,r) N T. Put
J1(7) = F(T)XB(to,20)n1(r) and fa(T) = f(7) — fi(7). We have

1
v(UN B(to, 1)) / |Srf(7) = Srf(to)ldv =
CAB(to,r)
- ; S S St fa(to)|d
~ u(I'N B(to,r)) / |Sefi(T) + St fa(T) — St falto)|dv.
CAB(to,r)

Let
F(T,t) = Spfl(t) + Spfz(t) — Spfz(to) = Srfl(t) +
+ / ( S JH(r)dr = (1) + I(2).

T—1 T —1g

{reT:|r—to|>2r}

Since I' € R, we have
I 12lly = 1St fully < cllfillp-

Hence

[ L]l = c( / |f(7')|pd1/) <e(v('n B(to,Qr))% X
I'nB(to,r)

: () < : : ()
% TEFO%I(ED,W‘)M f(T) - Cl(VF(tO, 7”)) TEF%%f(’tD,r) M f(T)

In the last estimate we have used the regularity of T
Further,

‘ 1 1

(1) < |l =

T—1
{rel:|r—to|>2r}
[t — o]
= _ dv.
/ i — o ¥ Dl
{rel:|r—to|>2r}

For r € T, |t —tg| > 2r and ¢t € ' N B(tg, r) we have |1 — | < |7 —t| +
t—to| <|r—t|+r<|r—t + 7=t Hence T —to| < 2|7 —1|. Therefore
2
t—1
Iy(t) < 2 / J=tol ) riryjan =

- |7 — to]?
{reT:|r—to|>2r}
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=2y / F)ldw <

{rel:2kr<|7—tg|<2k+1r}

B+l -1 E+1 .
2k(2 )" 'vI'NB(tg, 2 r)rer(tlur,lngr)Mf(T)S

1
— < inf M .
ok — CTEILI(ltD,r) f(T)

<e¢ inf Mf(T)Z

7€ (to,r) P

Thus

[ ool [ noas [ sl <

T'(to,r) I'(to,r) T'(to,r)

< (vI'(tg, r))r'l_’ ( / |Il(t)|pd1/) ’ + cev(T(to, 7)) Teli“I(ltf T)Mf(r) =
T(to,r) ’

- i (p) i <
ev(T(to, r))(TEILI(ltE,r) MW f(r)+ Telll(ltfu,r) Mf(r) <

< evl(tg,r) inf M(p)f(r),

7€ (to,r)

whence we obtain the estimate

1
— F(rt)dv<ec inf M®
vT(to,7) / i Oldv<e gl M0
I'(to,r)
where a constant ¢ does not depend on ty and r.
Next,
1
_ — dv <
Ty [ 1500 = (Sl <
I'(to,r)
2
< — F(r,t) dv< eM®P) f(t
S [ PGl s

T'(to,r)

for arbitrary ¢ € I' N B(to, 7).
Finally we conclude that

(S fy*(t) < eMPf(2)
almost everywhere on I'. W
Theorem 4.2. Let 1 < p < oo, I' € R. Then for the inequality
[1serorutis < [ 1rap e (1.19)
r r

to be valid with a constant ¢ not depending on f, it is necessary and sufficient
that w € A,(T).
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Proof. At first we assume that ' is an unbounded curve. Since the class
Ap(I') is open, there exists some p; > 1 such that w € A,/,, (I'). Using now
Propositions D, C' and A, we obtain the estimates

[1seror e <
< [Onen@y wds < e [(Sc*0y wd <

<o [Ore( @) F wdy < o [ IF@OPudr. (420)

T

Thus we have proved the part of Theorem 4.2 in case of unbounded I'
concerning the sufficiency.

We pass now to the case where the curve I' is bounded. Assume first
that I' = 'y 1s an open curve with the ends a and b, and Ur is a circle
containing I'. Choose on T' sequences of points (an), and (b,), with the
condition a, — a, b, — b at which the I' curve possesses the tangents. For
sufficiently large N, we can construct a circle Uy with center at the point
ap, containing the arc aya and excluding the point b. Since the curve has
at the points a, the tangents, there exists a sector with the vertex at the
point a, such that its intersection with Uy does not contain the points of
the curve T'. Therefore there exists the segment anal,, al, € Uy such that
MOF = @. Since Up\T is the domain, there exists a broken line UnanAn,
Ap € 8Ur with a finite number (say m) of links which does not intersect T'.

Let 6,4 = anA, U Ap An, where A, Ax are the arcs of the circumference
60Uy — boundary of U,. Similarly we construct the curves 6, ; connected
analogously with the other end &.

If 8, and 8; are nonintersecting rays with vertices at the points Ay and
By, then the curves I'y, = I'g, 3, Ubp o Ubyp Uby Uy, and Uy may turn
out regular, and as is easily seen,

[ [
sup supM §supsupﬂ+m—|—2.

€er, p>0 P e p>0 P
Consequently, on the basis of the above-proven results we find that
IStz —rs, <M
for some M, independent of n. From this we conclude that
15ru b, L8~ 22, < M.

Next, from the last estimate and from the fact that St is continuous in
L? in a standard way we deduce that

IStaullor,—rr, < M.
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Let now I' be an arbitrary, simple, closed regular curve. Take on I' three

points a, b and ¢ with the condition s(a) < s(b) < s(¢). For f € L (T') we
have

[ 1sespuan <

Tas

<2 ([ seasruars [ IseswF ua).

Tas Tas
But

/ St ()Pt dv <

(/|Sn, Ol dV+/|5F Putdr ) <

( / St (P (O w0 + / Sra (. JOF wlt)dy )

Taking into account the above arguments, we can see that the operator
S is continuous in L2 (T'y.) and LP (T'.;). Thus we conclude that

/|Spf(t)|pw(t)d1/ < c/|f(t)|pw(t)d1/

The inequality

/ISrf (O w V<C/|f (O ()

is derived analogously.

Consequently, the theorem is proved in the general case for that part
concerns the sufficiency.

For the necessity it suffices now to remark that there exists a constant

¢ > 0 such that for any T'(z1,r1) there exists another T'a(z2,72) such that
the inequalities

Se0u, ) 2 (5 [ F0d)x, ()

and
S0, ) 2 e(5 [ F0d)xe, )

hold for any real fand z€I'. A
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4.3. Weight inequalities for singular integrals on smooth curves. Let ¢t =
t(s) be an equation of the curve T with respect to the arc abscissa. The arc
length is assumed to be equal to 2r. We extend the function f(¢) and the
weight function w periodically on R and consider the integral

t(o) —t(s

Sef(i(s)) = / Aho))lo) (t(a))tt/ ((")) dor.

Theorem 4.3. Let 1 < p < oo, I' be a smooth curve. Then the inequality

27

[1sesaprer s e [Iraenpureias @2

0

holds for all f € LP(T,w) with a constant ¢ > 0 independent of f if and
only if the condition

sup (ﬁ/wp(s)ds) ’ (ﬁ / w_pl(s)ds) ” < 00 (4.22)

T
s fulfilled, where the least upper bound is taken over all intervals of the
length less than 27.

Proof. The sufficiency follows from Theorem 4.2. We dwell on the proof of
the necessity. Let the inequality (4.21) hold.
Consider on [—m, 37; —7, 37] the function

’ z(s)—x(o) / y(s)=y(o)
qs(s,a):{x@ R A T

1 for s =o,

bl

where t(s) = z(s) + ty(s).
Because of the smoothness of the curve,

lim  ®(s,0) =1

§—50,0—0¢

for an arbitrary sq € [—m, 37]. Therefore, for every sq € [—n, 37| there exists
its neighbourhood Ag, such that ¢(s,o) > % for any s € A;,, 0 € Ag,.
Choose from the covering {A;,} of the segment [—m, 37] a finite covering
{ALY . Assume
co = min [AINAY
1<, <m

By the equality

Re L) =) _ (x/(s).QC(S) —2(0) | g ¥ = ulo) ) ‘t(s) — (o) ‘—2

t(s) —t(o) 5—0 5—0 5—0
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for an arbitrary interval I, |I]| < min(%co, %) and any s and ¢ from I we

have the inequality

/
Re L35 =0) > L (4.24)
t(s)—t(o) — 2

To prove the necessity of the condition (4.22), it suffices, as is easily seen,
to show that it is fulfilled for any I, |I| < min(3cp, I).

Let IN(0,27) # @ and |I| < mm( ¢o, §). Denote by I; any of the neigh-
bouring intervals of the same length as the interval 7. Without restriction
of generality, we assume that the interval I; is on the left of /. Let Iy be
an interval of length 27 containing a set T U I5.

Let ¢, a non-negative summable function, be equal to zero outside [I.
Suppose f(t) = ¢(s(1)).

We will have

ool =| [ o || 2wl

(s) —t 5) —t(sg)

By virtue of (4.24), for any o € I; we have

Seruen] 2 5 [ 222 i [ s (4.25)

I

Thus, for an arbitrary, non-negative, 2x-periodic function ¢ € L(Iy) van-
ishing outside I we have the inequality

(St /) L_Mﬂ/ e, (2) (4.26)

for any o, where f(t) = ¢(s(?)).
Analogously, for any non-negative, 2x-periodic function ¢1 € L(Iy) van-
ishing outside 77, we have

Sch )] = (77 [ er(sds) v o), (1.27)

where f1(t) = ¢1(s(t)). ,
In (4.27) we assume that ¢1(s) = w™P (s) for s € I;. Then from the
inequality (4.21) we conclude that

(ﬁ/w_pl(s)dS);_//wp(U) < b/w—p’(a)da. (4.28)

I I

It follows from (4.28) that under our assumption

/wp(a)da < oo0.

I
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On the other hand, if we put ¢(s) = 1 for s € I, then because of (4.26)
from (4.21) we find that

/wp(a)da < bl/wpda.

I I

Interchanging the intervals I and I, similarly to the above-proved we
conclude that

/wp(a)pda < by / wP (o)do.
I Iy
Thus
% wP (o)do < /wp(a)da < by / wP (o)do.
I I Iy

By (4.28), from the latter inequality it immediately follows that (4.22) is
fulfilled. W

Theorem 4.4. Let I' be a closed smooth curve. Then for the inequality

woyds < 5 [Iflutsds  (429)
{o€(0,2m):|Sp f(t(a))|>A} 0

with the constant ¢ > 0 to exists for any A > 0 and f € L(T,w), it is
necessary and sufficient that the inequality

1 / 1

— | w(o)doess sup—— < ¢y 4.30

17 S 430
T

with the constant ¢ > 0 for every interval I of the length less than 27 be

fulfilled.

Proof. We dwell on the proof of the necessity, since the sufficiency is proved
in Theorem 4.2. Given (4.29), let I be an arbitrary interval possessing the
properties ess infser w(s) < oo, IN(0,27) # @ and |I]| < min(%co, o), where
¢g 18 the constant from the previous theorem.

Let I; be one of the neighbouring intervals of 7 having the same length.

For an arbitrary ¢ > 0 there exists a set E of positive measure such that
w(s) < ess iInfw(U) +e, s€L. (4.31)
o€
Let now ¢(s) = xr(s), f(t) = ¢(s(t)). By arguing as in the previous
theorem, we have

ds

g — 8

1 mE
>
= 10 mI

(4.32)

sesaton) = 5| [

for an arbitrary o € I;.
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By the condition of the theorem,

ﬂw{a € (0,27) : |Srf(t(0))] > 10m[ < bm—EI/w(s)ds, (4.33)

E
where i, 18 the Borel measure defined as

fwe = /wp(a)da.

€

By (4.30) and (4.32),

Hw o (0,27) : |(Spf)(t(a))| > T0m I} < b|I|ess mfw( )+e.

Further, by virtue of (4.31) and from the arbitrariness of £ we obtain

/w(a)da < b|I]ess iInfw(s). (4.34)
s€

I

It is evident that ess iInfw(s) > 0 or otherwise w would vanish on 7, and
€

then the condition (4.30) would be fulfilled.
Analogous reasoning (after interching I and I) results in the conclusion
that

oely

/w Yds < b|Iy|ess infw(o). (4.35)
T

Next we have

III/ |I|m/w(5)d5/w(o)do,

sel I, I
whence, by virtue of (4.34) and (4.35), we conclude that (4.30) is valid. W

4.4. Some two-weight estimates for a singular operator. For a 27-periodic
summable function f on (—=,7) we put

[ Sy

f(z) prrmmpert

-

It will be assumed that 1 < p < oo and the positive number « is so large
that the function ¥(z) = 2#~!In” £ increases on (0,7), a > ex.
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Theorem 4.5. Let 1 < p < oo and zg € (=7, 7). Then there exists a
constant M(p) > 0 such that the inequality

/|f(x)|p|x — xoP~tde < M(p) /|f(x)|p|x — zolP ™ n? dz (4.36)

|l‘—l‘0|

holds for arbitrary f for which the integral on the right-hand side ts finite.
Moreover, the exponent p on the right-hand side with the logarithm s
sharp, that is, it cannot be replaced by any p1 < p.

The proof will be based on the following Hardy type two-weight inequal-
ity.

Theorem A ([71]). Let 1 < p < ¢ < oo and functions v, w defined on
(0, ) be positive. Then for the equality

/v(a:)/ (y)dy dx<N /w z)[Pd (4.37)

0 0 0

to hold with a constant N(p) not depending on F, it is necessary and suffi-
cient that the condition

sup (/v(y)dy) (/xwl_”'(y)dy)p_1 <00 (4.38)

Proof of Theorem 4.5. It can be assumed without loss of generality that
g = 0. Note that if the integral on the right-hand side of (4.36) is finite,
then the function f is summable on (—=, 7) and therefore f(x) exists almost
everywhere. Indeed,

be fulfilled.

/If(l‘)ldxz/If(x)llrll‘ﬂnﬂlxl"lln e <

<(Juorere o) ([ ) <

Further we have

L]

||

/|f VPl ~tde = (p— 1) /|f (/ p_zdr)dx:

m

—o-n [ ([ (s )<

0 T>|z|>T
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m

el (L 2

0 ™>e|>7 7>|y[> %
dx)dr] =

[ [ ] ]

w>|e|>T 0<lyl<5
=227 p—1)(I, + I2).

da:) dr +

By the Riesz theorem, we conclude that

I = /Tp—z( / ‘ f(y)x{yi: 7r >i3|Jy| >3,
0]

e —e
a>|e|>r —7

P
da:) dr <

< Rp/Tp‘z[/(lf(y)lx{y rr >yl > %})”dy] dr <

-

<R, /( [ wpar).

™>|y[>%
Changing in the latter expression the order of integration, we obtain

2y|

s 15 ([ o)<
-7 0]

(87
< My / )P luP " dy < Mo / S~ o S (2.39)

Let us now estimate I. For 0 < 7 <7, 7> || > 7,0 < |y| < § we have
|z —y| <|z|+|y| < 74+ % = 3. Moreover |z| < [z —y|+|y| < [z —y|+ ] <
|z — y| + £]|, and hence |& — y| > £|z| > 1|7|. Also,

. . - 9
e — e | =2 sin = y‘2;|x—y|

for %|T| <l|zr—y| < and | — Y| > QSin%T form < (x—y) < 37”

By virtue of all the inequalities obtained above, we have

N A=

>|e|>7  A{lyl<FIn{F<|e—y[<r}

JrS ] gy aes

m>lz|>7  {yly|<IIn{r<|e—y|<3E}



61

T>|z|>7 lyl<z

+0/TH< / dx / |f(3/)|dy)pdr].

™>|e|>7  yl<F

SM[/( [ (] i) Yars

Furthermore,
™

pev (2 [ i) are

-
0 lyl<%

—|—M3/Tp_2< / dx

T>|z|>T

P
If(y)ldy) dr = Iy + Io.  (4.40)

lyl<%
_1

Let us verify whether (4.38) is fulfilled for the pair of weights v(?)

and w(r) = 77~ 1n? 2. We have

™ xr p—l
/ﬁ(/llnp(l—p’) ng) =
-
0

T T
[dr( [dine\P~! 1
IM5/—T / I,IT ICIHz §M6
T In? < xln%
0 T

xr

Therefore, to estimate I51, we use Theorem A and obtain

2 dz. (4.41)

B <M [ [f@)PfaP -
it

Using Theorem A, we estimate 5 as follows:

122§M8/7T7'p_2 / dl‘( / |f(y)|dy)pd7'§

0 T>|z|>T |y|<|923_|

SM9]|x|p-1( / If(y)ldy)pdxé

|]
lyl< 5

<oty [l ([ i) ae <
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< My / |f(2)P |2~ In ﬁdx. (4.42)
X

By (4.39), (4.41) and (4.42) we conclude that

||

It remains to show that in inequality (4.36) exponent p with the logarithm
cannot be replaced by a smaller number. Assume the contrary. Let ¢ €
(0,1), zg = 0. Fix the number ¢ > 0 and put

fily) = %ln(p_a)(l_pl) i for 0<y< %
0 for y ¢ (0, %)

Substituting the function f into inequality (4.36), where the exponent p
with the logarithm is replaced by p — €, we obtain

1 4]

<M/—1 (p=e)p(1- p)o‘l p- a—dy—M/ In(P=)1-2" 2 gy
) )

/ F@)Plefp=tde < M(p) / F@)P e~ S de

Hence

R , 2
/(/—ff(y) dy) |z [P~ dx < M/lln@—f)(l‘p)gdy. (4.43)
t 0 Y 0 Y !

On the other hand, it 1s obvious that

/ﬂ(/%%dy)plxlp_ldxzjé(/%ft(y)dy)pdx. (4.44)

By virtue of (4.43) and (4.44) we must have

Tde( | ’ F 1 !
JE( [ atitn) <ar [ Luir-iriZa,
0 0

1
that is, the inequality
1

mz(/lln(p—a)(l—p') Edy) <M
t y y

0
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must be fulfilled for 0 < ¢ < 7. But this is impossible, since

1
p—1
(/lln@—a)(l—p') Edy) Y
, Y Y Y

Thus we have proved the validity of the last part of the theorem. W
Theorem 4.5'. Let 1 < p < oo, ¢ € v. Then the operator

f(©) dg
(C= ) In|¢ = e[ € =<0

T f—Tf (THC)= (o c)i"/

is continuous in LP (7).

Theorem 4.6. Let 1 < p < oo be a ¢ — 2w-periodic, continuous on R
function and let xg be a point on (—7w, 7). Assume

pz) = e?®),

Then there exists a constant ¢ > 0 such that the inequality
™
[Vl = ooty <
-7

27

|2 — xo]

<ec / |f ()P |2 — zolP~'p(x) In? dz (4.45)

holds for an arbitrary f for which the integral on the right-hand side of
(4.45) is finite.

Proof. Choose arbitrarily ps > p and assume

—1
t:]i_l. (4.46)

Obviously, 0 < t < 1. By Theorem 4.5 we have

/ F@) Pl — zol~tde <

27

|z — ao]

< / |f(x)|P2|x — xo[P2~ " In? de, q> ps. (4.47)
Now we put ¢ = & in (4.47), what by (4.46) comes to the same thing that

q= p(p%l). Since ps > p, it is obvious that ¢ > py. Further, we choose p;

from the equality
1 t 1—t

P P2 no
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Since the function ¢ is continuous, we have for any ¢, 0 <t < 1,

[ @ ey S < [ 1@ ey @as)

The validity of this inequality follows from the results connected with the
boundary value problem of linear conjugation with a continuous coefficient
obtained in [140], [90] (see also Theorem 2.2, Ch. II). In particular, (4.48) is
also valid for ¢ defined by (4.46). Using Stein’s interpolation theorem (0.20)
and taking into account the inequalities (4.47) and (4.48), we obtain

J1F@I e = aal 7 p(a) do <

< / |f(x)|p|x—x0|(p2_1)tlnqt277 () dz, (4.49)

p
|z — ao]

Since t = pp2__11 and ¢ = &, the inequality (4.49) proves the equality (4.45).

As far as f(x) = —miS,(f(e)e™") ('), from the above result it immedi-
ately follows W

Theorem 4.7. Let ¢ € v and p(¢) = exp(K,¢)(C), where ¢ is a function
continuous on y. Then the operator

T:f—=Tf,
, ) i
TF)(Co) = (Co— )" p(Co S . (4.50
(1)) = (6o = 7 o >/(<_C)7p(<)ln|<_c|<_<0 (4.50

is continuous in LP (7).

Remark. For the validity of Theorem 4.7 it is sufficient to assume that ¢
is continuous in a neighborhood of the point ¢ and p € W,(I').

4.5. An another necessary condition for belonging to the class W, (T').

Theorem 4.8. If T is a closed Lyapunov curve and p € W,(I'), then p =
exp[u+iSpv], where u and v are bounded functions, and Imv =0, ||v]|es <

_r
2min(p,p’) "

Proof. The length of the curve I' is assumed to be equal to 27.

Since T' is a smooth curve and p € W,(T'), according to Theorem 4.3,
p(t(s)) = po(e®) belongs to W,(y). But then by Corollary 5 of Theorem
4.1, p = exp(uy; + ¥). where u; and v are bounded real functions, and

[olleo < 2minﬂ(p,p’)'
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On the other hand, using (0.6) and the estimate
t'(o) it M

t(s) —tle) e —eol = |s—oa|t-2

which is valid in the case of the Lyapunov curve for which ¢’ € H(«) (see,
for e.g., [66]), we obtain

[¥(0) = i(Srv)(t(@)] = T + Srel =
= [ = i(Sro)(7) + 50(0) + (Srv)(t(e))] <

27
<! ol
< glhelleo + [ 1o
0

ds
S e = L
0

is

t ]

(5) — — ‘e —|ds <
t(s) —t(o) e —el” -
27

Now we have
p = exp(uy + ¥) = explu; + ¥ — iSpv + ¢Srv] = exp(u + 4S7v),

where [|v]|eo < u = u1 + v — iSrv and the function u, as we have

) ) 2min7zp,p’)’
just proved, is bounded. M
4.6. Some properties of Cauchy type integrals with densities from the
classes LP(T';p). Let T' be a closed curve of the class R bounding a finite
domain D, z = z(w) be a function which conformally maps U onto D and
let w = w(z) be the inverse to it function. Moreover, let f € LP(T; p) and
¢(z) = (Krf)(2).

Consider the function
1 f()dt

W(w) = o) = o | 7o el <1, (4.51)

At this stage it is naturally to pose a problem and to show under which
conditions this function is representable by the Cauchy integral in the do-
main U. It is also of some interest to find the conditions under which
U(z) = (K, f)(w(z)) is representable by the Cauchy integral in the domain
D. These problem arise, for example, in considering the Riemann-Hilbert
problem in domains with non-smooth boundaries (see §7, Ch. II).

Proposition 4.1. LetI' € R, p € W, (T), (p¥/2)"t e Wo(y), f € LP(T; p).
Then there exists a function ¢ € Lp('y;p\z/;) such that for the function ¥
given by (4.51) the representation

U(w) = ﬁ/ 1#(5)?5 (4.52)

¢
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is valid, and ¥ € H'.
Proof. For the function p € W,(T'), there exists ¢ > 0 such that
pE Wyie(T) (453)

(see, e.g., [29]). But then, by Lemma 4.2, we have % € Lpl+€1(F) for some
g1 > 0. Since fp = fo € LP(T'), we have that f = %” € LY*¥(T) for

some 6§ > 0. This implies that ¢(2) = (Kpf)(z) € E**(D) as T € R.
Consequently,

do(w) = "R/ (w)é(z(w)) € H'*’
(see, e.g., [43], p. 422). Therefore

O(z(w)) = ¥(w) = ¢o<w>ﬁ, o HY. (154)
Show that
% € Hy,, m>0. (4.55)

First we will show that [2/(¢)]™! € L™ (). We have

1

2O = I=(O) /O O Q) =

= (p¥/) . (4.56)

Here the multiplier (p¥/2’)~! belongs to L' (T'). By (4.53), pP*<(()2/(¢) €

LP*e(y), ie, p = Lo— po € LPTe(y). Therefore p(z’)l_ppa =
(') e

po(z’)s_:f‘;;fﬁ “ Taking « sufficiently small, we find that %;ﬂ =

gg > 0. Then p(z')%° is integrable in power A = zﬁfl—la:—%}' It follows from

(4.56) that (z')~¢ is integrable in power f = )\)‘TPZI),. This means that

(:"Y=1 € L™m(y), ;m = aB. On this basis, we are able to establish that
there exists v > 0 such that

w' € BYYY(D).

The fact that 2/ € H! implies that w’ € E'(D) and, since I' is a Smirnov
curve, it suffices to show that w'(t) € L**¥(T'). We have

/Iw’(t)l””ldtlz/Iw’(Z(C))I””IZ’(C)IIdCI=

S B V) P i S
‘/ EIGEa ‘gz EG
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for v < ;. Thus we have proved that w' € E'*(D). This means that
wo(¢) = "R/ (O)w'(2(¢)) belongs to H*”. On the other hand,
IO
I O N (S e

Therefore (2'(¢))™1 = [wo(¢)] = HY, v < and hence (4.55) is proved.
Owing to (4.54) and (4.55), we can conclude that

U(w) e H" (4.57)

for some 1 > 0.
From (4.51) we have

Q) = 6 () = GO + 5 (SENEQ).

Since f € LP(T;p) and p € W,(T'), we find that ¢*(¢) € LP(T; p). Hence

/ 6+ ()PP 1 (O] < oo. (4.58)

This inequality makes it possible to estimate the norm ¢ (2({))(=¥*(¢))
in L(y). Indeed,

/ GHEOC| = / 16+ ((0)p(=(0) /TN V7O e <

<( [ 160t mmdq) ( [t |d<|) oo,

by virtue of (4.58) and of the assumption p{/2’ € W, (7). Thus, taking into
account (4.57), we conclude that ¥ € Hl, and therefore

_ 1 ot (2 ¢))d¢.
\I!(w)_% C—w o / (—w

~y

The function ¥(¢) = ¢+ (2(¢)), due to (4.58), belongs to LP(y; p¥/2').
Hence the equality (4.52) is valid. W

Now we will show the validity of the inverse assertion.
Proposition 4.2. Let I' € R, ¢ € LP(v; p(2(Q)) ¥/ 2'(C)), p(t) € W,(T),
p¥V/z' € Wy(v) and let the function U be given by (4.52). Then the function

9(2) = V(w(2)) = 5— =
)

(4.59)
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1s representable by the Cauchy integral in the domain D:

_ QL/{Z (4.60)

where f(t) = ¥ (t) = ¥F(((t)) € LV (T p).

Proof. The Cauchy type integral in a circle belongs to Ns<1 H? ([133], p
94), and 2z’ € H*'. Therefore ¢/2'(w)¥(w) € H" for some 1y > 0, and
hence ¥(w(z)) = ¢(z) € EM (D).

Further,
/|‘I’+(w(t))||dt|=/|‘1’+(C)||Z’(C)||dC|=

I/|\P+(C)p(2(C))||Z’(C)I%IZ’(C)IPI_’IP(Z(C))I_lldCI <

<(/ |w+<<>p<z<<>>m|f’|d<|)%(/ PO 1 >||d<|)% < .

The last conclusion follows from the assumptions that p¢/2/ € Wp(y) and
p € W,(T') (which imply that % € LpI(F), and hence WELPI(’YS Z'(()))-
Thus we have shown that ¢(z) € EY(D), i.e.,

_ 1 [etat
(/)(z)_% t—z
1 [t (w(t))dt dt 1 [f
_%/ t—z _Q_/t
r r

Here f € LP(T; p). Indeed,
/Ift (0] =/|w+<w<t>> (P || =

/ [H(Op(=(O)P /() ]1d¢] = / WH(Op(=(0) /P IC]. (4.61)

According to the assumptions that p¥/2' € W, (), and ¢ € LP(v; p¥/z'),
we find that ¥t € LP(T; p), and therefore on the basis of (4.61) we conclude
that f € LP(T;p). W
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8 5. ON SINGULAR INTEGRALS IN THE MEAN

5.1. Definition of an integral in the mean and some of its properties. Let I’
be a rectifiable Jordan curve and let ¢t = ¢(s) be its equation with respect to
the arc abscissa. As usual, we extend this function and the functions given
on I with the period [to R. If 0 < ¢ < %, then m. = inf [¢(s) — (s0)| > 0,
where the greatest lower bound is taken on the set {(s,sg) : 0 < sg < {,
So+e<s<syg—1+e} (see §3). Therefore, if ¢ € LP(T), p > 1, then the
function

sot+i—¢

1 o(t(s))t (s)ds
M.o)(to) = — —_ A
(Megptn) = & [ EDCLK 6.1
sote
belongs also to LP(T'), and
I
1Meelly < =llelly- (5.2)

Definition. We will say that there exists a p-mean singular integral of
the function ¢ € LP(T'), if there exists a function ¢ € LP(T') such that

timy [ (0)((9) = w(t(5)) P ds = 0. (53)

The function ¥ will be denoted by Sl(ﬂp)f, and let Sl(ﬂp) be an operator

which puts the function ¢ into correspondence with the function Sl(ﬂp)go.
It is evident that if ST.o exists, then it coincides with Sr¢ almost ev-

erywhere. However, it may happen that Sl(ﬂp)go does not exist for some ¢,
whereas Sry exists for all ¢ € LP(T), p > 1. In particular, we will show
that such a situation takes place for p = 1. First we prove the validity of
the following

Lemma 5.1. If Sl(ﬂp)go exists for all ¢ € LP(T), p > 1, then the operator
Sl(ﬂp) is continuous in LP(T).
Proof. Let Mo = M1y and let M,, : ¢ — M, be an operator defined
on LP(T). Since LP(FSL is a Banach space, the operator M,,, by (5.2), is
continuous on it and, by definition, for every function ¢ the sequence M,, ¢
converges to S o, the well-known theorem on the continuity of the limiting
operator, that is of the operator S, is applicable here. W

Let now I' = 4. Then Sgl) fails to exist for all ¢ € L(y), since otherwise

the operator Sgl) and hence the operator S, would be continuous in L(7y).
But it is not true.
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A set of those functions ¢ from LP(T') for which Sl(ﬂp)go exists will be
denoted by D(Sl(ﬂp)).

Lemma 5.2. IfT is a closed curve of the class R bounding the domain D,
then for any ¢ € D(Sl(ﬂp)), 1 <p < o0, the Cauchy type integral ¢ = Krp
belongs to EP (D).

Proof. If p > 1, then ¢ = Ky belongs to EP(D) according to Theorem
3.3. Let p=1. Since I' € ﬂlRLp (see subsection 3.4), K¢ belongs to the
<

class Q1Eq(D) (according to corollary of Theorem 3.3). As ¢ € D(Sl(ﬂl)),
q

we have (Stp) € L(T'). Taking into consideration that the curve from R is

a Smirnov curve, we conclude that (Kr¢) € EY(D). R

In addition to the above-said, we note that the equality Sp(Sl(ﬂp)go) =
is valid. Indeed, if I' bounds the domains Dt and D™, then ¢ = Krp €
EP(D*) C EY(D*). For » € D we then have

b [

1 p = Sre
4 (—z dc. (5:4)
r
whence
1 S(P)Spdc C
— Dt. .
27Ti/ (—z 271'1 C—z 0(2), z¢€ (5.5)
r

Taking into consideration the equality Sp¢T = ¢T, we obtain the desired
equality Sp(Sl(ﬂp)go) = .

5.2. Connection between the singular integral in the mean and the Cauchy
type integral. The existence almost everywhere of a singular integral
(Srf)(to) is, by I. 1. Privalov’s theorem, equivalent to that of angular bound-
ary values of the Cauchy type integral (KT f)(z). It turns out that in the
case of smooth curves, the existence of the mean singular integral Sl(ﬂp)f 1s
equivalent to the belonging to the Smirnov class EP of the function Krf.

Theorem 5.1. Let T' be a closed smooth Jordan curve bounding the do-
mains DY and D™, and f € LP(T), p > 1. In order for the integral Krf
to belong to the class EP(DV), (EP(D™)) it is necessary and sufficient that

the p-mean singular integral Sl(ﬂp)f erist.
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Proof. Sufficiency. Let there exist Sl(ﬂp)f. We construct a sequence of the
curves 'y, C DY(D7) such that sup,, fFA |Krf|P|dz] < oo.

Denote by (o) the angle formed by the tangent to T' at ¢(¢) and the
real axis. The function ¢ is continuous on [0,(] and (/) = (0) + 27.
Therefore there exists a real polynomial ¢(c) such that |p(c) —q(0)] < 07,
6 €(0,1), ¢(0) = q(0), ©({) = ¢({). Denote by p the standard radius of the
curve I' corresponding to the angle ag < (1 —0)% (for definition and for the
properties of the standard radius see [106], pp. 18-20). Since T is a smooth
curve, |t(s) — t(o)] > ms(t(s),t(c)), m > 0. Let 0 < A < min(p, m) = Aq.
Consider the curve I'y given parametrically by the equation

za(o) =t(o) +idexpig(o), 0< o<1

Obviously, T'y is a closed rectifiable curve. Show that if z,(0) is in
DY(D7), then Ty lies in D*(D~). Indeed, the point z)(c*) belonging
to I' would otherwise lie on the curve I'y. But then the ends of the segment
[t(c*), za(c*)] lie on the standard arc, since [t(c™) — zy(6™)] = A < p.
The vector with the origin at ¢(¢*) and with the end at z)(¢*) forms
with the tangent at the point ¢(¢*) the angle T — [p(c*) — q(c™)] lesser
than & — 0% > ag. (This follows from the equality z)(0*) — t(0™) =
/\exp(%ﬂ' + q(07)) = Xexplip(c™) + i(5 + q(c*) — ¢(c™))] and also from
the condition [¢(0) — ¢(o)| < 67). But this contradicts the property of the
standard radius. Thus, I'y lies in either of the domains Dt or D~. For
definiteness we assume that T'y C DT.

Show the existence of such sequences A,, A, — 0 for which I'y_  are
Jordan curves. Assume the contrary. Let for any A € (0, Ag) T'y intersect
itself, that is, there is a pair of numbers s, and o) such that sy # o but

zxa(8x) = zalon), e,
t(s2) + iAexplig(sx)] = (o) + X explig(ox)]. (5.6)
From (5.6) follows

t(sx) —t(on) ) EXP ig(ox) —expig(sy)
Sy — O - Sy — O

. (5.7)

The expression [expiq(oy) — expiq(sy)](sx — ox)~" is bounded. On the
other hand, [t(sx) — t(or)| > m|sy — 04|, and from (5.7) we obtain

t(sx) —t(Ux)‘

m < hm)\—m‘

~ lim | &P ig(ox) —expig(sy)
A—0 Sy — O)

‘:0.

This contradiction shows that the assumption for I') to be non-Jordan for
all A is invalid. Hence there exists at least one value Ay € (0, Ag) for which
Iy, is a Jordan curve.
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On the basis of the above arguments, we can state that the same is valid
for the segment (0, A1) which proves the possibility to distinguish Jordan
curves I'y .

Suppose d(z,T') = infeer |2 — (], d(T'x,T) = inf.er, d(2,T) and let Dl‘l'A
and Dp be the domains bounded by I'y. It is obvious that d(I'y,I') — 0
as A — 0. If z is an arbitrary point from Dt and d(T'y,T) < d(z,T), then
z falls into the domain Dli'}. Therefore the domains Dl‘l'A exhaust DT, and
hence I'y — I

Consider the difference

bl

/’ e T po) (0)de
t t

t 0) + iAexp ig(og)] (o) —t(on)

oote

Let ¢(09) = ¢(00) — ¢(op). Then |¢(op)| < 97”, 0 < 0 < 1. Now we use
theorem from [130]: If T is a smooth curve, f € LP(T'), p > 1 then

I(og,e)

where z.(00) = t(00) + icexp[i(p(oo) — ¥(00))], |¥(o0)] < 05,0 <0 < 1,
I(O'Q,E) = (0’0 —|—€,0’0 + [ — 6).

Taking into account the fact that ¢(og) = ¢(oo) + ¥(00), provided
[v(a0)| < 4T, we obtain

. /‘ O/’t(o_) F(H(o))t! (0)do  wifHo0)) -

e — [t(o0) + iAy expiq(oo)]

P
doo = 0. (5.9)

I(00,An)

By assumption of the theorem, Sl(ﬂp)f exists. Therefore the last equality
results in

l l , o P
O/‘O/t t(0oo) ﬁtz/(\ )eipm( 0)]

Now we have
[ 16 a1 =
F)n

doo < 7 (|| flly +11SE fllp) =
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t(og) —|—z/\ exp ig(og)]

T
N (o)d r
:/‘/t o))t (0)do [t'(c0) + iq’ (o)A exp ig(og)|dog <
0 0
<MC, M =1+ Xy max |¢'(00)]
0<0o<li

which implies that ¢ € FP(DV).

If 2, (0) falls into D~ then considering the curves 2z = t(A)—iX exp ig(o),
we analogously construct a sequence of curves I'y  C D~ and show that
¢ € EP(D7).

Necessity.  Let p > 1 and f € LP(T). Since I' € R, we have that
¢ = Krf belongs to the classes EF(D¥) (see, e.g., Theorem 3.4). Therefore
the equalities

1 Dt
[+50] { , z€ (5.10)
ari t—z 0, z€ D~
r
and
+
L. f Spf 0, z €D (5.11)
47 t—z é(z z € D_
r
are valid.

Using (5.8) we obtain

il / (o) ~ (S NUI ()
t(o) — [t(oo) + ixexp i(p(o0) + ¢(o0))]

_f(t(o0)) - (Srf)(t(tfo))_

271'1 / i ta Srf)(( ))t/(a)da

) — t(o0)
Io(o0,A)

P
dog=0.  (5.12)

But because of (5.11), the first summand of the sum under the integral sign
in (5.12) equals zero, and therefore

1 / (f =Svfdt  (Srf)(te) = f(to) |
27 t—1g 2
T I(50,0)

lim
A—0

dog=0.  (5.13)

Note that the equality similar to (5.9) is also valid when substituting A,
by (—=An), and we use it in the case when the density of the integral equals
f =+ Srf. Then, taking into account (5.10), we arrive at

. 1 S t S t
hm/‘% [+ Ffdt— f(to) + (Srf)(to) deo:O. (5.14)

A0 t—1p 2

I(o0,X)
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From (5.13) and (5.14) follows the existence of p-mean singular integrals
of the functions f &+ Spf, and

SO f—Sepy=Scf—f SP(f+Srf)=5Scf+F.

This implies the existence of the integral S(*) f.

If p=1and ¢ = Kpf € EX(D%), then Spét = ¢T, and we can easily
conclude that (Krf)(z) belongs to E1(D~) (for details see the proof of
Theorem 3.4), and therefore the equalities (5.10)—(5.11) are valid. On the
basis of these equalities we can as above show the existence of the integral

Sl(ﬂl)f, since (5.8) is validforp=1. W

Corollary 1. If p > 1 and T is a closed smooth curve, then Sl(ﬂp) exists for
all f € LP(T).

Corollary 2. If I is a closed smooth curve, then there exists a constant
C) such that for all ¢ > 0 samultaneously

IMefllp < Collfllps »> 1.

Since the sequence of the operators M1 f, due to the above arguments,
converges for every f € LP(T), from the Banach-Steinhaus theorem we
obtain the assertion of the corollary.

Remark. As far as an unclosed smooth curve I' can always be supple-
mented to a closed Jordan smooth curve, the assertions of Corollaries 1 and
2 hold valid for such curves as well.

8 6. APPLICATION OF LEBESGUE INTEGRAL GENERALIZATIONS TO
CaucHy TYPE INTEGRALS

In the present section some properties of conjugate functions and con-
nected with them Cauchy type integrals will be studied using a generaliza-
tion of a Lebesgue integral.

Let f be a 27-periodic summable on (0, 27) function,

a2—0 + Z(ak cos kx + by sin kz) and Z(—bk cos kx + ay, sin k)
k=1 k=1
be the Fourier series of f and its conjugate, respectively.
27
f—l/ftltlt dt 6.1
)=+ [ S5 ctg gt -2 (6.1)
0

is the function conjugate to f.

It is known (Kolmogorov [84], Smirnov [145], Titchmarsh [154], see also
[169], pp. 153-154 and [5] pp. 585-591) that if f € L(0,2m), then the
series conjugate to the Fourier series of f € L(0,2m) is the Fourier series
of the function f. It is also known (Smirnov [145], Privalov [133], p. 116)
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that a Cauchy-Lebesgue type integral with summable boundary value is
representable in a circle by a Cauchy integral. But as far as the conjugate
functions and the boundary value of the Cauchy type integral are not always
summable, there arises the problem of extending the notion of the Lebesgue
integral so that these functions would be integrable in the new sense.

A.P. Kolmogorov [84] was the first who treated this problem and proved
that for any f € L(0,27) the function fis B-integrable on [0, 27] and the
conjugate series is the Fourier series (B) for f (for definition of a B-integral
as well as for the proof of the theorem see [169], pp. 153-154). Titch-
marsh [154] has obtained an analogous result for an A-integral. Later, by
means of the A-integral P. L. Ul’yanov has established a number of signifi-
cant properties of conjugate functions [156] (for definition of an A-integral
and the proof of results obtained by Titchmarsh and Ul’yanov concerning
conjugate functions see also [5], pp. 585-591) and of the Cauchy type in-
tegrals. In particular, P. L. Ul’yanov [157], [158] has shown that under
certain assumptions regarding the lines of integration, the boundary value
of the Cauchy-Lebesgue type integral is A-integrable; while the function
representable by the Cauchy-Lebesgue type integral is representable by the
Cauchy A-integral as well. The paper [59] is devoted to application of an
A-integral to the theory of a Cauchy type integral and to treatment of a
non-homogeneous boundary value problem of linear conjugation.

From what has been said above it is obvious that the A-integral turned
out to be a rather useful tool for investigation of some questions of trigono-
metric Fourier series and Cauchy type integrals. On the other hand, the
A-integral, because of its generality, possesses specific disadvantages (see,
e.g., [155] and [162] and bibliography given in [162]) which sometimes make
its application difficult. Therefore it is much better to define a more simple
integral which would answer the same purpose. Hence it is of interest to
illustrate these specific properties of the A-integral as well as of conjugate
functions and Cauchy type integrals which lead to the above-mentioned
results.

As is shown in [58], [60], [61] specific properties of these integrals do
not affect most of the results obtained for conjugate functions and Cauchy-
Lebesgue type integrals by means of the A- and B-integrals. They hold
valid for any generalization of the Lebesgue integral in a sense of which a
conjugate function is integrable and its integral equals zero. That is, any
integral, being a linear functional ¢ defined on a linear family of functions
given on [a,b], containing all summable functions and their conjugates f,
and satisfying the condition: if f € L(0,2x), then

o(f) = / f&)de and $(F) =0,

1s fitted for this aim.
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In this section we will give the definition of a rather simple and convenient
for application functional (integral).

Bearing in mind the condition (b(f) = 0, we note (by V.I. Smirnov’s
theorem (see, e.g., [5], p. 583)) that if f conjugate to f € L(0,27) is
summable, then

/}’(x)dx =0. (6.2)

This means that the integrals in the iterated integral fozﬂ dx fozﬂ f@@
ctg t_Txdt can be interchanged.

Quote here one assertion following from Theorem 6.2 which will be proved
below.

Let f € L(0,27). There exists a measurable set E C [0, 27] of measure
27 such that if a, b € F/, then the function

h()z/f()—ctg—dt /f1 ) oy et ot

where f; is the restriction of f on [a,b], and A = =2 is summable on [a, b].
The above mentioned and the next results of thls sectlon follows from the
two last facts.

6.1. f-integral and conjugate functions. We say that a function f is L-
integrable on [a, b] if it can be represented as

f=g+h, where g,he L(a,b), (6.3)
~ 1 1 1 .
hz) = ——/h(t) ) ctg 2/\( —z)dt with A=(b—a)/27 (6.4)

is conjugate to h on [a,b]. The number

= (f)/bf(a:)dxz/bg(x)dx

will be termed an z—integral of f on [a,b]. The quantity z(f) does not
depend on the manner how f is represented in terms of (6.3). Indeed, let

besides (6.3) we have

f=g1+hi, where gi,hi € L(a,b). (6.5)
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Then, by definition,

From (6.3) and (6.5) we find that g — g1 + (h — hy) = 0. Further, according
to (6.2),
b b
/(h — hy)(x)dx = /(g1 —¢)(x)de =0

and hence
b b

/g(x)dx = /gl(x)dx.

a a

Remark. 1t is evident that the function conjugate the summable function
is L-integrable, and its L-integral equals zero. Obviously, any integral being
an extension of the Lebesgue integral in whose sense the conjugate func-
tion is integrable and its integral equals zero, contains also the L-integral.
Therefore all the results obtained by means of the L-integral are valid for
the above mentioned integrals (in particular, for A- and B-integrals which
are the extensions of the Lebesgue integral).

Let a 2w-periodic bounded function ¢ satisfy the condition

27

/ lo(t) — o(2)]] ctg %(t —z)|dt < C (C 1is a constant) (6.6)

(such, for example, are the functions ¢ for which w(p,0)o~! € L(0, ),
where w(p; ) is the module of continuity of ¢).

Theorem 6.1. If f € L(0,27) and ¢ satisfies condition (6.6), then @fe
L(0,2m), and we have the equality

(@) [ e fwrte = - [ Fe)stis, (6.7

Proof. Indeed, p(2)f(2) = (¢/)(x)+1 ;7 F()lp(2) = p(0)]5 ctg §(t—2)dt,
where the function f(¢)[¢(x)—¢(t)] 3 ctg £ (t—=) is, by Fubini’s theorem and
condition (6.6), summable on the square [0, 27, 0, 27]. Hence ¢ f € E(O, 27).
Taking the L-integral on the both sides of the last equality and changing
the order of integration, we obtain the equality (6.7). W
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Corollary 1. A series conjugate to Fourier irigonometric series of func-
tion f € L(0,27m) is the Fourier L-series of the function f if coefficients
defined by the E-integml (in particular, the Fourier A— and B-series with
coefficients defined respectively).

This follows from equality (6.7) taking into consideration that the func-
tions cosnz and —sinnz (n =0,1,2,...) are self-conjugate.

Corollary 2. If f € L(0,27), u(r,0) is its Poisson integral and v(r,0) is

harmonically conjugate to u(r,8) function, i.e.,

1 rsin 6
o(r,0) = T / f(t)l —2r cos((t 9)) + 72 @,
0

then v(r,6) is representable by the Poisson L-integral (in particular, by of
A integral, of B integral) of the function f,

(r 9) 2171' (E) / f(t)l — 2r C(l)s?tr— 9) + 2 di.

Theorem 6.2. Let f € L(0,27) and ¢ satisfies the condition (6.6). Then
there exists the sel E C [0,27] of measure 27 depending only on f such that
ifa, b€ E, then of € L(a,b) and

b 2T b

(@) [e@fwe =~ [ 10 [ oo s0- i ©3)

a 0 a

Proof. Show that we can take as F the set of all « for which f(-)In|-—x| € L.
Let a,b € E, x € (a,b). Consider the equality

plx)f(x) = o (‘ _/f1 22 8 o) dt)
:—%/ﬂ) A ix)dt+<x7?o/f><x>+<><?¢7’><x>+

+| (22 )(x) = p(x) —% bfl(t)%ctg t;—/\xdt , (6.9)
[na-sa(-2,

where fi is the restriction of f on (a,b), and 1, x2, x3 are the characteristic
functions of the segments [0, a], [a, b], [b, 27] respectively.
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Using Fubini’s theorem, we can easily verify that the right-hand side of
(6.9) is summable on [a,b]. Hence ¢f € L(a,b). Further, taking the L-
integral on the both sides of the last equality and replacing the iterated
integrals, we obtain (6.8). W

Corollary. There exists the set E C [0,27] of measure 27 depending only
on [ such that if a,b € E, then the function f is L-integrable (A-, B-
integrable) on (a,b).

Remark. Tt has been shown in [58] that the function f is, generally
speaking, non-integrable for all [a, 8] C [0, 27] for none of the extensions of
the L-integral being a positive functional (i.e., for non-negative functions
taking non-negative values).

Theorem 6.3 ([58]). If f € L(0,2x), then for almost all x € [0, 27],

r—e¢ 27 +4e
flx) — a2—0 = hmas ( / / ) - ctg (t —x)dt, (6.10)
€ r+e

where ag/2 is the mean-value of the function f on [a,b].

Here limas denotes an asymptotic (approximate) limit (see, e.g., [169],
Ch. TV, §2). Obviously, if fE L(0,2m), then the asymptotic limit can be
replaced by the usual one, while the E—integral by the Lebesgue integral.

The equality (6.10) together with (6.1) is a generalization of Hilbert’s
inversion formula.

Theorem 6.4. Let f € L(0,27) and let ¢ be an absolutely continuous

function such that ¢’ € L,(0,27), p> 1. Then
27

(1) (E)/gp(r)f(r)dw = —/gp’(x)G(x)dx, where

0

27

Gy =+ [ J(0)1g]sin (¢~ lat;

0

b b

@) (@) [ e f@is = qG0) - o)) — [ @6, fora,

be FE and E is the set from Theorem 6.2.

Proof. We will prove only the equality (2), since the equality (1) can be
proved analogously.
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Let a,b € E. Using the integration by part, we can easily verify that the
equality

[ etwrets 5t = a)de = —p) 1] sin (¢ — )]+ pla) g sin 50 — )] +

b
1
—|—/g0/(x)lg|sin §(t—x)|dx

a

is valid for almost all ¢ € [0,2x]. The latter equality and Theorem 6.2
(which can be used, since ¢ € H(«)) allows us to write

(@) [ o) fwrte = =2 [ st [ o) et 50 - ar =
= (0G() — p0)G(@) — = [ o)t [ &(@)lgsin 50— 2)lde

0

Changing the order of integration in the iterated integral of the above
equality, we obtain the equality (2). W

6.2. E-integral and Cauchy singular integrals. Here and in what follows, I is
assumed to be a simple, closed, rectifiable curve. Without loss of generality
we also assume that the length of the curve I is equal to 27 and write the
equality in the form ¢t = #(s), 0 < s < 27 where s is the arc coordinate.
Moreover, I' is supposed to satisfy the condition

27

/ ‘ﬁ — %ctg %(O’ —s)|do < C, (C 1is a constant) (6.11)

(the last condition is satisfied, for example, by for piecewise Lyapunov curves
without cusps and those of bounded rotation without cusps (see subsection
3.1).

We say that the function f is z—integrable on I'if () f[t(s)] € E(O, 27)
and write f(¢) € L(T'). Under the L -integral of f along T' is meant a number

2T

@) [ st = (D) [ s s

Remark. 1t is evident that the following two conditions are equivalent:
(1) f(t) = [1() + Sr(f2)(1); where fi, fo € L(T);
(2) () f1(s)] € L(0, 27).
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Moreover, the equality

2T

(L) / F(t)dt = (L) / FIE()E (s)ds = / [f1(t) — fo()]dt  (6.12)

holds.
Indeed, by virtue of (1) we have

FIIE) = YN + - [ fz(t(o))t’(o)t(at/(j(s) do =
— 1'(s)f1 ((s)) + %/fz(t(a))t/(g) [t(al)s/(_si(s) _ %Ctg S(0—s)]do+
+% / fz(t(a))t’(a)% ctg 7 5 ®do. (6.13)

0

The second summand on the right-hand side of the last equality is, by
the condition (6.11) and Fubini’s theorem, summable on [0, 27], and hence
t'(s) f[t(s)] € L(0,2m).

Let now the condition (2) be fulfilled, i.e., there exist fi, fa € L(0,27)
such that

27
1 oc— s

t'(s) f[t(s)] :f1(5)+/f2(0)§ctg 5 do =

0

= f1(s) —|—/f3(0)t/(0) [% ctg g ; 5 t(al;/f)t(s) do +
-I-t/(s)/fg(a)ﬁda, where f3(0) = fa(0) /(o).

0

Analogously, using Fubini’s theorem, we can easily see that the second
summand on the right-hand of the last equality is summable on [0, 27].

Hence ¢/(s) f[t(s)] = g1(s) +'(s) [; gfg()j;, where g1, g2 € L(T') and f(¢) =

gi(s)/t'(s) + [ 22T 7 = 1(0).
The equality (6.12) can be obtained by integrating the equality (6.13) and
interchanging the integrals in the iterated integral. Indeed, by definition of

the L-integral along I'; we find that

(@) [ st = (D) [ e = [+

T
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2 s [ peno| = - s T -

= [1h) - a0

T

It follows from what has been said above that if f(¢) = fi1(¢t)+ Sr(f2)(¢),
where f1, fo € L(T), we can define its L- integral along T’ by the equality

(@) [ e = [ (0= sav)ar

Theorem 6.5. Let f € L(T). Let

pe LT and C= sup/ ) = (0] ldr| < 0. (6.14)
terJ |7 — 1|

Then oSr(f) € E(F) and
@) [e0senvd=- [ ose@0n. ©1)

Proof. Consider the identity

b [ o) e T e, (6.16)

0

Because of (6.11), (6.14) and Fubini theorem on the inversion of the order
of integration, the first and the second summands on the right-hand side of
the last equality are functions summable on T'. Hence ¢Sr(f) € L(T).

Further, integrating (6.16) and using Fubini’s theorem and Theorem 6.1,
we obtain (6.15). W
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Remark 1. For p € Hy(T),0 < o < 1, and T € R it is easy to verify that
the condition (6.14) is satisfied.

Remark 2. By a line of integration is meant as above a closed curve
satisfying certain conditions. But as is seen from the proof of the theorem,
it is also valid when the line of integration consists of a finite number of
non-intersecting curves of the type mentioned above.

This remark concerns all the results obtained for the E—integral.

Theorem 6.6. Let f € T and conditions (6.11), (6.14) are fulffiled. There
exists a measurable depending only on f sel E C [0,27] of measure 27 such

that if ', s € (0,27 then oSr(f) € L(Tyn) and

(D) / pyar [ 10T / f(r)dr / A ey

Ft’t” r r Ft’t”

where Tyyn is a portion of the contour T with the ends t' = t(s') and t"' =

1(s").

The theorem is proved in the same way as Theorem 6.5 with the only
difference that instead of Theorem 6.1 we use Theorem 6.2.

Theorem 6.7 ([58]). Let T' satisfy the condition t"(s) € H(«), f € L(T)
and ¢ satisfy the conditions (6.14). Then

hmas / I(r)dr =
t— to T—1

= gl (t) + [ s(ryar (j”& (6.18)

t)(t —to)

for almost allty € T

The equality (6.18) is a generalization of the well-known Poincaré-Ber-
trani equality (see, e.g., [66], p. 30). If ¢(x) = 1, then we obtain the
generalization of the inversion formula of a singular Cauchy integral

limas(L / — to m)dr = —ﬂ'zf(to). (6.19)

=0 T—t

Obviously, if Sp(f) is summable on T', the then asymptotic limit in for-
mula (6.19) can be replaced by the ordinary one and the L-integral by the
Lebesgue integral.
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6.3. Cauchy type z-integrals. Let T satisfy the conditions (6.11) and let
f € L(T"). Then, according to Theorem 6.5, the analytic function
1~ f()dt
F(z)= —(L o 2
()= 5Dy [ 102 (6.20)
r

is defined in the domain z € I' and is called a Cauchy type L -integral. For
almost all t € T, there exist boundary values F'*(¢) and F~(¢) belonging to
L(T') and almost everywhere on T'

FH(t)— F=(1) = f(1). (6.21)

Indeed, without restriction of generality, we may assume that f(¢) =

Sr(f1)(t), where f; € L(T"). Then, by Theorem 6.5, for z & T we have
Pe) = 1. (E)/ dt fi(r)dr _

2(mi)? t—z T—t
T T
1 dt
= d - =
2(mi)? /fl(T) T/ (t—2)(r —1)
T T
1 fi(r)dr / dt 1 f(r)dr / dt
= - + - =
2(mi)? T—2 t—z  2(mi)? T—2 T—t
T T T T
% fF —flT(i)ZdT for z € DT,
1oL /i LT o 2 € D™ (6:22)
27 JIT 1—2 .

Moreover, by the Sokhotskii-Plemelj formulas,
FHE) = F7(0) = Se(fo)(t) = £(1) and FH0) + F~(0) = (). (6.23)
If, in addition, we have ¢”(s) € H(«), then by virtue of (6.19) and (6.23)

n
FHO 4+ F (1) = = limas (1) [ £247

T2 e—0 T—1
.

, (6.24)

where T’ is the largest arc of the contour T' with the ends #(sp — ¢) and
t(SO + 6).

The equalities (6.21) and (6.24) generalize the Sokhotskii-Plemelj formu-
las.

Theorem 6.8. Let f € L(T'), F(z) = Kr(f)(z). Then Ft € E(F) and

F(2) is representable in DT by the Cauchy L-integral. Moreover,

(L) / gt Fr(t)dt =0 (6.25)



85

(in particular, (E)/t"F"'(t)dt =0, n=0,1,2,.. .),
r

where BT (t) is the boundary value of the bounded in DV analytic function
satisfying (6.14).

Proof. Let z ¢ I'. By Theorem 6.5 and the Sokhotskii-Plemelj formulas,

L(z)/F*'(t)dt :L f(t)dt

2w t—=z 471'1 t—z

PTTE /t—z r—iT:
:ﬁr/j;(_z 271'2 /f dT/ C)Z(T—t)_

1 F)d /f(r dT/ dt n
TAmi ) t—z 271'22 T—2z t—z
r r
n 1 f(T)dT/ dt _{F(z) for z € DT,
T

(2mi)2 -z ) r=t |0 for z€D".
r r

The proof of the equality (6.25) is performed analogously to the previous
one by using Theorem 6.5 and the fact that if 3 is a bounded in DT analytic
function, then Sp(8%)(t) = p+(t). M

Corollary. If f € L(T') and the boundary value of Cauchy type integral
Kr(f) is summable on T, then Kr(f) is representable in DV by the Cauchy-
Lebesgue integral.

The assertion of the corollary in the case where I' is a circumference
represents by itself well-known V. I. Smirnov’s theorem [146], (see also [133],
p. 116).

Theorem 6.9. A class of functions representable in DTUD™ by the Cauchy
type L-integral coincides with the a of functions representable in the form

F(Z):{Fl(z) for zEDi’,
Fy(z) for z€ D™,
where F;(2) = Kr(fi)(2), fi € L(I), 1= 1,2.

Proof. Let F be representable in the form (6.26). Consider on T' the function
ft) = Fit(t) — Fy (t), where

(6.26)

FEH(0) = 5h(0)+ 55c(f0(0) and Fr (1) = — fo(0) + 35r()(0).
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Obviously, f € E(F), and owing to the previous theorem and the formula
(6.21), for z ¢ T' we can write

f(t)d ) -F (),
27TZ(L) t—z / t—=z di =
1 ~ (t)dt 1 ~ Fo@)
:ﬁ@)/fz —2—<L>/t_zdt:

_ | Fi(z) for ze Dt
o Fy(z) for ze D™

The inverse assertion follows from the equality (6.22). W

Corollary. The function representable in DY (in D7) by the Cauchy type
L-integral is representable by the Cauchy L-integrals as well.

Indeed, by Theorem 6.9, the function representable, for example, in
DT by the Cauchy type L-integral is representable in DT by the Cauchy-
Lebesgue type integral and, hence, by the Cauchy L-integral, according to
Theorem 6.8.

Remark. The function F' representable in the form (6.26) cannot always
be representable in Dt U D~ by a single Cauchy-Lebesgue type integral
(see, e.g., Remark 2 to Theorem 6.10).

Theorem 6.10. Assume that the functions ¢ and F are representable in
DY (D7) by the Cauchy-Lebesgue type integrals with densities o and f €
L(T), respectively, where @ satisfies the conditions (6.14), then the product
@F is also representable in DY (D7) by a Cauchy-Lebesgue type integral.

Proof. Let z € DT (D™). Then, since Sr(p) is bounded on T, by Theorem
6.5,

that is, @F is representable in Dt (D7) as a sum of a Cauchy-Lebesgue
type integral and a Cauchy type L-integral. But this implies the validity
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of the theorem, since by Theorem 6.9, a Cauchy type E—integral 1s also
representable in Dt (D7) by a Cauchy-Lebesgue type integral. W

Corollary. If the functions ¢ and F' are representable in DT uD™ by
the Cauchy type integrals with densities ¢ and f € L(T'), respectively, ¢
satisfying the conditions (6.14), then the product ¢F is also representable
in DT U D™ by a Cauchy type z-integml.

Indeed, due to the assertion of the theorem, ¢ F is representable by the
Cauchy-Lebesgue type integral both in Dt and in D~ . Then, by Theorem
6.9, ¢F is representable in DT U D~ by the Cauchy type L-integral.

Remark 1. Note that the assertion of the theorem is about the repre-
sentability in Dt (or in D7) by a Cauchy type integral, whereas the corol-
lary states the representability in D = DT U D™,

Remark 2. As it follows from the assertion of the corollary, the E—integral,
in general, cannot be replaced by the Lebesgue integral even for f € L(T).

Example. Let T be a unit circumference, ¢(¢) =1 on T' and f € L(T) be
such that Sp(f) ¢ L(T'). Then the function

27

vz = 0 for z€ D™,

T omi

1 / dt 1 (t)dt:{L L

t—z2m t— =z
r r

representable in Dt U D~ by a Cauchy type E—integral, neverthless cannot
be represented by a Cauchy—Lebesgue integral. Otherwise, we would have
YH(t) — ¢~ (1) = £ f(t) + $S(F)(t) € L(I') which is impossible since S(f) ¢
L(T).

6.4. An extension to more general curves. Let T' be a simple, rectifiable,
closed curve and let, moreover, for I' the following analogue of Smirnov
theorem is valid:

If the boundary value F'*(t) of the Cauchy-Lebesgue type integral F(z) =
Kr(f)(z) is summable on T, then F(z) is representable in Dt by a Cauchy
integral (such are, for example, regular curves).

The above-formulated theorem is equivalent to the following assertion: if
Ftissummableon I', then [, F*(t)dt = 0, which implies that for f € L(T')
and Sp(f) € L(T), the equality

/Sp(f)(t)dt = %/dt/% = —/f(t)dt (6.27)

T

holds.
On the basis of the last equality, in exactly the same way as in subsection
6.2, we introduce the following definition.
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We say that the function f is z—integrable on I' if it can be represented
in the form

) = fi(t) + Se(fo)(t),  fi, f2 € L(T). (6.28)

The number

i) = (D) / F(t)ydt = / Fu(t) — folt))dt

is termed an E—integral of fonT. N

The correctness of the definition of the L-integral (that is, the indepen-
dence of E(f) on the representation (6.28)) is proved in the same way as in
subsection 6.1, using equality (6.27) instead of (6.2).

Note also that Theorems 6.5, 6.8, 6.9 and 6.10 are valid in the case in
which the line of integration satisfies the conditions of the present section
(i.e., when equality (6.27) is valid for it). They are proved in exactly the
same way as in subsections 6.2, 6.3.

NoTEs AND COMMENTS TO CHAPTER 1

The notion of singular integrals used in §1 is accepted, for example, in
monograph [105], [106], [66]. Independence of the definition of a singular
integral on parametrization of curve is proved in [124].

In connection with the assertion from the remark to Theorem 1.1 the
reader can be referred to [98], [38].

For the results of §2 in non-weighted case see [112].

The boundedness of singular operators over curves in LF (1 < p < o)
comes from S. Mikhlin (the curves of continuous curvature) [98], B. Khve-
delidze (Lyapunov curves) [66], I. Danilyuk and V. Shelepov (curves of
bounded rotation) [20]. Such boundedness for piecewise Lyapunov contours
with cusps has been proved by E. Gordadze [44]. The problem remained
open for smooth curves.

In 1976, A. P. Calderon proved the boundedness of Cauchy singular
integral operators in L? over Lipschitz curves under the assumption that
Lipschitz constant is sufficiently small. This additional condition was later
removed by R. Coifman, A. McIntosch, and Y. Meyer [14]. The other proofs
can be found in R. Coifman, P. Jones, and S. Semmes [13], G. David [23],
G. David and S. Semmes [24], T. Murai [101], M. Melnikov and T. Verdera
[97], ete.

It has been shown by V. Paatashvili and G. Khuskivadze [122] that if Sp
is bounded in LP(T") for some p, 1 < p < oo, then the curve T' is regular,
i.e., satisfies the condition (3.2). In the same paper it is shown that this
condition is sufficient in a class of broken lines and also of those over which
this boundedness fails and the hypothesis on its sufficiency is stated in the
general case.
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In 1982, G. David solved this problem completely; he proved that condi-
tion (3.2) is necessary and sufficient for St to be continuous in P, 1 < p <
0.

At his lectures A. Zygmund noted that the boundedness of the oper-
ator St in LP(T") for any smooth curves has a consequence the existence
almost everywhere of the integral St f(¢) for arbitrary rectifiable curves and
summable on them functions f. Subsequently, this fact has been proved by
V. Havin (see [28], pp. 248-249).

The proof of Theorem 3.5 follows the method used by M. Cotlar for the
Hilbert transform [15].

The proof of the boundedness of St over a closed curve from Jy has
been performed by V. Kokilashvili [72]. The case of open arcs from Jy was
considered later in [125].

The equivalence of the boundedness of St from LP(T') into L*(T) (p >
s > 1) and the belonging to Smirnov class E¢ of the Cauchy type integral of
Kr(f) for any f € LP(T") is proved by V. Havin [51] and V. Paatashvili [114].
For individual functions, some sufficient conditions for such an inclusion
were obtained in [113], [119]. In the case of smooth curves the similar
problem is investigated in §5.

The fact that the condition A, with respect to the arcs is necessary and
sufficient in the case of smooth curves (but not only for Lyapunov contours
as is incorrectly cited in [7]) was proved by V. Kokilashvili [73]. T. Simonenko
has constructed an example of a function which satisfies the Muckenhoupt
condition over arcs but is not a weight function for the Cauchy singular
integral in the case of a contour with cusps.

The conventional exposition of one-weight norm inequalities for singular
integrals on curves based on the well-known Calderon-Zygmund theory as
well as on Coifman’s concept can be found in [7]. In fact, all these results can
be considered as a particular case of the weight theory of singular integrals
defined on homogeneous type spaces, the comprehensive investigation of
which is presented in the monograph of I. Genebashvili, A. Gogatishvili, V.
Kokilashvili and M. Krbec [40].

Exposition of Theorem 4.5 on two-weighted estimates for conjugate func-
tions is an amalgam of the proof presented in [80]. For more general pair of
weights see D.E. Edmunds and V. Kokilashvili [30]. For optimal conditions
for two-weight strong and weak type inequalities for singular integrals of
homogeneous type spaces, in particular, for fractal sets, the reader can be
referred to [40].

As for the p-mean singular integrals in connection with the belonging to
Smirnov classes EP(D) of Cauchy type integrals for individual functions,
they have been used V. Paatashvili [114].

An example of the curve I' and of a continuous on it function ¢ for
which (ST@)EL(T), is given in [51]. Curves from Examples (3) and (4) of
subsection 3.4 were constructed by G. Khuskivadze [62]. Moreover, it has
been shown therein that the curves satisfying conditions (3.44) ((3.48)) can
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be constructed so as to have w,(0,8) < Cé*, r > 1, a>r~t r>1,a>r7!
where w, (0, 8) is an integral module of continuity of the function # = 6(s),
t'(s) = expil(s).

Some properties of the Cauchy type integral, when a line of integration
is an infinite set of curves, were investigated for the first time in [2] and
[65-56]. The questions of the continuity of Sr in the Lebesgue spaces are
studied in [1], [64], [126], [127].

Theorem 6.1 (under more general assumptions with respect to ¢), the
assertion of Corollary 2 of Theorem 6.1 and Theorem 6.3, for the A-integral,
have been proved by P. Ul'yanov [156]. The assertion of Corollary 1 of
Theorem 6.1, for the B-integral, is due to A. Kolmogorov [84], and for
the A-integral, to E.C. Titchmarsh [154]. The assertion of corollary of
Theorem 6.2, and Theorem 6.4, for the A-integral have been obtained by
E.C. Titchmarsh [154]. Theorem 6.8 in the case of A-integrals and Lyapunov
curves has been obtained earlier in [158]. The main results of §6 in the case
where T' is a Lyapunov curve were obtained by G. Khuskivadze [58], [62].
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CHAPTER II
THE DISCONTINUOUS BOUNDARY VALUE PROBLEM
IN CLASS OF CAUCHY TYPE INTEGRALS

Let T' be a closed, rectifiable Jordan curve bounding a finite domain
DTand an infinite domain D~. In §§1-3, 5 we consider the problem of
linear conjugation formulated as follows: define a function ¢ € K?(T', w),
whose boundary values ¢* (from D) and ¢~ (from D™) satisfy almost
everywhere on I' the condition

¢T(1) = G)e™ (1) +g(1), LET, (D

where G and ¢ are functions given on T', and ¢ € LP(T', w).

It is assumed that T' € J* and the function G (or G, which will be
defined by means of (G and w in §5) belongs to the class Z(p) introduced in
Section 1.2. The assumptions for w are adopted (see (5.1)) which in the case
of Lyapunov contours cover all admissible in this problem weight functions.

Along with the problem (I) in the class LP(T', w) we consider a singular
integral equation of the type

ap +bSrp+ Ve = f, (11)

where a, b, f are functions given on I', f € LP(T, w), (a—b)(a+b)"1 € g(p)
and V' is a compact operator in LF(T', w).

Comprehensive investigation of the character of solvability of the problem
(I) allows one to obtain Noetherian theorems for the equation (IT).

As far as the problem (I) is, generally speaking, unsolvable in the class
K1(T), it is advisable in this case either to narrow this class and to consider
those subsets in which the character of solvability is similar as in case of
KP(T), 1 < p < o0, or to extend, within reasonable limits, the class of
unknown functions containing K1(T') and to clarify the picture of solvability.
Both possibilities are realized in §4 and §8, respectively.

§ 1. THE PROBLEM OF LINEAR CONJUGATION IN THE Crass KP(I')

1.1. Assumption regarding the boundary curve. We will assume that I’
belongs to the class J* (see §3, Chapter I). Recall the definition.

The curve I' € K belongs to the class J* if it is divided into a finite
number of arcs belonging to the class J and having tangents at the ends.
The Jordan curve I' € K with the equation ¢t = #(s), 0 < S < [ is assumed
to belong to the class J if there exists for it a Jordan smooth curve p of the
same length with the equation g = p(s), 0 < s </, such that

l #(s) ~ 1'(s) e
65252?0/‘t<5>—t<a> pu(s) — pu(o) ds < oo. (1.1)
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1.2. The Class g(p) of functions. The index of the function G € g(p)
We will say that a measurable on I' function G belongs to the class g(p),
1 < p < o0, if the following conditions are fulfilled:

(1) 0 < ess inf |G]; ess sup |G| < oo

(2) for all t € T', with the possible exception of a finite number of points
ek = t(sr), sk < spy1 (k = 1,n), there exists on T' a neighbourhood in
which the values of G lie in some sector with the vertex at the origin and
the angle less than a(p) = W, p = 1%;

(3) there exist at the points ¢ the limits G(exp—) and G(cp+); let the
angles 8, between the vectors corresponding to G(ex—) and G(c;+) be such
that

27 27
p

s

2 2 -
for p>2 and —?§6k§—7,1<p<2,k:1,n.
P P

The points ¢, will be called p-points of discontinuity of the function G.

By analogy with the class A(p), the set A(p) has been introduced in [78].
Recall, that the class A(p) has been introduced and applied to the boundery
value problem of linear conjugation by I. Simonenko [141]. The subset of the
functions from g(p) which do not posses p-points of discontinuity, coincides
with A(p). The existence of p-points of discontinuity makes it possible to
cover by the class g(p) the most part of those functions satisfying condition
(1) which were considered in terms of the coefficients of the problem of
conjugation with a finite index. In particular, it can be easily verified that
A(p) contains any admissible piecewise continuous coefficients ([168]) and
the functions whose argument ¢ is representable in the form ¢ = ¢g + 1,
where ¢y is continuous and ¢; is of a bounded variation, i.e., A(p) contains
the class of coefficients considered in [18], [21].

Combining the definitions of the argument for piecewise continuous func-
tions and for a function from A(p), we can for a given p determine the ar-
gument for G/(t) at every point ¢ € ' so that the increment of the argument
resulting of going around I' appears to be exactly the same characteristic
for the problem with the coefficient G as the increment of the argument is
for the continuous coefficient.

arg, G(t). Suppose that 'y =[x, ckt1), g1 = €1, k = 1,n, are half-
open arcs of the curve I' connecting the points ¢, and ¢g41, where ¢, 41 = ¢1.
Given ¢ > 0, there exist arcs [t(sg), t(sp + %)) and (t(sp+1 —Ne+1), t(Sk+1)),
e, Me+1 € (0, %(sk“ — s1)) such that the values of G lie in a sector with
the vertex at the origin and the angle less than €. Assume that the numbers
n correspond to the choice of € = a(p), and let 7, and 75,41 be some points
from these intervals. Every point of the closed arc [y, Tp41] possesses a
neighbourhood in which the values of the function GG are located in a sector
with the angle less than a(p). These neighbourhoods cover [, 7;41], and
therefore we can choose a finite covering. Adding to the set of intervals of
this covering the intervals [t(s), {(sp + nx)] and (t(skp — 9r41),t(Sk41)), We
obtain the arc covering [cg, cg41). Since I' = UT'y,, we finally conclude that
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there exists a finite covering B of the curve I' consisting either of open arcs
or of those of the kind [t(s;),t(sx + nx)); on every arc, the values of the
functions are located in a sector with the vertex at the origin and the angle
less than a(p).

Let now ¢ be an arbitrary point on I'. If ¢ is not a p-point of discontinuity
of G, then we form a new covering B’ of the curve T replacing the arc
(a,b) ¢ in the covering B by the arcs (a,c] and [¢,b). But if ¢ = ¢, then
we put B’ = B. For a fixed covering B’, we select arbitrarily an argument of
the number G(c) and denote it by arg, G(c)*. Going along I' in the positive
direction, we define the argument arg, G/(t) on all arcs from B’ so that if ;
and t; belong to the same arc, then |arg, G(t1) — arg, G(t2)| < a(p). Thus
we reach the arc whose right end is the nearest to ¢ point cg, and there
exists slgrkl arg G(t(s)) = ar. Define arg, G(cr) according to the rule

oy + 6 for 6, < 2]7”,
ap + 6, — 27 for 6k>2]7”.

arg, G(cr) = { (1.2)
Continuing the process of defining the argument, after going around the
curve we come at the point ¢ to a new value of arg, G(c)~
The integer

=3, = 32,(G) = %[argp G(c)” — arg, G(e)t]

does not depend on the choice of the covering B’ and on the point ¢; we will
call it the index of the function & in the class K,(I') and denote by ind, G.

Note here that arg, G(cp) for all k is defined by the first equality from
(1.2) if 1 < p < 2, and by the second one if p > 2. There are no p-points of
discontinuity for p = 2.

1.3. Decomposition of the function GG € g(p) . From the definition of the
function ¢(t) = arg, G(t) it follows that for its oscillation

Q(p,t) = inf {sup (r)— inf (7 1.3
()= it L sup olr) = i ()} (13)
the inequality
sup (e, 1) < 27 (1.4)
tel

is valid. Therefore, by Lemma 1 from [141] we can determine a real function
©1(t) such that 1 (t(s)) satisfies the Lipschitz condition on [0, /), lin} e1(t(s))

=1(¢(0)) + 2731y, and |p(t) — p1(t)] < 7. The function G(t)exp(—ie1 (1))
belongs to A(p).
Put

s(t,er)

P2(t) = pler) + [p(ert1) — @ler)],
s(Cht1,cn)
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t €[k, cht1), cnp1=c1, k=1n, (1.5)

where s(t,¢r) is the length of the least arc of the curve T' with the ends ¢
and cy.
Then the function g3 = ¢ — 1 — w2 is continuous at the points ¢ and

sup, e Q(p3,1) < a(p).
Thus the following lemma is valid.

Lemma 1.1. Let G € g(p) and ¢, k =1, n, be its p-points of discontinu-
ity. Then

G(t) = |GOIGDG()Ga(t), (1.6)

where Gi(t) = expivr(t), k = 1,2,3; Gy satisfies the Lipschitz condition
and »x(G1) = 2,(G); @2 is a piecewise continuous function given by (1.5),
p3 is continuous at the points ¢y and sup,cr Qps, 1) < a(p). If G € A(p),
then in decomposition (1.6) we take Go = 1.

In view of the remark of the previous section, the jump of the function
arg, G(t) at the points cj or, which is the same thing, of the function ¢,
will be é; for 1 < p < 2 and & — 27 for 2 < p < oo. Denoting this jump by
27y, we obtain

< pp < for 1<p<2,

1

v
1

i

S
—

(1.7)

<ﬂk<—; for 2 <p<oo.

1.4. Statement of the result. The aim of §1-3 is to prove the validity of the
following

Theorem 1.1. Let I' be a closed curve of the class J*, G € g(p), 1 <
p < oo and » = »,(() be its index. Then

I. For the problem (I) in the class KP(T') the following assertions are
valid:

(i) if 52 > 0, then the problem is solvable for any g € LP(T), and its
general solution is given by the equality

6() = X (K (S5) (2) + X (2)Poms(2), (1.8)

where the function X is constructed in quadratures in terms of G (by for-
mulas 3.30,3.27— 3.29) and P,_1 is an arbitrary polynomial of degree not
higher than sc— 1, P_1(z) =0;

(i) if 22 < 0, then the homogeneous problem has only the zero solution,
while the tnhomogeneous problem is solvable only for the functions g satis-
fying the condition

tk
r
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If this condition is fulfilled, then the solution is given by (1.8), where
P;,_l =0.

I1. For the singular integral equation (IT) in the space LP(T'), 1 < p < o0,
the Noether theorems are valid under the assumption that (a —b)(a+b)~1 €
A(p)-

Moreover,
=1 =3,(G), (1.10)

where | and ' is the number of linearly independent solutions of the homo-
geneous equation (I) and its adjoint.

Solutions of the singular integral equation (II) with V =0, are given by
the formula

p=0¢t—9¢7, (1.11)
where ¢ 1s the solution of the problem of conjugation
6% = (1= b)(a+8)"16™ + fla+ )

1.5. On the method of proving Theorem 1.1. The first assertion of Theorem
1.1 is a generalization of the well-known results [66], [18], [141]. In those
works, by developing the method of solving the problem (I) in continuous
and piecewise continuous posing, the authors justified the theory of solv-
ing the problem of conjugation in the classes K?(T') using the method of
factorization.

The essence of this method consists in the following: if for a function G,
inf |G| > 0, one can construct a function X which is analytic on the plane
cut along T', and for which the relations: (i) X € EP(F); (ii) % € Ep/,
(T); (1) Xt = GX~, (iv) Xt € W,(T) are valid, then the assertion I of
Theorem 1.1 with 3¢ defined by the relation lim, .o, X(z)z* = const # 0 is
valid (see, e.g., [68]).

The function X satisfying the condition (i)—-(iv) is called a factor-function
for GG in the class KP(T'). Since the solution of the characteristic singular
integral equation in the class L?(T') reduces equivalently to the solution of
the problem of linear conjugation ([66]) with the coefficient G = (a — b)(a +
b)~1, from the characterizability of the function follows neotherianness of
the characteristic singular integral equation, and hence neotherianness of
the operator A : ap + bSpy in LP(T'). As far as the neotherianness and the
index do not vary by adding a compact operator to a Noetherian operator
[3], we immediately arrive at the assertion IT of Theorem 1.1.

Proof of Theorem 1.1 is performed by means of the factor-function for
GG € A(p). At this step the results of Chapter I, §2-4, are of importance.

Construction of a factor-function first for particular cases of curves and
coefficients allows one to investigate the problem in the general case.



96

§ 2. ON THE BELONGING TO THE SMIRNOV (CLASS OF THE FUNCTION
exp Kre

2.1. The belonging to the Smirnov class of the function exp Kr¢. When a
function is factored in the class KP(T'), there naturally arises the problem
of finding the conditions on I' and ¢ under which the function

X(2) = exp [L/ So(t)dt]

2w t—z
r

belongs to some Smirnov class in domains bounded by the curve I'. In this
section we present sufficient conditions for this.
First of all, we prove the following

Lemma 2.1. IfT € R, then for the norm of the operator Sp in LP(T) the
mequality

1Sl < Cp (2.1)
1s valid for p > 2, where C' is independent of p.
Proof. By induction we prove that for an arbitrary natural %,
T
|ST]2x < [|ST2 ctg AL

For k > 1 we use the inequality (see Chapter I, subsection 3.2, inequality

(3.38))
I1Spll2p < ISTllp + /1 + [15T]l3-

Then for p = 2* we will have

™ ™
Illees < [tk cts s + 1+ et o7 <

T R T
< |I5tl)2 ctgﬁ—l—sm 1 W] = ||Sr]|2 CthkT'

Let now 2% < p < 2¥+1 and ¢ be such that zl? = 2%—1— % Then by virtue
of the interpolation theorem we arrive at

T T _ 4
I5tlly < (ISrll cta s (1Sl et 5755) ™ < 1Sl = Cp.

Theorem 2.1. Let ' be a closed Jordan curve of the class R bounding a
finite domain DY and and an infinite domain D~. Then:

(i) for any bounded, measurable on T function ¢ there exist numbersé > 0
and an integer ng > 0 such that

exp(Krg) = X(2) € E*(DT), (2 — 2z0)"™[X(2) — 1] € E*(D7);
(i) for an arbitrary continuous on U function ¢ we have

X(#) €Nps1EP(D) and [X(z)— 1] € Nps1 EF(D7).
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Proof. Assume that sup|p| < M and show that X € E?(DT) for § <
(CeM)™!, where C is a constant from the inequality (2.1). Denote by I,
the image of the circumference || = r under a conformal mapping of the
circle U onto the domain DT. We have

1 § [ p(t)dt
X()|)dz| <) = ‘—
/| (@) |dz|_zn!/2ﬂ'i/t—z
T, n=0 T, T

Since I' € R and ¢ is bounded, by the corollary of Theorem 3.3 from Chapter
I we obtain

(2.2)

(Kre)(2) = L/ i(i)it € Np>1EP (D).

2w
r

Hence [ICpgo]” € FEY(DT) for an arbitrary natural n. Therefore
fF (Kre)(z)|"|dz| increases together with » ([43], p. 422), and

Ji{ s [ 50
_2"<F/‘30(27 ) (2.3)

27'(2 t T
Now (22) 1 plies
d0:| S

/|X ||dz|< [/no de +/\ /f_T

where [ is the length of the curve T'. By lemma 2.1, ||Sp|], < Cn. Taking
into account the last inequality we can see that for § < (CMe)™! the series
converges. Thus we conclude that for such §, X € E?(D%).

In the domain D~ consider now the functions

Vo(2) = (2 — 20) "[X(2) = 1], 20 € DT,

If T, are the images of circumferences || = r for conformal mapping of
the circle U onto D~ (we mean that the mapping function is of the form
z= %—i—w(C), where w is a regular in U function), then we can easily see that
for small 7 the length of the curve ', — |I.| = 0(2), and |Y(2)|® = 0(r"%),
z €T',. Then

[ ot lde] < sup W) [ 1de] < e (2.5)
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ssuming n > ||, from (2.5) 1t follows that for some rg € (0, 1),
A ing % fi 2.5) 1t foll hat f 0,1

sup / [V ()] |dz| < 0.

r<ro
r,

For r € (7o, 1), as in the case of Dt we have

sup /|Yn(z)|é|dz| < 0. (2.6)
TD<T<1F

On the basis of the inequalities (2.5)—(2.6) we conclude that for § <
(CMe)=t and n > [%] the inclusion

(z = 20)"[X(2) 1] € E°(D7)

1s valid.

Assume now that ¢ is a continuous on I' function, p arbitrary posi-
tive number and g is a rational function with poles outside I' such that
M = suplp(t) — @o(t)] < (Cpe)™', where C is a number from (2.1).
As is proven, X € E’(D%), where § < (CMe)™t, M = sup,er |o(t)]-
Consequently, [Kr(¢ — ¢0)(2)] belongs to EF(D*). On the other hand,
Xo(z) = exp(Krpo)(z) is continuous. Hence |[Xy(z)| > m > 0, and thus
expKre € EF(DT).

The fact that [exp Kre — 1] € Nps1 EF(D7) is proved analogously. W

Remark. As it follows from the proof of the conclusive part of the theo-
rem, the number & can be taken from the condition § < (Cev(p))~!, where
v(p) = infy sup,cr |p(t) — +(t)], and the lower bound is taken over all ra-
tional functions .

2.2. The case of unclosed curves. In the case where I' i1s an open curve of
the class R with the tangents at the end points, then complementing it with
respect to the closed curve I' € R (see Lemma 3.4, Chapter I) and applying
Theorem 2.1 to the function K1, where

_Jelt), tel,
SDl(t)_{o, t e T\T,

we easily find that if v(p1) < (2Ce)™1, then the function X (z) =exp(Kr¢)(2),
z€l is representable in the form

Xt(t)— X~ (1)

1 ) —
X(z)=— [ 72 Wi
(2) 2m'/ ‘= +
r
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2.3. On the solution of the problem (I) with a continuous coefficient and
I' € R. The above proven theorem allows one to solve the problem in the
class KP(T'), when T' € R and (' is a continuous function. In this case, the
function

h Dt
X(2) = exp (z)i z € , i (2.7)
(2 —z0) " exph(z), z€ D™, z € DT,
where
N L [l - )G ,
x=indG, h(z)= %/ T dt (2.7)
r

satisfies the conditions (i)—(iii) from the definition of the factor-function,
and
lim z*X(z) = 1. (2.8)

Indeed, the fulfilment of the conditions (7) — (4¢) is a consequence of The-
orem 2.1. The condition (iii) is verified by the Sokhotskii-Plemelj formula;
the fulfilment of the condition (2.8) is obvious.

From the above arguments i1t follows that all the solutions of the problem
(I) of the class KP(T') are contained in the set of functions specified by the
equality

)t —z

where P,,_; is an arbitrary polynomial of degree s — 1. It is not also
difficult to verify that ¢ € ET(F), r € (1,p). But for > > 0 any such a
solution belongs to the class KXP(T') (see [68], Chapter IV, §5, Theorem 1).
Hence, if 5 > 0, then the problem (I) is solvable for any ¢ € L?(T'), and all
its solutions of the class KP(T') are representable in the form (2.9), where
X is given by the equalities (2.7)—(2.7').

In spite of the fact that for 3¢ < 0 the function ¢ (with P,_; = 0) belongs
to EP(F), it does not belong to KP(T'), because X possesses the pole of order
|| at the point z = co. As usual, the expansion of the integral multiplier
in the neighbourhood of that point results in a solvability condition of the

type (1.9).

2.4. Some functions from W, (I'), I' € R. On the basis of the result obtained
in the section 2.3, we can point out some functions from W,(T') when T’ € R.

6(z) = );:i)/mff()dt S+ PaX (), (2.9)

Theorem 2.2. Let T be a closed Jordan smooth curve. If ¢ is a real con-
tinuous on I' function, then

w(t) = exp{ﬁ/m} € Ns»1 Ws(D). (2.10)

T—1
r
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Moreover, if I is a curve such that for some p > 1 the function

belongs to W,(T'), then

u 1 p(T)dr
p(Hw(t) = H [t — e | exp {ﬁ/ — } e Wo(T). (2.11)
k=1 T
Proof. Let G(t) = expip(t). Then G is continuous and ind G = 0. Accord-
ing to the result obtained from (2.3), the problem with such a coefficient is
solvable for any ¢ € LP(T') and its solutions are given by (2.9). But then
the operator
T.g—xt SF%

is defined on the entire LP(T') and maps this space into itself. Consequently,
the operator T', by Theorem 2.2 in Chapter I, is continuous in L?(T"). Hence
the function Xt = wv/G, and thus w (because of |G| = 1) belongs to the
set Ns>1Ws(I'). Next, taking into account the fact that p € W,1.(T') for
some ¢ > 0, by means of the theorem from (0.20) we obtain the inclusion

(2.11) as well. W
Remark. If T € K then as K C R we have p € W,(I') ([68], p.79)

Remark. The result of Theorem 2.2 allows one o construct a factor-
function for a piecewise continuous on I' function G under the assumptions:
(i) T' € R and possesses the tangents at the points of discontinuity of G; (ii)
o [arg G(tp+) — arg G(tp—)] = hi, # zl?( mod 1) We omit the details.

m

§ 3. THE CONSTRUCTION OF A FACTOR-FUNCTION FOR G € Z(p) AND
reJ.

3.1. The case where T is a smooth curve and G € A(p). The construction is
divided into two steps: first we prove the unique solvability of the problem
(I) for ind G = 0 and then, relying on the existence of the solution, we
construct the factor-function explicitly.

Step 1. Let G € A(p), ind, G = 0. Asis shown in [68], any solution of the
problem (I) under the assumption ¢ € KP(T'), T' € R, generates the solution
o = ¢t — ¢~ of the class LP(T) of the linear singular integral equation (3.1),

ap +bSTp =g, (3.1)

where a = %(1 + @) and b = %(1 — (). Conversely, to every solution
¢ € LP(T) of the equation (3.1) there corresponds the solution ¢ = Kr¢
of the problem (I) (with G = (a — b)(a + b)~! and g(a + b)~! instead of
¢) corresponding to KP(T'). Therefore to prove the unique solvability of the
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problem (I), it suffices to show the unique solvability of the equation (3.1).
Rewrite it in the form

Mo = a(t(s))e(t(s)) + b(t;f)) / Sogig)iii;cja

+b(t7£j)) /go(t(s)) [t(gt)/(_azg(s) - emiailzz'as]da = g(t(s)),
o= 277, 0<s<l
Mp = ap +bSyp +5(5 = Sy)p = g, (3.2)

where v i1s a circumference of length [.
Since I' is the smooth curve, the operator St — S, is compact in LP([0, {])
[48]. Moreover we have (a — b)(a + b)™! = G € A(p) and indG = 0.

Therefore for the equation
ap +bSyp =g

in the class L?(y) the Fredholm theorems are valid. But then by virtue of
Atkinson’s theorem [3], the equation (3.2) is also Fredholmian.

Show that the equation M = 0 in LP(T) has only the zero solution. To
this end, we consider along with it the equation

M"Y = arp — Sr(by) = 0. (3.3)

The operators M’ and M are conjugate. (This follows from the fact that
for every linear functional g on LP(T') there exists a function ¢ € LP (T)

such that pu(p) = [ e()¥(t)dt.) If we put
L/ b(¢)y(t)di

v =
(Z) 2w t— =z

bl

T

where ¢ is a solution of the equation (3.3) in LpI(F), then ¥ € ICpI(F) and
satisfies the boundary condition

Ut(t) = l\I!_(t). (3.4)

G

But ¢W¥ € K}(T) (because densities of the corresponding integrals belong to
conjugate classes) and (¢¥)* = (¢W¥)~, and this problem in K!(T') has only
the zero solution. Therefore either ¢ or ¥ = 0. This implies that either the
equation M = 01in LP(T) or the equation M’y = 0 has only zero solution.
As far as the operator M is Fredholmian, both equations have only zero
solutions, and the inhomogeneous equations My = ¢, ¢ € LF(T'), M'¢ = f,
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fe LpI(F) are uniquely solvable. Thus we arrive at the conclusion on the
solvability of the problem (I).

Remark. Note that after establishing of Fredholm property for the equa-
tion (3.1), the smoothness of T' has no importance. So, if T' € R and the
equation (3.1) is Fredholmian, then it is uniquely solvable (see also [42],

p. 258).
Step 2. The construction of a factor-function.

Lemma 3.1. Let a closed Jordan rectifiable curve I' € R. If for a function
G, inf |G| > 0 there exists a function In G (i.e., we select a function argG)
such that it 1s bounded and the boundary values XT of the function

X(z) = exp[Kr(ln G)(2)] (3.5)
belong to W,(T'), then X is the factor-function of G in KP(T).

Proof. Since InG is bounded, by Theorem 2.1 there exists 6 > 0 such that
X € E*(D%). But Xt € W,(T), and therefore X+ € LP(T), X% € Lr(T)
(see §4, Chapter I, Lemma 4.2). Since X~ = éX"’, X~ € LP(T) as well,

and 5= € 1F'(T). Hence (X—1) € B*(D*), (£~1) € B'(D*). From this

we can conclude that X possesses all the properties of the factor-function
(see section 1.5). W

Lemma 3.2. Let T' € R, inf |G| > 0 and let the problem of linear con-
Jugation (I) be solvable for any g € LP(T). If for some function X the
conditions (i1) and (iii) from the definition of a factor-function are fulfilled,
then Xt € W,(T).

Proof. Under our assumptions, the function given by the formula (2.9) for
P,.—1 = 0 belongs to LP(T) for any g € LP(T"). The statement of the lemma
follows now from Theorem 2.2 of Chapter I. H

Theorem 3.1. Let a closed Jordan rectifiable curve I' € R be such that for
an arbitrary G € A(p) with ind G = 0, the problem (I) is uniquely solvable
in KP(L). If InG = In|G(t)| + iarg, G(t), then the function X given by
(3.5) is the factor-function of G in the class KP(T).

Proof. Put
u(z) = exp Kr(In |G|)(2), v(z) = exp Kr(iarg, G)(2)

and show that ut € Nss 1 Ws(T), vt € Wi4o(T') where p = max(p, p’) and
€ 18 a positive number.

Let H(z) = Kr(In|G|)(z). By Theorem 2.1 we can choose Ag > 0 such
that the functions

(3.6)

_ Jexp{AH(2)}, ze DT,
~ \exp{AH(2)} =1, ze D"
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and u} '(z) belong to K(T) for |A| < Ao.

As is easily seen, uj 1s a solution of the problem of conjugation
ot =Gl + |G

of the class K*(T).
By the assumption of the theorem, this problem is uniquely solvable in
KP(T) for an arbitrary p > 1 (as |G|* € QlA(p)). Therefore uy(z), being
P

a solution from the class K?(T'), is a solution from all the classes K?(T),
p > 1. Thus ua(z) € Np1KP(T) for |A| < Ap. From the expansion of
|G|T = |G|FM|GF 2 - |GIE >, where |Ai] < Ao, Zle A = 1, we can
see that u®! € N,51KP(I'), whence by Lemma 3.2 it follows that ut €
ﬂg>1W5(F).

Prove that vt € Wi, (T).

By virtue of Lemma 1.1, we may assume that |argp G| < % (because
(1 belongs to the Liepschitz class and i1t can be factored by a function 7
such that Z*! are bounded functions). Then, as it follows from the proof
of Theorem 2.1, there exists an absolute constant d = (Cen)™ < 1 such
that v*! € ES(D1) for 6§ < pd = &y, p = max(p, p').

/
Let first p > 1 4+ %. Then p' < (%) = 1+ d. From the assumption

regarding p we have 1 +d < pd = pd = 8y. Therefore p’ < &y, and hence
L e kP (T).

Choose £ > 0 so small as to have G € A(p+¢) and indpy. G =ind, G =10
(by the definition of the class A(p) and of its index, such ¢ exists). By the
above proven, % € IC(p+€)I(F), and by the assumption, the problem (I) with
the coefficient Gig = exp(iarg, . ) = exp(iarg, ) is uniquely solvable in
the class KP*¢(I'). On the basis of the above reasoning we apply Lemma
3.2 and conclude that vt € W,4.(T) = Wy (T).

Let now p be an arbitrary number from the interval [2, +00) and |arg, G| <
2]7”. Assume pg = 2+ 5. Then p%|argp G| < 12)—7;. The functions GE! =
exp(ippy arg, () belong to A(po), po > 1+ % and, according to the just
proven,

exp {;%sr(i arg, G)} € Wy, (D),
whence we obtain
exp { =+ %Sp(i arg, G)} € LPTe ().
Consequently,
vil(z) —1= [exp{:I:ICp(i arg, ()} — 1] € Ep+€1(Di)

and hence, using again Lemma 3.2, vT € W5y, ().
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The case p < 2 can be reduced to the previous one by considering the
problem

gt = é\lf_ + g
in the class ICPI(F) and taking into account that A(p") = A(p).
It follows from the above arguments that:
(i) for an arbitrary 8 > 0, (u?)* € N5 1 W, (D);
(i1) there exists 179 > 0 such that for 0 < 1 < 1y we have (v )17 € Wi(T).
Using the interpolation theorem from (0.20), we find that X* = utvT €
W5(I') which, by Lemma 3.1, completes the proof of the theorem. W

It has been proved that if I' is a smooth curve, then for an arbitrary
p > 1 and for G € A(p) with ind G = 0 the problem (T) is uniquely solvable
and therefore from Theorem 3.1 we have

Theorem 3.2. If T is a closed smooth curve, G € A(p) with ind, G = 0,
InG = In |G| +iarg, G, then the function

w(t) = exp {%Sp(ln G)(t)}

belongs to the class W,(T'), and the function X given by (3.5) is the factor-
function of G in the class KP(T).

3.2. The case G € A(p), T € J. Let us first show that if T' € J, then the
function

pr(o) = exp{5 (I G)(t(e)} =

:exp{%/w}, Gols) = G(t(s)), (3.7)

t(s)—t(o

belongs to the class W, (T').
Since T' € J, there exists a Jordan smooth curve g = p(s), 0 < s < [, for
which the condition (1.1) is fulfilled. By Theorem 3.2, the function

{

belongs to the class W, (u). Because u is a smooth curve, by Theorem 4.3
of Chapter I, we conclude that pf, belongs to the Muckenhoupt class A,.
On the other hand, I' € K C R. Therefore by Theorem 4.2 of Chapter

I we have p, € W,(T'). It follows from the definition of the class J that
0<er < pu(a)ﬁ@ < ey < 00. Consequently pr € W,(I') as well.

Let now G € A(p), ind G = 0 and X be a function given by (3.5). Then
Xt = VGpr. Since 0 < m < |G| < M and pr € W,(T'), we find that
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Xt e Wp(F). From this on the basis of Lemma 3.1 we conclude that X is
the factor-function for G in KP(T').

3.3. The case G € A(p), I' € J*. The construction of the factor-function
is performed in two steps. First we construct it for the case where G is
a constant outside the arc of small length and then for the general case.
Proceeding from the representation (1.6) of the function GG € A(p), without
restriction of generality we may assume that Re G > 0, and the intersection
of the range of G with a small circle with center at the point (1,0) is of
positive measure.

Let ¢ be an arbitrary point on I'. By virtue of Proposition 3.1 in Chapter
I and by definition of the function from the class A(p), there is an arc
fab C I' such that ¢ € fab, fab € J having tangents at the ends and all the
values adopted on I'y; are located in a sector with the vertex at the origin

and the angle less than %ﬂ.

Complement the curve fab by a broken line é as in Lemma 3.4 of Chap-
ter I. Then 'y = T'yp U 6 will, by Proposition 3.2, be a closed curve of the
class R.

On T'yp, choose an arc 'y, with the ends d and e lying at positive dis-
tance from the ends a and b and consider an auxiliary problem of linear
conjugation: to determine a function ¢ € KP(T'y;) satisfying the condition

¢t (1) = Ge(t)o™ (1) + g(t), t € Ta, (3.9)
where g € LP(T'gp).

G.(t) = {G(t)’ tela (3.10)

Since ReG > 0, G € A(p) on the closed curve T'y;, owing to the result from
section 3.2 we can conclude that the function

X(2) = exp [ﬁ/w] (3.11)

t—z
Tap
is the factor-function for G, in KP(T'y;). Therefore the function

B 1 InG.(t)dt B .
p(to) = exp [% / W] , InG.=In|G.|+iarg, G.  (3.12)

ab

belongs to W,(I'4), and hence to Wp(fab). But it follows from (3.10) and
the definition of arg, G/c(t) that

p(to) = exp [%F/ %] (3.13)
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Hence, if g € T\I'ge, then 0 < inf|p(tp)| < sup|p(to)| < oo. Now it is
not difficult to verify that p € W,(T'). This implies that the function X
given by (3.11) is the factor-function for G, in K,(I'). Since ind, G. = 0,
the problem (I) is uniquely solvable.Along with this we also find that the
operator

Ag, 19— %(1 — Go)(—p + Srp)
is Noetherian in LP(T).

Owing to the local principle of investigation of singular operators (see
[42], Theorem 2.1, Chapter XIT) whose validity can be easily verified even
when T' € R, we finally conclude that the operator Ag in the class LP(T)
and the problem of conjugation (I) with the coefficient G in the class K?(T)
are Noetherian for T € J* and G € A(p), respectively.

Lemma 3.3. If T € J*, G € A(p), ReG > 0, then the problem (I) is
untquely solvable.

Proof. In LP(T'), consider a family singular operators A, : ¢ — Agp, where
Agp = 0T — God™, ¢F = 2(£p + Srep), Ga = a+ (1 — )G, a €0,1].

From the condition ReG > 0 it follows that G, € A(p), indG = 0.
By the above proven, the operators A, are Noetherian. Moreover, A, is a
continuous on [0, 1] operator function and therefore its indices are the same
for all « (see, e.g., [42], p. 163). But A9 = ¢t —G¢~, A; = I. Consequently,
the operator Ag is Fredholmian. From this, just in the same way as in section
3.1, we obtain the unique solvability in LP(T') of the equation Agp = g, i.e.,
of the problem (I). W

Show that for G € A(p) the factor-function is again given in an ordinary
way, that is, by (3.5) with InG' = In |G| +iarg, G.

Let first ind, G = 0. Present G as G = GGz, where G is a function
from the Lipschitz class with ind G; = 0, G2 € A(p), ReGa > 0 ([141],
see also Lemma 1.1). The factor-function for Gy is bounded from above
and separated from zero. Using this fact, we reduce the problem (I) to
the problem of same kind with coefficient G, ind, G2 = 0. The latter is
uniquely solvable by Lemma 3.3. Thus the conditions of Theorem 3.1 are
fulfilled, and the factor-function of G' can be written out by formula (3.5).
In particular, we have

w(t) = exp {%Sp(ln G)(t)} € W,(T). (3.14)

Consideration of the case ind, G # 0 reduces in a common way to the
case of the non-zero index and then the corresponding factor-function is
constructed. We do not write it out for the time being. This will be done
in the sequel in a more general case.

Remark. In fact, in the present subsection the following statement was
proved: Let for any ¢ € I' there exist an arc I'e C I', a closed curve I'.
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containing I'. and extension G. of G onto fc which is factorizable in Kp(fc).

Then G is factorizable in KP(T).
3.4. Some subclasses of the set W,(I'), I' € J*.

Lemma 3.4. Letil € J*, ce T, 1 <p < 0, —11—) <h< 1%’ The oscillation
Q(¢,1) of the function v (see 1.3) is supposed to satisfy the condition

27A
sup Q(y, 1) < —ﬂ-_(p), p = max(p, p'),
tel p

where

Ap) = 1 - [l (3.15)

w(t) = |t — ¢ exp [%/ﬁ@ﬂ

Then the function

belongs to W,(T).

Proof. For h = 0, the lemma is valid according to subsection 3.3 (see 3.14),
because exp iy € A(p). Let 0 < h < 1%' Choose ¢ so small that
27(1 — hp' —
supQ(y,1) < L= =€)
tel’ p
Since T' € J* C K, then wi(t) = |t — e[’ +e)7" ¢ W,o(I'). On the other
hand, the function

wilt) = exp |5 (Sr)(1)

1—hp' —¢)
also belongs to W,(I') (since under our assumptions exp % € A(p)).
Using Theorem from (0.20), from which in particular it follows that if w; €
Wo(l),i=12p>1 n € (0,1) then w?w%_” € W,(I') and putting
n = hp'+¢, we can easily see that the lemmain the case under consideration
1s valid.

The case —Z% < h < 0 is treated analogously. W

Theorem 3.3. Let [ be a simple closed curve of the class J* and ¢ be a
real measurable function such that

vt < = 1ET (3.16)

If ¥ is continuous at the points ¢, € U, (k = 1,n) and —11—) < hp < 1%’
then the function

(t) = [[ 1= el exp 350000
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belongs to the class W,(T').

Proof. Assume first of all that n = 1. Put ¢; = ¢, hy = h and prove that
Y(r)dr

27 T—1
r

w(t) = |t - ef*exp [ ") e w, ().

Since the function ¢ is continuous at the point ¢, there exists an arc

I'y C I' such that

27 A
sup Q(v, 1) < w_(p)’
teln P

where A(p) is defined by the equality (3.15).

Choose the points ¢; = #(s;) (i = 1,4) on [y such that the point ¢; while
moving in the positive direction precedes the point ¢;41 and, moreover,
¢ € (ta,t3). Introduce the notation (¢;.t;.1) = ;. i = 1,4, t5 = ¢;.

Let now f € LP(T',w). By virtue of the Minkowski inequality, we have

(|22} <3 { [ oo [ 227

Show first that
/ [lt) (O dt].

fJoo f 15

Let « € Ty, B € T3, T, = (&, 3) and let a function ¢*, given on T
and coinciding with ¢ on ') be continuous on T\T'%, and ¢*(«) = ¢¥(«),

¥*(8) = ¥(8). Obviously,

} . (3.17)

27A(p)

sup Q(¢*,4) < sup Q1) < —— (3.18)
tel ter,Clo p
and
sup /71/) ¢()dr—sup‘/7¢ 1/)()d7' < oo. (3.19)
tels T—1 T—1
\I,
Assume

) f(@t) for tels,
W)_{o for ¢ € T\Ts.
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We have
dr |F dr |F
[ et [ L0 = [lote [ 208 s
s r s r
B é(r)dr 1 *(1) 1 (1) —¢*(1) r
_/‘/ﬁu_qheXp[ﬁ T_t—i_ﬁ/TdT] dSS
r, T r
* p
< Cz/‘/qs |t—c|hexp [%/1/)7_(1)57-] ds.
r
Owing to (3.18), we use Lemma 3.4 to obtain
1
/ I pas <03/‘f e elresp [ [ ED] [
r
whence, taking into account (3.19), we get
f(rydr |
/ e [ 255 e <
P
§C’3/‘f(t)|t—c|hexp{ﬁ ;T_t 27/1/) T—t T} ds <
2
< C4/ [w(t) f()|Pds. (3.20)

Let now ¢ # 2 and

Fr) = {f(t) for ey,

0 for e T\I;.

Since I' € J*, under the adopted assumptions on ¢ we conclude that

exp [% Jr M] € W,(T') (see Lemma 3.4). On the other hand, for i # 2

T—1
we have

0< mf [t — | < sup [t —¢|"” < .
tel’;

Therefore

[ [ L2 paca [| [ 227
sy sy
<C6/|F |pexp—/¢7—

exp L [ YD)
27 T—1
r




—06/|f ()["] exp 2];/1/;“ ds < C7 /Iw (t)[Pds.  (3.21)
r

Further, consider the case in where I'; and I'; have no common end points.
It follows from (3.20)—(3.21) that the restrictions of the function w on the
arcs I'; belong to W,(T;), i = 1,4. Hence w € LP(I;), % € Lpl(Fi). If
T €Ty, t €Ty, then inf |7 —¢| > 0, and using Holder’s inequality, we obtain

/‘ Lo < Cs /</|f ldU) |w(t(s))[Pds <
(/lw lpds)(/\ ) <

< 010/|w |pd5 (322)

Let now I'; and I'; have common ends. For the sake of definiteness
suppose that j = ¢4+ 1, and let A; = I'; UT;51. On A; we define the
function

oi(l) = {f(t) for t €Ty,

0 for ¢t € T\['iy1.

Obviously,

1] “caf s f]foiz

But for the arcs A;, in exactly the same way as it has been proven for the
arcs I';, we can state that

k=

< C11/|SDZ t)|Pds < 011/|f (t)|Pds. (3.23)

d5§

From the estimates (3.17), (3.20), (3.21) and (3.23) it follows the assertion
of the theorem for n = 1.

For n > 1, we partition the curve I' into non-intersecting arcs 'y, k = 1, n
each containing only one point c¢g. If we put

wnlt) = li= e exp { o [ U0

27 T—1
r




then wy € W,(T'). Let

Fi(r) = f(r), Tely,
0o, T ¢ T\T;.

Then we have

/‘ T_t " ds <A1/‘wk J(t)(cg pdsg
<A2/|F wy (¢ |pd5<A3/|f ()|Pds,
and from the inequality
/‘ Hr)ydr d<AZ/‘ izl;pds

we arrive at the assertion of the theorem. M

Lemma 3.5. Letil' € J", 1 <p<oo, ceT, —%<h<z%. If

2 p p
sup Q(, 1) < 7 p:max(p’p/’ 1+hp’p—1—hp)’

then the function
]
w(t) = [t = " exp [ £ (S00)(0)]
belongs to the class W,(T').

Proof. The assertion of the above lemma for 1 < p < 2 and 0 < h <

1

7

or for p > 2 and —11—) < h < 0is contained in Lemma 3.4. The remaining

part of the theorem is proved by the scheme suggested in [36] (see also [42],
p. 377) for the proof of an analogous assertion in the case of Lyapunov
curves, using Theorem 2.1 and the results from subsection 3.5. In view of

the complete analogy, the proof is omitted. B

In exactly the same way as in Theorem 3.3, using only Lemma 3.5 instead

of Lemma 3.4, we prove

Theorem 3.4. Let T be a closed Jordan curve of the class J*, and ¥ be a
real measurable function for which the condition (3.16) is fulfilled. Ifc; €T,

k=1n, —%<hk<z%and

Qi er) < £l ﬁzmaX(pp’ P P )
’ KR Tl hep p—1— hgp/’
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then the function
w(t) = [T 1t = cel™ exp [5(S00)(0)]
k=1

belongs to the class W,(T').

Remark 3. Theorems 3.3 and 3.4 are stated for the curves of the class
J*. However, following the thread of the proof, they remain valid for those
curves of the class R for which, as is known,

(1) p(t) = [Tiey [t = o™ €W(T), =3 < hy <

(2) w(t) = exp [%(Sﬂ/})(t)] belongs to the class W, (T') if sup(¢,t) < 27”.

Remark 4. If the conditions (1) and (2) take place for some p > 1, then
they may be considered to be fulfilled for p + ¢ with any sufficiently small
e > 0.

Therefore the function w in the hypotheses of Theorems 3.3 and 3.4
belongs to W4 (T').

To construct the factor-function for G € g(p), we will need, besides the
above arguments, an assertion ensuring an estimate of a singular integral
whose density is a piecewise linear function.

Lemma 3.6. Let T be a closed Jordan curve of the class K, ¢, = t(sp) € T,
§1 < 83 < -+ < sy and p(t(s)) = Ags + By fort € [cp, Cht1), Cny1 = €15
Ay and By, are real numbers. Then

; exp [4(5re)(1)]
<m< = S M,
- Hk‘:l |t - ck/’|hk

where hy, = %[gp(ck—) —o(er+)], k=1,n.

(3.24)

Proof. Without restriction of generality we assume n =2, ¢; = a, ¢z = b,

As+ B, te€ (a,b)=c¢,
p(t) = (e9)
0, t €T\e,

and we have to prove the inequality

0<m< ZPEETOOL

_— 2
S apii—ppe = (3.25)

Lsra0 = o [ A=Ay o0 [

T—1 27 r—t
€ €



L [ o(r) = o(b) p(b) 1. b—1
= 27/ p— dr + 5 mxe(t)—i—lna_t , (3.26)

where x. is the characteristic function of the arc (a, b).
Let ¢ € T'\[a, b] and

o(7) — (b) for 7€ (a,b],
hy(T) = (1) =<0 for € (b,¢),
(r— C)M%ﬁl for 7€ [e,al.

Then the equality (3.26) can be written in the form

1 1 Y(r)dr 1 P(r)dr  p(b) ..
(zs00)0 =57 | T=7 —5; | For + S0+
r T\e

b—t

a—1

I.

Since ¢ satisfies the Lipschitz condition with respect to s and I' € K| the
first summand 1s bounded on I'. Moreover,

pdr wdr
r—t J r=¢
T\e ca

and the distance from the point & to the arc (e, a) is positive. Therefore
there exists an arc neighbourhood (b1, b2) of the point b such that the second
summand in it is bounded. This implies the validity of (3.25) for ¢ € (b1, b).

al
a a,

Considering the function ¢4 (7) similar to ¢3(7), we find that the inequal-
ity (3.25) is valid in some neighbourhood (a1, as) of the point a. Tts validity
in (b2, ay) is obvious.

Next, from the equalities

Sseo = o [ ATy 20 [

T

and
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follows the boundedness of %Spgo on the arc (asg, b1), and therefore (3.25) is
also valid on the same arc. W

Remark. If we assume in the hypotheses of the lemma that A; and By
are complex numbers and the curve at the point ¢ has tangents, then the
inequality (3.24) remains valid if we replace hy by Re hy.

3.5. Thecase I' € J*, G € g(p) By Lemma 1.1, we have G = |G|G1G12G3,
where G, = expipr, k = 1,2,3. Moreover, G1 € H(1), »,(G1) = 25,(G),
9 18 a plecewise linear function with respect to s, @3 is continuous at the
points of discontinuity of the function s and sup |ps| < 27”.

Let

h(z) = Kp{In[G1(t)(t — 20)"**]}(2), 20 € DT.

Assume
Xo(z) = exp[Kr(In|G])](2), (3.27)
exp h(z z +
M=) = {(zp_hz(o))i”p exp h(z), =z E g_’ (3.28)
Xi(z) = exp[i(Krer)(2)], k=2,3, (3.29)
and

X(z) =[] Xx(2) (3.30)

Prove that X is the factor-function for GG in the class KP(T"). Tt is sufficient
to show that X € W,(T') (the rest of the properties of the factor-function
follow from the this fact, Theorem 2.1 and Smirnov’s theorem from (0.19)).

We have Xt = szo X;F. Due to the fact that Gy € H(1), the function
X is bounded and inf | X | > 0. Moreover Xo € Ngs1 W;(T), since |G| €
Mp>1A(p), ind, |G| = 0 (see 3.14). Further, from the definition of ¢y (see
1.5) and by Lemma 3.6 it follows that

xXF) =T lt—eal™2@),
k=1

where —11—) < hg < 1% and Z satisfies the condition m < |Z| < M.
Hence

XF(t) = [ It - o)™ exp [%Sp¢3]Y(t) = w(t)Y (1),

where Y(t) = XF(#)X;F(#)Z(t) and therefore Y € Ngs 1 Ws(I'). For w all
the conditions of Theorem 3.3 are fulfilled (since sup,cr Q(ps,t) < a(p), by
Lemma 1.1) and therefore, taking into account that theorem and Remark
2 to Theorem 3.4, we conclude that w € Wy, (I'). Using the theorem from
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(0.20), we obtain Xt = (wY) € W,(I'). Thus the function X given by
(3.30) is the factor-function of G in K?(T').
Sum up the results of subsetions 3.1-3.5.

_Theorem 3.5. If a simple closed curve I' belongs to the class J*, G €
A(p), s = 5,(G), then the function X given by (3.30) is the factor-function
for G in KP(T'). It possesses the following properties: (1) X € EP(F);
(2) x € KP'(T); (3) X*(1) = GE)X—(¢), t € T; (4) XT € W,(I); (5)
lim, 00 X(2)(2 — zo)”P(G) =1, zp € DT,

Having this theorem we immediately obtain all the assertions of Theo-
rem 1.1.

3.6. The class of functions M (p) and problem (I) in the class X?(T') for
I'e J*, G € M(p). Denote by M(p) the set of measurable on T' functions
(i representable in terms of G(t) = a(?)b(t), where a € A(p), and b is a
piecewise continuous function with a finite number of points of discontinuity
of ey, k=1, n, [b(t)] = 1 and if b(ex+)[b(ckg—)]~1 = exp 27wiyg, then

min(0,2p~ ' — 1) < v < max(0,2p~" — 1). (3.31)

(For definition of the class M (p) see [36], [42], p. 380.)

Prove that g(p) C M(p).

Let G € g(p) and 27y be jumps of its argument at the points ¢. Denote
by ¢ a real piecewise linear function with the jumps 27, where

B uk—z%—I—e for 1<p<2,
= pr+5—¢  for p>2.

Since |pr — yi| = m — g, it is not difficult to verify that the
function G(t)expiy(t) for sufficiently small ¢ belongs to A(p). Assume
b(t) = expitp(t). Then G(t) = a(t)b(t). If we prove that the conditions
(3.31) are fulfilled for b(t), then this will imply that G € M (p).

Ifl<p< 2, then v = py — 1% +e. By (1.7), 1% < pyp < %. Therefore
Hy = Z%—I—nk, 0<m < 1%—1and hence v, = np + <. For p > 2, (1.7)
yields pp = —11—) — 1}, whence 0 <7}, < 1— %. Obviously, in the both cases
one can choose ¢ such that the inequalities (3.31) will be fulfilled for all 73
(k=T1,n). Hence G € M(p).

Let now T' € J* and G € M(p). Then G(¢) = a(t)b(t), where a and
b satisfy the above-mentioned conditions. Since T' € J* and a € A(p),
by Theorem 3.5 we can construct a factor-function X, (z) with the property
lim, oo Xa(z)(z—zo)”f'(a) =1, where zy € DT and 5¢,(a) is the index of the
function a. Moreover, we have b(t) = expit)(t), where ¢ is a real piecewise
continuous function. Assume X3(z) = exp[i(Kre¢')(z)]. By Theorem 2.1 we
have (X,jtl —1) € E*(D*), § > 0. Suppose X(z) = X (2)X3(2). Tt is not
difficult to see that Theorem 3.4 can be applied to X*. Hence X € W, (I).
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From this, we immediately conclude that X satisfies all the conditions re-
quired for the factor-function. From the uniqueness of the factor-function
([68],) it follows that s¢,(a) does not depend on the representation of G in
terms of the product of @ and b, and now we can state that:

IfT € J*, G € M(p) and »(G) = »(a) then all statements of Theorem
1.1 are true.

This result is more general than that formulated in Theorem 1.1. In this
way, the factor-function for & is obtained in terms of X = X, X3, but to
construct a formula of solution for GG € A(p), it is necessary first to find
a representation (G = ab. There was no necessity in such a representation
in subsections 3.1-3.5, so we considered it reasonable to study in detail
the problem of conjugation with a coefficient from the significant particular

subclass g(p) of the set M(p).

3.7. The problem of linear conjugation in the classes KP(T") for multiply
connected domains and open curves.

1. The case of a finitely connected domain. Let T’ be a finite family of
nonintersecting closed curves I'; € J*, i = 1, n, bounding a finite domain
DT and let D~ be the complement of the set Dt U T with respect to the
entire plane. The function GG given on I' will be called a function of the class
g(p) if it belongs to E(p) on every curve I';. Assume z,(G) = sz(,l)(G),
where %Z(,Z)(G) is the index of the restriction of I'; on . If for every curve
I'; we construct by Theorem 3.5 a factor-function and assume that X is
the product of these functions, then, as is easily verified, it will be the
factor-function of G in KP(T'). Thus Theorem 1.1 is true in the case under
consideration.

2. The case of an open curve. Let I' be a simple, open, oriented, rec-
tifiable curve. We seek for a function ¢ € KP(T'), whose boundary values
satisfy the condition of conjugation (I). If [ is a closed curve with I' on
it, then, as is known (see, e.g., [66]), the solution of the above-formulated
problem reduces to the solution in the class KP (f) of the following problem
of conjugation:

ot(t)=G(t)e~(t) +3(1), teT,

where

~ . JG{), tel, ~ Je@), teT,
G(t)_{L te\I, g(t)_{o, remr. 852

Thus, if one sets oneself the task of constructing in this a way a solution
of the problem on an unclosed curve, the boundary curve in this case must
be complemented to such curve I' for which the problem has already been
studied. On this basis we can extent the results of Theorems 3.5 and 1.1 to
the case of unclosed from the class J* curves with the tangents at the ends.
For this purpose, applying Lemma 3.4 and assertion 3.2 from Chapter I, we
have to complement I' with respect to a closed curve I' € J* and to impose
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on G the conditions guaranteeing on I' the belonging to the class g(p) of
the function 7 which is formed by formula (3.32).

As an example, we cite a version of function factorizability on an open
curve of the class J without additional assumptions that it has tangents at
the ends.

Theorem 3.6. Let Tgp € J and G € A(p) with the condition that the end

points a and b possess the neighbourhoods Vo and Vi (on Typ) such that all

values G(t) fort € VoUW, lie in an angle o 27” with the vertex at the origin.

Then G is factorizable in the class KF(T'), p > 1.

Proof. Let p be the smooth curve for which condition (1.1) is fulfilled. De-
fine on g the function Go(7) = Go(7(s)) = G(t(s)), 0 < s <! and comple-
ment g with respect to a simple smooth curve pi. By the assumption on G,
there exists a constant & such that the function

i _ GO(T)’ TE M,
Go(r) = {h e (3.33)

belongs to g(p) on fi. The function %é; will be the same. For the sake of
simplicity, we assume that ind, %Go = 0. (As is seen from the above, to
this case easily reduces the case with nonzero index).

Since fi is a closed smooth curve, the problem (I) with this coefficient
is by Theorem 3.1 uniquely solvable in the class KP(ji), and Xr};(z) =
exp Kﬁ(ln%éo)(z)] is its factor-function. But if 7 € f\p, then %éo =1
and since ind, %éo = 0, we may assume that In %éo = 0 when 7 € f\p.
Therefore Xr};(z) = exp [ICM (ln %éo) (z)] . Moreover, since X;; € KP(f) and
Xr(00) = 1, we find that X+(2) = K;(X,E - Xi) +1=Ku(XF-X)+ 1L

Denote restrictions on u of the functions X% by X*. Obviously, X* €

I
LP(p), += € Lpl(u). We also have XT € W, (ji) and hence X+ € W, (u).
I

In exactly the same way as for the closed curves (see subsection 3.2) we
establish that w(t) = exp [%Sp (% In G)] belongs to the class W, (I'). Using

now a result from subsection 2.2, we can easily establish that the function
%G is factorizable in the class KP(T') and hence G has the same property. W

8 4. THE LINEAR CONJUGATION PROBLEM IN THE CLASS OF
FUNCTIONS REPRESENTABLE IN DoMAINS D¥ BY A4 CAUCHY
INTEGRAL

Let I’ be a closed, rectifiable, Jordan curve bounding the domains DT
and D™, z = oo € D7. Consider the problem (I) in the class of functions
which are analytic on a plane cut along I' and representable in the domains
D* and D~ by the Cauchy integral (i.e., belonging to E'(D%)). In what
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follows, the class of such functions will be denoted by E!(T'). This class
is the subset of K*(T'). Thus, for example, there exists an integrable on v
function g such that the boundary values QSE'J' of the Cauchy type integral
$0 = Kreg are not summable. Evidently, ¢go€E(T).
Note herewith that if p > 1 and boundary of D* belongs to R then the
class EP(T') coincides with the class KP(T') (see Chapter I, §3, Theorem 3.4).
In the sequel we will assume that

G+#0, GeH, »=indG, ¢, S,e€L(l), Tek. (4.1)
The assumption Spg € L(T') is necessary if we wish the jump problem
¢t (t) — o~ (1) = 9(t)

to have a solution in the class E1(T).

The following assertions are valid:

()if T € K, ¢ € H then (Sry)(t) coincides almost everywhere with the
function of the class H;

(2)ifT € R, ¢ € L(T') then Krp € Ns»1 E*(D*) (see Chapter I, Corollary
of Theorem 3.3);

(3) if Krp € EY(T'), a € H then K(ap) € EY(T).

The validity of the assertion (1) follows directly from the following rea-
soning. Let ¢ € H(«). The second summand in the equality

<&ww:i/¢w‘<%1+<ﬂ/dr

m T—1 m T—1
r r

coincides almost everywhere with ¢(t). The first one also belongs to the
Holder class (generally speaking, with the exponent less than «). In order
to see that this is so, it suffices to follow the proof of the same assertion (see
[106], p.70-73) in the case of smooth curves with the only difference that
the estimate of the integral /; appearing there should be replaced by

dt
1] < o le(to) - m+h|/ dt
|t—t0|

k
< — — — < & < a7 .
< o-lelto) wM+hﬂ/|&ﬁd_dMlmM_mh (42)

Prove the assertion (3).
By virtue of (2), we have Kr(ap) € Ns<1 E* (D). Further,

/|(Kr(agp))+|d5§ %/|agp—|—5p(ago)|d5:

1/
=
r

1 —a(t
ap + 2aSrp + — Mgp(r)dr ds <
2me T—1
r




M d
/|aso|ds+max|a|/|5w|ds+ //'|(,_5|1'f

Replacing the order of integration in the third summand on the right-
hand side, we can see that [Kr(ap)]t € L(T'), and hence (Kr(ag)) €
EY(D%).

On the basis of assertions (1)-(3) we can easily prove

Theorem 4.1. Let a closed curve I' € K bound the domains DT and D~.
If the conditions (4.1) are satisfied, then for the linear conjugation problem
(I) in the class EX(T) the assertion 1 from Theorem 1.1 is valid.

§ 5. THE LINEAR CONJUGATION PROBLEM IN THE CLASSES KP(I', w)
AND ITS APPLICATIONS

Let T' be a simple, closed, rectifiable curve and
w=expiSry, Imy =0, ¢eL>(T), we W, (T). (5.1)

If I' € J*, then as an example of such a function may serve ¥ = arg, G,

G e g(p) (see Theorem 3.5). Under the above assumption regarding w con-
sider the problem: define a function ¢ € K?(T', w) which almost everywhere
on I' satisfies the boundary condition (I).

We will also consider the linear singular integral equation (IT) in the class
LP (T, w).

To preserve the equivalence of the problem (T) in the class KP(T; w) and of
the singular equation (IT) in the space LP(T'; w), it is necessary to require for
the operator St to act from LP (T, w) to LP(T'; w). Consequently by Theorem
2.3 of Chapter I, Sr is bounded in that space, and hence w € W,(I').
We arrive at the same conclusion when we want that the jump problem
¢t — ¢~ = g would be solvable for every ¢ € LP(T; w) in the class of those
functions from the class K?(T';w) for which ¢* € LP(I';w). Thus, in the
above-mentioned cases the necessary condition is: w € W,(T'). But in a
number of cases, every weighted function from W,(I') is equivalent to the
function w from (5.1); (e.g., by Theorem 4.8 of Chapter I, for every function
w € W,(T) in the case of Lyapunov curves there exist bounded u and v such
that ITmv = 0, w = exp(u + 1STv).

On the basis of the above arguments, the assumptions (5.1) adopted by
us with respect to the weight function w may be considered to be natural.

5.1. Reduction of the problem (I) in the class X?(T'; w) to the linear con-
Jjugation problem in KP(T).

Theorem 5.1. Let a closed curve I' € R and ¢ be a real bounded function
such that w = exp (%Sﬂ/}) belongs to W,(T'). Then for an arbitrary solution
¢ € KP(T;w) of the problem (I) the function ¥(z) =Y (2)¢(z), where

Y(z) = exp[i( Kre)(2)],
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is @ solution of the class KP(T') of the conjugation problem

UH(t) = Gt exp(ip) ¥~ (1) +g1(t), g1(t) =g (O] (5.2)

Conversely, if ¥ is a solution of the problem (5.2) belonging to K¥(T'), then
the function ¢(2)Y ~1(2)W(z) belongs to the class KP(T',w) and satisfies the
boundary condition (I).

Proof. Show first that Y € EPI(F, w~1). By Theorem 2.1, for some § > 0
we have Y € E?(D*1). But y* = exp [% + %Sﬂ/}] = wexp %, and since
w € W,(T'), we have that Y+ € L?(T') (by Lemma 4.2 of Chapter I). Using
the fact that I' € R and DT is a Smirnov’s domain, we conclude that ¥ €
EP(D%). From this, following the proof of Theorem 2.1 we notice that one
can take in it ng = 0. Then (Y —1) € EP(D™), and thus (Y —1) € E?(D%).
Therefore (Y —1) in the domains D#* isrepresentable by the Cauchy integral,
that is, Y € K(T'). The density of the corresponding integral will be
Yt—Y =w exp%—exp _;/) .

This function, evidently, belongs to the class LpI(F, w™h), and hence Y €
KP'(T',w™h).

Thus the functions ¢ and Y belong to the adjoint classes EP(F, w) and
EPI(F, w1, respectively, and so ¥ = ¢Y belongs to the class I:’(F) (see,
e.g., [68], p. 98-99). Next, it is obvious that ¥* ¢ LP(T'), ¥(c0) = 0.
Consequently, ¥ € KP(T'). Tt can be easily verified that ¢; € LP(T') and ¥
satisfies the boundary condition (5.2).

The converse assertion 1s proved analogously. B

Remark. Theorem 5.1 holds also valid in the case where the condition
w € W, (T) from (5.1) is replaced by the condition w € LP(T), w=! € LpI(F).

Indeed, Y belongs to EPI(F) since by Theorem 2.1, Smirnov’s theorem
and also the condition w™! € LpI(F). Further ¢ € Ns<1 E%(DY), so as we
have LP(T',w) C L(T') and T' € Ns<1R1 s (see Chapter I, (3.4)), and we can
apply the corollary of Theorem 3.3 in Chapter 1. Therefore ¥ & ET(Di) for
some r > 0. But ¥* € LP(T'), and hence ¥ € KP(T').

In the same way, from the assumptions ¥ € K?(T', w) and w € LP(T) we
establish that & € KP(T).

5.2. The problem (I) in the class KP(T', w)for T € J*. Asfar as the problem
(I) is well studied in the class KP(T'), Theorem 5.1 allows one to obtain the
appropriate results for this problem in the class KP(T', w) when w is required
to satisfy conditions (5.1). As an example, we give here a result based on
Theorem 1.1.
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Theorem 5.2. Let I' € J*, g € LP(I',w) and let ¢ be a real, measurable,
bounded function such that w = exp[5Srep] € W, (I'). If the function Gy =

[
Gexp iy belongs to the class g(p) (or to M(p)) and »(Gy) is the index
of the function Gy in the class KP(T'), then for problem (I) in the class
KP(T,w) assertion T of Theorem 1.1 is true.

5.3. On the Noetherianness of a singular integral equation in the spaces
LP(T', w). The results of subsection 5.2 allow one to obtain an analogue
for the second part of Theorem 1.1 regarding singular integral equations
in the spaces LP(T', w). We will use the results of I.B. Simonenko on the
equivalence between the Noetherian characteristic singular integral equation
in the Lebesgue spaces and the factorizability of the definite function in the
classes representable by the Cauchy type integral.

Theorem 5.3. Let the closed curve I' € R and the function w satisfy the
conditions (5.1). If a and b are bounded, measurable on T functions and

. 200\ 2
tlglﬁ la®(t) — b*(¢)] > 0, (5.3)
then the equation

ap+bStrp =g (5.4)

is Noetherian in the space LP(T',w) if and only if the equation

arf+ 050 f = ¢, (5.5)
with
ag =a(l+m)+b(l—m), by =a(l—m)+b(1+m), m=expiy,

is Noetherian in the space LP (T, w).
The equations (5.4) and (5.5) have the same indizes.

Proof. We will rely on the following assertion: - the noetherianness of the
equation (5.4) in the space LP(T',w), w € W,(I) is, under the condition
(5.3), equivalent to the factorizability of the function G' = (a — b)(a + b)~!
in the class Kp(T'; w), the index of equation (IT) in LP(T'; w) being equal to
(—3), where 3 is the order of the factor-function G at infinity.

This assertion for w = 1 is proved in [143]. The case of the power weight
has been considered in [42, pp. 272-275]. Making slight modification in the
proof of [143] (connected with the properties of the Cauchy type integrals
on the curves from the class R), we can see that the above assertion is also
valid for the assumptions I' € R, w € W,(I').

Let the equation (5.4) be Noetherian in LP(T'; w). Show that the equa-
tion (5.5) is Noetherian in LP(T"). By the above, it suffices to show the
factorization in KP(T') of the function Gy = (a; — by)(a1 + b1)~*, provided
the factorizability in K?(I'; w) of the function G = (@ — b)(a + b)~L.
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Let X be a factor-function for GG in K?(I'; w). Show that the function

Z = XY, (5.6)
where
Y(z) = exp (% 1/}7_(7—_)627—), z€r, (5.7)
T

is the factor-function for G in K?(T").
Since (a; —by)(a; +b1)7t = (a — b)(a + b)~tm and
VA Xty+ a—b . a—b
— = = ex = m,
Z- X-Y- a+b a+b

we find that
Z+(Z_)_1 = (Cll — bl)(al + bl)_l.
Determine the remaining properties of the factor-function.
In proving Theorem 5.1, we have shown that Y € EPI(F;w_l). The
fact that X € I}p(F;w), w € W,(T), implies Z € El(F). Then Z =
Kr(Zt — Z7), where

ZE(t) = XE(Hw(t)m* 3 (). (5.8)

It can be easily verified that Z*¥ € LP(T). Moreover, both X and Y
belong to the classes £%(D%), 6 < 1and so Z € E*(D*), 65 > 0. Therefore
Z € KP(T'). Analogously we can prove that Z~! € ICPI(F), taking into
account that w™! € LpI(F).

Thus, 7 € EP(F;w), Z71l e ICPI(F;w_l). It remains to prove that the
operator Z7T SFX1_+ is continuous in LP(T'). This immediately follows from
the continuity in LP(T'; w) of the operator X"’prl—Jr, if we take into account
(5.8).

With regard for (5.6), it is evident that both Z and X have the same
order at infinity, and consequently the equations (5.4) and (5.5) have the
same index in the classes LP(T'; w) and LP(T), respectively.

In exactly the same way we can prove that the noetherianness of equation
(5.5) in LP(T') leads to that of the equation (5.4) in L?(T'; w), and hence we
conclude that these equations have the same indexes. W

In addition to the arguments proved above, we will point out the formulas
providing one-to-one correspondence between the solutions of the equations
(5.4) and (5.5). For the sake of simplicity we suppose that their index is
equal to zero. Since

§0:¢+_¢_a f:F+_F_a

where

¢+:G¢_+ga F+:G1F_+g1a
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we can easily determine that: if ¢ the solution of equation (5.4) of the class
LP(T; w) and Y is the function given by (5.7), then the function

1 1
[= §(Y+ +Y 7 )p + §(Y+ —Y7)Sre

will be a solution in the class LF(I') of equation (5.5) with g; = % on the
right-hand side. If, however, 9 is a solution of (5.5) of the class LP(T'), then

the function L1 ) L1 )
p= 57ty +5(gg — yo)orf

will be a solution in the class LP(T,w) of (5.4) with ¢ = ¢1 Y™ on the

right-hand side.

8 6. THE LINEAR CONJUGATION PROBLEM IN THE CASE OF A
STRAIGHT LINE

6.1. Functions of the class Z(p) on a straight line. Let ¢ be an arbitrary
point on the real D axis and let e be its neighbourhood (the case t = oo is
not excluded; any set of the kind (¢ < —N)U(t > M), N, M > 0 is assumed
to be the neighbourhood of this point). If ¢ is a bounded function, then its
oscillation Q(¢,tg), to € D, can again be defined by the equality (1.3).

Let G be a function given on D and let (%)_; be a boundary value

on D of the function (%) " analytic on the plane cut along the non-
intersecting rays coming out the points z = +¢ and lying on the ordinate
axis. B

We will say that G € Ap(p), l <p < oo if: (1) 0 <m < |G| < M; (2)
for all ¢t € D with the possible exception of the points g, k = 1, n (the case
cr = oo is not excluded) there exists a neighbourhood in which the values
of the function G(l)(t) = G(t)(% W
with the vertex at the origin; (3) at the points c¢j there exist the limits
G(cpt) (and hence G(l)(ck:t)). Moreover, 217” < & < i—? for p > 2 and
i—? < o < 217” for 1 < p < 2, where 63 is the angle formed by the vectors

G(ll)(ck—) and G(l)(ck—l—) for |ex| < oo and by the vectors limy_ 4o G(l)(t)
and limy_, _ G(l)(t) for ¢ = co.

Together with GG we will consider the function G1(7) = G(iH’T) defined

)_; lie in an angle less than

1—-7

on the circumference y and assume Gy(r) = Gl(r)r_%, where 77 % is the

2 o

boundary value at the point 7 of that branch of the function z = w™ », ana-
lytic in the plane cut along the ray [0, +00), which takes the value exp(— 7;}—2)
at the point w = 1. B

For the function G € Ap(p) we can determine an argument and an index
just in the same way as in §1. It is not difficult to verify that

(G, D) = 54y(Gay) + 1.
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6.2. The class of the functions m, (7). Let ¢ = Kp(¢). Then the function

\P(w)=¢>(i1+w), (6.1)

1—w

analytic in the circle U, 1s representable in the form

qS('l + w) 1—w / go(ii"_':)dr 1 /80*(7')6”_1_ 1 /SD*(T)dT
1 = fr— -
1—w 2711 (r—w)(l—=71) 2mi T—w 2711 1—7 "
¥ ¥ ¥
where
win (. A+T « ~ 1p _ _z
P =p(izr), ¢ ell(yu), w=[1-r"F  (62)

Denote by m, () the set of the functions ¥ representable in the form

_ L [yldr 1 [u(n)dr
() = i) 7w T 27Ti/ 1—7" o #1 (6-3)
B! B!

and such that % € LP (v, w) or, which is the same,

U Sy e (v w), w=1-7|75.
Then if ¢ € KP(D), then the given by (6.1) function ¥ &€ m,(v), and
conversely, if U € m, (), then ¢(z) = \I!(%) € KP(D).

6.3. Reduction of the problem in the class K?(D) to the problemin the class
my (7). Let one seek for the function ¢ € KP(D) satisfying the boundary
value

ot (t) = G()o™ () + 9(t). (6.4)

If ¢ is a solution of this problem, then ¥(w) = ¢(li_—fj) will be a solution
in the class m,(y) of the problem

\I!"'(T):G(iii—:)\ﬁ_(r)—l—g(iij:).

Assuming Gy(r) = G(z%"_':), and g1(7) = g(zi’:), the last equality

takes the form
Ut (r) = G (1)U (1) + g1(7), (6.5)

and we can easily verify that g, € LP (7, w).
Rewrite (6.5) as

2 o

Ut(r) = Gy(r)r~ T%\P_(T) + g1(7). (6.6)
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Let now f(w) = (1_7“’) ? be a function, analytic in the plane cut along
the segment of the real axis [0,1] such that f(i) = exp(—?z’—;i). In the

plane cut along the ray [l,+o0), define the functions r(w) = (1 — w)%,
r(i) = exp(—%). They are continuous up to v except for the point 7 = 1
and branches are chosen such that the function

Mw) = {(1 . wg)%’ ol <1 (6.7)

(57, w] > 1

satisfies the condition A*(r)[A=(¢)]7! = 7 on Y\{1}. Now (6.6) can be
written as

LArCoNNPIINIS (o N ATC
e S =
Denote
Py =3, a0 = i (= 720 68)
Then
Fr(7r) = Go(r)F (1) + g2(7). (6.9)

Since ¥ € m,(7y), then F € I}p(D).
Thus if ¢ € KP(D) is a solution of the problem (6.4) and ¥(w) =

o (i), then
U(w) = F(w)A(w), (6.10)
where A(w) is defined by (6.7), and F is a solution of the problem (6.9) of

the class kp(’y). However, if it will happen that ¥ € m,(y), then ¢(z) =

v (%) will be a solution of the problem (6.4) of the class K?(D).
6.4. Solution of the problem. Since G € Ap (p), then G2 € g(p) on v and
therefore it is factorizable in KP(y). Let X be its factor-function. It can be
easily seen that the solution of the class K,() of the problem (6.9) given
by

(-

where 3¢ = 3¢,(G2) and P, = 0, if »r < —1.
The function

¥w) = M) [ TS|

satisfies the conditions W+ € L? (v, w). In order for ¥ to belong to m,(I'),
it is necessary to find a function ¢ such that equality (6.3) would hold.
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Consider the following cases. 1. 2(G2) > —1; II. 2(G2) < —1.

I. 2(G2) > —1 (that is, 2(G) > 0). The set of solutions given by (6.11)
involves s(G2) = »(G) — 1 constants. So we must choose them in such
a manner that the corresponding to them function ¥(w) would belong to
my(7y). Since ind, Gy = ¢, there exists limy,_.oo w*X(w) = ¢, ¢ # 0.
The function ¥(w) — 5 P, (w) vanishes at infinity, and therefore it can be
represented by the Cauchy type integral

() cP(w) 1 /[\If"'—T%P%]—[\I!_—T%P%]d
w) — ——~L = — =
w* 27 T—w
v
L[,
2w T—w
v

If P, (w) = Agw” + Ajw”~t 4+ ...+ A, then we find that

1 Ut (r)— U (r c A A, dr
oo [V [ ey b
¥

T—w T/ T —Ww
b

1 (Ot (r)— ¥~ (7)] + R(T)

= — dt + cAy,
2mi T—w
2l
where ) )
— _cf 2L Zx
R(T)_ c( T”)’
and
U= (g0 XS, ) - A (L xms,
- g2 ’VX_I_ P2 G2 'yX_I_
-p ) = [at +g 92y (92, x- g_z)]
X P;,)_[/\ (gz—l—X SWX+) A (G2+X 2] +
XHAT
FXPATP, - XTA"P, =W+ XA~ (W—l)ﬂ,:
_ R +g 92\ (92 _x-g 92
— Wy + U, P, \Ifo_[A (g2+(g2)+x SWX+) by (Gz X SWX+)].
For the inclusion ¥ € my(7y) it is necessary and sufficient that the con-
dition
1 Ut(r)—¥-
cAy = —/ (r)— ¥ (T)+R(T)d7',
2mi 1—71
gl
that is,

1 v v P,
CAOI—./ of(7) + ¥a(7) dr+c(A1+ -+ A,)
2w 1—7
v

be fulfilled.
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Hence we have

C(Ao—Al—~~~—A;,)Ia+A0b1—|—~~~—|—A%b%, (612)
where
1 Wo(r)dr 1 //\_(T)X_(T)(Gl — 1)7”‘j_1
“=om] TTor o YT g 1—r dr.
¥ r

With respect to the unknown numbers Ay, ..., A,, and s > 0, the equa-
tion (6.12) is solvable. Indeed, this is evident for »(Gs) > 0 . Substituting
the above-found values in (6.11), we obtain the general solution of the prob-
lem. Note that this solution contains s(G'z) arbitrary constants. For c = 0,
we will proceed from the representations (6.3) and (6.11). According to the

former, ¥(oc0) = # . w, while to the latter, ¥(o0) = Ag. Whence

1 Wod
Ag= — [ 24T
2w 1—71
v

Thus, ifind, G's > —1, the coefficients of the polynomial P,, satisfy (6.12)
and the function ¥ is given by (6.11), then the function ¢(z) = \I!(%) is

a solution of the problem (6.4).

IT. 2(G2) < —1 (that is, 5(G) < 0). In this case the problem (6.5) may
have perhaps only one solution given by equation (6.11) with P, = 0. For
its solvability, the following conditions are to be fulfilled:

k
.
[t =0 k=0t 6

~y

Show that the function ¥ belongs to m,(y). Since the conditions (6.13)
are fulfilled, there exists limy oo F(w) = ¢, i.e., ¥(c0) = ¢. Then

\P(w):%/w&'—l—c

and for the inclusion ¥ € m, () we must have

1 —(r)
_2_/ 1_T T, (6.14)

and therefore

The function \IilJr_(Zj) = (1_111)_;;1(10) belongs to H*

L/\I!*'(T)dr_o
2me 1—7 7

~y

bl
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Further, (6.3) implies that ¥(co) = ¢ = —ﬁ f7 w, and hence
(6.14) is fulfilled.

Thus, problem (6.5) for 3¢(G2) < —1 possesses the solution in the class
my(7y) if and only if are fulfilled conditions (6.13). In this case the solution
is unique and given by formula (6.11).

Transforming the variable in (6.11) and taking into account the fact that
2(Ga,vy) = »(G, D) — 1, the solutions (if any) of problem (6.4) are given in
all the cases by the equality

o) = (ﬁl)_X(ilz) %

% [z—l—.i / (;(I(Zt);_)(f(j)j; +P%(G)_1(j;§)]. (6.15)

Note that if 2¢(G) > 0, then the conditions (6.12) must be fulfilled ensuring
»#(G) — 1 arbitrary coefficients for the polynomial P,g)—1. If »(G) < 0,
then for the problem to be solvable it is necessary and sufficient that the
conditions

oQ

/g(t)(;j)km(l%) (t—iti)z —0, k=0,...,}(G)—1, (6.16)

— 00

be fulfilled, where X(z) is the factor-function for Ga(7) = G(i1+T)T_%.

1—-7

6.5. One theorem on weights in the case of a straight line. As a consequence
of the result obtained in subsection 6.4 we present the following:

Proposition 6.1. If—zl—) < ap < 1%’ —11—) <B+> G jar< Zl) and X is the

factor-function of a function from g(p) on 7y, then the functions

t—1 Nl_2
wl(t):X+(t+i)(t+z)1 z (6.17)
and
w(t) = (L+ 1)) [T It = tx**, tx €D, (6.18)
k=1

belong to the class W, (D).

Proof. The first assertion is a consequence of the fact that the function
given by the equality (6.15) is a solution of the problem (6.4) in the class
KP(D).
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To prove the second assertion, it suffices to show that the function p(¢) =

(t+19)° T] It — tx]®* belongs to the class W,(D). Suppose
k=1

2 _
Vozl———Zak—ﬁ, vy = o, k=1n.
k=1

Then % <y < z%' Indeed, by assumption we have —Z% — ZZ:1 ar < B <
ZZ:1 ay + 1%' Therefore

Vo < (1—2—Zak)+%+2ak:l,,

p k=1 k=1 p

2 - 1 1
1/0><1———Zak)—|— Qp — — = ——.

p k=1 k=1 p p

1413
11—t

< M, where X is
the factor-function of the piecewise continuous on ¥ function of the class
g(p) Therefore, by virtue of (6.17), we have p; (%) (t+ i)l—% € W, (D).
THe transformation of the variable in p;(7) shows that the our assertion is
valid. W

Consequently, the function pi(7) = [[i_, |7 — ex|"*, where ¢, = i

belongs to the class W,(y). But 0 < m < ‘)?ﬂr((?)

6.6. On the problem of conjugation in the case of an infinite curve. Singular
integrals on infinite lines or the problem of conjugation in domains with
such boundaries have been investigated in [32], [168], etc. The problem in
the class KP(T) is considered in [111] for a class of curves. Following the
reasoning of subsections 6.1-6.4 and using the results of [111] (such as the
belonging of the curves under consideration to R, reduction of the problem
to the case of bounded curve, and etc.) we can extend the result of the
present section to the curves from the above-mentioned class. Despite the
complete analogy, we do not dwell on the question.

8 7. ON THE RIEMANN-HILBERT PROBLEM IN & CLASS OF CAUCHY
TYPE INTEGRALS

Let I' € R be a closed Jordan curve bounding a finite domain D. Denote
by KP(D,p), 1 < p < oo a set of analytic in D functions ¢ representable in
terms of

T 2w t— =z
r

¢(z) = L/Sp(t)dt, 2€D, p€LPT,p).

In other words, the class K?(D, p) consists of the restrictions on D of the
functions from the class KP(T', p). Let a, b, ¢ be real functions defined on T,
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and
a,b € L=(T), ce& LP(T,p), tin1£|a2+b2|>0. (7.1)
€

Consider the Riemann-Hilbert problem formulated as follows: define the
function ¢ € KP(D, p) whose angular values ¢ (t) satisfy almost everywhere
on I' the condition

Re[(a(t) + ib())6™ (t)] = c(t). (7.2)

This problem will be called homogeneous for ¢ = 0.

In the sequel will be used Muskhelishvili method of reduction of Riemann-
Hilbert problem to the problem of linear conjugation. For such a reduction
it is necessary to know properties of the integrals (Krf)(z(w)) in a circle,
where z = z(w) is a conformal mapping of the circle onto D. The obtained
linear conjugation problem has to be considered in the class KP (v,7), where
7 is independent not only of p but of the derivative z/(w), namely r(¢) =
p() /2 (). In the general case r differs from the conventional weight-
w=[]1¢ — ex|**. Moreover, such a situation takes place even if p = 1 and
I’ is a smooth curve.

7.1. Reduction of the problem (7.2) to the linear conjugation problem. The
conditions

DrekRr, 2)peWy(l), 3)p(x()=(C) € Wp(v) (7.3)
will be assumed to be fulfilled. Note that the condition p € W,(T') implies
p(2(€)) /#'(¢) € LP(7). The requirement 3) is more strict.

Let ¢(2) = (Krf)(z) be a solution of problem (7.2) of the class K?(D, p),
p > 1. In the circle U, consider the function
1 f()dt
/) = = — _
(w) = 6(z(w)) 271 ) t—z(w)’
r
which under the conditions (7.3) belongs to the class KP(U, r) (see Chapter
I, Proposition 4.1) and satisfies the boundary condition

Re[(A(¢) + iB(O)TT (O] = C(C), (€, (7.4)

where A(¢) = a(2(()), BC) = b(2(¢)), C(¢) = e(=())-

Conversely, if ¥ € KP(U, r) is a solution of the problem (7.4), then ¢(z) =
U(w(z)), where w = w(z) is the inverse to z = z(w) function, is a solution of
the problem (7.2) belonging to the class KP(D, p) (see Chapter I, Proposition
1.2).

This implies that if we possess all the required solutions of problem (7.4),
then will have all reqired solutions for (7.2) as well.

If, however, there appear conditions for solvability of problem (7.4), then
they can be interpreted as the conditions for solvability of problem (7.2).
Moreover, since the systems of functions ¢1(z),...,¢n(2) and ¢1(z(w)),
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$2(z(w)), ..., ¢n(2z(w)) are simultaneously linearly independent in the do-
mains D and U, respectively, the number of linearly independent solutions
of the homogeneous problems (7.2) and (7.4) coincide.

Thus we have to solve the problem (7.4) in the class KP(U,r), r = pv/ 2!
under the assumption that the conditions (7.3) are fulfilled.

In the same way as in [106], consider the function

Uw) = {\If(w), ol < 1,

WD), ful> 1, (7:5)

where ¥(w) = (Krf)(z(w)), f € LP(y,r).

Following the proof of Theorem 1 of Chapter IV in [66] (in which » =
[Tt =te|®*, tx € v), we can easily verify the validity (see also [118], Lemma
4) of the following

Lemma 7.1. Let b € LP(y,7), r € Wy(y) and
d
2 [ fw <1

Q(w) = L[ TGS
2me Jy

_L
k-

[w| > 1.

Then the function Q(w) = Q(w) — ¥(0), ¥(0) = # Y %dc is repre-
sentable by the Cauchy type integral with density from the class LP(y,r),
e, QEKP(y,r).

Now we are on the point of reducing the problem (7.4) to the linear
conjugation problem.
Rewrite (7.4) as follows:

(A+iB)¥t + (A +iB)¥+ = 2C. (7.6)

Define the funcyion Q by (7.5). Taking into account that Qt = ¥+ Q- =
U+, the equality (7.6) takes the form

(A+iB)Q+ (A —iB)Q~ = 2C. (7.7)

Thus, if ¥ is a solution of the Riemann-Hilbert problem (7.4) of the class
KP(U,r), then € is a solution of the problem (7.7) of the class Ep('y, 7).

If © is a solution of the problem (7.7) of the class Ep('y,r), then its
restriction on U fails, generally speaking, to be a solution of the problem
(7.4). For this to be so, it is necessary that the equality

ot =0~ (7.8)

be fulfilled. If this equality does take place, then using the same equalities
as in obtaining (7.7) but in reverse order, we can see that the restriction on
U of the function € is a solution of the problem (7.4).

Assume that

0.=0(2), Jul#1
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The equalities

[Qu(w)] = Qw), Q7)) =0+, () =27(()

are obvious.
Passing in (7.7) to complex conjugate functions, we obtain

(A—iB)QF + (A +iB)Q- =20,
or
(A—iB)QI + (A+iB)Qt =20, (7.9)

It is not difficult to prove that if Q € kp('y,r), then €, € kp('y,r).
Therefore, owing to (7.9) we conclude: if € is a solution of the problem (7.7)
of the class Ep('y, ), then Q* is likewise a solution of the same problem.
Then the function %(Q + Q.) which already satisfies the condition (7.8) is
also the solution of the problem (7.7). Consequently, the restriction ¥(w) =
%(Q(w) + Q. (w)), of this function on U will be a solution of the problem
(7.4) of the class KP(U,r). However, if ¥ is a single solution of (7.4), then
the equalities ¢(w) = Q(w) = Q.(w) in U are valid, and hence ¥(w) =
%(Q(w) + Q. (w)). Thus we have proved the following

Lemma 7.2. Every solution € Ep('y,r) of problem (7.7) generates a
solution of problem (7.4) of the class KP(D,p) specified by the equality
U(w) = %(Q(w)—I—Q* (w)), |w| < 1 and vice versa, every solution of problem
(7.4) of the class KP(D, p) has such a form.

Write the boundary condition (7.7) as
Qft =GO +y, (7.10)

where
G=(iB—-A)(B+A)™, ¢=20GB+A4)"

By Lemma 7.2, it suffices to investigate the problem (7.10) in the class
Ep('y, Py, r=pY.

Since r(¢) € Wy(y) (see (7.3)), there exists by Theorem 4.8 a real function
¢ € L*®(y) such that r({) is equivalent to the function exp %Sm/), ie.,
exp 3

0<m< 5,9 ‘ < M, and we may assume that

Q) = exp 2 (5,)(C). (T11)

The assumptions (7.1), (7.3) and (7.11) imply that the conditions of
Theorem 5.1 are fulfilled and we are able to reduce problem (7.10) of the

class Ep (7,7) to the linear conjugation problem.
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Theorem 7.1. Let the conditions (7.1), (7.3) and (7.11) be fulfilled, and
e ] ] £ 1.

—w

V) = e |-

Then if F(w) is a solution of the problem

FF(¢) = G(Qlexp(iv(O)IF~(C) +9(0) (7.12)
of the class kp('y, r), then the function
V(w) = %[Q(w) +Q(w)], Qw) = Fw)[Y(w)]™, |wl <1, (7.13)

is @ solution of the problem (7.4) of the class KP (D, p), and the function
¢(z) =¥(w(z)), zeD,
is the solution of problem (7.2) of the class KP(D, p). All the solutions can
be obtained in such a way.
Let us give to the condition (7.12) a somewhat different form. To this

end we assume that

1 pu(rydr

plt) = ple(Q) = exp o [ =, (7.14)
Jim arg 2" (w) = 5(C), (7.15)
G(¢) = |G(Q)] expiv(C). (7.16)

Then the following corollary is valid.
Corollary. If the weight function p € W,(T') is of the form (7.14) and the
function v({) = exp{ Mg’“()dr} belongs to Wy(y), then the

gm T
conclusion of Theorem 7.1 with F' as a solution of the problem

GO

FHQO = 6@l exp [i( =2+ 40 +1(Q) 7@+ (1D

15 valid.

The character of the solvability of the problem (7.17) depends on the
coefficient

|G exp [i(§+u+v)].

Here |G| and expiv are defined by means of the coefficients a and b of
problem (7.2); expiZ is defined by a curve and by a class of unknown
functions, and exp iu by a weight function p. On the basis of the above-said,
varying the sets of unknown functions (i.e., those of weight functions and of
the exponent p), coefficients of the boundary condition and the domains of
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analyticity of unknown functions, the corollary of Theorem 7.1 allows one to
deal with such of linear conjugation problems which have already been well
studied and thus to obtain the appropriate results for the Riemann-Hilbert
problem. Of course, we intend to apply for this purpose Theorem 1.1, but
postpone this until Chapter IV bearing in mind an application of properties

of the function #(¢) which will be established in Chapter TII.

8 8. ON THE INHOMOGENEOUS LINEAR CONJUGATION PROBLEM IN A
Crass oF CaucHYy TYPE L-INTEGRALS

In this section the use will be made of the results obtained in Chapter I, §6
to solve an inhomogeneous linear conjugation problem under the following
assumptions.

Let T' be a simple, rectifiable curve, belonging to the class R, G satisfy
the Holder condition on T and differ on T' from zero, g € L(T').

A solution will be sought in the class of functions representable in the
form

_ ) Er(pn)(=) for z € DT,
= {KF(302)(Z) + P(z) for z€ D™, (8.1)

where 1, 2 € L(T'), P is a polynomial. The last class coincides the class
of functions representable by the Cauchy type z—integral. whith polyno-
mial principal part at infinity. The above-formulated problem in the case
under consideration has, in general, no solutions in the class of functions
representable by the Cauchy-Lebesgue type integral even under the sim-
plest assumptions with respect to I' and GG which can be illustrated in the
following example.

Let T' = 4 be a unit circumference, G(¢t) = —1, g be a summable on v
function for which S,(g) is not summable.

Suppose there exists a solution of the problem ¢ representable by the
Cauchy-Lebesgue type integral K (¢), ¢ € L(7). Then by the Sokhotskii-
Plemelj formulas,

o7 (1) + 07 (1) = Sy(#)(®).

On the other hand, by the assumption,
¢t (t) + o7 (1) = g(t).

Consequently, S,(¢)(t) = g(¢). Using the inversion formula of a singular
Cauchy integral from Chapter I, §6, we obtain () = S,(¢)(t) which is
impossible since ¢ € L(y) and S,(g) ¢ L(¥).

The solution of the boundary value problem can be obtained as well
under the above assumptions as is done in Chapter II, §3, by substituting



135

the Lebesgue integral by the E—integral. The general solution will have the
form

X(z) g(t)dt

é(z) = 5 / X = =) + X(2)P(z), (8.2)
r

where X 18 a canonical solution of the homogeneous problem representable

by the Cauchy integral with density from the class H(T'), and P is a poly-

nomial.

Using the results of subsection 6.4, Remark 1 to Theorem 6.5 from Chap-
ter I, and the fact that Sy € H(T) for ¢ € H(T') and T' € R (see [28], p.
253), it can be verified that the function ¢ is representable by the Cauchy
type E—integral with polynomial principal part at infinity (i.e., in the form
of (8.1)).

It follows from formula (8.2) that:

(1) if ¢ and St(g) are summable on T, then any solution of the problem
is representable by the Cauchy-Lebesgue type integral,;

(2)if g € L,(T'), p > 1, then any solution of the problem is representable
by the Cauchy-Lebesgue type integral with density from the class L,(T');

(3) if ¢ € H(T), then any solution of the problem is piecewise holomor-
phic.

Thus, the extension in cases (1)—(3) of the class of unknown functions to
the class of functions representable in the form of (8.1) fails to provide us
with new solutions.

NoTEs AND COMMENTS TO CHAPTER 11

Theorem 2.1 can be considered as a generalization of V. Smirnov’s the-
orem ([146], see also [43], p. 401) in which it is stated that if T is a cir-
cumference and ¢ is continuous, then X belongs to the Hardy class H? for
any p > 0. On the other hand, this theorem can also be assumed to be a
generalization of A. Zygmund’s theorem on the integrability of a function
of the kind exp A, ([169]). The analogues of Theorem 2.1 under differ-
ent assumptions regarding I' and ¢ can be found in I. Simonenko [141], T.
Danilyuk [21], V. Shelepov [139].

Problem (I) was investigated in the classes KP(T") by B. Khvedelidze [66]
when G € H and T is a Lyapunov curve. G. Manjavidze and B. Khvedelidze
[90] studied the mentioned problem in case G € C(T') under the same as-
sumption on curves. The last authors have not focused their attention on
extension of the class of boundary curves. Neverthless their method, in
fact, works in a more general situation when I' € R. For more detail con-
sideration see [44-45]. In the case of piecewise continuous coefficients E.
Gordadze [44-45] studied Problem (I) under some restrictions at the points
of discontinuity of GG. In [7] it was shown that for a Noethericity of (II)
it 1s necessary to bind the character of discontinuity of GG and geometric
properties of (G in a neighborhood of discontinuity points (see also [138]).
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In [78] it was derived that the well-known formulas for solution in the case
of Lyapunov curves remain valid for I' € R as well.

In I. Simonenko’s paper [141], a class of functions A(p) has been intro-
duced and a complete investigation of the problem (I) with the coefficient
G € A(p), when T is the Lyapounov curve, is presented. Analogous results
have been obtained by I. Danilyuk [18] for coefficients admitting the repre-
sentation G = exp(po + 1), where ¢y € C(T') and ¢y is a function with a
finite variation. It is proved by V. Shelepov [139] that the above-mentioned
results remain also valid for the curves with bounded rotation.

As for singular equations with oscillating coefficients, the work due to [7]
is worth mentioning.

Problem (I) in the class E*(T') has been studied in the case of Lyapunov
T-curves [25].

The main goal of investigations carried out in papers [78-79] and pre-
sented in §1-4 is simultaneous extension both of a class of boundary curves
and of a class of coefficients. For example, the class A(p) does not contain
all admissible piecewise continuous coefficients. To make up a deficiency,
the class A(p) has been introduced. Along with this, has established that
boundary curves belong to that class of curves which contains, for exam-
ple, any curves (without cusps) made up of smooth arcs and of those with
bounded rotation.

Recently, in [46-47] has been considered the discontinuous boundary value
problem in a domain with an arbitrary piecewise smooth boundary with
coefficient G € A(p) which satisfies at the cusps some additional condition
under oscillation.

Reduction of the problem of conjugation (I) in the class KP(T',w) to
the analogous weightless problem was first performed in [110] in the case
where ' is the Lyapunov curve. The general case of curves from the R
class has been considered in [78]. The statement appearing in the corollary
of Theorem 5.1 is due to David’s theorem. Reduction of singular integral
equation (IT) in the class LF(T',w), w = [[ |t — x| to the equation in the
class LP(T) is also available in [107] for the case of Lyapounov curves. The
case I' € R, w € W,(T') is considered in [121]. In [149] the criterion for
equation (IT) with piecewise continuous coefficients to be Noetherian in the
classes LP(T', w) with weights w from the class A, is established.

The method of reducing the boundary problems to the problem with
shifts is pointed out in [92].

The results obtained with respect to the boundary value problem on a
straight line in that generality which is set forth here, are presented for the
first time (see also [32], [168], [111]).

The technique permitting one to reduce the Riemann-Hilbert problem in
the class KP(D, w) to the linear conjugation problem with circular boundary
contour v, whose coefficient absorbs all singularities of the boundary, weight
and initial coefficient, has been suggested in [118].
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CHAPTER III
APPLICATION OF SOLUTION OF THE LINEAR CONJUGATION
PROBLEM TO CONFORMAL MAPPINGS

8 1. ONE REPRESENTATION OF A DERIVATIVE OF CONFORMAL
MAPPING OF A CIRCLE ONTO A DOMAIN WITH A PIECEWISE
SMOOTH BOUNDARY AND ITsS CONSEQUENCES

Below the use will be made of the following fact (see, e.g., [43], p. 405]:
if a function z = z(w) maps conformally the unit circle U onto a finite
domain D bounded by a closed, rectifiable curve T', then: (i) 2/ € H'; (ii)
z is continuous on U and absolutely continuous on its boundary v; (iii) for
almost all @ € [0, 27] there exists an angular boundary limit of the functions
Z'(w) and

dz(e'?)

lim  2'(w) = —ie™" . (1.1)
ws exp i d
. 8
Since t = z(e!) is the equation of the curve I', we have Mdee—l =

dz(e
dae

() where a(f) is the angle between the oriented tangent to I' at

the point z(e’) and the real axis.
Let 2/(0) > 0 and consider an analytic in D function

Inz'(w) = In |/ (w)| + iarg 2’ (w), argz’(0) = 0.

From the equality (1.1) we can conclude that there exists an angular limit

dim arg(w) = a(0) = 0+ Z + 2k(0)7 = B(0) + 2k(O)7, (1.2)

w— expif

where k(f) is a function taking integer values.
If T is a smooth curve, then in the equality (1.2) as «(f) one can take a
continuous on [0, 27| function with the condition

a(27) = «(0) + 27. (1.3)

If T is a piecewise smooth curve with angular points t, & = 1,n, then
as «(@) will be taken a piecewise continuous function which at the points
¢ corresponding to the points ¢ (z(ex) = t5) has jump discontinuities
hy = alep+) — alcg—) = 7 — 7, where rpm, 0 < v < 2 is the interior
with respect to D angle at the vertex ¢;. The function « will be called the
tangential function of the curve T

Theorem 1.1. If z = z(w) maps conformally a unit circle U onto the
domain D bounded by a closed piecewise smooth Jordan curve T, then
1 [ p(@)dr »
! ! 76
_ il APl = 1.4
z'(w) z(O)exp(ﬂ_ T—w)’ T=e", (1.4)

~y
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where
T
B(6) :a(&)—ﬁ—i. (1.5)
Proof. Consider the function
2 (w), |w] < 1,
Qw) = (1.6)
z’(%), |w] > 1.

This function belongs to the class Ez('y) (see Chapter II, Lemma 7.1), and
owing to (1.2) we have

0* () = VD) exp [ (3(0) + 27k (O))], 7= .

Assume
G(r)=Q (D~ (1],
Then

G(e") = expif(0). (1.7)

In the class Ez('y), consider the problem

Let

X(w):exp{%/lnfii)u }—ep{%/T_w} (1.9)

~y

Represent the function 5 in terms of 3 = fy + 51, where [y is continuous
on [0,2x] and Go(27) = Fy(0) + 27, while 3, is a piecewise linear function.
Then it follows from (1.9) that in the neighbourhood of v (see Chapter 11,
Lemma 3.6 and inequality (3.24)) we have

¥ty =0 TTe - e oo (5 [ 220 50w, c10)

k=1 p

where 0 < € < [ Xp(w)] < Cy < 0.
Let first

v; €10,2), k=1,n (1.11)



139

Then on the basis of (1.10) we conclude that + € R’Z(’y). Therefore ®X 1 €

K’('y) and we can easily verify that the solutions of the problem (1.8) are
contained in the set of functions given by the equality

27 T—w
v

O(w) = CX(w) = Cexp (i 6(9)6”), (1.12)

where (' is an arbitrary complex constant. B
Since the function Q(w) is one of the solutions of the class K2(7y) of the
problem (1.8), this implies that

Q=CX (1.13)

and from (1.12) for |w| < 1 we have

\/z’(w):éexp{% M} :éX(w), (1.14)

T—Ww
~y

where C' is a constant. Find C.
By virtue of (1.13)—(1.12), for |w| > 1 we have

oD o (2 205

27 T—w
v

Passing to limit as w — oo, we obtain C' = Z'(0) and as z/(0) > 0, we
have

C =/2(0). (1.15)

From (1.14) and (1.15) we obtain the equality (1.4) with the additional, for
the time being, assumption (1.11).

We will dwell on the case where vy, = 2 for some k. Without loss of
generality we assume that there exists only one such point. Denote the
corresponding angular point on I' by C' and let z(¢) = C, ¢ = exp if..

Consider on I' two sequences of points 7, and {,_converging to C', such
that argw(m,) 1 0., arg w(t,) | 0, respectively. Let Ty, be the part of T' left
after removing the arc 7,,C%,. Draw smooth Jordan arcs 7, through the
points 7, t,, and C, that is, construct on the segment [arg w(r, ), arg w(7,)]
the functions p, = p,(#) for which pf, are continuous and different from
zero. Moreover, the tangents of 7, and I' are assumed to coincide at the
points 7, and t¢,. Since C\T,, is a domain and two smooth arcs of the
curve I' meet at the point C', such arcs 7, can be constructed. Indeed, if
p < min(p, p2), where p; are standard radii of smooth arcs of the curve
I' meeting in C' (for the definition and for the properties of such a radius
see [106], p. 18), then the circumference with center in C' and radius p
intersects I' in two points 7 and ¢ only, and therefore this neighbourhood
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does not contain the points from T\7Ct. Of course, we may assume that
|C'—7n] < p, |C=t,| < p and draw arcs 7, inside the standard circumference.
Moreover, we also assume that the oriented tangents form at the points 7,
and 1,, starting from ng an angle which is less than = 4 ¢, say 37” Therefore
one can construct the arcs 7, in such a way that the tangent oscillation
along them would not exceed ?Tﬂ'

Let '), = fn U~%,. Then Ty, is a closed piecewise smooth Jordan curve
with angular points for which the condition (1.11) is fulfilled. Denote by
D,, a finite domain bounded by I',,. From the construction of the domains
D,, it follows that they converge to the domain D as to the kernel (see [43],
p. 56). Furthermore, we can easily verify that the mapping of T onto Ty,
given by the equality

Z’ < Efna
M,(z) = . .
) {un(ew), 2(e") € 1,

is one-to-one and continuous. Note that lim [M,(z) — z] = 0.
n—oo

Thus all the assumptions of Rado’s theorem are fulfilled (see, e.g., [43],
p. 62-63), and if 2, = z,(w), 2,(0) = 2(0), 2;,(0) = 2'(0), then 2, converges

uniformly on U to z(w). Obviously,
limz), (w) = 2'(w),w € U. (1.16)

Since I'y, are piecewise smooth curves not containing angular points with
the interior cusp, by virtue of the already proven we have that

) = e (5 [ 20,

27 T—w
v

where 3,(0) = an(0) —0 — 5, and «,, is the tangential function of the curve
I',,. Because 3, is a sequence of uniformly bounded functions (|8,| < ?T”)
converging on y\{c} to 3(f), then passing in the last equality to limit and
taking into account (1.16), we arrive to (1.4) for the case under consideration

as well. W

Corollary 1. If ' is a smooth curve, then

1
' e N HP 1.17
2 S € 0A, (1.17)
/
2'(7) Epgon(v), (1.18)
1
g EP(D 1.1
w, w! Epgo ( )’ ( 9)
Inz' € N HP. (1.20)

p>0
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Proof. Indeed, the assertions (1.17) and (1.18) follow from the properties of
the factor function X for the continuous function G, since ' = CX?. The
relation (1.19) is a consequence of the equality

J1w @i = [l )

and of assertion (1.17). Finally, (1.20) follows from the equality

Sw)
2(0) = K, (2i8)(w). N

Theorem 1.1 establishes the connection between 2’ and the Cauchy type
integral of the function [ which is defined by the geometry of the curve I,
that is, by the angle of slope of its tangent to the real axis. Having known

In

the character of the variation of the function § and proceeding from the
equality (1.4), we can throw light on the properties of z/. Below we will
adduce some results obtained in this way.

Theorem 1.2 (Lindelof). If a function z = z(w), 2/(0) > 0 maps confor-
mally the circle U onto the domain D bounded by a closed smooth curve,
and w = w(z) is the inverse to it function, then arg 2'(w) is a function con-
tinuous on U, and argw'(z) is continuous on D. Moreover, for 6 € [0,27]
we have

arg 2'(e") = a(0) — 0 — g + 2mm, (1.21)

where m 1s an integer.
Proof. In the case under consideration, 2’ is representable by the equality

(1.4), where 3 is a continuous function. Suppose w = re'? A,z = 1 —
2rcos x + 2. Then

ezs _ 7“6“9

S (w) = 2 (0) exp (27 (s )w”ds) _

exp{ /5 rsm 5—9)+i1—rcos(5—9)]d5}:

A (s —1) A (s —1)
i o 1 (s—0)
TSIHS— . - T . —Trcosis —
eXp{ / AG-0) AG-0 T AG-0) ]ds}_
0
27 27

:z'(O)eXpCT %5(5)@) exp ( ( 14:'7% / Ai(;i) ﬁ(s)ds) x

0
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2T

X exp (%/%mﬁ(s)ds). (1.22)

Thus in the representation of z’ there appear the Poisson integral of a

continuous function 3, its conjugate function and also the function k(r, z) =

125952 " which is continuous on the rectangle [0,1;—27,27]. Taking into

account the properties of these integrals, from (1.22) we obtain

2T

lim z'(w)=2'(0) exp[g(ﬁ)] exp[if(0)] exp [i /ﬁ(s)ds] . (1.23)

wgexpw 5
for almost all 6 € [0, 27], where B is the conjugate to 7 function (see 0.10).

Prove that

27

/6(5)ds = 4kn?, (1.24)

0
where k is an integer. Indeed, from (1.14) we have

27

C = /7 (0)exp (%/ﬁ(s)ds),

0
which together with (1.15) yields

2T

V) = Vo e (5 [ aoyis).

0
whence it follows the validity of equality (1.24). The equality (1.23) with
regard for (1.24) takes the form
lim z'(w) = 2'(0)[exp 5(9)] exp[i4(60)]. (1.25)

A .
w—exp 6

By virtue of (1.4) and (1.22) we now have

27
Inz'(w)=1In2'(0) + % %:ln z/(O)—I—% %ﬁ(s)dﬁ-
0
. 27 1 72 . 271'1 ( 6)
i —r ir — cos(s — .
+(1—|—7°)7r/Ar(s—ﬁ)ﬁ(s)ds—i_?/iAr(s—a) B(s)ds+2Ami,

0 0
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where A is an integer. The latter equality results in

27

, _ 1 1—7?
arg 2/ (w) = A 0/ A og) s

27
r 1 —cos(s —0)

— ds + 2Aw. 1.26
o [ A £ 2 (1.26)
0
The right-hand side of the above expression contains the sum of continuous
in U functions. Bearing in mind that

2T 2T
im0 g g - i/ﬁ(s)ds = 2%,

AT A (s—10 27
w—exp il ( ) 0

from (1.26) we find that

arg 2/ (') = lim arg 2/ (w) = B(w) + 2(k + M.
whei
which is the very equality (1.21) with m = k + A.
The continuity of the function arg w'(z) follows from the equality w’(z) =
- ®
Remark 1. Tt is obvious that the continuous function « in all the equal-
ities can be replaced by the function «(f) + 2j7 with an arbitrary integer
j. Therefore, if we take o = vy — 27, then the geometrical meaning of the
function « will remain the same as before, and the equality (1.21) will take
the form
1018 T
arg 2’ (") = ay(6) — 0 — 3
Remark 2. From the equality (1.26) and from the property of the Poisson
integral we obtain a more general assertion than Theorem 1.2, namely:
IfT is a piecewise smooth curve, then arg z'(w) is continuously extendable
at all different from cp points of the circumference v (while argw'(z) is
continuwously extendable at all points of T different from angular points ty ),
and equality (1.21) is valid everywhere except for the points cy.

Theorem 1.3 (Kellog). If the function z = z(w) maps conformally the
unit circle U onto a domain D bounded by a Lyapunov curve for which

la(s1) — as2)] < Ms; — so]*, 0< A<, (1.27)

then the functions 2'(w) and Inz'(w) belong to the Holder class H(A) in the
closed cirele U.
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Proof. We have
|(01) = a(02)] = |a(0(s1)) — a(f(s2))] <

82 N
< Mlsy — s = (/ |z'(ew)|da) . (1.27")
61

Since 2 € NpsoHP, this implies that on v the function a(r) = a(e'®) for
any p > 1 belongs to the Holder class H(%). By virtue of (1.5) and (1.3),

3 belongs to the same class as well. But then (Kpf5)(z) belongs to H(%)

in U (see, e.g., [106], §21). From (1.27') we can now conclude that o, and
thereby 3, belongs to H(A). As a result of the above reasoning, we obtain
the both assertions of Theorem 1.3. B

Remark. If A = 1 1in (1.27), then 8 € H(1), and in addition to the above-
said, from Privalov theorem on a singular integral with density from the
class H(1) we obtain

|2/(e"1) — 2/ (") < M|0; — 0] In |61 — 2] < 1.

1
|01 — 6]
Theorem 1.4. Let ' be a piecewise smooth, closed, oriented Jordan curve
with angular pownts ty,, bounding the finite domain D, and let wvg, 0 < v <
2, k = 1,n be sizes of interior (with respect to D) angles at these points.
Then, if the function z = z(w) maps conformally the unit circle U onto D,
and

2(0) >0, z(ep) =tg, cx €7, (1.28)
then
u 1 6(7’
= — )t — 1.29
Z/( U w—cp) exp 71-/ — ( )
= ¥

where § = 6(1) is a continuous on 7y function.

Proof. By Theorem 1.1 we have

Z'(w) = 2/ (0) exp (% M), =" B0) = a(f) -0 —

T—Ww

T
2 )
¢
where « is a piecewise continuous on [0, 2x] function.

Let ¢ = expifl, 0 <0 <8y < - <0, <2mandlet I'; ; be an oriented
subarc of ¥ with the ends 1 and ¢z, and I's y = ¥\I'y ;. Consider piecewise
linear functions

Werl <@ <
ﬁk(g):{o, e’ el (le, 0<8< k),

Z=Lhy, €’ €Tlyy (e, 0 <0<2m),
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where & =1, n, and
hy = B(0r+) — B(6r—) = a(0p+) — a(fr—) = 7 — 7 = (1 — 1y). (1.30)

Suppose

6) = Bu(6)

The function Fy(#) = #(0) — 3*(0) is continuous on [0, 2x] and Fy(0) =
Bo(2m), i.e., Bo(T) = Bo(P) is continuous on y.
We now have

Z'(w) = 2/ (0) exp (% %) =
=2'(0) exp (% %) exp (% %) (1.31)

To estimate the integral 1 f M (G)dT in the neighbourhood of ¢, we will
use the following result from [106] (§26)

Let nonintersecting smooth arcs Ly, ¥ = 1,n meet at the point ¢; the
function ¢ belongs to the Holder class on Ly; and L = ULg. Then

1 p(r)ydr

ﬁ/ﬁ = Aln(w =) +¢o(w),
L

where ¢o(w) is continuous in every closed sector into which L divides the

neighbourhood of the point ¢, QSE'J' belongs on L to the Holder class, and
:|:g0 Ck
A=
Z 27
the plus sign is taken for the incoming in ¢ arcs and the minus sing for the

outgoing arcs, and ¢(cx) = limy_.., 1er, ¢(2).
In connection with this assertion, we have

Brdt 1 / 215y, 1 /Qiﬁde 1 /Qiﬁde
B dr=— +— =

T T—w 27 T—w 2w T—w 27 T—w
¥ ¥y Fl,k F2,k

= —h?kln(w —cp) + dor = (vr — 1) In(w — cx) + dop(w)

This and (1.31) imply that

n
Hw—ck ”k_lexp /

k=1 ~y

epo(bo k( (1.32)
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where ¢q 1, are holomorphicin U and continuous in U functions, and $0.x(7)
belongs on v to the Holder class. Let ¢g = 22:1 ¢o,- This function is
representable in U by its Cauchy integral, that is, ¢o(w) = (Ky¢8)(w),
where QSE'J' is a Holder continuous function. Now (1.32) yields

Z(w) = ﬁ(w —cp)* Lexp (%/ %),

5
where 8(7) = Bo(1) + %(/)0(7’), and hence it is continuous on yv. W
From Theorem 1.4 we get the following Warschawski

Theorem 1.5. Let T be a piecewise Lyapunov, closed Jordan curve with
angular points ty, bounding the finite domain D, and let, vpm, 0 < vy < 2
be the interior angles at the point ty. If z = z(w), 2/(0) > 0 is a function
conformally mapping the circle U onto D, then

Z(w) = [J(w—ex)" ' 2o(w), (1.33)

where zo(w) is a Holder class function on U, different from zero.

Remark. Tt should be noted that in [164] was proved only the continuity
of zy. The Holder continuity of this function was established by I.N. Vekua
([159], p. 38).

Proof of Theorem 1.5. We will proceed from the equality (1.32) from which
it 1s seen that to prove the theorem, it suffices to state that the function
Bo(0) = a(0) — 0 — T — 57 _, Br(0) satisfies the Hélder condition.

Let t = z(e'?) and t = #(s), 0 < s < [ be the equations of the curve
I' with respect to the arc abscissa. Then # = 6(s), and by assumption,
B(s) = B(6(s)) is a piecewise Holder function on [0, 1].

Since fy € C(y), its Holder continuity on y will be proved if we show
that Gy satisfies the Holder condition in the neighbourhood of the points ¢z .

Suppose ¢, = expily, = t(sp), 01 < O < 79, 2(e71) = t(s(1), 2(e7?) =
t(s2)), [sH) — 52| < mkin|5k — Skt1ls Snq1 = 851+ 1.

We have
|Bo(01) = Bo(o2)] < |Bo(01) = Bo(Or )|+ 160(0k) — Bo(o2)| =
= 18(t(sM)) = Blt(se )| + |B(t(sk)) — B((s™))] <
< M(Jsk — sV P +]sp — s < 2M sV — 5<2>|A:2M(/ |z’(w)||dw|)>\.

By Theorem 1.4 (equality (1.29)), we obtain

|Bo(o1) — Bo(o2)] <
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exp (%/6<T>d7—)‘|dw|)>\. (1.34)

T—Ww

< 2]\41(/|w—ck|"k_1

g1

Since é is continuous, we have exp (% f7 %) c QOLP (7). Moreover,
P

by assumption, v > 0, and therefore |w — ck|(”k_1)(1+€) is summable and
hence

180(1) — Bo(2)| < 2Mo|os — oo 5.
Consequently, o and thus zg, belong to the Holder class. W

8 2. ON DERIVATIVES OF CONFORMAL MAPPINGS IN CASE OF
OSCILLATING TANGENT OF BOUNDARIES

The method of the proof of Theorem 1.1 can also be applied to the
domains with more complicated boundaries than piecewise smooth curves.

2.1. A class T'(p) of curves. Let ¢t = t(s), 0 < s < [ be the equation of a
simple, rectifiable curve T', and let «(s) be the angle formed by a oriented
tangent at the point ¢(s) and the x-axis.

Definition. We say that T belongs to the class T'(u), p € (0, ] if for
every point ¢ € I' there exists 1ts arc neighbourhood on which the values of
the function e?*®) lie in an angle of size x and with the vertex at the origin.

Let T' € T(w), and define specifically the tangential function «(6) =
a(s(0)). Here the use will be made of the rule of selection of an argument’s
branch of the function from the class A(p) (see Chapter II, §1).

Since T' € T'(w), the curve T can be covered by a finite number of arcs
i = (e, th2) = (((sk,1);t(sk2)), k = I,n, tg411 € T'j such that for
s € (81, sk,2) the values of ') lie in an angle less than = with the vertex
at the origin. Add to the points ¢(sj) the point ¢; = z(e?®®) at which the
equality (1.1) holds, and let

ag= lim argz'(w)+ 6y + T
wiexpit% 2

Without restriction of generality, we may assume that the curve I' at the
points ? 1, 5,2 has tangents. For the sake of definiteness, assume that ¢
lies on the arc T'y, and replace it by the arcs (¢1,1,%0) and (to,t1,2). Define
on (tg,t1,2) a function «(t) = a(t(s)) = a(s) such that a(sg) = ag and
|a(s) — ag| < w for all s for which #(s) € (tg,%1,2). Thus we have defined the
value a(s31). Next, on the arc I's we define the function a(s), keeping to
the condition |a(s) — a(s21)| < 7. Continuing this process, we define the
function a(s) on [0,{] (and hence the function a(s(8)) on [0, 27]).

Consequently, we have defined the tangential function a(s) for the curves

from T'(w).
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2.2. A derivative of conformal mapping of a circle onto a domain with a
boundary from 7°(%), A > 1. The following theorem is valid.

Theorem 2.1. If a simply connected domain is bounded by a curve from
the class T(X), A > 1, then (¢)X1 € H*, and for any p € [1£2, +o0] the
function [2'(e®)]%P belongs to Wya(7).

Proof. Let

and

It can be easily verified that 2 € Ep('y) and
00y _ 28(0)\ ,—, i
() = exp { ; fome), (2.3)

where 3(0) = a(0) — 0 — %, and o) = a(s(f)) is the targential function
defined in subsection 2.1.
Suppose

G(1) = G(e") = exp {—ZQi(g) }

It follows from the condition I' € T'(¥) and the fact that the function
G1(0) = exp[—i(F + 0)] is continuous that every point 7 € 7 possesses a
neighbourhood on which the values of the function G(7) lie in an angle of
size i—;. This means that G € A(pA), and owing to (2.1), pA > 1+ A > 2.
Calculate the index of the function GG. First consider the function ¢(e'?) =
exp if(0) = exp ia(0) exp(—i(5 +0)) = p1(0)p2(0). Since angular degree of
simple curve equal 1 ([100], p. 84), one can see that the index of the function
©1(e!) = expia(f) in Epk('y) is equal to 1. Obviously, indps = —1. But
if o1 € A(p), and 2 is continuous, then ind(p192) = indy; + ind pa.
Therefore ind ¢ = ind(p192) = 0. Represent the function ¢ in terms of
© = g1g2, where g1 belongs to the Lipschitz class on v,

T

indgy =0, g¢200) = expiu(d), |pu)|< ) (2.4)

(see Chapter IT, subsection 1.3). Since G' = /7 this implies that
2 2 2 2
G=g{g9] =g exp {7}

Denote G'; = gf/p, Gs = exp {ZZT“} = exptv. Then indG = 0, ind G; = 0,

vl <55
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Let

1 In Gidr 1 wwdr
Xl(w):exp (%/ r—w ), Xz(w):exp (%/T—w).
v

~y

Then X (w) = X1 (w)Xa(w) is the factor function of G in the class Epk(’y).
Consequently, the function ¢ = C'X, where C is an arbitrary constant, is
a solution of the problem (2.3). Since € is a solution of the problem (2.3)
of the class kpk(’y), we have 2 = Cp X, where Cy # 0 is a constant. But
for |w| < 1 we have Q = ¢/2/(w), and thus z/(w) = CYXP(w), where X is
the factor function of the function G € A(pA) in the class KP*(y). Since
pA > 2, both assertions of the theorem follow from the properties of the
factor function. W

2.3. Curves of the class T(%) and properties of conformal mapping of a

circle U onto a domain with a boundary from T(%) As is seen from sub-
section 2.2, the class T'() has been introduced in order for the function
constructed according to the equality (2.2) by means of z/(w) to be a so-
lution of the class Epk('y) of the problem (2.3) whose coefficient belongs to
the class A(pA). Bearing these arguments in mind and proceeding from the

classes g(p), one can extend the class T(%) so that the results analogous

to those of Theorems 1.1 and 2.1 will remain valid for domains bounded by
curves from the extended class.

Definition. The curve I' belongs to the class T(u), p € (0, ] if for every
point t € I', except possibly for the points t1,ts,...,1,, there exists an arc
neighbourhood on which the values of the function ¢'(s) = expia(s) lie in
an angle of size less than p with the vertex at the origin, and in the points
t; there exist limits ¢/(sp+)).

Let I € T(ﬂ') Exactly as in subsection 2.1, following the rule for defi-
nition of an argument branch of the function from the class g(p), define
on that curve a tangential function a(#). Then the function G(e'?) =
expia(s(f)) satisfies the following condition: every point from 5, except
possibly the points ¢; corresponding to the cusps, possesses a neighbour-
hood on which the values G(et?) lie in an angle less than 7, while the function
a(8)(= a(s(f)) at the points ¢; = exp if; has one-sided limits; moreover,
Oz(gj—i—) — a(ﬁj—) = (1/]' — 1)71', I/]'E{O, 2}.

Using the results of subsection 3.7 from Chapter Il and arguing as when
deducing Theorems 1.1 and 2.1, we conclude that the following theorem is
valid.

Theorem 2.2. If D is a simply connected domain bounded by a curve I' €



150

T(%), A>1, then

Z(w) = [J(w—ex)" ' 2o(w), (2.5)

where zg, % € H*, and for every p € [%, +00), the function [zo(e? )P €
Wor(7)-

_ Corollary 1. If D is a simply connected domain with the boundary from
T(w), then for almost all 0 € [0,27] there exists an angular limit of the
function arg 2’ (w) for w — expifl, and the equality

lim  argZ/(w) = B(0) = «(0) — 0 — g + 2mmw (2.6)
w— expif

holds, where «(0) is the tangential function of the curve T', and m is an
teger.

Corollary 2. If T is a curve with bounded rotation and {cp} = {z(t(sy))},
where {sp} is a set of points of discontinuity of '(s), then

Z(w) = [J(w—ex)" ' 2o(w), (2.7)

k=1

where
+1 P
2y € NpsoHP. (2.8)
In particular, 2’ € H® for any 6 < inf,, <1 {m} and 21—, € H" for any

< inf {1 }
/'L Vk>1 I/k—l

§ 3. BEHAVIOUR OF CONFORMAL MAPPING IN THE NEIGHBOURHOOD
OF ANGULAR POINTS

The results obtained in allow one to describe for the domain under con-
sideration the behaviour of the functions z = z(w) and z'(w) in the neigh-
bourhood of the points e, of the inverse function w = w(z) as well as of
the function w = w/(2) in the neighbourhood of the points t;.

Lemma 3.1. Let a simply connected domain D be bounded by a closed,
piecewise smooth curve T' with angular points t, =z(cy), being sizes of inte-
rior angles vym, 0 < v < 2. Then the function

zp(w) = [2(w) — z(cp)](w — eg)™"*

belongs to HP® for some py > 1.
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Proof. Consider the equality

2(w) — z(ck) 1 / '
= = d 1
)= e T wmayr ) O G
YVuwey,
where Yyer = Ywwr Y Ywrer, Jww, 15 assumed to be the small arc of the

circumference with center at the origin, passing through the points w and
wg = |w|exp by, 0 = arg cg while v, ., is a rectilinear segment connecting
the points wy and c¢;. Therefore

/ 2(O)lldc] < / 2(O)lldc] + / SOl (32)

Ywey Yuwwy YV cx
Let now vy < 1. Then it is clear from (3.1) that
M

< -
|Zk(w)| = |w_ Ck|yk

(3.3)

and therefore 2/ € HP°, py € (1, i) However, if v4€[1, 2], then by Theorem
1.4 we have 2/ (w) = (w —e¢z)"* =1 Zo(w), where Zy(w) = [] (w—c;)" " zo(w),
J#h

z0 € QOH”. Putm=  mi le; — ¢j] and |w — ¢x| < $m.
p

1<ig it
If we denote by d(F, F') the distance between the sets £ and F', then
we obtain d(vwe,,{¢j}) > +m. Moreover, when { € Yye,, then [ — ¢;| <
ik
|w — el
Now for an arbitrary o > 1 we have

/|/<<>||d<|s /|<—ck|”k—1H ¢ =i T IC = e 17 Mz ()¢ | <

Vuwrg, cx Vuwrg, cx vi<l vizl
e 1 (TN 2 (Vi D) (vi-1)
< o= et () T e O [l <
Yy e
s|w—ck|”k-1M1( / |zO<<>|“|d<|) o — x5 <

Ywy cp
1
o

1
< Miy|w— ck|"’€_é (/ |z0(xei€k)|“dx) . (3.4)
21

But according to the Fejer-Riesz theorem (see [27], p. 46),

27

1
) 1 . 1 ;
Jrateeyide < 5 [ faateymas = o [ lza(e)acl
-1 0 ¥
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and therefore (3.4) yields

[ < s - apx ( |zO<<>|“|d<|)1/a. (3.5)

Ywy e

Further,
JREGINE
Ywwy

et (1 N2 =D S (1)
< = enfr = () T e T [ o <
Ywwy
3M1|w—ck|”k—1( / |zO<<>|“|d<|) (o). (36)
Ywwy

But we have that ey — w| > |wi — w| > 2|yww,|, and the inequality (3.5)
results in

[ e < o= ()T ( [ o) <

Twwy [¢|=w

. 1/«
< atafu— e [ ollact) (37)
¥
By virtue of (3.5) and (3.7), from (3.2) we obtain
) 1/«
/ |#(OdC] < 2M [ — e[~ = (/ IZo<<>|“|d<l) - (38

Ywey ¥

Having the inequality (3.8) at hand, we can easily conclude from (3.1)
that

ok ()] < %( / |zO<<>|“|d<|)1/a. (3.9)

This implies that z; € HP° for every po € (1,0). W

Remark 1. Proceeding from the fact that « is any number greater than

1, we have proved much more than it has been stated in the lemma, namely,
that 2/ € N HP, py = min{-=>}.
1<p<po po Vk<1{”k}
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Remark 2. Asisseen from the proof, the statement of Lemma 3.1 remains
valid for domains which are bounded by the curves from 7(%), A > 1; note
that as pg one can take any number from the interval (1,A) (thus in the
inequality (3.4) one can take oo = A).

Theorem 3.1. Let the domain D be bounded by a simple, piecewise smooth
curve T with angular points ty, k = 1,n and with sizes of interior with
respect to D angles wvy. If z = z(w) is the function mapping conformally the
unit circle U onto D, w = w(z) is an inverse to it function, and z(cy) = tp,
then

2(w) = z(ex) + (w — ep)* 2z (w), v € [0,2], (3.10)
w(z) = w(ty) + (2 — ) wi(2), v €(0,2], (3.11)
Z(w) = [Jw =) '2o(w), v €10,2], (3.12)
w'(z) = [J(= = t0)% wol2), v €(0,2], (3.13)

where the functions wy, zp(w) and zx(e'?), k = 1, n, satisfy the conditions
()™ € yor HT, - (wp) ¥ € Npsa E7(D), [a(¥)F € 0 Wy(n). (3.14)

Proof. First of all it should be noted that the assertion (3.12) follows im-
mediately from Theorem 1.4 if we take into account the properties of the

1 pdr
T Jy T—w

function exp ( ), when ([ is a continuous function.

Alongside with the function z;(w) we consider the function z; (=) [w| > 1
and put Gp(7r) = zi(7)/2(1/7), |7| = 1. It can be easily verified that G (r)
is different from zero, continuous everywhere on 5 function. Really,

z(1) — z(ep) (17— e )¥x
Gp(T) = =—=——ro—= = G1p(7)Gar(7),
() = AT~ Gt

and since |Gy(7)] = 1, it suffices to show that o, (7) = arg G (7) is contin-
uous at the point ¢;. Indeed the argument of the function Gy5(7) at the
point ¢ has a jump equal to 27y, while the function Gop(7) has the jump
equal to (—2m). Hence a(7) is continuous.

The above-mentioned jumps are simultaneously equal to the increments
of the corresponding functions as the result of a circuit of the point 7
around 7. Therefore the increment of the function arg Gi(7) equals zero,
ie. x(Gy) = [arg Gily = 0.

Consider the boundary value problem of linear conjugation

¢* (1) = Gi(r)¢™ (7). (3.15)
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As we know, the problem (3.15) for continuous Gy, (G}) = 0, is solvable
in any class KP(y), p > 1, and all its solutions (the same for any p) are given
by the formula

Pr(w) = CXp(w), (3.16)
where (' is an arbitrary constant and X} satisfies the conditions
(Xp)*! € MpsaKP(y) and [XF ()] € MpsaWy(7). (3.17)

Let us now show that the function zj, for some pg > 1 is the restriction on
U of the solution of the problem (3.15) of the class K?°(-y). Such a solution
is presented by the function

]z (w), |w] < 1,
Qp(w) = {m’ | > 1. (3.18)

By lemma 3.1 we have z; € HP?, pg > 1. Owing to this fact, we state
that Q; € KPo(y) (see Chapter II, §7). Consequently, z; is the required
solution of the problem (3.15). But then according to (3.16), there exists
a constant Cj # 0 such that Qi(w) = Cp X (w). Therefore the functions
(z£)*! coincide in U with Xy (w). However, by (3.17), X, € K’p('y) (Vp>1)
and as is known (Chapter I, §3), the restrictions of such functions on U
belong to the class HP. This implies that (z;)*! € pngP and [z (e")]*! €

Qle (7), taking into account (3.17).
P

Consider now the function wy. Substituting the values w = w(r) and
cr = w(ty) into the equality z(w) — zx(7) = (w — ¢)"* zo(w), we obtain

2=t = (w(2) — w(ty))"™ o(w(2)).
Hence
w(z) = w(ty) = (2 = 1) [zo(w(2))] "% =
= (z = 1) wg(z), wil(z) = [z0(aw ()] 7. (3.19)

Show that (w;)*! € QlEp(D). Indeed, for any p > 0, ¢ > 0 we have
P

[l = [ il <

T, |w|=r
1

§< / #)+< / |z’(w)|1+€|dw|)l+s. (3.20)

|w|=r w|=r

By Theorem 1.4 and condition v; > 0, we can choose € > 0 so small
that the right-hand side of inequality (3.20) becomes finite. Thus (wy)*! €
EP(D) for any p > 0. Consequently, (wy)*! € ﬂlEp(D).

p>



155

There remains to prove the relation (3.13) and the inclusion (wg)*! €
N EP(D).
p>0
We have
w'(z)= ! = ! =
F(w(z)) iz (wlz)—w(te)) "~ zo(w(z))
- . . 1
= [T(w(e) = w) " Han(e), @)= ———.  (321)

1 | “0(w(2))

Substituting in it the values of the difference w(z) — w(ty) from the
equality (3.19), we arrive at

B
I

(z = t1) k()@ (2), wi(z) = [z0(w(2))] .
(3.22)

=

w'(z) =

B
I
—

no l—yy

Therefore, wy(z) = [zo(w(z))]zjlm1 s ' and wit e Q1EP(D)' [ |
p

Corollary. If ' is a piecewise Lyapunov curve with angular points t; by
conditions 0 < vy <2 (k=1,2,...,n), then the functions zy, wg, k =0, n,
in the representations (3.10)~(3.13) are Hélder class functions different from
zero.

This follows from the fact that the function G} (the coefficient of the
problem (3.15)) in the case under consideration belongs to the Holder class.

NoTEs AND COMMENTS TO CHAPTER 111

The assertions that the derivative of a function mapping conformally the

unit circle onto a simply connected domain satisfy the inclusions 2z’ € ﬂOHp
P>

and In 2’ € H', which are the particular cases of Corollary 1 of Theorem
1.1, are well known (see [43], pp. 410-411).

Formulation of Lindeléf’s theorem (Theorem 1.2) is taken from [43], p.
409. For more general Lindeldf’s result see [89], [167], [86].

The proof of Theorem 1.4, different from that cited in the text, can be
found in [65].

Warschawski’s theorem (Theorem 1.5) is given in the form as it is in
[159].

Classes of the curves T'(x) and T'(x) have been introduced in [117]. The
proofs of Theorems 2.1 and 2.2 (without corollaries) based on the general-
1zations of Lindelof’s theorem for domains with a boundary from the class
T(w) and also the particular cases of Theorem 1.4 are given therein.

Corollary 2 of Theorem 2.2 is due to Warschawski [166].
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CHAPTER IV
BOUNDARY VALUE PROBLEMS IN THE DOMAINS
WITH PIECEWISE SMOOTH BOUNDARIES

The Riemann-Hilbert problem will be investigated on the basis of the
results obtained in Chapter II, §7 and in Chapter III. We begin with the
consideration of particular cases of the problem, that is, with the Dirichlet
and Neumann problems for harmonic functions.

§ 1. THE DIRICHLET PROBLEM IN ef (D) IN DOMAINS WITH A
PIECEWISE SMOOTH BOUNDARY

1.1. Statement of the problem and its reduction to the problem of linear
conjugation. Let D be a simply connected domain bounded by a simple,
piecewise smooth curve T'. Denote by ef (D) the set of harmonic functions
presenting a real part of functions from the class EP(D), i.e.,

(D) ={u:u=Re®(z), ®ec EP(D)}. (1.1)

The functions of this class possess almost everywhere on I' angular bound-
ary values forming a function of the class LP(T').

Consider the following Dirichlet problem:

Find a harmonic in D function u(t), p > 1 from the class e? (D) whose
angular boundary values coincide almost everywhere on the boundary I' of
the domain D with the given on it real function f from the class LP(T').

Thus we have to determine the function u for which

Au=0, uwee(D), p>1,
u(t) = f(t), tel, felLr(l).

Let u = Re @, and assume

U(w) = /2 (w)P(z(w)), |w| <1, (1.3)

where z = z(w) is a function mapping conformally the unit circle U onto
D. Following [102], [105] suppose

Uw) = {\I!(w), lw| < 1, @

(1.2)

(), |wl>1,
Q. (w) :ﬁ(%) w| # 1. (1.5)

The problem (1.2) is equivalent to the problem in the following statement
(see Chapter II, §7)

= 7Z/(T) (T T T) = z(T 2T
A A CEL SIS G

Qekr(y), Quw)=Q(w)
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in the sense that any solution u (= Re¢) of (1.2) generates by means of
equalities (1.3)—(1.4) the function © which satisfies the conditions (1.6),
and vice versa, if €2 satisfies (1.6), and ¥ is its restriction on U, then

U(w) ]

#(w)

u:Re[

is a solution of (1.2).
The problem

— 4
Au=0, uee(D), p>1, } (1.20)

w(t)=0, teTl

will be called the homogeneous problem corresponding to (1.2), or simply,
the homogeneous problem.
We quote here a lemma which will be used below.

Lemma 1.1. If X € H?, g € L(T') then the function XK~ g belongs to the
Hardy class H® for some 6§ > 0.

To prove this, it suffices to notice that the Cauchy type integral K,g
belongs to Ns<1 H® ([133], p. 116).

1.2. The solution of problem (1.2) in case of one angular point. We assume
here that I contains only one angular point C' with the angle size v, 0 <
v < 2 and consider separately the cases (i) 0 < v < p; (ii) p < v; (iil) v = p;
(iv) v =0.

(1) 0 <v < p. Let

— ¥/ (w), |w] < 1,
X(w) =K —F7— 1.7
WD, st .

Since 2z’ € H', then X € HP in U. Moreover, by Theorem 1.4 of Chapter
I, we have

v—1

Xt(r)=(r—¢)7 2z (), e=w(C),
Z(:)tl € ﬂg>1H6, (Zal—)il € Ng>1 Ws. (1.8)

In the case under consideration, ”;1 € (—%, 1%) Therefore, using Lemma
7.1 of Chapter II, we can easily conclude that X' € Epl('y). Consequently,

Qo(w) = aX(w),

where « is an arbitrary complex constant, 1s the general solution of the
homogeneous problem given by (1.6). Since

a e/ (w), lw| < 1,
(ax). =4 ==
—a Z/(Z), |w| > 1,
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the condition Qy = (). yields @ = —a. Thus Rea = 0, and hence
_ afto(w) | _ _ _
= Re [ —z’(w)] =—Rea=0.

Further, since % c kl(’y), Xg—+ € L(y) and
QN+t QN- g
(x) = (%) +++

g9(7)

Xt(r)yr—w

the function

(1.9)

is the only one possible solution of the problem (1.6). By Lemma 1.1,
Q € H? for some & > 0. On the other hand, if in the representation (1.8)

pi(r)=(r=0) 5, palr) = 20 (1),
then py € Wpye(v), p2 € 6t>JlW5(’y) and applying theorem from (0.20) to

the product pyps, we obtain Xt € W,(v). This, by virtue of Sokhotskii-
Plemelj’s formulas applied to €2, implies that QT € LP(y) from which by
means of Smirnov’s theorem we conclude that Q@ € H?. But then Q2 € kp('y),
by Lemma 7.1 of Chapter II.

Thus the problem of linear conjugation (1.6) has a solution given by (1.9).
Consequently,

L[ X(w) 9(¢)d¢ / — g(Od¢
Qw) = =
(w)=3 [ o /X+(<)(< - 2m XH(O)(C %)
¥ ¥
is a solution satisfying Q(w) =, (w). Since X (w(z))=— W, X(w(lz)):
1/( ) it follows from (1.3) and the above equality that

u(z) 271'2/f—w /f d(z)]'

Taking into account that f is a real function, we finally obtain

u(z) = [27”/]: CJ””E;;CZC]. (1.10)

(ii) p < v. Suppose

Xy (w) = X(w)(w —¢)7 1, (1.71)
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where X is a function given by (1.7). Using the representation (1.29) of
Chapter III, we conclude that

Xi(w) = 0((w - ) F 7 n(w)), a(w) =2 (w),  (L11)

in the neighbourhood of the point ¢. Since -1 < V_I;%l < L (this is
equivalent to the inequality p < v < 2p which is valid for the assumptions
p<v,p>1,v <2), all possible solutions of the conjugation problem from
(1.6) are contained in the set of functions

X1 (w) / g(r) dr

Q = X 1.12
2l

where a and 3 are arbitrary complex constants. The general solution of the

corresponding homogeneous problem will be the function Qp(w) = (aw +

B)Xi1.

In order for the second condition from (1.6) to be fulfilled, it is necessary

to have

1 = 2w aw + B) /2 (w
—(a—+6)1(_):( ) /=" (w)

w - —C w—c

Since ¢ = ¢~ 1,
a =\ wc aw +
(T gy _ows
w c—w w—c

Consequently, fc —a = 0, @c — = 0 and we find that 3 = @e. That is,
if 3 1s assumed to be arbitrary, we must have o« = Fc¢. Thus, the function

uo(a()) = Re [P0 B 03] = e [2E21 2]

Z(w) w—ec w—c

is a solution of the homogeneous Dirichlet problem (1.2g).
But if w = ret?, ¢ = ¢; +icy = €%, 3 = XA + iy then

Bew + 3 _ (Ecw +0)(w—7¢) (Bcrz — fe) — (Ew — 6@)

w—c |w — e]? N |w — e]?

Taking into account that Re[Bw — W] = 0 and supposing e = d + ie,

we obtain
3 32 = S NL2 (g 2 _
Re Bew + 3 _ Re Ber? — B¢ _ Re (d+ie)r? — (d —ie) _ d(r—=1)

w—rc |w — c|? [w — ¢|? [w—c|?”’

where d = Re B¢ = Re[(A — ip)(e1 + ica)] = Aex + pca.
Hence

Qe tpe)(-r)

1472 —2rcos(d —0.)’

uo(z(rew))
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where A and p are arbitrary real constants. Obviously, —(Ac; + pea) passes
through all real numbers, so that

i0 c+w
=M
ug(z(re’”)) Re p—
where M is an arbitrary real constant.
Thus
¢+ w(z)
= MRe ——= 1.1
uo(2) Re pa—r (1.13)

is the general solution of problem (1.2g).

One can obtain a particular solution of the problem (1.2) by using again
the equality u; = %[Q(w(z)) + Q. (w(2))], where Q is the function defined
by (1.12) for « = 5 = 0.

As a result, we obtain the particular solution having the form

uf(z) =
SO —c cw?(z f()( -2
:Re[w(lz)(%w/ (C(_))li(z) D d¢ — 27(1')/C((g)—(w(z)))dc)]'(lﬂ)

Consequently, for p < v, the Dirichlet problem (1.2) is solvable for any
f € LP(T) and has the set of solutions given by the equality
u(z) = uo(z) + uyp(2), (1.15)

where up and uy are defined by the formulas (1.13) and (1.14), respectively.
(iii) v = p. Consider first the homogeneous problem.

If X is given by (1.7), then X(w) = O((w — c)ﬁzo(w)), zy € 601E5(F)
>

(including the case v=2=p). The function F(w)=Q(w)[X(w)]~! satisfies
the condition F'T = F'=| belongs to the class 601H5 in U and to the class
<

60 H% in C\U. Let us show that the function F is regular at all, different
<1

from ¢, points of the plane. Let { be an arbitrary on 7 point, different from
¢. Choose on 7 a pair of points {; and (s on either side from ( so close
to ¢ that the circumference arc with these ends v(¢{1,(2) does not contain
c. Consider the domain SZ' (a part of the circle /') bounded by the radii
passing through the points ¢; and {2 and by the arc y({1,(2). Since the
function Q € H? according to the Fejer-Riesz theorem ([27], p. 46) we
have

1 27
/|Q(rei€”)|5dr§ M/|Q(e”)|5d9, 0o €[0,7], &€ (0,+00),
0 0

and thus we can easily state that Q € EP(SZ'). Analogously we show that
Qe EP(SC_), where SC_ is the domain bounded by the arc, extension of
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radii passing through the points {; and (s and by the arc of circumference
|w] =147, n> 0. Since (E¥(¢1,¢2), [X(w)]~! is bounded in domains Sci;
hence F' € Ep(Sci), p > 1 and therefore it is representable in these domains
by the Cauchy integral

RO
/

F(w) — 2w C—w ’
0, we ST,
L [row ; (1.16)
P ) weE ST,
F(w) = 271'272 (—w
0, w e ST,

where v; and 5, are the boundaries of the domains SZ' and SC_’ respectively.
Let v3 = (v1 U7v2)\7(¢1,¢2). Since on y({1,(2) we have 't = F~ the

function
_ 1 F(Q)d¢ 1 F(¢)d¢
e A e s
RE]

Y1Uya

is regular at the points of the arc ¥({1,(2). On the other hand, the function
F inside of 73 on account of (1.16) coincides with F.

Thus, the function F is regular everywhere with the exclusion of the point
¢ at which it may possibly have a pole of the first order, since it fails to
belong to the class 6L<JlH5 otherwise. Consequently, F'(w) = o + L and

w—c¢’
all possible solutions of the homogeneous problem from (1.6) are contained
in the set of functions given by

Qo(w) = aX(w) + B(w — )" X (w) = aX (w) + X1 (w), (1.17)

where « and 3 are arbitrary constants. N N

Let us now find conditions for €y to belong to KP(y). Since X € KP(y),
for the inclusion Qg € Ep('y) the condition X; € I%p('y) must be satisfied.
With this end in view, it is necessary and sufficient for X; to be the function
H? in U. In this connection, there may appear two possible cases.

I. X; € H? in U. As in case (ii), we obtain that g is a solution of (1.6)
if 3 is arbitrary and @ = B¢. Then the general solution of the homogeneous
problem (1.2¢) is again given by equality (1.13).

I1. X,€HP. Then Qq € EP(F) if and only if § = 0. Moreover, by virtue of
the second condition from (1.6) we again arrive at Rea = 0, and therefore
the problem (1.2y) has only zero solution.

Consider now the question whether the inhomogeneous problem has a
solution.

Let X3 be given by the equality (1.71). Then in the case under consid-
eration, owing to (1.29) of Chapter III, in the neighbourhood of the point
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1

¢ we have X1 = O((w — ¢)” 7 2{ (w)); moreover, (2 )% € 61/1/16(7), where
>

2 = Zo Since X e Epl('y), we can easily find that a possible solution of
the problem (1. 6) is contained in the set

Qw) = 27” /X+ —|—(ozw—|—ﬁ)X1(w).

Consider again two cases. B B
I. X; € HP. In this case (aw + 3)X; € KP(y) and 2 € KP(y), if and
only if

- 2m /X+ (1.18)

belongs to the class ICp(’y). Obviously, this equality is equivalent to the
condition Q, € H? in U. However, €, does not belong to H? for some
g € LP(7). Indeed, assume £, to belong to H? for any ¢ € LP(y). Then, by
Lemma 1.1 and Smirnov’s theorem from (0.19), we have Q;’ € LP(7y) which,
owing to Sokhotskii-Plemelj’s formulas, is equivalent to the condition that

the function
X+ (o) /
2711 X+ C Co

belongs to the class LP () for all g € Lp( ).
But

d¢ _
XHOC=¢

Tya(Go) = XF () /

= —¢) pz1 (Co) / _; )CdCCO (1.19)

¢
and if the function T1g belongs to the class LP(y) for any g € LP(7), then
by Theorem 2.2 of Chapter I, 71 will be an operator, continuous on L (7).

However, T} is not such. Indeed, the function p(¢y) = (Co—¢)~ 720 (¢) under
such an assumption belongs to W, () and hence to W,4.(y) as well (see
Chapter I, §4). Therefore there must be p € LP*¢ (). But this is impossible,
since the condltlon He ﬂ Lé( ) implies that p€ 6(;}) L ().

Thus, if X1 € H?, there eXlst functions gy of the class LP(y) for which the
problem (1.6) is unsolvable. Consequently, the problem (1.6) is unsolvable

-1
for the functions fo(t) = ﬁo(w(t))[ w’(t)] , fo € LP(T).
IT. X,€H?P. In the case of piecewise smooth Lyapunov curves with angle

sizes vw, v # 0, it follows from Warschawski’s theorem (Theorem 1.5, Chap-
ter IIT) that X (w)EH?P. However, as it will be shown in subsection 1.3, for
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any such curve with one angular point ¢, of angular size pr, 1 < p < 2 there
exists a function fy € LP(T") for which the problem (1.2) is unsolvable.

Thus when the curve has an angular point ¢ of the angular size pw, the
problem (1.2) is, generally speaking, unsolvable if the given function f is
required to satisfy the condition f € LP(T') only.

On the basis of Theorem 4.7 of Chapter I, one can point out a rather
wide set of functions f from the class LP(T") for which the problem (1.2)
becomes solvable.

Suppose

f@®) In|w(t) — C| € LF(T). (1.20)
Then

9(Q)In[¢ —c| € L¥(v), (1.201)

and thus ¢(¢)In(¢ —¢) € LP (7).
Let X be the function defined by equality (1.7). Then AQXME(%Z € L(%).
Consider the function

Qy(w) = ng)/;ﬁc&)ci{w (1.21)

and show that this function is a particular solution of the problem (1.6).
For this purpose, it is seen to be sufficient to show (observing that Q, € H?
for some 6 > 0 in domains U and C\U) that Qf € L(v). But

d¢
—¢o’

+
Qf (¢o) = %g(CO)-i- XQEEO)/;EC()C)C (1.22)

where XT((o) = O((Co — ¢)7 22 (o)) and zp(¢o) = exp(KrB)t((o) with the

function # continuous on I'. By Corollary of Theorem 1.1 of Chapter III,

2l e 601W5 for any ¢ € R. From this and the expression (1.20) it follows
>

immediately that to the second summand in (1.22) we have applied Theorem
4.7 of Chapter I on the basis of which we can conclude that this summand,
and thus Q;’ € LP(y). Consequently, Q, € H? in U and by Lemma 7.1 of
Chapter I we find that Q, € Ep('y) as well. Again, a particular solution of
the problem (1.2) is given by (1.10).

Summarizing the above results, we conclude that: if v = p, then the
problem (1.2) has only zero solution if in the circle U the function X;(w) =
(w — c)_%zoz(w)EHp, or a set of solutions given by (1.13), when X; €
H?. The inhomogeneous problem is, generally speaking, unsolvable. If
the condition (1.20) is fulfilled, then the problem (1.2) is solvable, and its
general solution is given by the equality

u(z) = us(#) + uo(z), (1.23)
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where uy is the function given by equality (1.10), and

0, for, X,€HP,

MR v em
w(z) —¢

Remark 1. I T is a piecewise Lyapunov curve, then 0 < m < |zp] < M.
Therefore X1€H?P, and hence the problem (1.2g) for v = p has only the
zero solution. Moreover, using Corollary 1 of Theorem 2.2 from Chapter
III, condition (1.20) can be written in the form

up(z) = (1.24)

g(t)In |t — | € LP(T). (1.205)

Remark 2. On the basis of the above-considered cases, we have the fol-
lowing picture for the solvability of the problem (1.2) in domains with one
interior angle of size v = 2:

forp < 2, the problem (1.2) is solvable not uniquely, and all its solutions
are given by (1.15), (1.13) and (1.14). Forp > 2, it is solvable uniquely, and
its unique solution is given by (1.10). If p = 2, then the problem (1.2¢) has
only the zero solution for X1 €HP, and the set of solutions is given by (1.13)
for X1 € HP. The inhomogeneous problem (1.2) is, generally speaking,
unsolvable. If, however, f(t)In|w(t) — C| € L*(T), then this problem is
solvable, and its general solution is given by (1.23) and (1.24).

(iv) v = 0. Tf X is specified by (1.7), then in the neighbourhood of the
point ¢ we have X = O((w — c)_%zoz) S0 % € I%pl('y). Therefore Qy = a X,
and the homogeneous conjugation problem (1.6) is solvable, and its general
solution is given by the equality Q¢ = aX. As in case (i), we conclude
that Re v = 0. Thus the problem (1.2y) has only the zero solution. All the
solutions of the inhomogeneous problem are contained in the set of functions

Y NS

where X1 ({) = (¢ - c)_%zO%.

Obvious X € Ep('y) as X € H? in U. Therefore 2 € Ep('y) if and only if
XKr (Xg—+) € Ep('y). However, if this inclusion is fulfilled for any ¢ € LF (%),
then the operator T, defined by (1.19), is continuous in L?(vy) (by Theorem
2.2 of Chapter IT). But as is shown in the case (iii), the operator T3 is not
such. Hence, there exists a function gg € L(7) for which the problem (1.6)
is unsolvable. This implies the existence of such fy € LP(T) for which the
problem (1.2) is unsolvable.

Assume again that the condition (1.20) is fulfilled and let us show that
the function €2 given by (1.25) for & = 0 provides a particular solution of the
problem (1.6), i.e., Q € Ep('y). It suffices to show that £ € HP in U. For
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this purpose, as it follows from Lemma 1.1 and Smirnov’s theorem (0.19),
it suffices in its turn to show that QT € LP(y).

Suppose g1(¢) = g(C) 1 [C — el, p(¢) = X — )35 (C). Then g, €
LP () (because of (1.20)), and p?eW, () for every ¢ € R (see Theorem 2.2
of Chapter II).

We now have

g(OC—c)  d¢
J (=T pO ¢ e €~
B (O =) + (G- d¢ _
(C= )7 p(Q)In|¢ = ¢

2miQ (o) = 9(Co) + X+(C0)/

=g(Co) + X+(C0)/

~y

- Axt — )7 1) de_ _
oy AT GG e jk(—@ﬁ'KMMC—dC—Q
¢)d¢
= 4(Co) + AXF(Co) + (Ta)(Co). 4 = o C(120)
gl&o 0 g1 )Go / (€= )b p(C)In [ — o]
Here Xt € LP(5), since XT({) = ¢/2/(¢), and it follows from the above-

mentioned properties of p (by Theorem 4.7 of Chapter I) that T'g; € LP (7).
Thus, (1.26) implies that QT € LP(y). Consequently, Q € Kr (7), and hence
this is a unique solution of the problem (1.6). The solution of (1.2) is given
by the equality (1.10).

From the above considered cases (i)-(iv) we obtain

Theorem 1.1. Let I' be a simple, closed, piecewise smooth curve contain-
g one angular pomnt C with nterior angle of size vw, 0 < v < 2 and
Xi1(w) = (w — )7t X(w), where X is given by (1.7), ¢ = w(C). Then the
Dirichlet problem (1.2):

— 15 uniquely solvable for o < v < p;

— has for p < v a set of solutions depending on only one parameter;

— 18, 1 general, unsolvable for p = v and becomes solvable when the
condition (1.20) is fulfilled. Moreover, it has a unique solution, if X1€H?,
and a set of solutions depending on only one parameter for X, € HP;

—is, in general, unsolvable for v = 0. If condition the (1.20) is fulfilled,
it has a unique solution.

When the solution exists, it is given by (1.10) for 0 < v < p, by (1.15),
(1.14) and (1.13) for p < v and by (1.23) and (1.24) forp = v.

1.3. An example of the function f; € L?(T') for which the problem (1.2) has
no solution if I' contains an angular point with an angle of size pm. Let ' be
an arbitrary, closed, piecewise Lyapunov curve containing only one angular
point with an angle (interior with respect to a finite domain bounded by this
curve) pr, 1 < p < 2. To construct the function fy for which the problem
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(1.2) is unsolvable, we will first show that upon its solvability the solution
is obtained from that solution of problem (1.6) which has a specific form.
Write the boundary condition from (1.6) in the following form:

(€ =) Y0
#(Q)

Tt is easily verified that if X is the function given by (1.7), then the function
F(w) = (w— ¢)Q(w) X~ (w) will, after subtraction from it of some linear

(€ —0Q* () =~ Q7(0) +9(O)(¢ = <)

function, belong to the class kp('y). Therefore all possible solutions of the
problem (1.6) lie in the set of functions

w w—=c

Sy Aw) 1 g(O)(¢—¢) aw+b,
Q(w)_ —c?wi/X+(<)(<_w)d<+ X( ), (1~27)

where a and b are arbitrary constants. Since X € K? (), Q will be a solution
of the class KP(y), if one can choose a constant B such that the function

(1.28)

Qo(w) = ML/M)(C—C) A BX(w)

w—c 27 Xt ¢(—w w—c
¥

would belong to the class kp('y).
We can easily show that in the unit circle and in its complement 2y €

ﬁlHé, and therefore Qg € Ep('y) if and only if QF LP(y). For this it is
<
necessary and sufficient that the function

XY () [ 9(O)(C—e)d¢ | BXT(Co)
hg,B— o—c /X+(C)(C—Co)+ o (1.29)

would belong to the class LP (7).
Construct now a function go € LP(v) such that hy, gELP(y) for any
values of B.

Suppose ¢ = 1 and let

(Xt
90(C) = gole'?) = (-1 7
0, = (1,271’),

gn S 0 < 9n+1a (1 30)

where 6,, = % and m,, = m
Since T is a piecewise Lyapunov curve, near ¢ = 1 (see Warschawski’s
theorem in Chapter I1T) we have Xt = O((¢ —1)7" 20(¢)), where zo € H(y),
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X*(¢ M
(1) # 0. Therefore C—(l)‘ < IEE and
i T s
Jlabas <> [
5 n=1 9 |C - 1|

> 1

- mk, 1 1
< YL VR S DS S S
_T;\/( 21 n n+1 _cons;nlnp(n+1)<oo

1 — cos ) + sin
Thus go € LP(7y). Show that h,, p€ELP(y). We have

X [ [ 0olOC— 1)
@—1[ O >d<+B]’

th,B =

~y

where %@L” (7). Therefore if we prove that

go(¢) ¢—=1
DH—I>11 X =G d¢ = oo, (1.31)

~y

then this will imply that the assertion regarding hg,, p is valid.
Given k£ > 0 and N such that ZnNzl m > k. Suppose (y = €',

96(,N+1) Cp = et ,Hn:%. We have

go(O)(¢ = 1) dC Cn—Go ‘
- my, In 1.32
‘ XF(¢)(C = ¢o) Z Cn+1 Co (132)
n=1
sin( —|— ‘ 1
=In|———=—=2"1>0, 0€(0,——]).
Cn+1 ‘ sm —|— FEEsH +1) ( N + 1)
Therefore from (1.32) we find that
sin 9 + L)
dC‘ my 1 —2" =
‘/ C o) Z sm( + 2(n+1))
2cos(& + L sin
_ Zmn In <1+ (5 42("+1))1 4"("“)) >
sin(5 + 2(n+1))
N | N 2 cos(§ + 4n(i+1))sin 4n($+1) N
_§Zmn sin(% + 1) -
n=1 2 2(n+1)
N 9 1 .
1 2cos(3 + 5 SN =
>3 m, (, Al 7)1 e > mok, (1.33)
2 sin( 571y 2(N+1) + 2(n+1))
1 2N
where mg = —Inf cos 7—1_3 > 0.

2t N AN(N +1)
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which proves the relation (1.31).

f (’/% = g1+ig>, then it is obvious that the problem (1.2) is unsolvable

for one of the functions g1 (w(t)) or ga(w(t)).

1.4. Problem (1.2) in domains bounded by arbitrary piecewise smooth
boundaries. From the results obtained in sections 1.2 and 1.3 it follows

Theorem 1.2. Let I' be a closed, piecewise smooth curve bounding the fi-
nite domain D, and let Cy, k = 1,n, be its angular points with interior
angles vpm, 0 < vy < 2. Denote by ny the number of angular points with
the values ny from the interval (p,2] (assuming (2,2] = @). Then all the
solutions of the homogeneous problem (1.2¢) are given by the equality

UO(Z):VkEZ(Z;Z] Ni(p) Re M+ Z Mp(p) Re %,(1.34)

where Ny are arbitrary constants, w = w(z) is a function mapping confor-
mally the domain D onto U, and

Mi(p) =40 NEH, Xi(w) = (w—cp) 72, (1.35)
My is an arbitrary constant of Xy € HP,

zg is the function defined from equality (2.7) of Chapter TIL.
The inhomogeneous problem 1s, in general, unsolvable if there exist angu-
lar points with the values vy from the set {0,p}. If f salisfies the condition

f(t)ln‘ [T (wt)—wcip|err ), (1.36)
v €{0,p}

then the problem is solvable.
In all the cases in which a solution exists, it is given by the equality

u(z) = uo(z) + uyp(2), (1.37)

where uy is defined by (1.34), and

e = e[ (5 LD o,

2 ¢ —w(z)
U™ it T o [ SEQPOY 1
e 1 / feouy) sy 0

plw(z)) = H (w—rc) and p=1, if {vp: vy €(p,2]} =@.(1.39)
vi€(p,2]
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§ 2. THE NEUMANN PROBLEM IN THE CLASS ¢} (D) IN DOMAINS WITH

PIECEWISE SMOOTH BOUNDARY

Suppose

ep(D) = {u tAu =0, 021«211/ (‘g—z‘p + ‘g—z p)|dz|}a p>1, (2.1)

where T, is as usual the image of the circumference |w| = r for the conformal

mapping of U onto D.

Let u € e;,(D), v be a function conjugate harmonically to it, and ¢ =
u + dv. Since g—g = g—z and g—; = _g_Z’ and ¢(z) = g—z—i—ig—z, 7 =z + 1y,

it follows from (2.1) that ¢’ € EF(D). Thus e, (D) = Re E}(D), where
EL(D) ={¢:¢" € EP(D)}. This implies that the functions u from e}, (D)
are continuous in D, absolutely continuous on I' (see, e.g., [133], p. 208),

and & and 2% have on T angular boundary values |2 * and (2% ¥
Er By g y dr dy

summable on v with degree p.
+ +
(g—u) cos(n, z) + (g—;) cos(n,y) =

Let
(5) = (5
= (g—z)+(— sina(t)) + (g—Z)+ cos(a(l)),

where (n, ) and (n,y) denote the angles formed by the normal at the point
t and the coordinate axes and «(t) is the angle lying between the oriented
tangent at the point ¢ and the z-axis.

Consider the Neumann problem formulated as follows: define the func-
tion u for which

Au=0, uwee (D), p>1,
F (2.2)

(34) =7 rer).

Let v = Re¢ be a solution of the problem (2.2). Then ¢’ € EP(D).

Taking ¢’ in terms of ¢’ = g—g - ig—z and assuming a(t) = cos a(t), b(t) =

sin «(t), we can write the boundary condition from (2.2) in the following
form:

Reli(a(t) +ib(1))¢' ()] = S (1)
([106], §74-75) or, what comes to the same thing, in the form
Re[it'(s)¢(t(5))] = f(t(s)). (2.3)
Let

U(w) = /2 (w)g'(2(w)),  f(x()) = g1(7). (2.4)
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Taking into account the fact that ¢'(s) = expia(t(s)), we write (2.3) as

Re [iexp ia(z(7)) \IJ+(T)] = gi(r).

V)
If
U(w),  |wl<1,
Q(w): \IJ(%)’ |w| S 1’ (25)

then € satisfies the conditions

QO+ (r) = exp(—2ia(z(1))) Z(0)

QeXr(7), Qw)=Qu(w),

where

g(r) = =i/ (1) exp(—ia(=())20:(7), g € L7(7). (2.7)

Let 7 = exp if. Assume a(z(7)) = «(0). Since

lim argz (w) = a(f) — 0 — g
w—exp 6

(see Corollary 1 of Theorem 2.2 in Chapter III), the conjugation problem
from (2.6) will take the form

Q™ (r)=My exp[— Qi(g—I—a](f))]Q_(T)-l-g(T), MoIeXp(— %) (2.8)

The coefficient G(1) = Myexp [— Qi(g + %] of the problem (2.8)
has a jump discontinuity at the point ¢ = w(C). Moreover, when the
point 7 moves along the unit circumference in the positive direction, the
arg G(1) = —2(% + %) possesses the increment —4w. Choosing on v a
point 7p # C and assuming it to be the initial point of the going around
v, then arg G/(r) will have a discontinuity equal to (—4w). Let ¢ = exp if,.
Then (a(f.+) — a(f.—)) is equal to the angle between the right and the
left tangents at the point C, that is;, @ — vw. Therefore the arg G(r) has
at the point ¢ a discontinuity equal to 3 = %. Let ¢1(r) = 2%90(7')
and @o(7) = 26, (1) where 0., 0, are the continuous, respectively on v\{c}
and y\{r}, branches of the function argr. Then the function ¢o(r) =
arg G(7) — ¢1(7) — ¢2(7) is continuous on .

Let now

Xo(w) = (w - 70)2p.(w) [ exp (ﬁ / M) -

Pl T—Ww
- v
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= (w—10)’pe(w) [ Xe(w), (2.9)
where

pc<w>:{1 A e O 3 BCRT)

w—c for v>p, 2w T—w
¥
The function X (w) is a solution of the homogeneous boundary value
problem (2.8) representable by the Cauchy type integral with density from
the class LP(y) and its principal part at infinity of order s, + 2 (that is,
X (w) = f7 % + P, t2(w), # € LP(y) and P,_42 is a polynomial of
order s, + 2), where s, = 0 for v < p’ and 3¢, = 1 for v > p’. The function
[X.(w)]~! is representable by the Cauchy type integral with density from

ﬂOLpl_a(’y), while the functions [XZ(7)]~! are integrable, with degree p’,
e>

on any closed portion of ¥ not containing the point ¢ (see subsection 1.2).
Further, X+[X7]! = G, and we can easily verify that near the point ¢,

Xo(w) = O((w —¢) 7 Xo(w)) for v <y, } (2.11)

1—

X (w) =0((w —¢) p’y+1X0(w)) for v>p,

where Xg(w) = exp (% f7 @_lwdu) with the continuous on ¥ function vy,
and therefore X' € N H?, X+ e n Ws(7).
§>1 5>1

If g is a solution of the problem (2.6), and F(w) = Qo(w)[X.(w)]7!,
then: first, almost everywhere on v we have F*(r) = F(7), and F(w) has
at infinity zero of order s, +2; secondly, F'is regular at all points of v when

ve{0,2,p'} or v=2 and p<?2. (2.12)
If, however,
vef{0,p'} or v=2 and p> 2, (2.13)

then the function F' is regular on v\{c}, and at the point ¢ it may perhaps
have a pole of the first order. (This can be justified in the same manner as
it was done in subsection 1.2.)

On this basis we can conclude that 7', and hence €, is everywhere equal
to zero. But then only the functions ug = M, where M is an arbitrary real
constant, will be solutions of the problem (2.2) for f = 0.

Construct now a particular solution of the inhomogeneous problem (2.2).
For this purpose we notice that under the assumption (2.12) and owing to
(2.11), we have g[X}]~! € L(y), and consider the function

(r—w)

Qw) = Xgilf)/xj(ggw (2.14)
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It is not difficult to see that Q is the only possible function providing
us with the solution. It is also easy to show that © € H? in U. In order
for © to belong to the class KP(y), it is necessary and sufficient that the
conditions

[o@ixs o st =0, k=0, (2.15)
/
0, if v<p,
[ — .
1, if v>p

or, what is the same, the conditions

/f(t)Zc(t)wk(t)dt =0, k=05, (2.16)

T

be fulfilled, where

Zc(t):exp< ! /M) (w(t)—w(C’))_“P(w(t)—w(to))zw/(t), (2.17)

o T —w(t)

¥
0, if v<yp
1, if v>yp.

to = 2(m0), pp = {

bl

If (2.13) takes place, and if T' is a piecewise Lyapunov curve, then for any
p > 1 we can, as in subsection 1.3, construct an example of the function fy €
LP(T) for which the problem (2.2) is unsolvable. Note that the condition
(2.16) can be fulfilled for the function fo.

This implies that if f € LP(T") then the problem (2.2) under conditions
(2.13), (2.16), is, in general, unsolvable. Therefore we assume that the
condition (1.20), appearing in the previous section, is fullfilled, i.e.,

F®)In Jw(t) — C| € L (T). (2.18)

In this case we can show, as in the above-mentioned section (see the case
(ii) of subsection 1.2), that the function Q given in U and in its complement
by (2.14) belongs to some Hardy class. According to Smirnov’s theorem,
for the belonging to the class H? of the function (~2, it is sufficient to have
Qt € LP(y). By (2.18) and (2.11), on the basis of Theorem 4.7 of Chapter
I, we can conclude that this inclusion is fulfilled. In order for the function Q
to be the desired solution (i.e., for the existence of the finite limit Zligloﬁ(z)),
it is necessary and sufficient that the conditions (2.16) be fulfilled. If these
conditions are fulfilled, then the solution of the problem (2.2) is given by
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the equality

u(z) = Re [ / Q(C)dc] + M, (2.19)

where X, and Q are functions given by the equalities (2.9), (2.10) and (2.14),
and the integral in (2.19) is taken over any path in U from the point 0 to
w(z), and M is an arbitrary real constant.

As a result of the above reasoning we have the following

Theorem 2.1. Let I' be a simple, closed, piecewise smooth curve contain-
g one angular point C' with the angle 0 < v < 2, and let X, be defined
by (2.9) and (2.10). Then for the solvability of the Newmann problem in
the class e, (D) it is necessary to fulfil the conditions (2.16). When these
conditions are fulfilled, the problem becomes solvable for v € €{0,2,p'} or
forv =2 and p < 2. However, if v € {0,p'} or v =2 and p > 2, then the
problem 1s, in general, unsolvable. In these cases, if along with conditions
(2.16) for f the condition (2.18) is fulfilled, then the problem is solvable.

In all the cases in which the solution exists, it is given by (2.19), where

Q is defined by (2.14).

The case with a general piecewise smooth curve can be considered by
means of the function which is the product of the functions X, , where X,
are constructed by (2.9) with C replaced by C%. In particular, the number
of conditions for solvability is equal to 1 4 n,, where n, is the number of
angular points C} at which v, > p’. If on the boundary there exist points
v from the set {0,p'}, or vy = 2 and p > 2, then the fulfilment of the
condition of orthogonality guarantees the solvability of the problem if

O T fw(®) = Gl T lw(t) = G € (1),

Vke{pl,o} V=2
Ay = [0 i e
PP=N1 i p>o

We will dwell in detail on the case where the curve I' contains only one
angular point: a cusp C.

If v = 2 and p < 2, then the problem (2.2) is solvable for any f € L?(T')
under the condition that it must be orthogonal to the function Z.(¢) defined
by (2.17). If p > 2 and f(t)In |w(t) — C| € LP(T'), then for the problem to
be solvable, it is necessary (and sufficient) for f to be orthogonal to the
function Z.(t)w(t) as well.

If v = 0, then there exists in any LP(T'), p > 1, the function fy, for
which the Neumann problem is unsolvable in the class ¢/ (D). If along with

P
(2.16) condition (2.18) is fulfilled, then the problem is solvable.
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Finally we will remark that the condition (2.16) with 3¢, = 0 takes also
place in the case, where I' is a smooth curve. In this case the condition
(2.16) can be written in a more simple form.

In the case of domains bounded by smooth curves, Inz'(w) € H' (see,
e.g., (1.20) from Chapter IIT), and therefore the equality
1 /Re[ilnz’] T+w

ilnz'(w) = 7

d 2.20
T T—w T ( )
¥

1s valid. Moreover, it is not difficult to verify that

27 27

0d Diet® 4o :
/ : _CT - / elj — = In(l—7) =i —im, =", (2.21)
¥ 0

The condition (2.16) with regard for (2.20) and (2.21) takes the form

/f(t)ds =0.

Consequently, the condition for solvability of the Neumann problem in
the class e/ (D) in the case under consideration has the same form as the
condition for its solvability in different classes of smooth functions (see, e.g.,

[106], §75).

§ 3. ON THE ASYMPTOTICS OF THE SOLUTIONS IN THE
NEIGHBOURHOOD OF ANGULAR POINTS

As we have seen from the foregoing sections, the solutions of the Dirichlet
and Neumann problems, as they were formulated above, can be written out
in quadratures by means of the Cauchy type integrals and conformal map-
ping of D onto U. These integrals and mappings are studied well enough.
This circumstance allows one to obtain, under some additional assumptions
regarding the given functions, the asymptotics of the solutions in the neigh-
bourhood of angular points of the boundary. As an example, consider one
case of the Dirichlet problem.

Let T be a piecewise Lyapunov curve containing one angular point with
the angle 7v, 0 < v < pand let f(t) = [t —C|"%p(¥), 0 < o < %, pe H),
p(C) #0.

Since t —C' = w(r) —w(c) = (r—c)"wo(7), where wy € H(7y) and wy # 0
(see, e.g., Corollary of Theorem 3.4 from Chapter III),

f(z(r)) = [r—c|7*"%(r), &(r)#0, ¢ € H(y)
The solution of the Dirichlet problem in e? (D) is given by the formula

_Re| L [fED)THw o WY FWE) oy (s
=r [w/ e A T e R
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Consider the function uy(z),

u1(z) = Re Q(w(2)), = QL/

T—|—w

We write the function (z) as follows:

L |7 — |~ ¢(r)dr

m T—w

+%/%d7—: Q1 (w) + Qa(w).

_|_

The estimates for the € and 4 are well known when 0 < ar < 1 ([106],
§22). Consequently, if vao € (0,1), then applying the appropriate results
from [106] and separating the real part of €2, we obtain the estimate of
the function wi(z(w)) in the neighbourhood of the point ¢, and thus the
estimate of u1(z) in the neighbourhood of the point C'. The estimate for
the summand us can be obtained easily from Theorem 3.1 of Chapter III.

8 4. THE RIEMANN-HILBERT PROBLEM IN DOMAINS WITH PIECEWISE
SMOOTH BOUNDARIES

Let D be a simply connected domain bounded by a simple, closed, piece-
wise smooth curve I' containing one angular point C' with the angle v,
0 < v < 2. We will consider the Riemann-Hilbert problem and formulate 1t
as follows: define the function @ of the class EP (D) whose angular boundary
values @1 (t) satisfy almost everywhere on I' the condition

Re[(a(t) +ib())2* (t)] = c(2), (4.1)

where a, b, ¢ are the given on T real functions, and ¢ € LP(T).
As for the coefficients a and b, they will be assumed to be measurable on

[ functions such that if G(¢) = [a(t) — ib(¢)][a(t) + ib(¢)] 7!, then
G(t) € g(p), and G is continuous in the neighbourhood of C. (4.2)

We denote the class of such functions G by Ac (p).

Let ¢,(t) = arg G(¢) and sc = 3¢(p) = s(p, ) (the index of the function
(i be defined as in subsection 1.2 of Chapter II).

Passing to the circle U as in §1-2 of the present chapter, we arrive at the
problem of defining the function Q € KP () by the following conditions:

at(Q) = - O MO = iB 9-<<>+g<c>, ceT, (43)

{/—A +ZB

Qu(w) = Qw),  |wl[#1, (4.4)
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where € is defined by (1.4), AC) = a(z(¢)), B{) = b(z(¢)), ¢(¢) =
2e(2(O)[AQ) +iB(O]

The function
G (¢) = [A(Q) = iB(ONA() + iB(Q] ™

on the circumference belongs to the class gc(p).

Owing to Theorem 3.5 of Chapter II, G is factorizable in the class kp('y),
and its factor function has the form

d
exp (zL f, —””ffiﬁ), lw| < 1,
Y(w) =
( ) — 1 @p(¢)d¢ 1
w™* exp 277[7 = ) |w| > 1,

where ¢,,(¢) = arg, G+ (().

Before we proceed to investigating the problem (4.1), we will assume that
C' # tj, and consider the following cases separately: (1) 0 < v < p; (il) p < v;
(iiv=p;(iv)v=2;(v) v=0.

(i) If 0 < v < p, and the function X is given by (1.7), then

(4.5)

T(w) = AY (w)X (w), (4.6)

——:ZI(OG7 of order
{/#(C)

Here A is an arbitrary constsnt. Choosing A as in §41 of [106], we achieve

the fulfilment of the equality Ti(w) = w*®)T(w), and hence conclude: if

3 = x(p) > 0, then the homogeneous problem corresponding (4.1), has an

infinite number of solutions given by the equality

D(2) = T(w(2)) P (w(2))[{/w'(2)] 7,

4

will be a factor function for év = —(p) at infinity.

where P,(w) = ag + aqw + -+ + azw” is an arbitrary polynomial whose

coefficients satisfy the condition
a; =T, 1=1, . (4.7)

The inhomogeneous problem (4.1) is, unconditionally, solvable. However,
if 2¢ < 0, then the homogeneous problem has only zero solution, and in order
for the inhomogeneous problem to be solvable, it is necessary and sufficient
that the conditions

tw'(t
/wk(t)&())dtzo, k=0,1,... %2, (4.8)
be fulfilled (If 5 = —1, there are no conditions for the solvability).

(il) p < v < 2. Suppose T1(w) = AY (w)X1(w), where YV is defined by
(4.5), and X;(w) = X(w)(w — )7L,
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By a suitable choice of A, we can arrive at the fulfilment of the equality
(T1)s(w) = w* DT (w),  |w| £ 1,

and therefore the result of the previous section with substitution of »(p) by

»(p) + 1 holds valid .
Write out the conditions of solvability for s(p) + 1 < 0. They have the
form

F(t)e(t)w' (t)dt
/M:o, k=01, |%+1|—2. (4.9)
Ti (w(t))
(iii) ¥ = p. By analogy with subsection 1.2, we find that only the function
M

w—=c

Qo(w) =Y (w) | P (w) + X(w). (4.10)
can be a solution of the homogeneous problem (4.3).
Let

x>0, Ty € H” (4.11)

Then all solutions of the homogeneous problem are given by (4.10), where
M 1is an arbitrary constant and P, 1s an arbitrary polynomial of order ¢
whose coefficients a; satisfy (4.7).

However, if

x>0, TYEHP, (4.12)

then the general solution is again given by (4.10) with M = 0.

For » < 0, the homogeneous problem has only zero solution. The inho-
mogeneous problem is, generally speaking, unsolvable.

Let the condition (1.20) be fulfilled. Since (7, at the point ¢ is continuous,
and in the neighbourhood of this point (Y )¢ € 6L>JlW5 for any a € IR, using

Theorem 4.7 of Chapter I, we find that the function
T d
Q(w) = 1(w) / 9(¢) _d¢ (4.13)

27 TH(¢) ¢ —w
¥

for ¢ > 0 is a solution of the inhomogeneous problem (4.3).

However, if 2c < 0, then in order for the problem to be solvable, it is
necessary and sufficient that the conditions (4.8) be fulfilled.

(iv) v = 2. For p < 2 and p > 2 we have a diverse picture. If p < 2, we
can prove as in §1 that the function [Y (w)X (w)]~! is analytically extendable
everywhere on v, with the exception of the point ¢. This implies that the
general solution of the homogeneous problem (4.3) is given by the equality

Qo(w) = Y(w) X (w)(w — c)_lPﬂH(w), (4.14)
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where P,y1 = 0 for s < —1, while for s > —1 the coefficients a; of
the polynomial P,y; are connected by the relation a¢; = @,y1—;. The
inhomogeneous problem is, undoubtedly, solvable for s > —1. However,
if 5x < —2, then the problem is solvable if and only if the conditions (4.9)
are fulfilled. In this case the solution can be written out easily.

If p > 2, then 2 = v < p (this case has been considered in (i)). If p = 2,
then v = 2 = p (this case has been considered in (iii).

(v) v = 0. For s > 0, the homogeneous problem (4.1) has an infinite
number of solutions given by the equality (4.10) and the condition (4.7).
However, if 3z < 0, then it has only the zero solution.

The inhomogeneous problem 1s, generally speaking, unsolvable.

If the condition (1.20) is fulfilled and > > 0, and if for s« < 0, along with
(1.20), there take place condition (4.8), then the inhomogeneous problem is
solvable.

Finally we summarize the above-obtained results for the general case.

Theorem 4.1. Let the Riemann-Hilbert problem be considered in the class
EP(D), where D is bounded by the curve T', and 0 € D. Assume that:

(i) T is a simple, piecewise smooth curve containing angular points Cy,
k=1, n, with the angles vym, 0 < v} < 2;

(it) G(t) = (a(t) —ib(t))(a(t) +1b(t)) " belongs to the class g(p), Cr #1
where t; are the p-points of discontinuity of G, G(1) being continuous in
small neighbourhoods of the points Cy; s(p) = s(p; G) is the index of G
and ,(C) = arg G(=(0)):

d
exp (% %) ol < 1,
V(w) = Y 4.15
(w) w_”(p) exp (i SDP(C)dC)’ |w| > 1’ ( )

27 (—w
v
(iii) Let
ce =w(Cr), hp ={ck :ve >p}, ho={ex 1 vr =0},

hpr = {ex ive =p, Z(w) =Y (w)(w— ;) 720 EHP},

hoy = {er vk =0, Z(w) =Y (w)(w - ex) 72 EHT )

and let n,,np1,n0,1 be numbers of points of the sets hy,, hy1 and ho;,
respectively. Here zy is the function defined by (2.5) from Chapter TI1.
Further, put

T(w) = ¥ (w)p(w), (4.16)
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where
H (w—cp)™" if hy # 2,
p(w) = < crehy (4.17)
1 if hy =0
and
w=e(p;G)+np —np1—No1. (4.18)
Then

(1) All the solutions of the homogeneous problem are given by the equality

Dy(z) = AY (w(2)) Py (w(z)) H (w(z) — en), (4.19)

cx€hp 1Uho1

F
where for 2 > 0, P,(w) = . apw® is an arbitrary polynomial with the
k=0

condition

ai(-1)" [[ e [ e'=@7 i=0x (4.20)

cr€hy ckEhp,1Uho1

and P,(w) = 0 if 5« < 0. The constant A in (4.19) is defined from the
condition

(AY ), (w) = w” AY (w). (4.21)

(2) For the inhomogeneous problem we can conclude that:
If > 0 and

ct)ln| J[ (w(t)—cx)

vp€{0,p}

e I°(I), (4.22)

then the problem is solvable.
If 52 < 0 and (4.22) holds, then in order for the problem to be solvable, it
1s necessary and sufficient that

wk(t)c(t)w’(t) _ B i
[ S =0 k=002 (42

In all the cases, in which the solution exists, it is given by the equality

8(2) = B.(2) + Bo(2),
where @q is defined by (4.19), and

_ T(w(z) [ c(z() I/=(Q)dC
Co(2) = — - /T+(C) ¢ —w(z)

_|_

~y
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+w(z)(T(%?)))/C(Z(C)) ZQ)d¢ | (4.24)

Remark. If T is a piecewise Lyapunov curve and a(t), b(¢) belong to the
Holder class, then h, 1 = {cg : vy = p} and hp1 = @.

NoTEs AND COMMENTS TO CHAPTER 1V

The Dirichlet and Neumann problems, as well as Riemann-Hilbert prob-
lem for harmonic and analytic functions from Smirnov classes in domains
with piecewise Lyapunov curves, containing no cusps with the zero angle
have been investigated earlier by V. Kokilashvili and V. Paatashvili [80],
[81]. Subsequently, generalization of Warschawski’s theorem to the case of
non-smooth boundaries, considered in §1 of Chapter III and new two-weight
inequalities for singular integrals allowed us to extend the class of bound-
aries to the problems mentioned above. The results of Chapter IV regard-
ing boundary value problems in domains with piecewise smooth boundaries
(containing, generally speaking, cusps of any kind) have been announced
earlier in [82] and [83].

The Dirichlet and Neumann problems for domains with boundaries ad-
mitting cusps in different functional classes are considered by A. Soloviev
and V. Maz’ya and A. Soloviev [93-95].

A vast number of works 1s available which are devoted to the investigation
of these problems in multi-dimensional domains (involving sometimes plane
cases) under different assumptions for unknown functions to be harmonic
in domains of harmonicity. For the cases with non-regular boundaries the
reader can be referred to the papers [85], [96], [11] and etc.

General singular integral equations in a class of curves containing cusps
of special type have been studied by R. Duduchava, T. Latsabidze and A.
Saginashvili [26].
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