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Abstract. In the present monograph, on the basis of the Cauchy type in-

tegral theory discontinuous boundary value problems for analytic functions

with oscillating conjugacy coe�cients and boundaries are studied. For ana-

lytic functions from Smirnov classes, the complete solution of the Riemann-

Hilbert problem in domains with arbitrary piecewise smooth boundaries is

presented. On the basis of the investigation of the linear conjugation prob-

lem, the boundary properties of derivatives of functions conformally map-

ping the unit circle onto a domain admitting a boundary with tangential

oscillation less than �, are studied. From new representations derived for

the above-mentioned functions, some well-known results of Lindel�of, Kellog

and Warschawski as well as their generalizations are obtained; the Dirich-

let and Neumann problems for harmonic functions from Smirnov classes

are investigated; the picture of solvability is described completely; the non-

Fredholm case is exposed; an in
uence of geometric properties of boundaries

on the solvability is revealed; in all cases of solvability explicit formulas for

the solutions in terms of Cauchy type integrals and conformally mapping

functions are given.
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reziume. Cinamdebare monograPiaSi koSis tipis integralis Teoriis

saPuZvelze analizuri PunqciebisTvis SesCavlilia CKvetili sasazGvro

amocanebi rxevadi SeuGlebis koePicientebiT da sazGvrebiT. smirnovis

klasis analizuri PunqciebisaTvis amoxsnilia riman-Hilbertis amocana

nebismieri uban-uban gluvi CirebiT SemosazGvruli areebis SemTxvevaSi.

CrPivi SeuGlebis amocanis gamokvlevis saPuZvelze SesCavlilia im

asaxvebis Carmoebulebis sasazGvro Tvisebebi, romlebic erTeulovan

Cres iseT areze gadasaxaven, romlis sazGvris mxebis rxeva �-ze naklebia.

zemoxsenebuli Punqciebis axali Carmodgenebidan miGebulia linde-

loPis, kelogis da varSavskis zogierTi cnobili Sedegi da maTi gan-

zogadebebi. gamokvleulia dirixlesa da neimanis amocanebi smirnovis

klasis Harmoniuli PunqciebisaTvis. mTlianadaa aGCerili amoxsnado-

bis suraTi. ganxilulia araPredHolmuri SemTxveva. SesCavlilia

sazGvrebis geometriuli Tvisebebis gavlena amoxsnadobaze. mocemulia

amonaxsnebis cxadi Pormulebi koSis tipis integralebisa da konPor-

muli asaxvebis terminebSi.
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Introduction

The idea of writing this monograph was stimulated by the authors' latest

investigations on two ranges of problems. The �rst includes boundary value

problems for analytic and harmonic functions in domains with piecewise

smooth boundaries, while the second is related with �nding new properties

of conformalmappings of the unit circle onto simply connected domainswith

non-smooth boundaries using solutions of the above-mentioned problems.

Below we describe our investigations against the background of the theory

of boundary value problems for analytic functions. These problems are �rst

encountered in B. Riemann [136]. Important results in this direction have

been obtained by Yu.V. Sokhotski��, D. Hilbert, I. Plemelj and T. Carleman.

Let � denote either a curve or a �nite family of nonintersecting curves.

The main objects of our study are the following problems:

(a) The Riemann problem: �nd a function � from a given class A of the

functions, analytic on the plane cut along �, whose boundary values satisfy

the conjugacy condition

�

+

(t) = G(t)�

�

(t) + g(t);

where G and g are functions prescribed on �, and �

+

and �

�

are the

boundary values of � on � .

(b) The Riemann-Hilbert problem: in the domain bounded by �, �nd

an analytic function �(z) such that its boundary values �

+

(t) satisfy the

condition

Re[G(t)�

+

(t)] = f(t); t 2 �;

where G and f are functions given on �.

Depending on the assumptions imposed on the unknown functions, the

boundary value problems are conditionally divided into three groups: (i)

continuous problems with a continuous (up to the boundary) solution; (ii)

piecewise continuous problems, when the continuity is violated only at a

�nite number of boundary points; (iii) all other problems of discontinuous

type.

Fundamental results which stimulated intensive research of these prob-

lems were obtained by F.D. Gakhov [37] and N.I. Muskhelishvili [103]. In

their �rst works, F.D. Gakhov considered the problem for the continuous

case, whereas N.I. Muskhelishvili investigated it in a more general, piecewise

continuous form. Subsequently, I.N. Vekua [160{161] suggested a new ap-

proach for investigating a general, continuous, linear boundary value prob-

lem of Hilbert type. Using Plemelj's results, N.I. Muskhelishvili and N.P.

Vekua studied the continuous boundary value problem for several unknown

functions.

The discontinuous boundary value problem has mainly been treated in

classes of analytic functions representable by Cauchy type integrals with

densities from Lebesgue spaces. It was I.I. Privalov who �rst considered

this problem in a particular case.



4

Systematic investigations of these problems are connected with the name

of B.V. Khvedelidze. In his works, the conjugacy coe�cients were assumed

to be continuous or piecewise continuous and the boundary to belong to

the Lyapunov class. Later on, discontinuous boundary value problems with

piecewise continuous coe�cients and related singular integral equations were

studied by many authors.

The most general results related to the spectral theory of singular in-

tegral operators with piecewise continuous coe�cients on regular curves in

Lebesgue weighted spaces are presented by A. B�ottcher and Ju.I. Karlovich

in the monograph [7] (therein one can also �nd an extensive bibliography

on the above-mentioned problems).

The investigation of discontinuous boundary value problems with oscil-

lating conjugacy coe�cients has always been regarded as one of challenging

tasks. The problems on complete characterization of the coe�cients G ad-

mitting a factorization and on construction of solutions of discontinuous

boundary value problems in classes of Cauchy type integrals remains still

unsolved.

An essential progress in this direction has been achieved by I.B. Simo-

nenko [141] and I.I. Danilyuk [18]. In their works, the coe�cients of bound-

ary value problems were assumed to be functions having an in�nite set

of discontinuity points, at which, generally speaking, at least one of the

one-sided limits does not exist. At the same time, as boundary curves I.I.

Danilyuk investigated the curves with bounded rotation.

All the above-mentioned investigations were accompanied by the im-

provement of the techniques of Cauchy type singular integrals and oper-

ators, the derivation of new weighted inequalities for these operators, and

the development of some methods of Functional Analysis.

Of the tools applied to discontinuous boundary value problems for ana-

lytic functions, the basic are the methods of factorization of functions given

on the boundary, as well as the theory of Cauchy type integrals with densi-

ties from Lebesgue spaces.

As for the methods and results of investigations achieved in this area,

the monographs by B.V. Khvedelidze [68] and I.I. Danilyuk [21] are worth

mentioning.

Another important method of treating the boundary value problems is

that of singular integral equations. The point is that these problems for vari-

ous classes of analytic functions are equivalently reduced to singular integral

equations. We mean the well-known Carleman-Vekua method applied to

continuous and piecewise continuous problems, as well as I.B. Simonenko's

theorem on the equivalence of factorization of the coe�cient G in the class

of Cauchy type integrals with density from L

p

(�) and noetherianness of a

linear singular integral equation in this space. In a number of cases, we

employ a combination of these two methods.

On the basis of investigations connected with the boundedness of a sin-

gular operator in a weighted space and with the belonging to a Smirnov
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class of the exponential function of a Cauchy type integral with a bounded

density, we have managed (in the case of general boundaries) to widen the

class of admissible coe�cients in discontinuous boundary value problems

and the class of domains in which these problems are posed (see [78{79]).

Recently it became clear ([65, 117, 120]) that using the above-mentioned

results, one can determine properties of the derivative and the argument

of the derivative of the function which maps conformally the unit circle

onto a domain with a non-smooth boundary. Representations of conformal

mappings and their derivatives are given, providing us with information

about their global properties and the behaviour near angular points of the

boundary. Results generalizing the well-knownWarszawski theorem are also

presented. We obtained a new, lucid proof even in the case studied by the

above-mentioned author.

Using the solution of the problem of linear conjugation, we managed

to describe boundary properties of the derivative and the argument of the

derivative of the function which maps conformally the unit disk onto a

domain whose boundary admits tangential oscillations not greater than �.

The obtained result involves, as a particular case, the E. Lindel�of theorem

on the continuity in the closed circle of the argument of the derivative of the

conformallymapping function, when the boundary of the domain is smooth.

One of the central places in the present monograph is given to the

Riemann-Hilbert boundary value problem in domains with piecewise smooth

boundaries. First we consider in these domains the Dirichlet and Neumann

boundary value problems in classes of harmonic functions which are nothing

but real parts of analytic functions from Smirnov classes.

A great interest to boundary value problems for ellyptic equations in

domains with non-smooth boundaries is motivated by the fact that such

domains are the most natural ones in many physical processes described by

these equations.

The study of the above-mentioned problems in domains with Lyapunov

boundaries goes back to G. Giraud and S. Mikhlin.

The period starting from 1977 is marked by intensive investigations car-

ried out in this direction. The Dirichlet problem with boundary conditions

from the class L

p

(1 < p <1) was solved by B.E. Dahlberg for C

1

-domains

[16], whereas for domains with Lipschitz boundaries (when the boundary

function belongs to the class L

p

, 2 � " � p < 1, with " depending on the

domain), E.B. Fabes, M. Jodeit Jr. and N. Riviere [33], using the well-

known A.P. Calderon theorem on the boundedness of a singular operator

over C

1

-curves, transferred successfully the classical potential methods to

the C

1

-domains. As E.B. Fabes, M. Jodeit Jr. and T.E. Lewis [34] have

shown, the picture becomes more complicated in the case of non-smooth

boundaries. The point is that the integral equations, to which elliptic equa-

tions are reduced, are found unsolvable in the above-mentioned domains for

some p depending on the extent of non-smoothness of the boundary.

The most signi�cant results referring to boundary value problems for
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elliptic equations in domains with non-smooth boundaries are contained in

the works of V.G. Maz'ya and A.A. Soloviev [93{95], V.G. Maz'ya, S.A.

Nazarov and B.A. Plamenevski�� [96], V.A. Kondrat'ev and O.A. Ole��nik

[85], M. Dauge [22], etc.

A tight connection between harmonic (in a plane domain) and analytic

functions made it possible to extend the methods and results stated for

boundary value problems for analytic functions to those for harmonic func-

tions. A method developed in this direction by N.I. Muskhelishvili has been

successfully applied by us to basic boundary value problems for harmonic

functions in domains with non-smooth boundaries.

We obtained a complete picture of solvability for the above-mentioned

problems and found that it depends mainly on the geometry of the bound-

ary. The presence of angular points is occasionally the reason of their un-

solvability or many-valued solvability. The most e�ective tool in studying

the problem is provided by the above-mentioned properties of derivatives of

functions mapping conformally the unit circle onto a domain with a piece-

wise smooth boundary, as well as by two-weight inequalities for singular

integrals ([30], [80]). The latter allow one to point out for the boundary

functions the Lebesgue spaces with logarithmic weight, for which the prob-

lem becomes solvable.

In all the cases of solvability, the solutions of the Dirichlet and the Neu-

mann problems are constructed in quadratures by means of the Cauchy type

integrals and conformally mapping functions.

Next, in Smirnov classes we investigated the more general Riemann-

Hilbert problem for functions, analytic in domains with a piecewise smooth

boundary. A picture illustrating the solvability of the problem is presented;

the in
uence of the coe�cient and the boundary geometry on the character

of solvability is shown; in all the cases of solvability, the solutions are given

in quadratures.

Revert now to two-sided discontinuous boundary value problems for an-

alytic functions. When investigating the problem of linear conjugation, as

unknowns we usually consider Cauchy type integrals with densities from the

Lebesgue class L

p

for 1 < p <1. To the same class must belong the func-

tion g in the boundary condition of the Riemann problem. If the latter is

only summable, then the boundary value problem has, as is seen, no solution

even in the simplest cases. This is connected with the fact that the bound-

ary function of the Cauchy type integral is not always summable, and hence

a Cauchy type integral with a summable density fails to be representable

by the Cauchy integral.

Here naturally arises the problem of extending the notion of the Lebesgue

integral in such a way that the functions mentioned above would be inte-

grable in a new sense. Such an extension takes its origin in the work of

A.N. Kolmogorov [84] in which he proves that the function conjugate to

a 2�-periodic summable function is B-integrable, and hence the conjugate

trigonometric series is a Fourier B-series. An analogous result for the A-
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integral has been proved by E.S. Titchmarsh [154]. Further, P.L. Ul'yanov

[156{158] has shown that the boundary values of the Cauchy type integral

on Lyapunov contours are always A-integrable, and the Cauchy type in-

tegral itself is representable by the Cauchy A-integral. An application of

the A-integral to the theory of Cauchy type integrals and to the solution

of a boundary value problem and the associated singular integral equation

is given in [59]. On the other hand, it is known that the A-integral has a

number of signi�cant shortcomings preventing it to be a convenient tool.

In [60{61], it has been shown with the aid of the A- and B-integrals

that most of the results obtained for conjugate functions and for Cauchy-

Lebesgue type integrals do not depend on speci�c properties of these in-

tegrals. They hold true for any generalization of the Lebesgue integral in

whose sense the conjugate function is integrable and its integral equals zero.

This is the way how the notion of the so-called

e

L-integral originated.

In [58] it is stated that if the density of the Cauchy type integral is

summable, then its angular boundary values are

e

L-integrable, and the Cau-

chy type integral is representable in the domain by the Cauchy

e

L-integral.

On the basis of the

e

L-integration, we established many new properties of the

Cauchy type integral. Namely, we generalized the well-known formulas of

inversion of the singular Cauchy integral which allowed us to investigate the

discontinuous problem of linear conjugation in the case where the function g

is Lebesgue summable, and the conjugacy coe�cient G is H�older continuous,

di�ering from zero. Solutions of the problem are sought in the class of

Cauchy type

e

L-integrals. Moreover, all the solutions of the problem are

constructed explicitly. The new point in our work is that the boundary

curve is regular (Carleson curve).

All these results are re
ected in the present monograph. We endevoured

to reproduce as complete a picture as possible of authors' investigations

connected with discontinuous boundary value problems and with the theory

of conformal mappings.

Chapter I is devoted to the investigation of boundary value problems on

the basis of the function theory. Results from nonlinear harmonic analysis

are presented herein, including continuous operators generated by singular

integrals on general contours, one- and two-weight inequalities for these

operators and a theorem on belonging a Smirnov class of a Cauchy type

integral. In terms of the so-called p-mean singular integrals for an individual

function, criteria for the representability by the Cauchy type integral are

found.

The notion of generalized

e

L-integral is introduced, and a number of new

properties of Cauchy type

e

L-integrals are established.

Chapter II proposes results obtained for discontinuous Riemann-Privalov

boundary value problems in the case of more general, oscillating coe�cients

in the boundary conditions. Simultaneously the class of boundary curves is

expanded.

Discontinuous boundary value problems in classes of analytic functions
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representable by Cauchy type integrals with densities from weighted Lebes-

gue spaces are treated by reducing them to analogous non-weighted prob-

lems. Boundary value problems on in�nite lines are considered as well.

In the same chapter, the Riemann-Hilbert problem in a class of Cauchy

type integrals with densities from weighted Lebesgue spaces is reduced to

the problem of linear conjugation for a circle, with coe�cients re
ecting all

singularities of the weight, boundary curve and initial coe�cients. The lat-

ter allows one (varying sets of unknown functions, coe�cients and boundary

curves) to investigate the Riemann-Hilbert problem in various statements,

using the results of xx2{4 of Chapter I and the properties of conformally

mapping functions. One of such possibilities is realized in Chapter IV where

the problem is considered in a domain with an arbitrary piecewise smooth

boundary.

At the end of Chapter II, we study boundary value problems of linear

conjugation in a class of functions representable by Cauchy

e

L-integrals,

when the boundary curve satis�s Carleson condition and the non-vanishing

coe�cient is of the H�older class.

Results of Chapter II are found to be very e�cient for revealing new

properties of functions which map conformally the unit circle onto a simply

connected domain with a non-smooth boundary. Just to these questions

is devoted Chapter III. The main point here is to represent a conformally

mapping function, its derivative and the argument of the derivative, and

to illustrate their behaviour in the neighbourhood of angular points (in-

cluding cusps). Some properties of these functions are described for curves

admitting tangential oscillations.

Chapter IV gives the complete solution of the Riemann-Hilbert problem

in domains with an arbitrary piecewise smooth boundary; a comprehensive

treatment of the Dirichlet and the Neumann problems for real parts of ana-

lytic functions from Smirnov classes, is carried out. Non-Fredholm cases are

considered; a picture of the solvability is described completely; the solutions

are given in quadratures.

It should be noted that in the present work we do not touch upon such

important areas as: boundary value problems and singular integral equa-

tions with matrix coe�cients and shifts; the cases of the in�nite index; the

problems in classes of generalized analytic functions, etc.

Some of the results presented here are scattered in authors' earlier papers,

mainly in the announced form. A substantial part of the monograph involves

latest results, some of them still not published. As we see it, the exposition

of all these results in a uni�ed form clari�es their in
uence on each other.

Chapters in the present work are divided into sections which in their

turn are subdivided into subsections. Formulas in each section are supplied

with a pair of numbers, the �rst one indicating the section number and the

second one formula's ordinal number. References within each chapter are

given as the section number and the formula number, while references to

results from other chapters have additionally the chapter number.
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References contain papers and monographs which are connected directly

with the problems under consideration. The list is by no means complete.

We would be very pleased if this monograph will give the reader an

impulse to further interest in this area. At the same time, we would be very

grateful if the reader will point out imperfections or mistakes of any kind,

which inevitably occur.

Note �nally that the authors' interest to the subject matter has in many

respects been stimulated by a many-year collaboration (within the frame-

work of one department) with Academician B.V. Khvedelidze, a well-known

specialist of discontinuous boundary value problems and singular integral

equations.
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Basic Ingredients

In this section we present de�nitions, notation and propositions which

will be used throughout the paper. De�nitions within separate chapters or

section will be given in appropriate places.

0.1. C is the extended complex plane. R= (�1;+1).

0.2. U = fz : jzj < 1g, 
 = fz : jzj = 1g.

0.3. H(�), 0 < � � 1 is the class of functions satisfying H�older condition

with the exponent �; H = [

�2[0;1]

H(�) is the H�older class; H(1) is the

Lipschitz class.

0.4. C(E) is the Banach space of all continuous on E functions with

usual norm.

0.5. Under a curve is meant an oriented, recti�able, Jordan curve on

which as a parameter the arc length is chosen starting from any �xed point.

The equation of the curve in this case is t = t(s), 0 � s � l, where l is its

length. The parameter s is called the arc abscissa. The function t = t(s) is

assumed to be periodically extended on R.

Every curve on the plane C generates the set of �-images of the segment

[0; l] for the mapping t = t(s). The curve will often be identi�ed with this

set. In particular, by saying that a closed Jordan curve divides the plane

into two connected sets we mean that the set � possesses this property.

An analogous remark refers to the expressions such as \a curve bounds a

domain D", \a function is given on a curve", etc.

0.6. We will say that the function f = f(t) de�ned on � is almost

everywhere �nite, integrable, and so on, if the function f

�

(s) = f(t(s))

possesses the corresponding property on [0; l]. If f is integrable, we assume

Z

�

f(t)dt =

l

Z

0

f(t(s))t

0

(s)ds: (0.1)

0.7. L

p

(�), p � 1 is the space of summable in the p-th degree functions

f with the norm

kfk

p;�

= kfk

p

=

�

Z

�

jf j

p

ds

�

1=p

: (0.2)

If w is a measurable, almost everywhere �nite and di�erent from zero

function, then L

p

(�; w) is the space of functions with the norm

kfk

p;w

= kfwk

p

; L

1

(�) = ff : kfk

1

= ess sup

t2�

jf(t)j <1g:

Suppose L(�) = L

1

(�), L(�;w) = L

1

(�;w).

The spaces L

p

(�;w) and L

p

0

(�;w

�1

), p > 1, p

0

=

p

p�1

are conjugate

ones.
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0.8. Let f 2 L(�) and t

0

= t(s

0

) 2 �. Denote by �

"

(t

0

), " <

l

4

the

portion of the curve � left after removing a small arc with the ends t(s

0

�")

and t(s

0

+ "). If

lim

"!0

1

�i

Z

�

"

(t

0

)

f(t)dt

t� t

0

= lim

"!0

1

�i

l�s

0

�"

Z

s

0

+"

f(t(s))t

0

(s)ds

t(s) � t(s

0

)

=

1

�i

Z

�

f(t)dt

t� t

0

;

then we say that there exists the singular Cauchy integral (or the singular

integral) of the function f at the point t

0

.

In the sequel we put

(S

�

f)(t

0

) =

1

�i

Z

�

f(t)dt

t� t

0

; t

0

2 �: (0.3)

0.9. D(S

�

) is the set of those functions f 2 L(�) for which (S

�

f)(t

0

)

exists for almost all t

0

2 �. As is known (see also, Ch.I, x3), for recti�able �

D(S

�

) = L(�): (0.4)

0.10. The operator

S

�

: f ! S

�

f (0.1)

is called the Cauchy operator. Sometimes instead of S

�

we will write S. A

norm of the operator S

�

, when it acts boundedly (continuously) from L

p

(�)

to L

s

(�), p � s > 0, will be denoted by kS

�

k

p;s

.

If � is a straight line, then S

�

f is usually called the Hilbert transform.

When � = 
, assuming � = exp i�, t = exp is; we have

d�

� � t

=

�

1

2

ctg

� � s

2

+

i

2

�

d�;

and therefore

(S




f)(e

is

) = (�

e

if )(s) +

1

2

f(s); (0.6)

where

e

f(s) = �

1

2�

2�

Z

0

f(�) ctg

� � s

2

d�: (0.7)

The function

e

f is called the function conjugate to f .

0.11. Classes of Curves. Let t = t(s), 0 � s � l, be the equation

of the curve �. It will be called: (a) a smooth curve if t

0

is continuous

(and in the case of its closedness, t

0

(0) = t

0

(l)); (b) Lyapunov curve, if

t

0

2 H; (c) a piecewise smooth curve, if t

0

is piecewise continuous, and a

piecewise Lyapunov curve, if t

0

is a piecewise H�older function; (d) a curve

with bounded rotation (Radon's curve) if t

0

is of �nite variation.
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K is the set of those curves � for which

inf

jt

1

� t

2

j

s(t

1

; t

2

)

= k > 0; (0.8)

where s is the length of the arc � (the smaller one if � is closed) connecting

the points t

1

and t

2

.

A closed Jordan curve � is called Smirnov curve, if the �nite domain D

bounded by this curve is a Smirnov domain, i.e., the function w = ln jz

0

(w)j

is representable by a Poisson integral, where z = z(w) is a conformal map-

ping of U onto D.

Any curve of the class K is a Smirnov curve [131].

R

p;s

, p � 1, s � p, is the set of all Jordan curves for which the operator

S

�

is continuous from L

p

(�) to L

s

(�).

R

p

= R

p;p

: (0.9)

R = \

p>1

R

p

: (0.10)

0.12. The operator S is of a strong type (p; s), if it is continuous from

L

p

(�) to L

s

(�), and of a weak type (p; p), if 8f 2 L

p

(�) and 8� > 0,

m(t : j(Sf)(t)j > �) <

c

�

p

Z

�

jf j

p

ds; (0.11)

where c does not depend on � and f , and m is the Lebesgue measure.

If for any converging in L

p

(�), p � 1, sequence f

n

the sequence S

�

f

n

converges in measure, then we will say that S

�

is continuous in measure.

0.13. W

p

(�), p > 1, is the set of weighted (i.e., measurable, almost every-

where �nite and di�erent from zero) functions w such that 8f 2 L

p

(�;w),

Z

�

j(S

�

f)wj

p

ds �M

p

Z

�

jfwj

p

ds; (0.12)

where M

p

does not depend on f .

A

p

is the Muckenhoupt class, the set of given on 
 weighted positive

functions w such that

sup

I

�

1

jIj

Z

I

wds

��

1

jIj

Z

I

w

�

1

p�1

ds

�

p�1

<1; (0.13)

where I � 
 is an arbitrary arc of length less than 2�, jIj is its length.

0.14. Let � be a closed Jordan curve bounding a �nite domain D

+

, and

let D

�

be a complement to C of the set D

+

[ �. A curve lying in D

+

(D

�

) and ending at the point t is said to be a non-tangential path, if in the

neighbourhood of t it lies in some angle of size less than �, with the vertex

at the point t and the bisectrix coinciding with the normal to �. If the

function � = �(z) de�ned in D

+

(D

�

) tends along any non-tangential path

to the limit �

+

(t) (�

�

(t)) as z 2 D

+

(D

�

), z ! t, then this limit is called



13

the angular boundary value from the left (from the right) of the function

� at the point t. If �

+

(t) (�

�

(t)) exists almost everywhere on �, then the

function �

+

= �

+

(t) will be called an angular boundary value of � on �

from the left (from the right).

0.15. Let � be a closed, recti�able Jordan curve, and let f 2 L(�). The

function

(K

�

f)(z) =

1

2�i

Z

�

f(t)dt

t� z

; z2�;

is termed a Cauchy-type integral with density f .

If �(z) = (K

�

f)(z) and �

+

(t) = f(t) almost everywhere on �, that is,

�(z) = (K

�

�

+

)(z); z 2 D

+

;

then we will say that � is represented in the domain D

+

by the Cauchy

integral. The Cauchy integral in D

�

is de�ned analogously.

The Cauchy type integral has angular boundary values �

+

and �

�

which

are de�ned by the Sokhotski��-Plemelj formulas

�

�

(t) = �

1

2

f(t) +

1

2�i

Z

�

f(� )d�

� � t

; t 2 �: (0.14)

This statement is valid by Privalov's lemma ([133], p. 190) and the equality

(0.4).

In order for a Cauchy type integral � = K

�

f to be representable in D

+

(D

�

) by a Cauchy integral, it is necessary and su�cient that �

+

belong to

L(�) and the equality S

�

�

+

= �

+

(S

�

�

�

= ��

�

) take place ([68], p. 100).

0.16.

K

p

(�;w) =

�

� : �(z) =

1

2�i

Z

�

'(t)dt

t� z

; z2�; ' 2 L

p

(�;w)

�

:

e

K

p

(�;w) = f� : � = �

0

+ const; �

0

2 K

p

(�;w)g:

e

K

p

n

(�;w) =

�

� : � = �

0

+ q

n

; �

0

2 K

p

(�;w); q

n

=

n

X

k=0

a

k

z

k

�

:

When w = 1, these classes will be denoted, respectively, by K

p

(�),

e

K

p

(�)

and

e

K

p

n

(�).

0.17. H

p

, p > 0, is the Hardy class, the set of analytic in U functions �

for which

sup

r2(0;1)

2�

Z

0

j�(re

i�

)j

p

d� <1: (0.15)

0.18. Let D be a simply connected domain bounded by a recti�able curve

�. Then E

p

(D) or E

p

, p > 0, is the Smirnov class of analytic in D functions
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� for which there exists a sequence of closed curves �

n

� D converging to

� such that

sup

n

Z

�

n

j�(z)j

p

jdzj <1: (0.16)

If D is an in�nite domain bounded by �, then

e

E

p

(D) is a set of analytic

in D functions � for which 	(w) = �

�

1

w

+ z

0

�

2 E

p

(

e

D), where

e

D is the

�nite domain into which the function w =

1

z�z

0

, z

0

2D, maps D (this class

obviously does not depend on the choice of z

0

).

0.19. Basic properties of the functions from E

p

:

(1) � 2 E

p

(D) if and only if

sup

r

Z

�

r

j�(z)j

p

jdzj <1; (0.17)

where �

r

is the image of the circumference jzj = r under a conformal map-

ping of U onto D (see, e.g., [133]).

(2) The function � 2 E

p

(D) possesses angular boundary values on �,

and the boundary function belongs to L

p

(�) ([133], p. 205).

(3) The class E

1

(D) coincides with the class of functions representable

in D by the Cauchy integral ([133], p. 205{206).

(4) Smirnov's theorem. If D is a Smirnov domain, � 2 E

p

(D) and

�

+

2 L

q

(D), q > p, then � 2 E

q

(D).

(5) Let D be a simply connected domain with the boundary �, e � �,

mes e > 0 and let �

n

be a sequence of analytic in D functions. If �

n

2

E

p

(D), sup k�

+

n

k

p

< 1 and �

+

n

converges in measure on e to the function

f , then �

n

converges in D to the function � 2 E

p

(D), and on e we have

�

+

= f (see, e.g., [133], pp. 268{9).

0.20. Stein's interpolation theorem ([150]). If M is a linear operator

acting from one space of measurable functions into the other,

1 � r

1

; r

2

; s

1

; s

2

� 1; r

�1

= (1� t)r

�1

1

+ tr

�1

2

;

s

�1

= (1 � t)s

�1

1

+ ts

�1

2

; 0 < t < 1;

and

k(Mf)k

i

k

s

i

� c

i

kfu

i

k

r

i

; i = 1; 2;

then

k(Mf)kk

s

� ckfuk

r

; (0.19)

where k = k

1�t

1

k

t

2

, u = u

1�t

1

u

t

2

, c = c

1�t

1

c

t

2

;

0.21. Let a linear operator A map the Banach space X into the Banach

space Y . We will say that A is a Noetherian operator if: (i) the equation

Ax = y is solvable for any right-hand side of y which satis�es the condition

f(y) = 0, where f is an arbitrary solution of the conjugate homogeneous
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equation A

�

f = 0; (ii) zero subspaces N (A) and N (A

�

) of the operators A

and A

�

are �nite-dimensional. If A is a Noetherian operator, and � and �

are the dimensions of the subspaces N (A) and N (A

�

), then the di�erence

{ = � � � is called the index of the operator A (indA).

If A is a Noetherian operator, and V is a compact operator acting from

X to Y , then the operator A + V is likewise Noetherian, and ind(A+V )=

indA ([3]).
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CHAPTER I

ON SINGULAR AND CAUCHY TYPE INTEGRALS

x

1. On the Definition of Cauchy Singular Integral

In the literature we meet with two seemingly di�erent notions of the

principal value of the Cauchy integral of the function f(t)(t � t

0

)

�1

, when

the integral is taken along the curve � and t

0

2 �. According to the �rst

approach, the arc 


"

(t

0

) which is the part of � contained in the circle of

radius " > 0 with center at t

0

is cut o� the curve, then the integral is taken

over the remaining part and its limit as " ! 0 is considered. When using

the second approach, the arc 


"

(t

0

) in the above de�nition is replaced by

the symmetric with respect to t

0

arc of the length 2". In subsection 1.2 we

will show that these integrals exist in almost all points simultaneously and

have equal values.

In determining the curvilinear integral, under the notion of a curve we

usually mean a family of equivalent in a certain sense paths. Below it will

be shown how one can obtain the de�nition of the same character for a

singular integral.

Recall �rst some conventional de�nitions.

We say that the paths �

1

: � ! t

1

(�) = x

1

(�) + iy

1

(�), � 2 [�

1

; �

1

]

and �

2

: � ! t

2

(� ) = x

2

(� ) + iy

2

(� ), � 2 [�

2

; �

2

] are equivalent (or �

2

is obtained from �

1

by a change of parameter) if there exists a strongly

increasing absolutely continuous function � = �(� ) which maps [�

2

; �

2

]

onto [�

1

; �

1

] and satis�es t

2

(� ) = t

1

(�(� )).

A class f�g = � of equivalent paths will be called a curve �. General

image on C of segments [�

�

; �

�

] for the mapping � will also be denoted by

�. If � is a recti�able curve, t = t(�), � 2 [�; �]; is the equation of an

arbitrary path of � from � and

s(�) =

�

Z

�

jt

0

(u)jdu;

then the path �

s

: s ! t(�(s)), s 2 [o; l], l = s(�), where � = �(s) is the

function inverse to s = s(�), does not depend on the choice of �. This path

will be called the arc path. The arc path equation � = �(s) is called the

equation of � with respect to the arc abscissa. Almost everywhere on [0; l]

we have j�

0

(s)j = 1.

We say that the set e � � (�-image of the curve on C ) is measurable if

the set �

�1

(e) � R is Lebesgue measurable (�

�1

is the function inverse to

�); the measure of e is assumed to be equal to that of the set �

�1

(e).

Let � : � ! t(�), � 2 [�; �] be a path in which t = t(�) is an absolutely

continuous function, and t

0

= t(�

0

), 0 < " < (� � �)=2. Denote by �

"

(t

0

)

the image of the set (�

0

� "; �

0

+ ") and let �

�;"

(t

0

) = �n�

"

(t

0

). If there
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exists

lim

"!0

1

�i

Z

�

�;"

(t

0

)

f(t)dt

t� t

0

=

= lim

"!0

1

�i

Z

�

0

+"<�<�

0

+����"

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

=

1

�i

Z

�(�)

f(t)dt

t� t

0

; (1.1)

then we will say that at the point t

0

there exists a singular integral along

the path �, and will denote it by

S(�; f)(t

0

) =

1

�i

Z

�(�)

f(t)dt

t� t

0

: (1.2)

Along with the above-said, consider also the following de�nition of a singular

integral. Let t = t(s), 0 � s � l; be the equation of the curve � with respect

to the arc abscissa, 0 < s

0

< l, " <

l

4

. Denote by 


0;"

(t

0

) the least connected

arc � passing through t

0

with the ends on the circumference jt � t

0

j = ",

and let �

�

0

;"

(t

0

) = �n�

0;"

(t

0

). Denote

(S

(0)

�

f)(t

0

) = lim

"!0

1

�i

Z

�

�

0

;"

(t)

f(t)dt

t� t

0

=

1

�i

Z

�(�

0

)

f(t)dt

t� t

0

: (1.3)

1.1. Independence of a singular integral on the curve parametrization.

Theorem 1.1. Let � = f�g be a recti�able Jordan curve and f 2 L(�). If

�

s

: s ! �(s), 0 � s � l is an arc path and � : � ! t(�), � � � � � is

an arbitrary, absolutely continuous path from f�g, then from the existence

almost everywhere of either of the two singular integrals S(�

s

; f)(�(s

0

)) or

S(�; f)(t(�

0

)), it follows the existence of the other and their equality.

Proof. Let t

0

= t(�

0

) = �(s

0

) and let the relations

�

u

Z

�

jt

0

(u)jdu

�

0

= jt

0

(�

0

)j 6= 0; (1.4)

lim

�!0

1

�

s

0

+�

Z

s

0

jf(�(s))jds = jf(�(s

0

))j (1.5)

be ful�lled. Let us show that for such points t

0

the existence of a singular

integral along either of the paths �

s

or � results in the existence along the

other and their equality.
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Let � < �

0

< � and let " > 0 be an arbitrary number, provided � <

�

0

� " < �

0

+ " < �. Denote

� = �(") =

�

0

Z

�

0

�"

jt

0

(u)jdu: (1.6)

The function � = �(s) is decreasing. Let " = "(�) be an inverse to it function

and

�(�) =

�

0

+"(�)

Z

�

0

jt

0

(u)jdu: (1.7)

The functions � and t will be assumed to be extended periodically on R

with periods l and � � �, respectively.

Consider the di�erence

I(") =

s

0

+l��

Z

s

0

+�

f(�(s))�

0

(s)ds

�(s) � �(s

0

)

�

�

0

+����"

Z

�

0

+"

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

(1.8)

and prove that I(") ! 0 as " ! 0. Since �

s

and � are paths from an

equivalence class, there exists a function � = �(s), 0 � s � l, such that

t(�(s)) = �(s). Change the variable � in the second integral of (1.8) by the

equality � = �(s). Then

jI(")j =

�

�

�

�

Z

I

f(�(s))�

0

(s)ds

�(s) � �(s

0

)

�

�

�

�

; (1.9)

where I is the interval with the ends s

0

+ � and s

0

+ �(�). By virtue of

(1.4), it can be easily veri�ed that

lim

�!�

0

t(�)� t(�

0

)

s(�) � s(�

0

)

= lim

�!�

0

t(�) � t(�

0

)

� � �

0

� � �

0

s(�) � s(�

0

)

=

t

0

(�

0

)

jt

0

(�

0

)j

: (1.10)

This implies the existence of a positive number k = k(�

0

) such that if �

lies in the small neighbourhood of the point �

0

, then

k < jt(�)� t(�

0

)jjs(�)� s(�

0

)j

�1

: (1.11)

Denote �(�) = min(�; �(�)). Then, taking into account (1.11) and (1.9),

we get

jI(")j �

1

k�(�)

�

�

�

�

Z

I

jf(�(s))jds

�

�

�

�

=

1

k�(�)

�

�

�

�

s

0

+�(�)

Z

s

0

+�

jf(�(s))jds

�

�

�

�

=
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=

1

k�(�)

�

�

�

�

�

1

�

s

0

+�

Z

s

0

jf(�(s))jds � �(�)

1

�(�)

s

0

+�(�)

Z

s

0

jf(�(s))jds

�

�

�

�

: (1.12)

According to the assumption (1.5), we have

1

�

s

0

+�

Z

s

0

jf(�(s))jds = jf(�(s

0

))j+ �(�);

1

�(�)

s

0

+�(�)

Z

s

0

jf(�(s))jds = jf(�(s

0

))j+ �(�);

where �(�) and �(�) are in�nitely small together with �. This and (1.12)

yield

jI(")j �

j� � �(�)j

�(�)

jf(�(s

0

))j

k

+

�

k�(�)

�(�) +

�(�)

k�(�)

�(�): (1.13)

From (1.6) and (1.7), by virtue of (1.4) we have �(�)�

�1

! 1. There-

fore, if " ! 0, then j� � �(�)j�

�1

(�) ! 0, and ��

�1

(�) and �(�)�

�1

(�) are

bounded. But then from (1.13) we conclude that limI(") = 0. This and

(1.8) imply that the integrals S(�; f)(t(�

0

)) and S(�

s

; f)(�(s

0

)) in condi-

tions (1.4){(1.5) exist only simultaneously. Since the set of those points

t

0

2 � for which equalities (1.4) and (1.5) are ful�lled simultaneously has a

complete measure, we can conclude that the theorem is valid. �

Remark. The above proven theorem can be regarded as justi�cation of

the formula of change of variables in the singular integral. Namely, because

of (0.4) and by Theorem 1.1, the following assertion is valid:

Proposition 1.1. If s = s(�) is an absolutely continuous, increasing func-

tion mapping [�; �] onto [0; l] and �(s(�)) = t(�), then

1

�i

l

Z

0

f(�(s))�

0

(s)ds

�(s) � �(s

0

)

=

1

�i

�

Z

�

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

(1.14)

for almost all s

0

2 [0; l].

It follows from Theorem 1.1 that if the curve � is a class of equivalent,

absolutely continuous paths and for any path �

0

from this class the singular

integral S(�

0

; f)(t

0

) exists on a set of complete measure, then for any other

path � from � the set of those points at which the integral S(�; f)(t

0

)

exists, also possesses a complete measure. The integrals along these paths

have the same values. Hence, for all the paths we introduce the unique
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notation S(�; f) or S

�

f , and for every separate point �

0

= �(s

0

) we assume

that

(S

�

f)(�

0

) =

1

�i

l

Z

0

f(�(s))�

0

(s)ds

�(s) � �(s

0

)

:

1.2. Integrals S

(0)

�

f and S

�

f = S(�

s

; f) coincide almost everywhere.

Theorem 1.2. If f 2 L(�) and conditions (1:4) and (1:5) are ful�lled,

then for almost all t

0

2 � the equality

S(�

s

; f)(t

0

) = (S

(0)

�

f)(t

0

)

holds.

Proof. Let " > 0 and let �

0;"

(t

0

) be a least connected arc of the path �

s

passing through t

0

with the ends on the circumference jt� t

0

j = ". Denote

these ends by t

0

and t

00

. Then �

0;"

(t

0

) = t

0

t

00

. Let t

0

= t(s

0

), t

00

= t(s

00

).

Suppose � = min(js

0

�s

0

j; js

00

�s

0

j), � = max(js

0

�s

0

j; js

00

�s

0

j) and consider

the di�erence

I

0

(") =

Z

�

"

(t

0

)

f(t)dt

t� t

0

�

Z

�n�

0;"

(t

0

)

f(t)dt

t� t

0

=

Z

I

0

f(t(s))t

0

(s)ds

t(s) � t(s

0

)

;

where I

0

is the interval with the ends s

0

+ ", s

0

+�. We have to prove that

lim

"!0

I

0

(") = 0. Just as in proving Theorem 1.1, we obtain the estimate

jI

0

(")j <

j� � �j

k�

+

1

k

j�(�)j+

�

�k

j�(�)j: (1.15)

But for a recti�able curve having a tangent at almost every points, the

quantities � and � as " ! 0 are equivalent to the chords jt

0

� t

0

j and

jt

00

� t

0

j. By virtue of the above-said j� � �j�

�1

! 0 and from (1.15) we

conclude that I

0

(") vanishes. This completes the proof of the theorem. �

x

2. Measure Continuity of the Operator S

�

and Its

Consequences

When considering the operator S

�

in di�erent spaces of summable func-

tions, it is impossible to say something about integral properties of functions

S

�

f without some additional assumptions imposed on �. For instance, we

know examples of recti�able curves �

0

and �

1

and function f

0

2 C(�

0

) such

that S

�

0

f

0

2L(�) and S

�

1

(1)2 [

p>0

L

p

(�

1

) (see [51], [62] and also subsection

3.4).

However one can state that in the case of arbitrary recti�able curves �

the operator S

�

is continuous in measure (see 0.12).
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Let M (�) be a metric space of measurable almost everywhere �nite on

� functions with the metric

�('; f) =

l

Z

0

j'(t(s)) � f(t(s))j

1 + j'(t(s)) � f(t(s))j

ds:

As is known, the convergence of the sequence f

n

to f in M (�) is equiv-

alent to the convergence of f

n

to f in measure.

Theorem 2.1. If � is a recti�able Jordan's curve, p � 1 and

1

w

2 L

p

0

(�),

p

0

=

p

p�1

; then the operator S

�

is continuous from L

p

(�;w) to M (�).

Proof. It follows from the condition

1

w

2 L

p

0

(�) that L

p

(�;w) � L(�). For

any natural n consider the operator

I

n

: f ! I

n

f; (I

n

f)(t) =

Z

�

1

n

(t)

f(� )d�

� � t

; t 2 �;

and show that

m

n

= inf

t2�;�2�

1

n

(t)

j� � tj > 0: (2.1)

Indeed, if we assume that m

n

= 0, then there exists convergent sequences

�

(k)

and s

(k)

such that

j� (�

(k)

)� � (s

(k)

)j ! 0;

1

n

< j�

(k)

� s

(k)

j < l �

1

n

:

If the limits of these sequences are equal to �

�

and s

�

, then from the

latter inequalities we respectively obtain t(�

�

) = t(s

�

) and �

�

6= s

�

, which

is impossible because � is the Jordan curve.

Thus m

n

> 0. Therefore the operators I

n

are continuous from L

p

(�;w)

to M (�). Since for recti�able curves D(S

�

) = L(�) (see 0.4), the sequence

I

n

f for every f 2 L

p

(�;w) � L(�) converges to S

�

f almost everywhere,

and hence in measure too. This means that the sequence I

n

f converges

to S

�

f in M (�). The spaces L

p

(�;w) and M (�) are of the type F and

therefore, owing to the well-known principle (see, e.g., [17]), we conclude

that S

�

is continuous from L

p

(�;w) to M (�). �

Theorem 2.2. If the operator S

�

maps the space L

p

(�;w

1

) into L

s

(�;w

2

),

p � s � 1, w

�1

1

2 L

p

0

(�) then the S

�

is continuous from L

p

(�;w

1

) to

L

s

(�;w

2

).

Proof. The continuity of the operator S

�

from L

p

(�;w

1

) to L

s

(�;w

2

) is

equivalent to that of the operator

T : f ! Tf; (Tf)(t) =

w

2

(t)

�i

Z

�

f(� )

w

1

(� )

d�

� � t
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from L

p

(�) to L

s

(�).

Let us show that the operator T is closed from L

p

(�) to L

s

(�), i.e., the

assumptions kf

n

� fk

p

! 0, kTf

n

�  k

s

! 0 imply Tf =  . Indeed,

the sequence f

n

w

�1

1

converges in L(�) to fw

�1

1

. Then by Theorem 2.1,

S

�

(f

n

w

�1

1

) converges in measure to S

�

(fw

�1

1

). Hence, there exists a se-

quence n

k

such that w

2

S

�

(f

n

k

w

�1

1

) converges in measure to w

2

S

�

(fw

�1

1

),

i.e., to Tf . Consequently,  = Tf and hence the operator T is closed from

L

p

(�) to L

s

(�). From the closed graph theorem it now follows that the

operator T is continuous from L

p

(�) to L

s

(�). �

x

3. On the Continuity of the Operator S

�

in Lebesgue Spaces

There is a vast literature devoted to the questions of continuity of the

Cauchy operator in Lebesgue spaces. N.Luzin proved that S




is continuous

in L

2

(
). M. Riesz showed that S




is continuous in L

p

(
) for every p > 1

(M. Riesz's theorem), i.e., 
 2 R. Later it was established that curves

of continuous curvature, Lyapunov and piecewise-Lyapunov curves, curves

with bounded rotation and so on, belong to the class R ([98], [66], [45],

[20]). Substantial progress in this direction has been achieved in a work by

A. Calderon, who proved that smooth curves belong to R [9].

This result implies that [28]

D(S

�

) = L(�): (3.1)

As is shown in [51]:

If � is a closed, recti�able curve from R

p;s

, s � 1, then � is a Smirnov

curve.

Let � > 0, � be a recti�able curve and � 2 �. Denote by l

�

(�) the

linear measure of that part of � which falls into the circle with center � and

radius �.

Theorem 3.1 (David [23]). In order for the curve � to belong to the class

R, it is necessary and su�cient that condition

sup

�2�;�>0

l

�

(�)�

�1

<1 (3.2)

be ful�lled. If it is satis�ed, then the operator S

�

is of weak type (1; 1).

The curves satisfying the condition (3.2) are called as regular.

It is easy to see that if S

�

is of weak type (1,1), then the inequality

�

Z




jS




f j

�

ds

�

1

�

�M

�

Z




jf jds (3.3)

holds for any � < 1. Consequently,

if � 2 R then � 2 \

�<1

R

1;�

: (3.4)
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Theorem 3.1 provides us with a complete characteristic of curves of the class

R. Despite this fact, it is useful to have conditions of belonging of curves to

the class R proceeding from their other characteristics. Theorems facilitat-

ing the treatment of S

�

from this point of view are apparently of interest.

The more so that in a number of cases they give additional information on

this operator. In the remaining part of x3, we will present some of results

obtained in this direction. They will be used in Chapter II when studying

boundary value problems.

3.1. Classes of curves J and J

�

. We will consider the following classes of

curves.

Class J

0

. A recti�able Jordan curve � with the equation t = t(s), 0 �

s � l belongs to the class J

0

if there exists a smooth Jordan curve � with

the equation � = �(s), 0 � s � l, such that

ess sup

0���l

l

Z

0

�

�

�

t

0

(�)

t(�) � t(s)

�

�

0

(�)

�(�) � �(s)

�

�

�

d� <1: (3.5)

Class J .

J = J

0

\K: (3.6)

Class J

�

. A Jordan curve � 2 K belongs to the class J

�

if it can be

divided into a �nite number of arcs from the class J with tangents at the

ends.

Smooth curves obviously belong to the class J . To the same class belong

the curves with bounded rotation not involving cusps (details for the con-

ditions from the de�nition of J with �(s) = s to be ful�lled for such curves

see in [21], p. 146{147). By de�nition, any piecewise smooth curve with no

cusps belong to the class J

�

, as well as curves of the class K composed of

unclosed smooth curves and of curves with bounded variation.

Show that J

0

� R. Moreover, the following theorem is valid.

Theorem 3.2. Let � � J

0

, and

(S

�

�

f)(s) = sup

"

�

�

�

�

Z

"<js��j<

l

2

f(t(�))t

0

(�)d�

t(�)� t(s)

�

�

�

�

:

Then the operator S

�

�

: f ! S

�

�

f is continuous in L

p

(�), p > 1.

Since j(S

�

"

(t(s))

f)(s)j � j(S

�

�

f)(s)j for any " > 0, and S

�

"

f converges

almost everywhere to S

�

f as "! 0 (since f 2 D(S

�

)), from the inequality

kS

�

"

fk

p

� kS

�

�

fk and from the assertion of the theorem we obtain that

8p > 1 � 2 R

p

, and hence � 2 R.

Proof of Theorem 3:2. First of all we note that A. P. Calderon has proved

in [9] that the operator S

�

�

in the case of smooth curves � is of strong type
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(p; p), p > 1 and of weak type (1; 1). On this basis, we show �rst that S

�

�

is

of weak type (1; 1). We have

t

0

(s)

t

0

(�)

t(�) � t(s)

=

= �

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

t

0

(�) + �

0

(s)

t

0

(�)

�

0

(�)

�

0

(�)

�(�) � �(s)

: (3.7)

Since jt

0

(s)j = 1, j�

0

(�)j = 1 almost everywhere on [0; l], from (3.7) it

follows that

(S

�

�

f)(s) �

l

Z

0

�

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

�

jf(�)jd� +

+sup

">0

�

�

�

�

Z

"<js��j<

l

2

f(�)

t

0

(�)

�

0

(�)

�

0

(�)

�(�) � �(s)

d�

�

�

�

�

: (3.8)

Denote

(Nf)(s) =

l

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

jf(�)jd�:

The second summand in (3.8) is equal to S

�

�

(f

t

0

�

0

). Furthermore, we have

mfs : (Nf)(s) > �g �

1

�

l

Z

0

�

l

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

jf(�)jd�

�

ds:

Inverting the order of integration on the right-hand side, we get

mfs : (Nf)(s) > �g �

1

�

l

Z

0

�

l

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

ds

�

jf(�)jd�:

The condition (3.5) implies that

mfs : (Nf)(s) > �g �

c

�

l

Z

0

jf(�)jd�: (3.9)

The latter means that the operator N : f ! Nf is of weak type (1,1). By

the above-mentioned Calderon's theorem, we have

mfs : S

�

�

(f

t

0

�

0

)(s) > �g �

c

1

�

l

Z

0

jf(�)jd�: (3.10)

On the basis of (3.8){(3.10), we conclude that S

�

�

is of weak type (1.1).
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Consider the operator N

1

: f ! N

1

f .

(N

1

f)(s) = sup

"

�

�

�

�

Z

"<js��j<

l

2

�

t

0

(�)

t(�)� t(s)

�

�

0

(�)

�(�) � �(s)

�

f(�)d�

�

�

�

�

:

Obviously,

(N

1

f)(s) � (S

�

�

f)(s) + (S

�

�

f)(s):

By virtue of the above-proved result, N

1

is also of weak type (1,1). On

the other hand, the operator N

1

by (3.5) is of strong type (1;1). Therefore

Stein's interpolation theorem (see 0.20) allows one to conclude that N

1

is

continuous in L

p

(�) for any p > 1. Next, owing to the representation

t

0

(�)

t(�) � t(s)

=

�

t

0

(�)

t(�) � t(s)

�

�

0

(�)

�(�) � �(s)

�

+

�

0

(�)

�(�) � �(s)

;

we have

(S

�

�

f)(s) � (N

1

f)(s) + (S

�

�

f)(s):

Since S

�

�

is continuous in the spaces L

p

(�), it follows that S

�

�

is continuous

in L

p

(�) for arbitrary p, 1 < p <1. �

Consider now some properties of the curves from the classes J and J

�

.

Proposition 3.1. Let � 2 J

�

. Then for every point c 2 � there exists an

arc �

c

� � such that c 2 �

c

and �

c

2 J .

Proof. Let � = [

n

j=1

�

j

, �

j

= �

c

j

c

j+1

� J . It su�ces to verify the validity

of the assertion for the points c = c

j

. Denote by �

j

and �

j+1

those smooth

curves which satisfy the condition (3.5) for the curves �

j

and �

j+1

. Since

the condition (3.5) along with �(s) is also ful�lled for the function A�+B,

by the choice of the variables A and B we can �nd that �

j

and �

j+1

have

tangents at the point c

j

coinciding with one-sided tangents of �

j

and �

j+1

.

The curve � = �

j

[ �

j+1

will be piecewise smooth, the smoothness being

violated at the point c

j

only. It follows from the condition � 2 K that

c

j

is an angular point (di�erent from the cusp). Moreover, � may be self-

intersecting. Choose the arcs �

0

j

� �

j

and �

0

j+1

� �

j+1

with the ends at

c

j

so that they would lie in non-intersecting small angles with the vertex

at c

j

and one-sided tangents as bisectrices at c

j

. The piecewise smooth arc

�

0

= �

0

j

[ �

0

j+1

will be a Jordan arc.

Let � = �

j

(s) be the equation of the arc �

j

. Replace the arc �

0

j

by �

0

j

in

whose equation �

0

j

= a�

j

+ b and the constants a and b are chosen in such a

way that �

0

j

[�

0

j+1

is a smooth arc passing through c

j

. Let now �

0

j

and �

0

j+1

be the arcs respectively on �

j

and �

j+1

such that �

0

j

\�

0

j+1

= fc

j

g and their

length is equal to that of the arcs �

0

j

and �

0

j+1

. The arc �

0

j

[ �

0

j+1

= �

c

j

satis�es the conditions of our assertion.

Moreover, from the proof we can derive the existence of �

c

with tangents

at the ends. �
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Proposition 3.2. Let the open curves �

ab

and �

bc

of the class J have no

common points except b, and let �

ac

� K. Then �

ac

� J .

Proof. Let t = t

i

(s), 0 � s � l

i

, i = 1; 2, be equations with respect to the

arc coordinate of the curves �

ab

and �

bc

, respectively. As far as they belong

to J , there exist smooth Jordan curves �

i

, i = 1; 2; with the equations

� = �

i

(s), 0 � s � l

i

, for which

M

i

= ess sup

0���l

i

l

i

Z

0

�

�

�

t

0

i

(s)

t

i

(s)� t

i

(�)

�

�

0

i

(s)

�

i

(s) � �

i

(�)

�

�

�

ds <1: (3.11)

Let � = �

1

[ �

2

. Since the condition (3.11) is also satis�ed by A�

i

+ B,

without restriction of generality one can assume that � passes through b

and has a tangent at this point, i.e., � is a smooth curve.

Let

t(s) =

(

t

1

(s); 0 � s � l

1

;

t

2

(s � l

1

); l

1

< s � l

1

+ l

2

= l:

�(s) =

(

�

1

(s); 0 � s � l

1

;

�

2

(s � l

1

); l

1

< s � l

1

+ l

2

= l:

Show that the inequality (3.5) is ful�lled for t and �. As the curve � is

smooth, it follows that �

ac

2 J .

For the validity of (3.5) it su�ces to show that

ess sup

0���l

l

1

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

ds <1; (3.12)

and

ess sup

0���l

l

1

+l

2

Z

l

1

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s)� �(�)

�

�

�

ds <1: (3.13)

Prove the validity of the inequality (3.12). If 0 � � � l

1

, then the

inequality

ess sup

0���l

1

l

1

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

ds <1

follows from (3.11). Let now � > l

1

. We have

I =

l

1

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

ds =
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=

l

1

Z

0

�

�

�

t

0

(s)

R

�

s

�

0

(u)du� �

0

(s)

R

�

s

t

0

(u)du

(t(s) � t(�))(�(s) � �(�))

�

�

�

ds:

Select a number s

1

, 0 < s

1

< l

1

, such that l

1

� s

1

< � � l

1

. Then

I =

l

1

Z

0

�

�

�

t

0

(s)

R

s

1

s

�

0

(u)du� �

0

(s)

R

s

1

s

t

0

(u)du

(t(s) � t(�))(�(s) � �(�))

�

�

�

ds+

+

l

1

Z

0

�

�

�

t

0

(s)

R

l

1

s

1

�

0

(u)du� �

0

(s)

R

l

1

s

1

t

0

(u)du

(t(s) � t(�))(�(s) � �(�))

�

�

�

ds+

+

l

1

Z

0

�

�

�

t

0

(u)

R

�

l

1

�

0

(u)du� �

0

(s)

R

�

l

1

t

0

(u)du

(t(s) � t(�))(�(s) � �(�))

�

�

�

ds = I

1

+ I

2

+ I

3

: (3.14)

Since �

ac

2 K and the curve � is smooth, there exists m > 0 such that

jt(s)� t(�)j � mjs � �j, j�(s) � �(�)j � mjs � �j, s; � 2 (0; l). Then

I

1

=

l

1

Z

0

�

�

�

t

0

(s)

R

s

1

s

�

0

(u)du� �

0

(s)

R

s

1

s

t

0

(u)du

(t(s) � t(s

1

))(�(s) � �(s

1

))

t(s) � t(s

1

)

t(s) � t(�)

�(s) � �(s

1

)

�(s) � �(�)

�

�

�

ds �

�

l

1

Z

0

�

�

�

t

0

(s)

R

s

1

s

�

0

(u)du� �

0

(s)

R

s

1

s

t

0

(u)du

(t(s) � t(s

1

))(�(s) � �(s

1

))

�

�

�

�

�

�

s � s

1

s � �

�

�

�

2

1

m

2

ds: (3.15)

By virtue of our assumption that l

1

�s

1

<��l

1

, we have sup

0�s�l

1

�

�

s�s

1

s��

�

�

<1,

and therefore

I

1

�M

1

m

�2

: (3.16)

Further,

I

2

�

l

1

Z

0

2js

1

� l

1

jds

m

2

(s � �)

2

�

2js

1

� l

1

j

m

2

l

1

� � l

1

�

2l

1

m

2

; (3.17)

I

3

�

l

1

Z

0

2j� � l

1

j

m

2

(s � �)

2

�

2

m

2

: (3.18)

The inequality (3.12) follows immediately from (3.14) and (3.16)-(3.18).

The inequality (3.13) can be proved analogously. This completes the proof

of the proposition. �
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3.2. Continuity of the operator S

�

in the Lebesgue spaces is equivalent to

belonging to Smirnov classes of the Cauchy type integral. First we present

some assertions which are concerned with a continuous extension of the

operator S

�

from the set to its closure.

Lemma 3.1. Let � be a closed, recti�able Jordan curve bounding the �nite

domain D and let B(�) be a linear set from L

s

(�), s � 1, such that for any

' 2 B(�) the function K

�

' belongs to E

p

(D) and there exists a number

M

p;s

such that

kS

�

'k

p

�M

p;s

k'k

s

: (3.19)

Then for every ' from the closure of the set B(�) in the space L

s

(�) (i.e.,

for 8' 2 B

s

(�)), we have: (i) K

�

' 2 E

p

(D); (ii) the inequality (3:19) is

valid.

Proof. By (3.19), the operator S

�

admits a continuous extension up to

B

s

(�). Denote it by

f

S

�

. Then for every ' 2 B

s

(�) we have

k

e

S

�

'k �M

p;s

k'k

s

: (3.20)

Let k'

n

� 'k

s

! 0, '

n

2 B(�), ' 2 B

s

(�). Suppose �

n

(z) = (K

�

'

n

)(z).

By the assumption of the lemma, �

n

2 E

p

(D), while �

+

n

=

1

2

'

n

+

1

2

S

�

'

n

,

by the Sokhotski��{Plemelj formula. This implies that �

+

n

converges in L

p

(�)

to the function

1

2

('+

e

S

�

'). Now, all the assumptions of Theorem (5) from

0.19 in which e = �, f =

1

2

(' +

e

S

�

'), may be regarded to be ful�lled for

the sequence �

n

. According to this theorem, the sequence �

n

converges in

D to some function � 2 E

p

(D), for which

�

+

=

1

2

('+

e

S

�

'): (3.21)

But the sequence �

n

converges in D to the function �(z) = (K

�

')(z)

which thus turns out to be a function of the class E

p

(D). Hence the assertion

(i) of the lemma is valid. Since (K

�

')

+

=

1

2

(' + S

�

'), from (3.21) we

obtain the equality S

�

' =

e

S

�

', ' 2 B

s

(�) which proves the assertion (ii)

as well. �

Lemma 3.2. If a closed curve � 2 R

p

, p > 1, then � belongs to R

p

0

.

Proof. Let Q

z

0

be the set of rational functions of the type

'(z) =

n

X

k=0

a

k

(z � z

0

)

k

+

n

X

k=�1

a

k

(z � z

0

)

k

= p(z) + q(z); z 2 D

+

; (3.22)
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where D

+

is a �nite domain bounded by the curve �. Then S

�

' = p � q,

and the equality

Z

�

'S

�

 dt = �

Z

�

 S

�

'dt; ';  2 Q

z

0

(3.23)

can be easily veri�ed.

On the basis of the equality

k'k

p

0

= sup

k k

p

�1

�

�

�

�

Z

�

' dt

�

�

�

�

;

using (3.23), we obtain

kS

�

'k

p

0

� kSk

p

k'k

p

0

; ' 2 Q

z

0

:

Applying now Lemma 3.1 to the set B(�) = Q

z

0

, since (Q

z

0

)

p

0

= L

p

0

(�),

we conclude that S

�

is continuous in L

p

0

(�), i.e. � 2 R

p

0

. �

Theorem 3.3. If the curve �, bounding the �nite domain D, belongs to

R

s;p

, s � 1, then for any ' 2 L

s

(�) the Cauchy type integral K

�

' belongs

to E

p

(D).

Indeed, if we take again B(�) = Q

z

0

, then (3.19) is considered to be

ful�lled by the condition � 2 R

s;p

, and since (Q

z

0

)

s

= L

s

(�), the assertion

of the theorem is the consequence of Lemma 3.1.

Corollary. If � 2 R, ' 2 L

p

(�) then K

�

' 2 E

p

(D). In particular, if

' 2 L

1

(�), then K

�

' 2 \

p>1

E

p

(D

+

). If � 2 \

s<1

R

1;s

(in particular, if

� 2 R (see (3:4)), then for any ' 2 L(�) the Cauchy type integral K

�

' 2

\

s<1

E

s

(D).

Let us prove now an analogue of Lemma 3.1 for an arbitrary curve.

Lemma 3.3. Let � be a simple, recti�able curve and let B(�) be a linear

set from L

s

(�). If

kS

�

'k

p

�M

p;s

k'k

s

; ' 2 B(�); s � 1; (3.24)

then this inequality is also valid on B

s

(�). In particular, if B(�) is dense

everywhere in L

s

(�), then � 2 R

s;p

.

Proof. By (3.24), S

�

extends on B

s

(�) and the extended operator

e

S

�

is

continuous from B

s

(�) to L

p

(�). On the other hand, S

�

is continuous in

measure by Theorem 2.1. Let now ' 2 B

s

(�) and k'

n

� 'k

s

! 0. Then

S

�

'

n

converges in L

p

(�) to

e

S

�

' and to S

�

' in measure. Hence

e

S

�

' = S

�

',

which implies that the assertion of the lemma is valid. �
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Along with Theorem 3.3, we present here one more assertion showing a

tight connection between the continuity of the operator S

�

in the Lebesgue

spaces and the belonging to Smirnov classes of the Cauchy type integral.

Theorem 3.4. Let � be a simple, closed curve bounding the domains D

+

and D

�

. For the function � = K

�

' to belong to the class E

p

(D

+

) for any

' 2 L

s

(�), it is necessary and su�cient that the operator S

�

be continuous

from L

s

(�) to L

p

(�). In the case this condition is ful�lled and p � 1, then

K

�

' belongs to E

p

(D

�

) as well.

Proof. As for the su�ciency, this theorem is a consequence of Theorem 3.3.

The necessity follows from Theorem 2.2, since from the belonging to the

class E

p

(D

+

) of K

�

' for ' 2 L

s

(�) it follows that S

�

is de�ned on the

entire L

s

(�) and maps it onto L

p

(�).

Show that if � 2 R

s;p

and � = K

�

', ' 2 L

s

(�), then � belongs to

E

p

(D

�

). We have

S

�

�

�

= �

1

2

S

�

'+

1

2

S

2

�

':

But from the condition � 2 E

p

(D

+

), p � 1 there follows the equality

S

�

�

+

= �

+

[68] which implies that S

2

' = '. Consequently, S

�

�

�

=

�

1

2

(S

�

'�') = ��

�

. Therefore � can be represented by the Cauchy integral

in the domain D

�

, [68]. Hence � 2 E

1

(D

�

). Moreover, �

�

L

p

(�). From

the above-said, according to Smirnov theorem (see 0.19), we can conclude

that � 2 E

p

(D

�

), since � from R

s;p

is a Smirnov curve. �

3.3. Connection between the classes R

p

and R. For the curves subject to

condition the (3.1), the operator S

�

is bounded in all the spaces L

p

(�),

p > 1. In the general case we often encounter diverse pictures of continuity

violation, among them the curves belonging to \

q<p

R

p;q

but not to R

p;p

(=

R

p

) (see [62] and subsection 3.4). Moreover, there are no curves which

belong to R

p

1

but not to R

p

2

, p

1

6= p

2

, p

1

> 1, p

2

> 1. Thus the following

theorem is valid.

Theorem 3.5. For any p > 1,

R

p

= R: (3.25)

To prove the theorem, we will need the following

Lemma 3.4. If an open curve � = �

ab

belongs to R

p;s

and has tangents

at its ends, then there exists a broken line � = �

ba

such that � = � [ � is a

closed curve of the class R

p;s

.

Proof. For the normals drawn at the points a and b there exist points a

0

and b

0

such that the segments aa

0

and bb

0

do not intersect the curve �.

Connect the points a

0

and b

0

by a broken line �

0

which lies wholly in Cn�.

Let � = �

0

[ aa

0

[ bb

0

. Then � = � [ � is a closed Jordan curve.
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Prove now that there are a neighbourhood of the point a and a constant

k > 0 such that if we take t 2 � and t

0

2 � from this neighbourhood, then

jt� t

0

j � ks(t; t

0

): (3.26)

Since there exists a tangent at the point a, one can for a given " > 0

indicate numbers �

1

> 0, m > 0 such that for jt� aj < �

1

we will have

jt� aj � ms(t; a); j arg(t� a) � arg t

0

(s

a

)j < ": (3.27)

Suppose " < � <

�

4

and draw straight lines �

1

and �

2

passing through the

point a and forming with the tangent an angle �. One of the straight lines,

say �

1

, passes through the angle formed by the tangent and the normal.

Obviously, for jt� aj < �

1

the points of the curve � lie in the angle formed

by �

1

and �

2

. Denote by d

�;�

the least of the diameters of � and � and

assume � < min(jaa

0

j; �

1

;

1

4

d

�;�

). Draw the circle of radius � with the center

at a . Let �

1

and �

1

be the portions of the curves contained within the

circle (if these sets are unconnected, we take the components containing a).

Show that �

1

[ �

1

is a neighbourhood we are seeking for.

Denote orthogonal projections of the points t and t

0

onto a straight line

�

1

by � and �

0

, respectively. Then

jt� t

0

j � jt� � j+ jt

0

� �

0

j; (3.28)

jt

0

� �

0

j = jt

0

� aj cos� = s(t

0

; a) cos�; (3.29)

jt� � j = jt� aj sin�

t

; (3.30)

where �

t

is the angle lying between the vector at and �

1

.

By (3.27), for jt�aj < � we have sin�

t

� sin��"

0

for some "

0

2 (0; sin�),

and therefore

jt� � j � s(t; a)m

1

; m

1

= m(sin�� "): (3.31)

Denoting k = min(m

1

; cos�) and taking into account (3.29) and (3.31),

from (3.28) we obtain (3.26).

Just as above we construct a neighbourhood of the point b (on �) which

is a union of arcs �

2

� �, �

2

� � such that if t 2 �

2

and t

0

2 �

2

, the

inequality (3.26) is valid.

Now we are able to prove that � 2 R

p;s

.

Let f 2 L

p

(�). We have

Z

�

jS

�

f j

p

ds �

� A

�

Z

�

jS

�

f j

s

ds+

Z

�

jS

�

f j

s

ds+

Z

�

jS

�

f j

s

ds+

Z

�

jS

�

f j

s

ds

�

: (3.32)
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Since � and � belong to R

p;s

, we have

Z

�

jS

�

f j

s

ds �M

(1)

p;s

kfk

s

p

;

Z

�

jS

�

f j

�

ds �M

(2)

p;s

kfk

s

p

: (3.33)

Estimate the second summand on the right-hand side of (3.32).

Suppose �

3

= �n(�

1

[ �

2

), �

3

= �n(�

1

[ �

2

). Then � = [

3

j=1

�

j

, � =

[

3

j=1

�

j

. Consider the quantities

Z

�

k

�

�

�

�

Z

�

i

f(t)dt

t� t

0

�

�

�

�

s

ds

0

:

If k = 1, i = 2; 3, then the distance between the sets �

k

and �

i

is taken to

be positive and therefore in this case jt� t

0

j � m

2

> 0. The same estimate

is valid for k = 2, i = 1; 3, and k = 3, i = 1; 2; 3.

In all these cases,

Z

�

k

�

�

�

�

Z

�

i

f(t)dt

t� t

0

�

�

�

�

s

ds

0

� c

p;s

kfk

s

p

: (3.34)

It remains to consider the cases k = 1, i = 1 and k = 3, i = 3. The

above-proven inequality (3.26) allows one to apply the well-known method

of proving convenient for their estimation (see, for e.g., [45]).

We have

Z

�

1

�

�

�

�

Z

�

1

f(t)dt

t� t

0

�

�

�

�

s

ds

0

�

�

1

k

s

Z

�

1

�

�

�

�

Z

�

1

jf(t(s))j

s� s

0

ds

�

�

�

�

s

0

ds

0

�

1

k

s

1

Z

�1

�

�

�

�

1

Z

�1

f

�

(s)

s � s

0

�

�

�

�

s

ds

0

;

where

f

�

(s) =

(

jf(t(s))j; t 2 �

1

;

0; t 2 �n�

1

:

Using Riesz theorem for s > 1 and Kolmogorov's inequality for s < 1

(see (3.2)), we get

�

Z

�

1

�

�

�

�

Z

�

1

f(t)dt

t� t

0

�

�

�

�

s

ds

�

1=s

� c

p;s

�

1

Z

�1

jf

�

j

max(1;s)

ds

�

1=s

� c

p;s

kfk

p

: (3.35)

Analogously, we have

Z

�

3

�

�

�

�

S

�

3

f

�

�

�

�

s

ds

0

� c

p;s

kfk

s

p

: (3.36)
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From (3.32){(3.36) it follows directly that kS

�

fk

s

�M

p;s

kfk

p

, � 2 R

p;s

. �

Proof of Theorem 3:5. Let �rst � be a closed curve. For an arbitrary

rational function ' 2 Q

z

0

, ' = p(z) + q(z), z

0

2 D

+

, where D

+

, is a

domain bounded by the curve �, we have S

�

' = p � q. Proceeding from

the above, the validity of the equality

(S

�

')

2

= �'

2

+ 2S

�

('S

�

'); ' 2 Q

z

0

; (3.37)

is easily veri�ed.

Since � 2 R

p

, assuming that kS

�

k

p

=M

p

, we have

kS

�

'k

2

2p

� k'k

2

2p

+ 2M

p

k'S

�

'k

p

� k'k

2

2p

+M

p

k'k

2p

kS

�

'k

2p

;

that is,

kS

�

'k

2

2p

�M

p

k'k

2p

kS

�

'k

2p

� k'k

2

2p

� 0:

Consequently,

kS

�

'k

2p

� (M

p

+

q

1 +M

2

p

)k'k

2p

; ' 2 Q

z

0

: (3.38)

According to Lemma 3.1, we conclude that � 2 R

2p

. Applying the Stein

interpolation theorem (see 0.20), we establish that � 2 \

q�p

R

q

. Now by

Lemma 3.2 we also have � 2 \

1<q<p

0

R

q

, whence it immediately follows that

� 2 R.

Let now � be an open curve. Since in this case we are unable to obtain

(3.37) for some dense in L

p

(�) set by direct calculation, we deduce it be

means of Lemma 3.4.

Thus, let �rst � = �

ab

2 R

p

and let it have a tangent at the ends. Let

also � = �[ � be the curve constructed in Lemma 3.4. Since � 2 R, we can

easily obtain from (3.37) the equality

(S

�

 )

2

= � 

2

+ 2S

�

( S

�

 );  2 L

2

(�): (3.39)

Let ' 2 L

2

(�). Taking in (3.39) the functions  coinciding with ' on

� and equal to zero on �, we obtain for the curves under consideration the

desired equality

(S

�

')

2

= �'

2

+ 2S

�

('S

�

'); ' 2 L

2

(�): (3.40)

Let now � = �

ab

be an arbitrary open curve of the class R

p

and ' 2 Q

z

0

.

Consider on � sequences of points a

n

and b

n

at which � has tangents and

which satisfy a

n

! a, b

n

! b. For �

a

n

b

n

the equality (3.40) holds. Write it

in the form

(S

�

�

n

')

2

= �(�

n

')

2

+ 2S

�

(�

n

'S

�

�

n

');

where �

n

is the characteristic function of the arc �

a

n

b

n

. Assuming '

n

=

�

n

', we write this equality as

(S

�

'

n

)

2

= �('

n

)

2

+ 2S

�

('

n

S

�

'

n

): (3.41)
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Since the sequence '

n

in the space L

p

(�) converges to ', while '

n

S

�

'

n

,

with regard for the inclusion � 2 R

p

, converges to 'S

�

', from (3.41) we

obtain (3.40) for ' 2 Q

z

0

. Having this equality in hand and using Lemma

3.1, we complete the proof just as it has been done in the case of closed

curves. �

3.4. On singular Cauchy integrals on nonregular curves. According to The-

orem 3.1, a class of regular curves describes completely the R class. Beyond

this set the behaviour of the operators S

�

is very diverse. Below we shall cite

some examples giving an idea of this matter. The criteria for the continuity

of the operators S

�

from L

p

(�) to L

q

(�), p > q � 1 will also be indicated,

when � is a countable union of concentric circumferences. The interest to

the latter result is due to the fact that it may point to a way which would

greatly facilitate the solution of the problem of complete characterization

of the class R

p;q

, p > q.

1) Non-Smirnov curves. Let � be an arbitrary, simple, closed recti�able

non-Smirnov curve bounding a �nite domain G. Then, as is known, there

exists a function � 2 E

1

(G) such that �

+

2 L

1

(�) and �2 [

p>1

E

p

(G) ([133],

p. 258). But the operator S

�

fails to be continuous even from L

1

(�) to

L

p

(�) for some p > 1. Indeed, if the curve � would belong to the class

R

1;p

0

, p

0

> 1, then the function �(z) = (K

�

�

+

)(z), according to Theorem

3.3, would belong to E

p

0

(G), but it is not the case. Thus, if � is the non-

Smirnov curve, then

�2[

p>1

R

1;p

: (3.42)

2) Example of the curve � for which

sup

�2�

s(�; t)

j� � tj

<1 (3.43)

for any t 2 �, but �2R.

From condition (3.43) we, in particular, �nd that �

�1

sup

�>0

�

�1

l

t

(�) <1,

t 2 �. But condition (3.43) is more rigid than the last one. Further, (3.43) is

ful�lled for wide subclasses of curves from the class R (curves with bounded

ratio of the arc length to the spanning chord and also piecewise smooth

curves with cusps). Despite this fact it appears that condition (3.43) fails

to guarantee the belonging of the curve to the class R.

Let fa

n

g, f�

n

g be decreasing sequences of the points tending to zero,

provided n(a

n

� �

n

) < a

n+1

� a

n

. Suppose x

k;n

= �

n

+ kn

�1

(a

n

� �

n

),

k = 1; n. Draw through the point �

n

a ray which forms with the Ox axis

an angle �, 0 < � <

�

2

, and draw the arcs of the circumference of radius

x

k;n

� �

n

with center at �

n

which lie between the ray and the Ox axis.

Connecting the ends of these arcs alternately on the ray and on the axis, we

obtain a continuous arc e


n

. Let 


n

= e


n

[ [a

n�1

; a

n

], � =

1

[

n=1




n

. On the

basis of the inequality n(a

n

� �

n

) < a

n+1

� a

n

we can readily verify that



35

j� � 0j

�1

S(0; � ) < 2, � 2 � i.e., condition (3.43) is ful�lled for the point

t = 0. Analogous inequality for the other points t 2 � is obvious.

Show that �2R. Indeed, from the construction of the curve � it follows

that

(a

n

� �

n

)

�1

l

�

n

(a

n

� �

n

) > �

n

X

k=1

1

k

;

that is, sup

t2�; �>0

�

�1

l

t

(�) =1, and hence �2R.

3) Example of the curve � for which

(S

�

1)(t)2 [

p>0

L

p

(�): (3.44)

Let f�

n

g

1

n=0

be a sequence of positive numbers with the condition

�

n

> �

n+1

; n � 2;

1

X

n=2

�

n

<1;

�

0

=

1

X

k=1

(�1)

k�1

�

2k

; �

1

= 1�

1

X

k=1

(�1)

k

�

2k+1

: (3.45)

Suppose t

n

= (x

n

; y

n

), n = 0; 1; 2; : : : where

x

2n

=

1

X

k=n

(�1)

k�1

�

2k+1

; x

2n+1

= x

2n

;

y

0

= 0; y

2n�1

=

1

X

k=n

(�1)

k�1

�

2k

; n = 1; 2; : : : ; y

2n

= y

2n�1

:

Let further �

n

= [t

n

; t

n+1

], n = 0; 1; : : :, and � = (

1

[

n=0

�

n

) [ f0g.

Direct calculation gives

j(S

�

1)(t)j

p

�

�

�

�

�

Im

Z

�

d�

� � t

�

�

�

�

p

= j arg(t(s)) � arg(1� t(s)) + n

0

�j

p

; (3.46)

where p > 0, and the continuous branches of arg t(s) and arg(1� t(s)) and

the number n

0

are chosen such that arg t(0) = 0.

Let s

n

=

P

n

k=0

�

k

, k = 0; 1; 2; : : :. Since arg t(s

0

) is the angle described

by the vector

~

0t(s) upon variation of the parameter s from 0 to s

0

, it can

be easily veri�ed that for s 2 [s

0

; s

n+1

) we have n

�

2

< arg t(s) < (n+ 1)

�

2

.

Consequently,

Z

�

j arg t(s)j

p

ds �

1

X

n=0

s

n

+1

Z

s

n

j arg t(s)j

p

ds �

�

�

2

�

p

1

X

n=0

n

p

�

n+1

: (3.47)
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As far as arg(1�t(s)) is the function bounded on �, taking �

n

= n

�1

ln

2

n,

n = 2; 3; : : : from (3.46) and (3.47), we �nd that (S

�

1)(t)2 [

p>0

L

p

(�) for the

corresponding curve.

4) Example of the curve � with the properties

� 2 \

0<"<p

R

p;p�"

for any p; 1 < p <1 and �2R: (3.48)

Let "

n

= exp(�

p

n), n = 1; 2; : : : and let � be a broken line consisting of

segments �

n

= [�"

n

; "

n

+ i"

n

],

e

�

n

= [�"

n

+ i"

n

; "

n+1

], (n = 0; 1; : : :) and

[0; 1], i.e., � =

1

[

n=0

(�

n

[

e

�

n

) [ [0; 1]. This curve possesses the property

(3.48) (see [62], Theorem 4).

5) Operator S

�

for � being a countable family of concentric circumfer-

ences. Let fr

n

g

1

n=1

be a strictly decreasing sequence of positive numbers

satisfying the condition

P

1

k=0

r

k

< 1, and let � be a family of concen-

tric circumferences �

n

= fz : jzj = r

n

g. Consider the following functions

connected with �.

Let t 2 �, � > 0 and l

t

(�) be the length of that part of � which gets into

the circle of radius � and center at the point t. Let V

�

(t) be the variation

of the function arg(� � t) on �

�

(t), where �

�

(t) = �\f� : j� � tj > �g. Put

D(t) = sup

�>0

l

t

(�)�

�1

; V (t) = lim

�!0

V

�

(t):

Theorem 3.6. Let 1 � q < p � 1 and

� = �(p; q) =

(

pq(p� q)

�1

; p <1;

q; p =1:

Then the following statements are equivalent:

(i) the operator S

�

is bounded from L

p

(�) to L

q

(�);

(ii)

1

P

n=1

�

k=n

1

P

r

k

r

�1

n

�

�

r

n

<1;

(iii)

1

P

n=1

n

�

r

n

<1; (iv) D 2 L

�

(�); (v) V 2 L

�

(�).

The proof of the equivalence of conditions (i){(iii) can be found in [64].

The remaining statements of the theorem are proved analogously.

It has been shown [64], [127] that in order for the operator S

�

to be

bounded in L

p

(�), p > 1 it is necessary and su�cient that the condition

1

X

k=n

r

k

� Cr

n

; n = 1; 2; : : : ; (3.49)

be ful�lled, where C is an absolute constant.

A family of concentric circumferences "simulates" principally recti�able

curves with isolated singularities. Taking into account the above-said, we

assume that for an arbitrary recti�able curve the following statement is
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valid: � 2 R

p;q

, 1 � q < p � 1, i� D(t) belongs to L

�

(�) (an analogue of

Theorem 3.6).

In favour of such an assumption speaks the fact that condition (3.49) for

p = q is analogous to � David's condition. Its correctness is partially proved

by the following

Proposition 3.3 ([127]). Let � be a simple, closed, recti�able curve. Then

the following statements are valid:

(i) if � 2 R

p;q

, 1 � q < p < 2 or 2 < q < p < 1, then D 2 L

��"

(�) for

arbitrary " 2 (0; �);

(ii) if S

�

is continuous from L

1

(�) to L

q

(�), q > 0 then D 2 L

q

(�).

x

4. On the Continuity of the Operator S

�

in Weighted

Lebesgue Spaces

J. Hardy and Y. E. Littlewood [50] were the �rst who established the

boundedness of the conjugacy operator (Hilbert transform) in the spaces

L

p

(�;w), (1 < p <1), with a power weight w. Later on, various proofs of

the above-mentioned result were proposed by other authors. The theorem

below has been proved independently.

Theorem (Khvedelidze [66]). Operator S

�

is bounded in the space

L

p

(�; w), 1 < p <1, where � is the Lyapunov curve, and

w(t) =

n

Y

k=1

jt� t

k

j

�

k

; t

k

2 �; �

1

p

< �

k

<

1

p

: (4.1)

A full description of weights w ensuring the boundedness of the conjugacy

operator in L

2

(
;w) has been obtained by Helson and Szeg�o.

Theorem (Helson, Szeg�o [52]). In order that w 2 W

2

(
), it is necessary

and su�cient that it be representable in the form

w(x) = e

u(x)+ev(x)

; (4.2)

where u and v are real bounded functions with kvk

1

<

�

4

.

The last condition is equivalent to the condition of su�ciency found

earlier by V. F. Gaposhkin [39].

Some subsets of weight functions of the class W

p

(�) with singularities

distributed over the entire curve were found by I. B. Simonenko [141], I. I.

Danilyuk [19] and I. I. Danilyuk and V. Yu. Shelepov [20]. The �rst of the

above-mentioned authors has obtained his result by solving the boundary

value problem of linear conjugation.

A complete solution of a one-weight problem for conjugate in L

p

(
; w)

(1 < p <1) functions is given by the following assertion.
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Theorem (Hunt, Muckenhoupt and Wheeden [53]). A 2�-periodic func-

tion w 2W

p

(
) (1 < p <1) if and only if

kwk

L

p

(I)

k

1

w

k

L

p

0

(I)

� cjIj; (4.3)

where I is an arbitrary interval of length jIj < 2�, and the constant c does

not depend on I.

An analogue of the Helson and Szeg�o criterion for arbitrary L

p

(
; w) was

�rst obtained in [54].

Theorem (Jones [54]). A function w belongs to W

p

(�) if and only if

w = e

u+ev

1

�

1

p

0

ev

2

; (4.4)

where

u 2 L

1

; Imv

j

= 0; kv

j

k �

�

2p

and ev

j

2 BLO; j = 1; 2: (4.5)

(for de�nition of the class BLO see [28], p. 279).

4.1. On the functions fromW

p

allowing one to construct weights fromW

2p

.

The main results of this section are Theorem 4.1 and its Corollaries 3 and

5. Let us start with formulation of two simple lemmas.

Lemma 4.1. An operator S

�

is continuous from L

p

(�; w) to L

p

(�; w) if

and only if the operator

T : '! T

'

; (T

'

)(t) =

w(t)

�i

Z

�

'(� )

w(� )

d�

� � t

(4.6)

is continuous from L

p

(�) to L

p

(�).

Lemma 4.2. If w 2W

p

(�), then w 2 L

p

(�),

1

w

2 L

p

0

(�) and

1

w

2W

p

0

(�).

Moreover, � 2 R.

Proof. Show �rst that � 2 R. The use will be made of Stein's theorem

(0.20). Suppose in this theorem M = S

�

, r

1

= s

1

= p, r

2

= s

2

= p

0

, t =

1

2

,

k

1

= w, k

2

=

1

w

. Then s = r = 2, k = u = 1 and hence S

�

is continuous

in L

2

(�). By Theorem 3.5, � 2 R. The proof of the �rst part of the above

theorem when � is a straight line or a Lyapunov curve, is given in [168]

and [141], respectively. Word for word these proofs can be applied to the

general case by using the Riesz equality (which is valid, since � 2 R) and

the fact that if S

�

is de�ned on L

p

(�; w), then we must necessarily have

L

p

(�; w) � L(�). �

Theorem 4.1. Let � be a recti�able Jordan curve. If w

2

2 W

p

(�), 1 <

p <1, and (wS

�

1

!

) 2 L

p

(�), then w 2 W

2p

(�).
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Proof. Note that by Lemma 4.2, � 2 R. Since, according to the same

lemma, as w

�2

2 W

p

0

(�), we have

1

w

2 L

2p

0

(�). Let now ' 2 Q

z

0

, z

0

2�.

Then

'

w

2 L

2p

0

(�) � L

2

(�). Since � 2 R, we can apply to this function the

formula (3.40). Therefore

�

w(t)

�i

Z

�

'(� )

w(� )

d�

� � t

�

2

= w

2

(S

�

'

w

)

2

=

= w

2

n

�

'

2

w

2

+ 2S

�

�

'

w

S

�

(

'

w

)

�

o

: (4.7)

If we suppose that T

'

= wS

�

'

w

, then (4.7) yields

(T

'

)

2

= �'

2

+ 2w

2

S

�

(

'

w

2

T

'

): (4.8)

Show that T

'

2 L

p

(�). Indeed, we have

(T')(t) =

w(t)

�i

Z

�

'(� ) � '(t)

w(� )(� � t)

d� +

'(t)w(t)

�i

Z

�

d�

w(� )(� � t)

: (4.9)

Next, the condition w

2

2 W

p

(�) implies that w

2

2 L

p

(�), i.e, w 2

L

2p

(�) � L

p

(�), and since ' 2 Q

z

0

, the �rst summand on the right-hand

side of (4.9) belongs to L

p

(�), while the second one belongs to L

p

(�), by

the assumption (wS

�

1

w

) 2 L

p

(�).

Thus T

'

2 L

p

(�). Consequently, 'T

'

2 L

p

(�). This, according to the

conditionw

2

2W

p

(�), results in the inclusion [w

2

S

�

(

1

w

2

T

'

)] 2 L

p

(�). From

the equality (4.8) for ' 2 Q

z

0

we conclude now that T

'

2 L

2p

(�).

Moreover, on the basis of (4.8) we have

kT

'

k

2

2p

�

�

Z

�

j'j

2p

d�

�

1

p

+ 2

�

Z

�

�

�

�

w

2

S

�

�

1

w

2

'T

'

�

�

�

�

p

d�

�

1

p

: (4.10)

The last summand is calculated with regard for the condition w

2

2W

p

(�).

kT

'

k

2

2p

� k'k

2

2p

+ 2A

p

�

Z

�

j'T

'

j

p

d�

�

1

p

� k'k

2

2p

+

+2A

p

�

Z

�

j'j

2p

d�

�

1

2p

�

Z

�

jT

'

j

2p

d�

�

1

2p

; A

p

= kSk

p;w

2
; (4.11)

and hence

kT

'

k

2p

�

�

A

p

+

q

A

2

p

+ 1

�

k'k

2p

= A

2p

k'k

2p

: (4.12)

The obtained relation (4.12) is valid for rational functions only.
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Show that it is valid for arbitrary ' 2 L

2p

(�). Let '

0

2 L

2p

(�) and

let '

n

be a sequence of functions from Q

z

0

such that k'

n

� '

0

k

2p

! 0,

k'

n

k

2p

� k'

0

k

2p

. By (4.12),

kT

'

n

k

2p

� A

2p

k'

n

k

2p

� A

2p

k'

0

k

2p

: (4.13)

Since

1

w

2 L

2p

0

(�),

'

n

w

converges in L(�) to the function

'

0

w

. By Theorem

2.1, the sequence

�

S

�

'

n

w

�

converges in measure to S

�

'

0

w

. Therefore there

exists a sequence n

k

such that S

�

'

n

k

w

converges almost everywhere on � to

S

�

'

0

w

. But then T'

0

= wS

�

'

0

w

. Moreover, the inequality (4.13) is ful�lled

for T'

n

k

. By the Fatou theorem,

Z

�

jT'

0

j

2p

ds � lim

k!1

Z

�

jT'

n

k

j

2p

ds �

� A

2p

Z

�

j'

n

k

j

2p

ds � A

2p

Z

�

j'

0

j

2p

ds (4.14)

which implies that w 2W

2p

(�). �

Remark. As the power function shows, the inclusion w

2

2 W

2p

(�) does

not, generally speaking, follow from the condition w 2 W

p

(�). On the other

hand, it follows from the condition w 2 W

2p

(�) that (wS

�

'

w

) 2 L

2p

(�) if

' 2 L

2p

(�). Therefore, assuming ' � 1, we obtain (wS

�

1

w

) 2 L

2p

(�) �

L

p

(�). Thus the assumption of the theorem that the function wS

�

1

w

belongs

to the class L

p

(�) is a necessary one.

Corollary 1. If w

2

2 W

p

(�), (wS

�

1

w

) 2 L

p

(�), p < r < 2p then, w

2p

r

2

W

r

(�).

Proof. Bearing in mind Theorem from 0.20, we assume that M = S

�

, r

1

=

s

1

= p

1

, r

2

= s

2

= 2p, k

1

= u

1

= w

2

, k

2

= u

2

= w. By Lemma 4.2 and

from the assumptions of the corollary, this theorem is applicable and for

t = 2�

2p

r

we have k = u = w

2(1�t)

w

t

= w

2�t

= w

2p

r

. Thus the inequality










w

2p

r

S

�

'

w

2p

r










r

�Mk'w

2p

r

k

r

(4.15)

is valid. �

Corollary 2. If w 2 W

p

(
), where 1 < p < 2, then w = exp(u+ ev), where

u and v are bounded real functions, and kvk

1

<

�

2p

.

Proof. By Corollary 1, we have

p

w

2p

r

2 W

r

(
). Since 2 2 [p; 2p], we

can take r = 2. Then

p

w

p

2 W

2

(
). According to Helson-Szeg�o's theo-

rem, w

p

2

= exp(u

1

+ ev

1

), where u

1

and v

1

are bounded real functions, and

kv

1

k

1

<

�

4

. But then w = exp(

2u

1

p

+(

f
2v

1

p

)) = exp(u+ev), u =

2u

1

p

, v =

2v

1

p

.

Clearly, kvk

1

<

�

2p

. �
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Corollary 3. The function of the kind w = exp(u+ ev), where u and v are

the bounded real functions and kvk

1

<

�

2max(p;p

0

)

, belongs to W

p

(
).

Proof. (i) Let �rst p = 4, i.e. w = exp(u + ev), kvk

1

<

�

8

. Since w

2

=

exp(2u+ 2ev), k2evk

1

<

�

4

, by Helson-Szeg�o's theorem, w

2

2 W

2

(
). More-

over, as w

2

and

1

w

2

belong to L

2

(
), then wS

�

w

�1

2 L(
). Therefore, owing

to the theorem, we conclude that w 2W

4

(�).

(ii) Let 2 < p < 4 and w = exp(u + ev), kvk

1

<

�

2p

. The function w

p

4

,

because of (i), belongs to W

4

(
). Assuming p = 4, r = p in Corollary 1, we

�nd that w 2W

p

(
).

Hence, Corollary 3 is valid for p 2 [2; 4]. Repeating the above reasoning,

by induction we prove that the corollary is valid when p 2 [2;1].

(iii) If 1 < p < 2, then since kvk <

�

2max(p;p

0

)

, we have that

1

w

2 W

p

0

(
),

and by virtue of Lemma 4.2, w 2W

p

(�). �

Corollary 4. If the operator T is bounded with respect to the norm of the

space L

p

(�) for rational functions from Q

z

0

, then it is bounded in L

p

(�).

It su�ces to see that part of the proof of Theorem 4.1 which implies

(4.12).

Corollary 5. If w 2 W

p

(
), then w = exp(u + ev), where u and v are the

bounded real functions, and kvk

1

<

�

2min(p;p

0

)

.

Proof. If 1 < p < 2, then using Corollary 2, we obtain w = exp(u + ev),

where kvk

1

<

�

2p

. If, however, p � 2, then applying again Corollary 2, but

now to the function

1

w

2W

p

0

(
), we obtain w = exp(u+ev), where this time

kvk

1

<

�

2p

0

. �

In subsection 4.5 we will prove that the result of Corollary 5 remains also

valid in the case of Lyapunov curves.

4.2. Criteria of boundedness of S

�

in L

p

(�; w) for regular curves �. In this

section we assume that Jordan curve � is regular that is,

��(z; r) � cr; z 2 �;

where �(z; r) = B(z; r) \ �, B(z; r) is a circle with center in z 2 � and of

radius r, � is an arc length measure on �. As it was noted in x3, the class

of regular curves completely describes the class R.

Introduce the following notation:

M

�

f(t) = sup

�(z;r)3t

0<r<diam�

1

��(z; r)

Z

�(z;r)

jf(� )jd�;

M

(p)

�

(t) = (M

�

jf j

p

)

1

p

(t);

f

#

(t) = sup

�(z;r)3t

1

��(z; r)

Z

�(z;r)

jf(� ) � f(t)jd�;
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f

E

=

1

�E

Z

E

f(t) d�;

wE =

Z

E

w(t)d� for any measurable E � �:

De�nition 1. A measurable non-negative function w 2 A

1

(�) if there

exists � > 0 such that

Z

E

w(t)d� � c

�

�E

��(z; r)

�

�

Z

�(z;r)

w(t)d�

for every �(z; r) and measurable E � �(z; r).

De�nition 2. A weight function w 2 A

p

(�), 1 < p <1, if

sup

z2�

0<r<diam�

1

��(z; r)

Z

�(z;r)

w(t)d�

�

1

��(z; r)

Z

�(z;r)

w

1�p

0

(t)dt

�

p�1

<1:

In the sequel, we will need two facts: (i) if w 2 A

p

(�) for some p > 1,

then w 2 A

1

(�); (ii) the class A

p

(�) is open, i.e. there exists some " > 0

such that w 2 A

p�"

(�) and w 2 A

p

1

(�) for arbitrary p

1

> p.

As far as a regular curve is one of examples of a homogeneous type

space, the above-mentioned properties of A

p

(�) as well as the proof of the

propositions below can be found in [40], Chapters 1, 5 and 7.

Proposition A. Let 1 < p <1, � 2 R and w 2 A

p

(�). Then

Z

�

(M

�

f(t))

p

w(t)d� � c

Z

�

jf(t)j

p

w(t)d� (4.16)

where c does not depend on f .

The principle of the proof is well known (cf., e.g., [153], p.3). It is based

on the following covering

Lemma 4.3. Let � be a regular curve and let E � � be a bounded set.

Assume that every point t 2 E is endowed with a positive number r(t).

Then there exists not more than a countable set of points t

j

2 E such that

�

j

= �(t

j

; r(t

i

)) are mutually disjoint and E � [

j

�

j

.

Proof. Assume that supfr(t); t 2 Eg < 1. Otherwise, there exists a point

t 2 E such that E � B(t; r(t)) \ �, which proves the lemma.

Let us take the point t

1

2 E such that r(t

1

) > supfr(t); t 2 Eg and

suppose that the points t

1

; t

2

; : : : ; t

n�1

are already chosen. Now we select a

point t

n

2 E

n

= En

n�1

[

j=1

B(t

j

; 3r(t

j

)) with the condition

r(t

n

) >

1

2

supfr(t) : t 2 E

n

g:
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It is clear that �(t

n

; r(t

n

)) \B(t

j

; r(t

j

)) = ? for j < n. Otherwise,

jt

j

� t

n

j � 3r(t

j

):

Indeed, for j < n we have r(t

j

) >

1

2

supfr(t) : t 2 E

j

g �

1

2

r(t

n

), and if

� 2 B(t

n

; r(t

n

)) \B(t

j

; r(t

j

)) \ �, then

jt

j

� t

n

j � jt

j

� � j+ j� � t

n

j � r(t

j

) + r(t

n

) � 3r(t

j

):

The latter contradicts the fact that t

n

62 B(t

j

; 3r(t

j

)), j < n. Hence

�(t

n

; r(t

n

)) \B(t

j

; r(t

j

)) = ? for j < n.

Thus there may occur two cases:

(1) If after our choice of a �nite number of points t

j

, j = 1; : : : ; n we �nd

that En

n

[

j=1

B(t

j

; 3r(t

j

)) = ?, then the set

n

[

j=1

B(t

j

; 3r(t

j

)) covers the set E.

(2) If this process continues in�nitely, then we will have lim

n!1

r(t

n

) = 0.

Indeed, let for some " > 0 and for the subsequence (t

i

k

)

k

of (t

j

) we have

r(ti

k

) > ". On the other hand, these points belong to the bounded set E,

and therefore they may �nd themselves in some ball B. Moreover, the sets

�(t

j

; r(t

j

)) are mutually disjoint, and therefore

s(t

i

k

; t

i

m

) � min

k;m

s(t

i

k

; t

i

m

) > " > 0:

This means that a portion of �, having an in�nite length, appears in the

ball B. But this contradicts the regularity of �.

Assume now that there exists a point t 2 E such that t 2 En

n

[

j=1

B(t

j

; 3r(t

j

)). Then there exists n

0

such that r(t) > 2r(t

n

0

). On the

other hand, r(t) � supfr(t) : t 2 E

n

0

g < 2r(t

n

0

), and we conclude that

En

n

[

j=1

B(t

j

; 3r(t

j

)) = ?. �

Along with the above lemmawe will also need the Whitney type covering

lemma.

Lemma 4.4. Let � be a regular curve, E � �, E 6= � be a bounded, open

set in the sense of the topology of � and the number c � 1. Then there exists

a set of balls fB

j

g

j

= fB(t

j

; R

j

)g, t

j

2 E such that the following conditions

are ful�lled:

(a) E = [

j

�

j

, �

j

= B

j

\ �;

(b) there exists a positive number � = �(c) such that every point t 2 �

belongs at least to � balls

e

B

j

=

e

B(t

j

; cR

j

);

(c)

e

e

B

j

\ (�nE) 6= ? for every j, where

e

e

B

j

= B(t

j

; 3cR

j

).

Proof. Let t 2 E and r(t) =

1

6c

d(t;�nE) =

1

6c

inffjt� � j : � =2 Eg > 0. By

virtue of Lemma 4.3, there exists a set of balls fB(t

j

; r(t

j

))g such that the

sets �(t

j

; r(t

j

)) are mutually disjoint, and E � [

j

B(t

j

; 3r(t

j

)).



44

For � 2 �(t

j

; 3cr(t

j

)) we have

jt

j

� � j < 3cr(t

j

) = 3c

1

6c

d(t

j

;�nE) =

1

2

d(t

j

;�nE) < d(t

j

;�nE):

Let R

j

= 3r(t

j

) and B

j

= B(t

j

; R

j

). Then, obviously,

B

j

\ � � B(t

j

; cR

j

) \ � � E:

This implies that

E � ([

j

B

j

) \ � � [

j

e

B

j

\ � � E:

Consequently, E = [

j

B

j

\ �. Thus item (a) is proved.

Further, since 3cR

j

= 9cr(t

j

) =

3

2

d(t

j

;�nE) > d(t

j

;�nE), we obtain

e

e

B

j

\ (�nE) 6= ?. It remains to prove (b). Notice �rst that there exists

a number h > 0 such that every ball B(t; r) cannot contain more than h

n

points ft

j

g for which jt

i

� t

j

j >

r

2

n

, i 6= j.

Let now t 2

e

B

j

\�,

e

B

j

= B(t

j

; cR

j

). Show that cR

j

< d(t;�nE). Indeed,

2cR

j

= 2c3r(t

j

) = 6cr(t

j

) = d(t

j

;�nE) �

� jt

j

� tj+ d(t;�nE) < cR

j

+ d(t;�nE);

whence it follows that

cR

j

< d(t;�nE):

Moreover,

e

B

j

\ � � B(t; 2d(t;�nE)). Really, let � 2

e

B

j

\ �. Then

jt� � j � j� � t

j

j+ jt

j

� tj < cR

j

+ cR

j

< 2cR

j

< 2d(t;�nE);

which denotes the required inclusion.

Moreover,

d(t;�nE) � jt� t

j

j+ d(t

j

;�nE) < cR

j

+ 2cR

j

= 3cR

j

;

which implies that

R

j

�

d(t;�nE)

3c

:

For t 2

e

B

i

\

e

B

j

\ �, i 6= j, we have

e

B

i

\ � � B(t; 2d(t;�nE)). Indeed, if

� 2

e

B

i

\ �, then we have

j� � tj � j� � t

j

j+ jt

j

� tj < 2cR

j

< 2d(t;�nE):

Thus all the centers t

j

of the balls

e

B

i

containing t lie in B(t; 2d(t;�nE))\

�. But on the other hand,

� \B(t

i

; r(t

i

)) \B(t

j

; r(t

j

)) = ? for i 6= j

and

jt

i

� t

j

j � minfr(t

i

); r(t

j

)g =

1

3

minfR

i

; R

j

g �
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�

1

6c

d(t;�nE) =

d(t;�nE)

2

log

2

6c

:

Consequently, there is a h, h > 0, such that a number of balls containing

the point t does not exceed h

log

2

6c

.

Note that in the previous inequality we have used the fact that jt

i

�

t

j

j � minfr(t

i

); r(t

j

)g. The latter holds because t

i

=2 B(t

j

; r(t

j

)) \ � and

t

j

=2 B(t

i

; r(t

i

)) \ �. �

Lemma 4.5. Let � be a regular curve, 1 < p <1, and w 2 A

p

(�). Then

there exists b > 1 such that for any r > 0 and z 2 � we have

w�(z; 2r) � bw�(z; r)

(the doubling condition).

Proof. From the de�nition of A

p

(�), regularity of � and H�older inequality,

we have

w�(z; 2r) � (��(z; 2r))

p

�

Z

�(z;2r)

w

1�p

0

(t)d�

�

1�p

�

� b��(z; r)

�

Z

�(z;r)

w

1�p

0

(t)d�

�

1�p

�

� b

�

Z

�(z;r)

w(t)d�

��

Z

�(z;r)

w

1�p

0

(t)d�

�

p�1

�

�

�

Z

�(z;r)

w

1�p

0

(t)d�

�

1�p

= bw�(z; r): �

Lemma 4.6. Let � be a nonnegative Borel measure on C , �� < 1, and

there exist b > 0 such that

��(t; 2r) � b��(t; r)

for any t 2 � and r > 0. Then for an arbitrary point t

0

2 � there exists a

number R > 0 such that � � B(t

0

; R).

Proof. Suppose to the contrary that there exists a number t

0

2 � such that

for an arbitrary R > 0 the set �nB(t

0

; R) is empty. Fix some R > 0 and let

z 2 �nB(t

0

; 2R). It is evident that

B

�

t

0

;

jt

0

� zj

2

�

\B

�

z;

jt

0

� zj

2

�

= ?:

Moreover,

B

�

z;

jt

0

� zj

2

�

� B

�

t

0

;

3

2

jt

0

� zj

�

:
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In fact, let � 2 B

�

z;

jt

0

�zj

2

�

. Then, obviously,

jt

0

� � j � jt

0

� zj+ jz � � j � jt

0

� zj+

jt

0

� zj

2

=

3

2

jt

0

� zj:

Moreover,

B

�

t

0

;

jt

0

� zj

2

�

� B

�

z;

3jt

0

� zj

2

�

:

Indeed, for � 2 B(t

0

; j

t

0

�z

2

j) we have

jz � � j � jz � t

0

j+ jt

0

� � j �

jt

0

� zj

2

+ jt

0

� zj =

3

2

jt

0

� zj:

Therefore

��

�

t

0

;

jt

0

� zj

2

�

� ��

�

z;

3jt

0

� zj

2

��

�

� b

1

��

�

z;

jt

0

� zj

2

�

;

and thus we obtain

��

�

t

0

;

3

2

jt

0

� zj

�

� ��

�

t

0

;

jt

0

� zj

2

�

+ ��

�

z;

jt

0

� zj

2

�

�

� ��

�

t

0

;

jt

0

� zj

2

�

+

1

b

1

��

�

t

0

;

jt

0

� zj

2

�

=

= (1 + �)��

�

t

0

;

jt

0

� zj

2

�

� (1 + �)��(t

0

; R):

If we assume that R

1

=

3

2

jt

0

� zj, then from the latter we can conclude that

��(t

0

; R

1

) � (1 + �)��(t

0

; R):

Continuing this process, we get a sequence (R

k

)

k

of positive numbers

such that

��(t

0

; R

k

) � (1 + �)

k

��(t

0

; R); k = 1; 2; : : : :

Passing to the limit as k ! 1, from the above inequality we �nd that

�� =1, which contradicts our assumption. �

Corollary. Let � be a regular curve, w 2 A

p

(�), 1 � p < 1. If w(�) <

1, then for an arbitrary t

0

2 � there exists a number R > 0 such that

� � B(t

0

; R).

Let � be a regular curve and w be a weight function. For every summable

function f : �! Rwe de�ne on (0;1) an equimeasurable function

f

�

w

(x) = inff� > 0 : wft : jf(t)j > �g � xg:

We can readily show the validity of the following
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Lemma 4.7. For every x > 0 we have

wft : jf(t)j > f

�

(x)g � x:

Lemma 4.8. Let w 2 A

1

(�), and let 
 be a measurable subset of �,

w
 > 0. Then there exists an open (in the sense of the � topology) set

G � 
 such that

wG � cw
;

where the constant c does not depend on 
.

Proof. Let G = ft 2 � :M (�




)(t) >

1

2

g, where

M (�




(t)) = sup

r>0

�(�(t; r)\
)

��(t; r)

:

We can easily see that G is an open set in the topology of �, and 
 � G.

From the condition w 2 A

p

(�) and also from the inequality of the weak

type (p; p) we deduce for the operator M that

wG = wft :M (�




)(t) >

1

2

g � c2

p

w
: �

Lemma 4.9. Let � be an unbounded regular curve, and let w 2 A

1

(�).

Then w� =1.

Proof. Suppose to the contrary that w� < 1. Then owing to Lemmas 4.5

and 4.6, the curve � may appear in some ball B(t; r), t 2 �, r > 0. On

the strength of the regularity we obtain �� = ��(t; r) � cr < 1, which

contradicts our assumption on the unboundedness of the curve �. �

Lemma 4.10. Let � be an unbounded regular curve, and let w 2 A

1

(�).

Then there exists a number c > 0 such that for every x > 0 we have

(M

�

f)

�

w

(x) � c(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x):

Proof. Fix x > 0 and assume


 = ft : f

#

(t) > (f

#

)

�

w

(2x)g [ ft :M

�

f(t) > (M

�

f)

�

w

(2x)g:

By Lemma 4.7, we have

w
 � wft : f

#

(t) > (f

#

)

�

w

(2x)g+

+wft :M

�

f(t) > (M

�

f)

�

w

(2x)g � 4x <1:

By virtue of Lemma 4.8, there exists an open (in the sense of the �

topology) set G � 
 such that

wG � c

1

w
 <1:

Since � is unbounded, using Lemma 4.9 we �nd that w� = 1 and,

obviously, �n
 6= ?.
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Apply now Lemma 4.4 owing to which there exists for c = 1 a sequence

(B

j

)

j

of balls with centers on � such that G = [

j

(B

j

\ �),

P

j

�

B

j

\�

(t) � m

andB

j

\(�nG) 6= ?, j = 1; 2; : : : , where B

j

= B(t

j

; r

j

) andB

j

= B(t

j

; 3r

j

).

The lemma will be considered to be proved, if we show that there exists

c

1

> 0 such that

wft :M

�

f(t) > c

1

(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x)g < x

for an arbitrary x > 0.

Suppose

E

j

= ft 2 B

j

\ � :M

�

f(t) > c

1

(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x)g:

Fix j and let f = g + h, where h = (f � f

B

j

\�

)�

B

j

\�

. As is easily seen,

for t 2 B

j

\ � we have

g(t) = f(t) � (f � f

B

j

\�

)�

B

j

\�

(t) = f

B

j

\�

� (M

�

f)

�

w

(2x);

since B

j

\ (�nG) 6= ?.

On the other hand, for t 2 �nG we have

g(t) = f(t) �M

�

f(t) � (M

�

f)

�

w

(2x);

and we can conclude that

kgk

1

� (M

�

f)

�

w

(2x):

Consequently,

M

�

f(t) �M

�

h(t) +M

�

g(t) �M

�

h(t) + kgk

1

�M

�

h(t) + (M

�

f)

�

w

(2x):

Further, by virtue of the weak type inequality and the de�nition of the

set 
, we obtain the estimates

�E

j

� �ft 2 B

j

\ � :M

�

h(t) > c

1

(f

#

)

�

w

(2x)g �

�

c

2

c

1

(f

#

)

�

w

(2x)

Z

�

jh(t)jd� =

c

2

c

1

(f

#

)

�

w

(2x)

Z

B

j

\�

jf(t) � f

B

j

\�

jd� �

�

c

2

c

3

c

1

�(B

j

\ �); j = 1; 2; : : : :

In the above estimate we have used the fact that B

j

\ (�nG) 6= ?.

Next, by virtue of the condition w 2 A

1

(�), we have

wE

j

� c

4

�

�E

j

�(B

j

\ �)

�

�

w(B

j

\ �) �

� c

4

�

c

2

c

3

c

1

�

�

w(B

j

\ �)

�

; j = 1; 2; : : : :
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Thus we obtain

wft :M

�

f(t) > c

1

(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x)g �

�

X

j

�E

j

� mb

�

c

2

c

3

c

1

�

�

wG � bc

4

�

c

2

c

3

c

1

�

�

w(� \
) �

� mbc

4

�

c

2

c

3

c

1

�

�

w(
) � 4mbc

4

�

c

2

c

3

c

1

�

�

x:

Take now c

1

so large that

4bmc

4

�

c

2

c

3

c

1

�

�

< 1:

Then from the previous inequality we conclude that

wft :M

�

f(t) < c

1

(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x)g < x

for an arbitrary x > 0. �

Lemma 4.11. Let � be an unbounded regular curve, and let w 2 A

1

(�).

Then the inequality

(M

�

f)

�

w

(x) � c

1

1

Z

x

(f

#

)

�

w

(�)

d�

�

+ lim

x!1

(M

�

f)

�

w

(x)

holds, where c

1

does not depend on x and f .

Proof. Since � is unbounded, by Lemma 4.9 we have w� =1.

Applying now Lemma 4.10, we obtain the following estimates:

(M

�

f)

�

w

(x) � c(f

#

)

�

w

(2x) + (M

�

f)

�

w

(2x) �

� c(f

#

)

�

w

(2x)

1

x

2x

Z

x

d�+ (M

�

f)

�

w

(2x) �

� 2c

2x

Z

x

(f

#

)

�

w

(�)

d�

�

+ (M

�

f)

�

w

(2x) �

� 2c

2x

Z

x

(f

#

)

�

w

(�)

d�

�

+ (M

�

f)

�

w

(4x) + c(f

#

)

�

w

(4x) �

� 2c

2x

Z

x

(f

#

)

�

w

(�)

d�

�

+ 2c

4x

Z

2x

(f

#

)

�

w

(�)

d�

�

+

+(M

�

f)

�

(4x) � 2c

2x

Z

x

(f

#

)

�

w

(�)

d�

�

+ 2c

4x

Z

2x

(f

#

)

�

w

(�)

d�

�

+
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+(M

�

f)

�

w

(4x) � � � � � 2c

2

n

x

Z

x

(f

#

)

�

w

(�)

d�

�

+ (M

�

f)

�

w

(2

n

x)

for arbitrary n and with c independent of f , x and n.

Consequently,

(M

�

f)

�

w

(x) � 2c lim

n!1

2

n

x

Z

x

(f

#

)

�

w

(�)

d�

�

+

+ lim

x!1

(M

�

f)

�

(2

n

x) = c

1

1

Z

x

(f

#

)

�

w

(�)

d�

�

+ lim

x!1

(M

�

f)

�

w

(x): �

Proposition B. Let � be an unbounded regular curve, 1 � p <1, and let

w 2 A

1

(�). Then there exists c

p

> 0 such that for any f with the condition

lim

x!1

(M

�

f)

�

w

(x) = 0 the inequality

�

Z

�

(M

�

f)(t))

p

w(t)d�

�

1=p

� c

p

�

Z

�

(f

#

(t))

p

w(t)d�

�

1=p

(4.17)

holds.

Proof. By Lemma 4.11 and Hardy's inequality, we deduce the estimate

�

Z

�

((M

�

f)(t))

p

w(t)d�

�

1=p

=

�

1

Z

0

((M

�

f)

�

w

(x))

p

dx

�

1=p

�

� c

�

1

Z

0

�

1

Z

x

(f

#

)

�

w

(�)

d�

�

�

p

dx

�

1=p

� c

p

�

1

Z

0

((f

#

)

�

w

(x))

p

dx

�

1=p

=

= c

p

�

Z

�

(f

#

(t))

p

w(t)d�

�

1=p

: �

Proposition C. Let � be an unbounded regular curve, and let w 2 A

p

0

(�)

and p � p

0

. Then there exists the constant c

p

> 0 such that

�

Z

�

(M

�

f)

p

(t)w(t)d�

�

1=p

� c

p

�

Z

�

(f

#

(t))

p

w(t)d�

�

1=p

:

Proof. Let f 2 L

p

w

(�). Since w 2 A

p

(�), we have M

�

f 2 L

p

w

(�), and hence

lim

x!1

(M

�

f)

�

w

(x) = 0:

The remainder follows from Proposition B, since w 2 A

1

(�).

Proposition C is the analogue of the well-known theorem due to C. Fef-

ferman and E. M. Stein [35].
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Proposition D. Let 1 < p <1, and � 2 R. Then the following pointwise

estimation is valid:

(S

�

f)

#

(t) � cM

(p)

�

f(t) (4.18)

almost everywhere on � for arbitrary f 2 L(�).

Proof. Let t

0

2 �, r > 0 if � is unbounded and t 2 B(t

0

; r) \ �. Put

f

1

(� ) = f(� )�

B(t

0

;2r)\�(�)

and f

2

(� ) = f(� ) � f

1

(� ). We have

1

�(�\B(t

0

; r))

Z

�\B(t

0

;r)

jS

�

f(� ) � S

�

f(t

0

)jd� =

=

1

�(� \B(t

0

; r))

Z

�\B(t

0

;r)

jS

�

f

1

(� ) + S

�

f

2

(� )� S

�

f

2

(t

0

)jd�:

Let

F (r; t) = S

�

f

1

(t) + S

�

f

2

(t)� S

�

f

2

(t

0

) = S

�

f

1

(t) +

+

Z

f�2�:j��t

0

j�2rg

�

1

� � t

�

1

� � t

0

�

f(� )d� = I

1

(t) + I

2

(t):

Since � 2 R, we have

kI

1

k

p

= kS

�

f

1

k

p

� ckf

1

k

p

:

Hence

kI

1

k

p

= c

�

Z

�\B(t

0

;r)

jf(� )j

p

d�

�

1

p

� c(�(�\B(t

0

; 2r))

1

p

�

� inf

�2�\B(t

0

;2r)

M

(p)

f(� ) � c

1

(��(t

0

; r))

1

p

inf

�2�\B(t

0

;r)

M

(p)

f(� ):

In the last estimate we have used the regularity of �.

Further,

I

2

(t) �

Z

f�2�:j��t

0

j�2rg

�

�

�

1

� � t

�

1

� � t

0

�

�

�

jf(� )jd� =

=

Z

f�2�:j��t

0

j�2rg

jt� t

0

j

j� � tjj� � t

0

j

jf(� )jd�:

For � 2 �, j� � t

0

j � 2r and t 2 � \B(t

0

; r) we have j� � t

0

j � j� � tj+

jt� t

0

j � j� � tj+ r � j� � tj+

j��t

0

j

2

. Hence j� � t

0

j < 2j� � tj. Therefore

I

2

(t) � 2

Z

f�2�:j��t

0

j�2rg

jt� t

0

j

j� � t

0

j

2

jf(� )jd� =
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= 2

X

k�1

jt� t

0

j

j� � t

0

j

2

Z

f�2�:2

k

r�j��t

0

j<2

k+1

rg

jf(� )jd� �

� c

X

k�1

1

2

k

(2

k+1

r)

�1

��\B(t

0

; 2

k+1

r) inf

�2�(t

0

;2

k+1

r)

Mf(� ) �

� c inf

�2�(t

0

;r)

Mf(� )

1

X

k=1

1

2

k

� c inf

�2�(t

0

;r)

Mf(� ):

Thus

Z

�(t

0

;r)

jF (r; t)jd� �

Z

�(t

0

;r)

jI

1

(t)jd� +

Z

�(t

0

;r)

jI

2

(t)jd� �

� (��(t

0

; r))

1

p

0

�

Z

�(t

0

;r)

jI

1

(t)j

p

d�

�

1

p

+ c�(�(t

0

; r)) inf

�2�(t

0

;r)

Mf(� ) =

= c�(�(t

0

; r))( inf

�2�(t

0

;r)

M

(p)

f(� ) + inf

�2�(t

0

;r)

Mf(� )) �

� c��(t

0

; r) inf

�2�(t

0

;r)

M

(p)

f(� );

whence we obtain the estimate

1

��(t

0

; r)

Z

�(t

0

;r)

jF (r; t)jd� � c inf

�2�(t

0

;r)

M

(p)

f(� );

where a constant c does not depend on t

0

and r.

Next,

1

��(t

0

; r)

Z

�(t

0

;r)

jS

�

f(� ) � (S

�

f)

�(t

0

;r)

jd� �

�

2

��(t

0

; r)

Z

�(t

0

;r)

jF (r; t)j d� � cM

(p)

f(t)

for arbitrary t 2 � \B(t

0

; r).

Finally we conclude that

(S

�

f)

#

(t) � cM

(p)

f(t)

almost everywhere on �. �

Theorem 4.2. Let 1 < p <1, � 2 R. Then for the inequality

Z

�

jS

�

f(t)j

p

w(t)d� � c

Z

�

jf(t)j

p

w(t)d� (4.19)

to be valid with a constant c not depending on f , it is necessary and su�cient

that w 2 A

p

(�).
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Proof. At �rst we assume that � is an unbounded curve. Since the class

A

p

(�) is open, there exists some p

1

> 1 such that w 2 A

p=p

1

(�). Using now

Propositions D, C and A, we obtain the estimates

Z

�

jS

�

f(t)j

p

w(t)d� �

�

Z

�

(M

�

(S

�

f)(t))

p

w(t)d� � c

1

Z

�

((S

�

f)

#

(t))

p

w(t)d� �

� c

2

Z

�

(M

�

(jf j

p

1

)(t))

p

p

1

w(t)d� � c

3

Z

�

jf(t)j

p

w(t)d�: (4.20)

Thus we have proved the part of Theorem 4.2 in case of unbounded �

concerning the su�ciency.

We pass now to the case where the curve � is bounded. Assume �rst

that � = �

ab

is an open curve with the ends a and b, and U

�

is a circle

containing �. Choose on � sequences of points (a

n

)

n

and (b

n

)

n

with the

condition a

n

! a, b

n

! b at which the � curve possesses the tangents. For

su�ciently large N , we can construct a circle U

N

with center at the point

a

n

containing the arc a

N

a and excluding the point b. Since the curve has

at the points a

n

the tangents, there exists a sector with the vertex at the

point a

n

such that its intersection with U

N

does not contain the points of

the curve �. Therefore there exists the segment a

n

a

0

n

, a

0

n

2 U

N

such that

a

n

a

0

n

\� = ?. Since U

�

n� is the domain, there exists a broken line [

n

a

n

A

n

,

A

n

2 �U

�

with a �nite number (say m) of links which does not intersect �.

Let �

n;a

= a

n

A

n

[

^

A

n

A

N

, where A

n

A

N

are the arcs of the circumference

�U

N

{ boundary of U

n

. Similarly we construct the curves �

n;b

connected

analogously with the other end b.

If �

a

and �

b

are nonintersecting rays with vertices at the points A

N

and

B

N

, then the curves �

n

= �

a

n

b

n

[ �

n;a

[ �

n;b

[ �

a

[ �

b

, and U

N

may turn

out regular, and as is easily seen,

sup

�2�

n

sup

�>0

l

�

(�)

�

� sup

�2�

sup

�>0

l

�

(�)

�

+m+ 2:

Consequently, on the basis of the above-proven results we �nd that

kS

�

n

k

L

p

w

!L

p

w

�M

for some M , independent of n. From this we conclude that

kS

�

a

n

b

n

k

L

p

w

!L

p

w

�M:

Next, from the last estimate and from the fact that S

�

is continuous in

L

p

, in a standard way we deduce that

kS

�

ab

k

L

p

w

!L

p

w

�M:
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Let now � be an arbitrary, simple, closed regular curve. Take on � three

points a, b and c with the condition s(a) < s(b) < s(c). For f 2 L

p

w

(�) we

have

Z

�

ab

jS

�

f(t)j

p

w(t)d� �

� 2

p

�

Z

�

ab

jS

�

ab

f(t)j

p

w(t)d� +

Z

�

ab

jS

�

ba

f(t)j

p

w(t)d�

�

:

But

Z

�

ab

jS

�

ba

f(t)j

p

w(t)d� �

� 2

p

�

Z

�

ab

jS

�

bc

f(t)j

p

w(t)d� +

Z

�

ab

jS

�

ca

f(t)j

p

w(t)d�

�

�

� 2

p

�

Z

�

ac

jS

�

ac

(f�

�

bc

(t)j

p

w(t)d� +

Z

�

cb

jS

�

cb

(f�

�

ca

)(t)j

p

w(t)d�

�

:

Taking into account the above arguments, we can see that the operator

S is continuous in L

p

w

(�

ac

) and L

p

w

(�

cb

). Thus we conclude that

Z

�

ab

jS

�

f(t)j

p

w(t)d� � c

Z

�

jf(t)j

p

w(t)d�:

The inequality

Z

�

ba

jS

�

f(t)j

p

w(t)d� � c

Z

�

jf(t)j

p

w(t)d�

is derived analogously.

Consequently, the theorem is proved in the general case for that part

concerns the su�ciency.

For the necessity it su�ces now to remark that there exists a constant

c > 0 such that for any �(z

1

; r

1

) there exists another �

2

(z

2

; r

2

) such that

the inequalities

S

�

(�

�

1

f)(z) � c

�

1

��

1

Z

�

1

f(t)d�

�

�

�

2

(z)

and

S

�

(�

�

2

f)(z) � c

�

1

��

2

Z

�

2

f(t)d�

�

�

�

1

(z)

hold for any real f and z 2 �. �
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4.3. Weight inequalities for singular integrals on smooth curves. Let t =

t(s) be an equation of the curve � with respect to the arc abscissa. The arc

length is assumed to be equal to 2�. We extend the function f(t) and the

weight function w periodically on R and consider the integral

S

�

f(t(s)) =

2�

Z

0

f(t(�))t

0

(�)

t(�)� t(s)

d�:

Theorem 4.3. Let 1 < p <1, � be a smooth curve. Then the inequality

2�

Z

0

jS

�

f(t(s))j

p

w

p

(s)ds � c

2�

Z

0

jf(t(s))j

p

w

p

(s)ds (4.21)

holds for all f 2 L

p

(�; w) with a constant c > 0 independent of f if and

only if the condition

sup

�

1

jIj

Z

I

w

p

(s)ds

�

1

p

�

1

jIj

Z

I

w

�p

0

(s)ds

�

1

p

0

<1 (4.22)

is ful�lled, where the least upper bound is taken over all intervals of the

length less than 2�.

Proof. The su�ciency follows from Theorem 4.2. We dwell on the proof of

the necessity. Let the inequality (4.21) hold.

Consider on [��; 3�;��; 3�] the function

�(s; �) =

(

x

0

(s)

x(s)�x(�)

s��

+ y

0

(s)

y(s)�y(�)

s��

for s 6= �;

1; for s = �;

(4.23)

where t(s) = x(s) + iy(s).

Because of the smoothness of the curve,

lim

s!s

0

;�!�

0

�(s; �) = 1

for an arbitrary s

0

2 [��; 3�]. Therefore, for every s

0

2 [��; 3�] there exists

its neighbourhood �

s

0

such that �(s; �) �

1

2

for any s 2 �

s

0

, � 2 �

s

0

.

Choose from the covering f�

s

0

g of the segment [��; 3�] a �nite covering

f�

0

k

g

m

k=1

. Assume

c

0

= min

1�i;j�m

j�

0

i

\�

0

j

j:

By the equality

Re

t

0

(s)(s � �)

t(s) � t(�)

=

�

x

0

(s)

x(s) � x(�)

s� �

+ y

0

(s)

y(s) � y(�)

s � �

�
�

�

�

t(s) � t(�)

s � �

�

�

�

�2
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for an arbitrary interval I, jIj < min(

1

2

c

0

;

�

4

) and any s and � from I we

have the inequality

Re

t

0

(s)(s � �)

t(s) � t(�)

�

1

2

: (4.24)

To prove the necessity of the condition (4.22), it su�ces, as is easily seen,

to show that it is ful�lled for any I, jIj < min(

1

2

c

0

;

�

4

).

Let I\(0; 2�) 6= ? and jIj < min(

1

2

c

0

;

�

4

). Denote by I

1

any of the neigh-

bouring intervals of the same length as the interval I. Without restriction

of generality, we assume that the interval I

1

is on the left of I. Let I

0

be

an interval of length 2� containing a set I [ I

1

.

Let ', a non-negative summable function, be equal to zero outside I.

Suppose f(t) = '(s(t)).

We will have

jS

�

f(t)j =

�

�

�

�

Z

I

0

f(t(s))t

0

(s)

t(s) � t(�)

ds

�

�

�

�

�

�

�

�

�

Z

I

'(s)

s � �

Re

t

0

(s)(s � �)

t(s) � t(sg)

ds

�

�

�

�

:

By virtue of (4.24), for any � 2 I

1

we have

jS

�

f(t(�))j �

1

2

Z

I

'(s)ds

s� �

�

1

4jIj

Z

I

'(s)ds: (4.25)

Thus, for an arbitrary, non-negative, 2�-periodic function ' 2 L(I

0

) van-

ishing outside I we have the inequality

j(S

�

f)(t(�))j �

�

1

4jIj

Z

I

'(s)ds

�

�

I

1

(�) (4.26)

for any �, where f(t) = '(s(t)).

Analogously, for any non-negative, 2�-periodic function '

1

2 L(I

0

) van-

ishing outside I

1

, we have

jS

�

f

1

(t(�))j �

�

1

4jI

1

j

Z

I

'

1

(s)ds

�

�

I

1

(�); (4.27)

where f

1

(t) = '

1

(s(t)).

In (4.27) we assume that '

1

(s) = w

�p

0

(s) for s 2 I

1

. Then from the

inequality (4.21) we conclude that

�

1

jI

1

j

Z

I

1

w

�p

0

(s)ds

�

1

p

0

Z

I

w

p

(�) � b

Z

I

w

�p

0

(�)d�: (4.28)

It follows from (4.28) that under our assumption

Z

I

w

p

(�)d� <1:
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On the other hand, if we put '(s) = 1 for s 2 I, then because of (4.26)

from (4.21) we �nd that

Z

I

1

w

p

(�)d� � b

1

Z

I

w

p

d�:

Interchanging the intervals I and I

1

, similarly to the above-proved we

conclude that

Z

I

w

p

(�)

p

d� � b

2

Z

I

1

w

p

(�)d�:

Thus

1

b

1

Z

I

1

w

p

(�)d� �

Z

I

w

p

(�)d� � b

2

Z

I

1

w

p

(�)d�:

By (4.28), from the latter inequality it immediately follows that (4.22) is

ful�lled. �

Theorem 4.4. Let � be a closed smooth curve. Then for the inequality

Z

f�2(0;2�):jS

�

f(t(�))j>�g

w(�)d� �

c

�

2�

Z

0

jf(t(s))jw(s)ds (4.29)

with the constant c > 0 to exists for any � > 0 and f 2 L(�; w), it is

necessary and su�cient that the inequality

1

jIj

Z

I

w(�)d�ess sup

s2I

1

w(s)

< c

1

(4.30)

with the constant c

1

> 0 for every interval I of the length less than 2� be

ful�lled.

Proof. We dwell on the proof of the necessity, since the su�ciency is proved

in Theorem 4.2. Given (4.29), let I be an arbitrary interval possessing the

properties ess inf

s2I

w(s) <1, I\(0; 2�) 6= ? and jIj < min(

1

2

c

0

;

�

4

), where

c

0

is the constant from the previous theorem.

Let I

1

be one of the neighbouring intervals of I having the same length.

For an arbitrary " > 0 there exists a set E of positive measure such that

w(s) � ess inf

�2I

w(�) + "; s 2 E: (4.31)

Let now '(s) = �

E

(s), f(t) = '(s(t)). By arguing as in the previous

theorem, we have

jS

�

f(t(�))j �

1

2

�

�

�

�

Z

E

ds

� � s

�

�

�

�

�

1

10

mE

mI

(4.32)

for an arbitrary � 2 I

1

.
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By the condition of the theorem,

�

w

n

� 2 (0; 2�) : jS

�

f(t(�))j �

mE

10mI

o

�

bmI

mE

Z

E

w(s)ds; (4.33)

where �

w

is the Borel measure de�ned as

�

w

e =

Z

e

w

p

(�)d�:

By (4.30) and (4.32),

�

w

f� : (0; 2�) : j(S

�

f)(t(�))j �

mE

10mI

g � bjIjess inf

�2I

w(�) + ":

Further, by virtue of (4.31) and from the arbitrariness of " we obtain

Z

I

1

w(�)d� � bjIjess inf

s2I

w(s): (4.34)

It is evident that ess inf

s2I

w(s) > 0 or otherwise w would vanish on I, and

then the condition (4.30) would be ful�lled.

Analogous reasoning (after interching I and I

1

) results in the conclusion

that

Z

I

w(s)ds � bjI

1

jess inf

�2I

1

w(�): (4.35)

Next we have

1

jIj

Z

I

w(�)d� �

1

jIj

1

ess inf

s2I

1

w(s)

Z

I

1

w(s)ds

Z

I

w(�)d�;

whence, by virtue of (4.34) and (4.35), we conclude that (4.30) is valid. �

4.4. Some two-weight estimates for a singular operator. For a 2�-periodic

summable function f on (��; �) we put

e

f(x) =

�

Z

��

f(y)dy

e

ix

� e

iy

:

It will be assumed that 1 < p <1 and the positive number � is so large

that the function  (x) = x

p�1

ln

p

�

x

increases on (0; �), � > e�.
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Theorem 4.5. Let 1 < p < 1 and x

0

2 (��; �). Then there exists a

constant M (p) > 0 such that the inequality

�

Z

��

j

e

f(x)j

p

jx� x

0

j

p�1

dx �M (p)

�

Z

��

jf(x)j

p

jx� x

0

j

p�1

ln

p

�

jx� x

0

j

dx (4.36)

holds for arbitrary f for which the integral on the right-hand side is �nite.

Moreover, the exponent p on the right-hand side with the logarithm is

sharp, that is, it cannot be replaced by any p

1

< p.

The proof will be based on the following Hardy type two-weight inequal-

ity.

Theorem A ([71]). Let 1 � p < q < 1 and functions v, w de�ned on

(0; �) be positive. Then for the equality

�

Z

0

v(x)

�

�

�

�

x

Z

0

F (y)dy

�

�

�

�

p

dx � N (p)

�

Z

0

w(x)jF (x)j

p

dx (4.37)

to hold with a constant N (p) not depending on F , it is necessary and su�-

cient that the condition

sup

x>0

�

�

Z

x

v(y)dy

��

x

Z

0

w

1�p

0

(y)dy

�

p�1

<1 (4.38)

be ful�lled.

Proof of Theorem 4:5. It can be assumed without loss of generality that

x

0

= 0. Note that if the integral on the right-hand side of (4.36) is �nite,

then the function f is summable on (��; �) and therefore

e

f(x) exists almost

everywhere. Indeed,

�

Z

��

jf(x)jdx =

�

Z

��

jf(x)jjxj

1�

1

p

ln

�

jxj

jxj

1

p

�1

ln

�1

�

jxj

dx �

�

�

�

Z

��

jf(x)j

p

jxj

p�1

ln

p

�

jxj

dx

�

1

p

�

�

Z

��

dx

jxj ln

p

0

�

jxj

�

1

p

0

<1:

Further we have

�

Z

��

j

e

f (x)j

p

jxj

p�1

dx = (p� 1)

�

Z

��

j

e

f(x)j

p

�

jxj

Z

0

�

p�2

d�

�

dx =

= (p� 1)

�

Z

0

�

p�2

�

Z

�>jxj>�

j

e

f(x)j

p

dx

�

d� �
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� 2

p�1

(p� 1)

�

�

Z

0

�

p�2

�

Z

�>jxj>�

�

�

�

�

Z

�>jyj>

�

2

f(y)

e

ix

� e

iy

dy

�

�

�

�

p

dx

�

d� +

+

�

Z

0

�

p�2

�

Z

�>jxj>�

�

�

�

�

Z

0<jyj<

�

2

f(y)

e

ix

� e

iy

dy

�

�

�

�

p

dx

�

d�

�

=

= 2

p�1

(p� 1)(I

1

+ I

2

):

By the Riesz theorem, we conclude that

I

1

=

�

Z

0

�

p�2

�

Z

�>jxj>�

�

�

�

�

�

Z

��

f(y)�fy : � > jyj >

�

2

g

e

ix

� e

iy

dy

�

�

�

�

p

dx

�

d� �

� R

p

�

Z

0

�

p�2

�

�

Z

��

(jf(y)j�fy : � > jyj >

�

2

g)

p

dy

�

d� �

� R

p

�

Z

0

�

p�2

�

Z

�>jyj>

�

2

jf(y)j

p

d�

�

:

Changing in the latter expression the order of integration, we obtain

I

1

�M

1

�

Z

��

jf(y)j

p

�

2jyj

Z

0

�

p�2

d�

�

dy �

�M

2

�

Z

��

jf(y)j

p

jyj

p�1

dy �M

2

�

Z

��

jf(y)j

p

jyj

p�1

ln

p

�

jyj

dy: (4.39)

Let us now estimate I

2

. For 0 < � < �, � > jxj > � , 0 < jyj <

�

2

we have

jx�yj � jxj+ jyj � �+

�

2

=

3�

2

. Moreover jxj � jx�yj+ jyj � jx�yj+

�

2

�

jx� yj+

1

2

jxj, and hence jx� yj �

1

2

jxj >

1

2

j� j. Also,

je

ix

� e

iy

j = 2

�

�

�

sin

x� y

2

�

�

�

�

2

�

jx� yj

for

1

2

j� j � jx� yj � �, and je

ix

� e

iy

j � 2 sin

3�

4

for � � (x� y) �

3�

2

.

By virtue of all the inequalities obtained above, we have

I

2

�

�

Z

0

�

p�2

�

Z

�>jxj>�

�

Z

fjyj<

�

2

g\f

�

2

<jx�yj<�g

jf(y)j

1

je

ix

� e

iy

j

dy

�

p

dx

�

d� +

+

�

Z

0

�

p�2

�

Z

�>jxj>�

�

Z

fy:jyj<

�

2

g\f�<jx�yj<

3�

2

g

jf(y)j

dy

je

ix

� e

iy

j

�

p

dx

�

d� �
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�M

3

�

�

Z

0

�

p�2

�

Z

�>jxj>�

dx

jxj

p

�

Z

jyj<

�

2

jf(y)jdy

�

p

�

d� +

+

�

Z

0

�

p�2

�

Z

�>jxj>�

dx

Z

jyj<

�

2

jf(y)jdy

�

p

d�

�

:

Furthermore,

I

2

�M

4

�

Z

0

1

�

�

Z

jyj<

�

2

jf(y)jdy

�

p

d� +

+M

3

�

Z

0

�

p�2

�

Z

�>jxj>�

dx

Z

jyj<

�

2

jf(y)jdy

�

p

d� = I

21

+ I

22

: (4.40)

Let us verify whether (4.38) is ful�lled for the pair of weights v(t) =

1

�

and w(� ) = �

p�1

ln

p

�

�

. We have

�

Z

x

d�

�

�

x

Z

0

1

�

ln

p(1�p

0

)

�

�

d�

�

p�1

=

=M

5

�

Z

x

d�

�

�

x

Z

0

d ln

�

�

ln

p

0

�

�

�

p�1

= c ln

�

x

1

ln

�

x

�M

6

:

Therefore, to estimate I

21

, we use Theorem A and obtain

I

21

�M

7

�

Z

��

jf(x)j

p

jxj

p�1

ln

p

�

jxj

dx: (4.41)

Using Theorem A, we estimate I

22

as follows:

I

22

�M

8

�

Z

0

�

p�2

Z

�>jxj>�

dx

�

Z

jyj<

jxj

2

jf(y)jdy

�

p

d� �

�M

9

�

Z

��

jxj

p�1

�

Z

jyj<

jxj

2

jf(y)jdy

�

p

dx �

�M

9

�

Z

��

jxj

p�1

�

Z

jyj<jxj

jf(y)jdy

�

p

dx �
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� M

10

�

Z

��

jf(x)j

p

jxj

p�1

ln

�

jxj

dx: (4.42)

By (4.39), (4.41) and (4.42) we conclude that

�

Z

��

j

e

f(x)j

p

jxj

p�1

dx �M (p)

�

Z

��

jf(x)j

p

jxj

p�1

ln

�

jxj

dx:

It remains to show that in inequality (4.36) exponent pwith the logarithm

cannot be replaced by a smaller number. Assume the contrary. Let " 2

(0; 1), x

0

= 0. Fix the number t > 0 and put

f

t

(y) =

(

�

y

ln

(p�")(1�p

0

)

1

y

for 0 < y <

t

2

;

0 for y =2 (0;

t

2

):

Substituting the function f into inequality (4.36), where the exponent p

with the logarithm is replaced by p� ", we obtain

�

Z

��

�

�

�

�

t

2

Z

0

f

t

(y)

x� y

dy

�

�

�

�

p

jxj

p�1

dx �

�M

t

2

Z

0

1

y

ln

(p�")p(1�p

0

)

�

y

ln

p�"

�

y

dy =M

t

2

Z

0

1

y

ln

(p�")(1�p

0

)

�

y

dy:

Hence

�

Z

t

�

t

2

Z

0

f

t

(y)

x� y

dy

�

p

jxj

p�1

dx �M

t

2

Z

0

1

y

ln

(p�")(1�p

0

)

�

y

dy: (4.43)

On the other hand, it is obvious that

�

Z

t

�

t

2

Z

0

f

t

(y)

x� y

dy

�

p

jxj

p�1

dx �

x

Z

t

1

x

�

t

2

Z

0

f

t

(y)dy

�

p

dx: (4.44)

By virtue of (4.43) and (4.44) we must have

�

Z

t

dx

x

�

t

2

Z

0

f

t

(y)dy

�

p

�M

t

2

Z

0

1

y

ln

(p�")(1�p

0

)

�

y

dy;

that is, the inequality

ln

�

t

�

t

Z

0

1

y

ln

(p�")(1�p

0

)

�

y

dy

�

�M
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must be ful�lled for 0 < t < �. But this is impossible, since

�

t

Z

0

1

y

ln

(p�")(1�p

0

)

�

y

dy

�

p�1

� ln

"�1

�

y

:

Thus we have proved the validity of the last part of the theorem. �

Theorem 4.5

0

. Let 1 < p <1, c 2 
. Then the operator

T : f ! Tf; (Tf)(�

0

) = (�

0

� c)

1

p

0

Z




f(�)

(� � c)

1

p

0

ln j� � cj

d�

� � �

0

is continuous in L

p

(
).

Theorem 4.6. Let 1 < p < 1 be a ' � 2�-periodic, continuous on R

function and let x

0

be a point on (��; �). Assume

�(x) = e

e'(x)

:

Then there exists a constant c > 0 such that the inequality

�

Z

��

j

e

f (x)j

p

jx� x

0

j

p�1

�(x)dx �

� c

1

Z

�1

jf(x)j

p

jx� x

0

j

p�1

�(x) ln

p

2�

jx� x

0

j

dx (4.45)

holds for an arbitrary f for which the integral on the right-hand side of

(4:45) is �nite.

Proof. Choose arbitrarily p

2

> p and assume

t =

p� 1

p

2

� 1

: (4.46)

Obviously, 0 < t < 1. By Theorem 4.5 we have

�

Z

��

j

e

f(x)j

p

2

jx� x

0

j

p

2

�1

dx �

: � c

1

�

Z

��

jf(x)j

p

2

jx� x

0

j

p

2

�1

ln

q

2�

jx� x

0

j

dx; q � p

2

: (4.47)

Now we put q =

p

t

in (4.47), what by (4.46) comes to the same thing that

q =

p(p

2

�1)

p�1

. Since p

2

> p, it is obvious that q > p

2

. Further, we choose p

1

from the equality

1

p

=

t

p

2

+

1� t

p

1

:
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Since the function ' is continuous, we have for any t, 0 < t < 1,

�

Z

��

jf(x)j

p

1

(�(x))

1

1�t

dx � c

2

�

Z

��

jf(x)j

p

1

(�(x))

1

1�t

dx: (4.48)

The validity of this inequality follows from the results connected with the

boundary value problem of linear conjugation with a continuous coe�cient

obtained in [140], [90] (see also Theorem 2.2, Ch. II). In particular, (4.48) is

also valid for t de�ned by (4.46). Using Stein's interpolation theorem (0.20)

and taking into account the inequalities (4.47) and (4.48), we obtain

�

Z

��

j

e

f (x)j

p

jx� x

0

j

(p

2

�1)t

�(x) dx �

�

�

Z

��

jf(x)j

p

jx� x

0

j

(p

2

�1)t

ln

qt

2�

jx� x

0

j

�(x) dx; (4.49)

Since t =

p�1

p

2

�1

and q =

p

t

, the inequality (4.49) proves the equality (4.45).

As far as

e

f (x) = ��iS




(f(e)e

�iy

)(e

ix

), from the above result it immedi-

ately follows �

Theorem 4.7. Let c 2 
 and �(�) = exp(K




')(�), where ' is a function

continuous on 
. Then the operator

T : f ! Tf;

(Tf)(�

0

) = (�

0

� c)

1

p

0

�(�

0

)

Z




f(�)

(� � c)

1

p

0

�(�) ln j� � cj

d�

� � �

0

; (4.50)

is continuous in L

p

(
).

Remark. For the validity of Theorem 4.7 it is su�cient to assume that '

is continuous in a neighborhood of the point c and � 2W

p

(�).

4.5. An another necessary condition for belonging to the class W

p

(�).

Theorem 4.8. If � is a closed Lyapunov curve and � 2 W

p

(�), then � =

exp[u+ iS

�

v], where u and v are bounded functions, and Imv = 0, kvk

1

<

�

2min(p;p

0

)

.

Proof. The length of the curve � is assumed to be equal to 2�.

Since � is a smooth curve and � 2 W

p

(�), according to Theorem 4.3,

�(t(s)) = �

0

(e

is

) belongs to W

p

(
). But then by Corollary 5 of Theorem

4.1, � = exp(u

1

+ ev). where u

1

and v are bounded real functions, and

kvk

1

<

�

2min(p;p

0

)

.
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On the other hand, using (0.6) and the estimate

�

�

�

t

0

(�)

t(s) � t(�)

�

ie

is

e

is

� e

i�

�

�

�

�

M

js� �j

1��

which is valid in the case of the Lyapunov curve for which t

0

2 H(�) (see,

for e.g., [66]), we obtain

jev(�) � i(S

�

v)(t(�))j = jiev + S

�

vj =

= j � i(S

�

v)(e

i�

) +

i

2

v(�) + (S

�

v)(t(�))j �

�

1

2

kvk

1

+

2�

Z

0

jvj

�

�

�

t

0

(s)

t(s) � t(�)

�

ie

is

e

is

� e

i�

�

�

�

ds �

� kvk

1

+M

2�

Z

0

jvj

ds

js� �j

1��

� ckvk

1

:

Now we have

� = exp(u

1

+ ev) = exp[u

1

+ ev � iS

�

v + iS

�

v] = exp(u+ iS

�

v);

where kvk

1

<

�

2min(p;p

0

)

, u = u

1

+ ev � iS

�

v and the function u, as we have

just proved, is bounded. �

4.6. Some properties of Cauchy type integrals with densities from the

classes L

p

(�; �). Let � be a closed curve of the class R bounding a �nite

domain D, z = z(w) be a function which conformally maps U onto D and

let w = w(z) be the inverse to it function. Moreover, let f 2 L

p

(�; �) and

�(z) = (K

�

f)(z).

Consider the function

	(w) = �(z(w)) =

1

2�i

Z

�

f(t)dt

t� z(w)

; jwj < 1: (4.51)

At this stage it is naturally to pose a problem and to show under which

conditions this function is representable by the Cauchy integral in the do-

main U . It is also of some interest to �nd the conditions under which

	(z) = (K




f)(w(z)) is representable by the Cauchy integral in the domain

D. These problem arise, for example, in considering the Riemann-Hilbert

problem in domains with non-smooth boundaries (see x7, Ch. II).

Proposition 4.1. Let � 2 R, � 2W

p

(�), (�

p

p

z

0

)

�1

2W

p

(
), f 2 L

p

(�; �).

Then there exists a function  2 L

p

(
; �

p

p

z

0

) such that for the function 	

given by (4:51) the representation

	(w) =

1

2�i

Z




 (�)d�

� � w

(4.52)
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is valid, and 	 2 H

1

.

Proof. For the function � 2 W

p

(�), there exists " > 0 such that

� 2W

p+"

(�) (4.53)

(see, e.g., [29]). But then, by Lemma 4.2, we have

1

�

2 L

p

0

+"

1

(�) for some

"

1

> 0. Since f� = f

0

2 L

p

(�), we have that f =

f

0

�

2 L

1+�

(�) for

some � > 0. This implies that �(z) = (K

�

f)(z) 2 E

1+�

(D) as � 2 R.

Consequently,

�

0

(w) =

1+�

p

z

0

(w)�(z(w)) 2 H

1+�

(see, e.g., [43], p. 422). Therefore

�(z(w)) = 	(w) = �

0

(w)

1

1+�

p

z

0

(w)

; �

0

2 H

1+�

: (4.54)

Show that

1

z

0

2 H

�

1

; �

1

> 0: (4.55)

First we will show that [z

0

(�)]

�1

2 L

�

1

(
). We have

[z

0

(�)]

��

= [�(z(�))

p

p

z

0

(�)]

�1

�(z(�))[z

0

(�)]

1

p

��

=

= (�

p

p

z

0

)

�1

[z

0

]

1�p�

p

�: (4.56)

Here the multiplier (p

p

p

z

0

)

�1

belongs to L

p

0

(�). By (4.53), �

p+"

(�)z

0

(�) 2

L

p+"

(
), i.e., � =

�

0

(z

0

)

1

p+"

, �

0

2 L

p+"

(
). Therefore �(z

0

)

1�p�

p

=

�

0

(z

0

)

"�"p��p

2

�

p(p+")

. Taking � su�ciently small, we �nd that

"�"p��p

2

�

p(p+")

=

"

0

> 0. Then �(z

0

)

"

0

is integrable in power � =

(p+")"

0

p+"+"

0

. It follows from

(4.56) that (z

0

)

��

is integrable in power � =

�p

0

�+p

0

. This means that

(z

0

)

�1

2 L

�

1

(
), �

1

= ��. On this basis, we are able to establish that

there exists � > 0 such that

w

0

2 E

1+�

(D):

The fact that z

0

2 H

1

implies that w

0

2 E

1

(D) and, since � is a Smirnov

curve, it su�ces to show that w

0

(t) 2 L

1+�

(�). We have

Z

�

jw

0

(t)j

1+�

jdtj =

Z




jw

0

(z(�))j

1+�

jz

0

(�)jjd�j =

=

Z




jz

0

(�)j

jz

0

(�)j

1+�

d� =

Z

gm

jd�j

jz

0

(�)j

�

<1



67

for � � �

1

. Thus we have proved that w

0

2 E

1+�

(D). This means that

w

0

(�) =

1+�

p

z

0

(�)w

0

(z(�)) belongs to H

1+�

. On the other hand,

w

0

(�) =

1+�

p

z

0

(�)

z

0

(�)

=

1

[z

0

(�)]

�(1+�)

�1

:

Therefore (z

0

(�))

�1

= [w

0

(�)]

1+�

�

2 H

�

, � � �

1

and hence (4.55) is proved.

Owing to (4.54) and (4.55), we can conclude that

	(w) 2 H

�

(4.57)

for some � > 0.

From (4.51) we have

	

+

(�) = �

+

(z(�)) =

1

2

f(z(�)) +

1

2

(S

�

f)(z(�)):

Since f 2 L

p

(�; �) and � 2W

p

(�), we �nd that �

+

(t) 2 L

p

(�; �). Hence

Z




j�

+

(z(s))�(z(�))j

p

jz

0

(�)jjd�j <1: (4.58)

This inequalitymakes it possible to estimate the norm �

+

(z(�))(�	

+

(�))

in L(
). Indeed,

b

Z

a

j�

+

(z(�))jjd�j =

Z




j�

+

(z(�))�(z(�))

p

p

z

0

(�)jj�(z(�))

p

p

z

0

(�)j

�1

jd�j �

�

�

Z




j�

+

(z(�))�(z(�))

p

p

z

0

(�)j

p

jd�j

�

1

p

�

Z




j�(z(�))

p

p

z

0

(�)j

�p

0

jd�j

�

1

p

0

<1;

by virtue of (4.58) and of the assumption �

p

p

z

0

2 W

p

(
). Thus, taking into

account (4.57), we conclude that 	 2 H

1

, and therefore

	(w) =

1

2�i

Z




	

+

(�)d�

� �w

=

1

2�i

Z




�

+

(z(�))d�

� �w

:

The function  (�) = �

+

(z(�)), due to (4.58), belongs to L

p

(
; �

p

p

z

0

).

Hence the equality (4.52) is valid. �

Now we will show the validity of the inverse assertion.

Proposition 4.2. Let � 2 R,  2 L

p

(
; �(z(�))

p

p

z

0

(�)), �(t) 2 W

p

(�),

�

p

p

z

0

2W

p

(
) and let the function 	 be given by (4:52). Then the function

�(z) = 	(w(z)) =

1

2�i

Z




 (�)d�

� �w(z)

(4.59)
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is representable by the Cauchy integral in the domain D:

�(z) =

1

2�i

Z

�

f(t)dt

t� z

; (4.60)

where f(t) = �

+

(t) = 	

+

(�(t)) 2 L

p

(�; �).

Proof. The Cauchy type integral in a circle belongs to \

�<1

H

�

([133], p.

94), and z

0

2 H

1

. Therefore

p

p

z

0

(w)	(w) 2 H

�

0

for some �

0

> 0, and

hence 	(w(z)) = �(z) 2 E

�

0

(D).

Further,

Z

�

j	

+

(w(t))jjdtj =

Z




j	

+

(�)jjz

0

(�)jjd�j =

=

Z




j	

+

(�)�(z(�))jjz

0

(�)j

1

p

jz

0

(�)j

1

p

0

j�(z(�))j

�1

jd�j �

�

�

Z




j	

+

(�)�(z(�))

p

p

z

0

(�)j

p

jd�j

�

1

p

�

Z




j�(z(�))j

�p

0

jz

0

(�)jjd�j

�

1

p

0

<1:

The last conclusion follows from the assumptions that �

p

p

z

0

2W

p

(
) and

� 2W

p

(�) (which imply that

1

�

2 L

p

0

(�), and hence

1

�(z(�))

2L

p

0

(
;

p

p

z

0

(�))).

Thus we have shown that �(z) 2 E

1

(D), i.e.,

�(z) =

1

2�i

Z

�

�

+

(t)dt

t � z

=

=

1

2�i

Z

�

	

+

(w(t))dt

t� z

=

1

2�i

Z

�

f(t)dt

t� z

:

Here f 2 L

p

(�; �). Indeed,

Z

�

jf(t)jj�(t)j

p

jdtj =

Z

�

j	

+

(w(t))�(t)j

p

jdtj =

=

Z




j	

+

(�)�(z(�))j

p

jz

0

(�)jjd�j =

Z




j	

+

(�)�(z(�))

p

p

z

0

(�)j

p

jd�j: (4.61)

According to the assumptions that �

p

p

z

0

2W

p

(
), and  2 L

p

(
; �

p

p

z

0

),

we �nd that 	

+

2 L

p

(�; �), and therefore on the basis of (4.61) we conclude

that f 2 L

p

(�; �). �
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x

5. On Singular Integrals in the Mean

5.1. De�nition of an integral in the mean and some of its properties. Let �

be a recti�able Jordan curve and let t = t(s) be its equation with respect to

the arc abscissa. As usual, we extend this function and the functions given

on � with the period l to R. If 0 < " <

l

4

, then m

"

= inf jt(s) � t(s

0

)j > 0,

where the greatest lower bound is taken on the set f(s; s

0

) : 0 < s

0

< l,

s

0

+ " < s < s

0

� l + "g (see x3). Therefore, if ' 2 L

p

(�), p � 1, then the

function

(M

"

')(t

0

) =

1

�i

s

0

+l�"

Z

s

0

+"

'(t(s))t

0

(s)ds

t(s) � t(s

0

)

(5.1)

belongs also to L

p

(�), and

kM

"

'k

p

�

l

1

p

0

m

"

k'k

p

: (5.2)

De�nition. We will say that there exists a p-mean singular integral of

the function ' 2 L

p

(�), if there exists a function  2 L

p

(�) such that

lim

"!0

l

Z

0

j(M

"

')(t(s)) �  (t(s))j

p

ds = 0: (5.3)

The function  will be denoted by S

(p)

�

f , and let S

(p)

�

be an operator

which puts the function ' into correspondence with the function S

(p)

�

'.

It is evident that if S

p

�

' exists, then it coincides with S

�

' almost ev-

erywhere. However, it may happen that S

(p)

�

' does not exist for some ',

whereas S

�

' exists for all ' 2 L

p

(�), p � 1. In particular, we will show

that such a situation takes place for p = 1. First we prove the validity of

the following

Lemma 5.1. If S

(p)

�

' exists for all ' 2 L

p

(�), p � 1, then the operator

S

(p)

�

is continuous in L

p

(�).

Proof. Let M

n

' = M
1

n

' and let M

n

: ' ! M

n

' be an operator de�ned

on L

p

(�). Since L

p

(�) is a Banach space, the operator M

n

, by (5.2), is

continuous on it and, by de�nition, for every function ' the sequence M

n

'

converges to S

(p)

', the well-known theorem on the continuity of the limiting

operator, that is of the operator S

p

�

, is applicable here. �

Let now � = 
. Then S

(1)




fails to exist for all ' 2 L(
), since otherwise

the operator S

(1)




and hence the operator S




would be continuous in L(
).

But it is not true.
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A set of those functions ' from L

p

(�) for which S

(p)

�

' exists will be

denoted by D(S

(p)

�

).

Lemma 5.2. If � is a closed curve of the class R bounding the domain D,

then for any ' 2 D(S

(p)

�

), 1 � p < 1, the Cauchy type integral � = K

�

'

belongs to E

p

(D).

Proof. If p > 1, then � = K

�

' belongs to E

p

(D) according to Theorem

3.3. Let p = 1. Since � 2 \

q<1

R

1;p

(see subsection 3.4), K

�

' belongs to the

class \

q<1

E

q

(D) (according to corollary of Theorem 3.3). As ' 2 D(S

(1)

�

),

we have (S

�

') 2 L(�). Taking into consideration that the curve from R is

a Smirnov curve, we conclude that (K

�

') 2 E

1

(D). �

In addition to the above-said, we note that the equality S

�

(S

(p)

�

') = '

is valid. Indeed, if � bounds the domains D

+

and D

�

, then � = K

�

' 2

E

p

(D

�

) � E

1

(D

�

). For z 2 D

+

we then have

0 =

1

2�i

Z

�

�

�

(�)d�

� � z

=

1

4�i

Z

�

�' + S

�

'

� � z

d� =

= �

1

4�i

Z

�

'� S

�

'

� � z

d�; (5.4)

whence

1

2�i

Z

�

S

(p)

�

'd�

� � z

=

1

2�i

Z

�

'(�)d�

� � z

= �(z); z 2 D

+

: (5.5)

Taking into consideration the equality S

�

�

+

= �

+

, we obtain the desired

equality S

�

(S

(p)

�

') = '.

5.2. Connection between the singular integral in the mean and the Cauchy

type integral. The existence almost everywhere of a singular integral

(S

�

f)(t

0

) is, by I. I. Privalov's theorem, equivalent to that of angular bound-

ary values of the Cauchy type integral (K

�

f)(z). It turns out that in the

case of smooth curves, the existence of the mean singular integral S

(p)

�

f is

equivalent to the belonging to the Smirnov class E

p

of the function K

�

f .

Theorem 5.1. Let � be a closed smooth Jordan curve bounding the do-

mains D

+

and D

�

, and f 2 L

p

(�), p � 1. In order for the integral K

�

f

to belong to the class E

p

(D

+

), (E

p

(D

�

)) it is necessary and su�cient that

the p-mean singular integral S

(p)

�

f exist.
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Proof. Su�ciency. Let there exist S

(p)

�

f . We construct a sequence of the

curves �

�

n

� D

+

(D

�

) such that sup

n

R

�

�

n

jK

�

f j

p

jdzj <1.

Denote by '(�) the angle formed by the tangent to � at t(�) and the

real axis. The function ' is continuous on [0; l] and '(l) = '(0) + 2�.

Therefore there exists a real polynomial q(�) such that j'(�)� q(�)j < �

�

2

,

� 2 (0; 1), '(0) = q(0), '(l) = q(l). Denote by � the standard radius of the

curve � corresponding to the angle �

0

< (1� �)

�

2

(for de�nition and for the

properties of the standard radius see [106], pp. 18{20). Since � is a smooth

curve, jt(s) � t(�)j � ms(t(s); t(�)), m > 0. Let 0 < � < min(�;m) = �

0

.

Consider the curve �

�

given parametrically by the equation

z

�

(�) = t(�) + i� exp iq(�); 0 � � � l:

Obviously, �

�

is a closed recti�able curve. Show that if z

�

(0) is in

D

+

(D

�

), then �

�

lies in D

+

(D

�

). Indeed, the point z

�

(�

�

) belonging

to � would otherwise lie on the curve �

�

. But then the ends of the segment

[t(�

�

); z

�

(�

�

)] lie on the standard arc, since jt(�

�

) � z

�

(�

�

)j = � < �.

The vector with the origin at t(�

�

) and with the end at z

�

(�

�

) forms

with the tangent at the point t(�

�

) the angle

�

2

� ['(�

�

) � q(�

�

)] lesser

than

�

2

� �

�

2

> �

0

. (This follows from the equality z

�

(�

�

) � t(�

�

) =

� exp(

i

2

� + q(�

�

)) = � exp[i'(�

�

) + i(

�

2

+ q(�

�

) � '(�

�

))] and also from

the condition j'(�)� q(�)j < �

�

2

). But this contradicts the property of the

standard radius. Thus, �

�

lies in either of the domains D

+

or D

�

. For

de�niteness we assume that �

�

� D

+

.

Show the existence of such sequences �

n

, �

n

! 0 for which �

�

n

are

Jordan curves. Assume the contrary. Let for any � 2 (0; �

0

) �

�

intersect

itself, that is, there is a pair of numbers s

�

and �

�

such that s

�

6= �

�

but

z

�

(s

�

) = z

�

(�

�

), i.e.,

t(s

�

) + i� exp[iq(s

�

)] = t(�

�

) + i� exp[iq(�

�

)]: (5.6)

From (5.6) follows

t(s

�

)� t(�

�

)

s

�

� �

�

= i�

exp iq(�

�

)� exp iq(s

�

)

s

�

� �

�

: (5.7)

The expression [exp iq(�

�

) � exp iq(s

�

)](s

�

� �

�

)

�1

is bounded. On the

other hand, jt(s

�

)� t(�

�

)j � mjs

�

� �

�

j, and from (5.7) we obtain

m � lim

�!0

�

�

�

t(s

�

)� t(�

�

)

s

�

� �

�

�

�

�

=

= lim

�!0

�

�

�

i�

exp iq(�

�

)� exp iq(s

�

)

s

�

� �

�

�

�

�

= 0:

This contradiction shows that the assumption for �

�

to be non-Jordan for

all � is invalid. Hence there exists at least one value �

1

2 (0; �

0

) for which

�

�

1

is a Jordan curve.
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On the basis of the above arguments, we can state that the same is valid

for the segment (0; �

1

) which proves the possibility to distinguish Jordan

curves �

�

n

.

Suppose d(z;�) = inf

�2�

jz � �j, d(�

�

;�) = inf

z2�

�

d(z;�) and let D

+

�

�

and D

�

�

�

be the domains bounded by �

�

. It is obvious that d(�

�

;�) ! 0

as � ! 0. If z is an arbitrary point from D

+

and d(�

�

;�) < d(z;�), then

z falls into the domain D

+

�

�

. Therefore the domains D

+

�

�

exhaust D

+

, and

hence �

�

! �.

Consider the di�erence

l

Z

0

f(t(�))t

0

(�)d�

t(�) � [t(�

0

) + i� exp iq(�

0

)]

�

�

0

+l�"

Z

�

0

+"

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

:

Let  (�

0

) = q(�

0

) � '(�

0

). Then j (�

0

)j �

��

2

, 0 < � < 1. Now we use

theorem from [130]: If � is a smooth curve, f 2 L

p

(�), p � 1 then

lim

"!0

l

Z

0

�

�

�

�

l

Z

0

f(t(�))t

0

(�)d�

t(�)� z

"

(�

0

)

� i�f(t(�

0

))�

�

Z

I(�

0

;")

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

�

�

�

�

p

d�

0

= 0; (5.8)

where z

"

(�

0

) = t(�

0

) + i" exp[i('(�

0

) �  (�

0

))], j (�

0

)j < �

�

2

, 0 < � < 1,

I(�

0

; ") = (�

0

+ "; �

0

+ l � ").

Taking into account the fact that q(�

0

) = '(�

0

) +  (�

0

), provided

j (�

0

)j <

��

2

, we obtain

lim

n!1

l

Z

0

�

�

�

�

l

Z

0

f(t(�))t

0

(�)d�

t(�)� [t(�

0

) + i�

n

exp iq(�

0

)]

� �if(t(�

0

)) �

�

Z

I(�

0

;�

n

)

f(t(�))t

0

(�)d�

t(�) � t(�

0

)

�

�

�

�

p

d�

0

= 0: (5.9)

By assumption of the theorem, S

(p)

�

f exists. Therefore the last equality

results in

l

Z

0

�

�

�

�

l

Z

0

f(t(�))t

0

(�)d�

t(�) � [t(�

0

) + i�

n

exp iq(�

0

)]

�

�

�

�

p

d�

0

� �(kfk

p

+ kS

(p)

�

fk

p

) = C:

Now we have

Z

�

�

n

j�(z)j

p

jdzj =
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=

l

Z

0

�

�

�

�

l

Z

0

f(t(�))t

0

(�)d�

t(�) � [t(�

0

) + i�

n

exp iq(�

0

)]

�

�

�

�

p

jt

0

(�

0

) + iq

0

(�)�

n

exp iq(�

0

)jd�

0

�

�MC; M = 1 + �

0

max

0��

0

�l

jq

0

(�

0

)j

which implies that � 2 E

p

(D

+

).

If z

�

(0) falls intoD

�

, then considering the curves z

�

�

= t(�)�i� exp iq(�),

we analogously construct a sequence of curves �

�

�

n

� D

�

and show that

� 2 E

p

(D

�

).

Necessity. Let p > 1 and f 2 L

p

(�). Since � 2 R, we have that

� = K

�

f belongs to the classes E

p

(D

�

) (see, e.g., Theorem 3.4). Therefore

the equalities

1

4�i

Z

�

f + S

�

f

t� z

dt =

(

�(z); z 2 D

+

;

0; z 2 D

�

(5.10)

and

1

4�i

Z

�

f � S

�

f

t � z

dt =

(

0; z 2 D

+

;

�(z); z 2 D

�

(5.11)

are valid.

Using (5.8) we obtain

lim

�!0

l

Z

0

�

�

�

�

1

2�i

l

Z

0

[f(t(�)) � (S

�

f)(t(�))]t

0

(�)d�

t(�) � [t(�

0

) + i� exp i('(�

0

) +  (�

0

))]

�

�

f(t(�

0

))� (S

�

f)(t(�

0

))

2

�

�

1

2�i

Z

I

0

(�

0

;�)

f(t(�)) � (S

�

f)(t(�))

t(�) � t(�

0

)

t

0

(�)d�

�

�

�

�

p

d�

0

= 0: (5.12)

But because of (5.11), the �rst summand of the sum under the integral sign

in (5.12) equals zero, and therefore

lim

�!0

Z

�

�

�

�

�

1

2�i

Z

I(�

0

;�)

(f � S

�

f)dt

t� t

0

�

(S

�

f)(t

0

) � f(t

0

)

2

�

�

�

�

p

d�

0

= 0: (5.13)

Note that the equality similar to (5.9) is also valid when substituting �

n

by (��

n

), and we use it in the case when the density of the integral equals

f + S

�

f . Then, taking into account (5.10), we arrive at

lim

�!0

Z

�

�

�

�

1

2�i

Z

I(�

0

;�)

f + S

�

f

t � t

0

dt�

f(t

0

) + (S

�

f)(t

0

)

2

�

�

�

p

d�

0

= 0: (5.14)
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From (5.13) and (5.14) follows the existence of p-mean singular integrals

of the functions f � S

�

f , and

S

(p)

�

(f � S

�

f) = S

�

f � f; S

(p)

�

(f + S

�

f) = S

�

f + f:

This implies the existence of the integral S

(p)

f .

If p = 1 and � = K

�

f 2 E

1

(D

+

), then S

�

�

+

= �

+

, and we can easily

conclude that (K

�

f)(z) belongs to E

1

(D

�

) (for details see the proof of

Theorem 3.4), and therefore the equalities (5.10){(5.11) are valid. On the

basis of these equalities we can as above show the existence of the integral

S

(1)

�

f , since (5.8) is valid for p = 1. �

Corollary 1. If p > 1 and � is a closed smooth curve, then S

(p)

�

exists for

all f 2 L

p

(�).

Corollary 2. If � is a closed smooth curve, then there exists a constant

C

p

such that for all " > 0 simultaneously

kM

"

fk

p

� C

p

kfk

p

; p > 1:

Since the sequence of the operators M
1

n

f , due to the above arguments,

converges for every f 2 L

p

(�), from the Banach-Steinhaus theorem we

obtain the assertion of the corollary.

Remark. As far as an unclosed smooth curve � can always be supple-

mented to a closed Jordan smooth curve, the assertions of Corollaries 1 and

2 hold valid for such curves as well.

x

6. Application of Lebesgue Integral Generalizations to

Cauchy Type Integrals

In the present section some properties of conjugate functions and con-

nected with them Cauchy type integrals will be studied using a generaliza-

tion of a Lebesgue integral.

Let f be a 2�-periodic summable on (0; 2�) function,

a

0

2

+

1

X

k=1

(a

k

cos kx+ b

k

sin kx) and

1

X

k=1

(�b

k

cos kx+ a

k

sin kx)

be the Fourier series of f and its conjugate, respectively.

e

f(x) = �

1

�

2�

Z

0

f(t)

1

2

ctg

1

2

(t� x)dt (6.1)

is the function conjugate to f .

It is known (Kolmogorov [84], Smirnov [145], Titchmarsh [154], see also

[169], pp. 153{154 and [5] pp. 585{591) that if

e

f 2 L(0; 2�), then the

series conjugate to the Fourier series of f 2 L(0; 2�) is the Fourier series

of the function

e

f . It is also known (Smirnov [145], Privalov [133], p. 116)



75

that a Cauchy-Lebesgue type integral with summable boundary value is

representable in a circle by a Cauchy integral. But as far as the conjugate

functions and the boundary value of the Cauchy type integral are not always

summable, there arises the problem of extending the notion of the Lebesgue

integral so that these functions would be integrable in the new sense.

A.P. Kolmogorov [84] was the �rst who treated this problem and proved

that for any f 2 L(0; 2�) the function

e

f is B-integrable on [0; 2�] and the

conjugate series is the Fourier series (B) for

e

f (for de�nition of a B-integral

as well as for the proof of the theorem see [169], pp. 153{154). Titch-

marsh [154] has obtained an analogous result for an A-integral. Later, by

means of the A-integral P. L. Ul'yanov has established a number of signi�-

cant properties of conjugate functions [156] (for de�nition of an A-integral

and the proof of results obtained by Titchmarsh and Ul'yanov concerning

conjugate functions see also [5], pp. 585{591) and of the Cauchy type in-

tegrals. In particular, P. L. Ul'yanov [157], [158] has shown that under

certain assumptions regarding the lines of integration, the boundary value

of the Cauchy-Lebesgue type integral is A-integrable, while the function

representable by the Cauchy-Lebesgue type integral is representable by the

Cauchy A-integral as well. The paper [59] is devoted to application of an

A-integral to the theory of a Cauchy type integral and to treatment of a

non-homogeneous boundary value problem of linear conjugation.

From what has been said above it is obvious that the A-integral turned

out to be a rather useful tool for investigation of some questions of trigono-

metric Fourier series and Cauchy type integrals. On the other hand, the

A-integral, because of its generality, possesses speci�c disadvantages (see,

e.g., [155] and [162] and bibliography given in [162]) which sometimes make

its application di�cult. Therefore it is much better to de�ne a more simple

integral which would answer the same purpose. Hence it is of interest to

illustrate these speci�c properties of the A-integral as well as of conjugate

functions and Cauchy type integrals which lead to the above-mentioned

results.

As is shown in [58], [60], [61] speci�c properties of these integrals do

not a�ect most of the results obtained for conjugate functions and Cauchy-

Lebesgue type integrals by means of the A{ and B-integrals. They hold

valid for any generalization of the Lebesgue integral in a sense of which a

conjugate function is integrable and its integral equals zero. That is, any

integral, being a linear functional � de�ned on a linear family of functions

given on [a; b], containing all summable functions and their conjugates

e

f ,

and satisfying the condition: if f 2 L(0; 2�), then

�(f) =

2�

Z

0

f(x)dx and �(

e

f ) = 0;

is �tted for this aim.
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In this section we will give the de�nition of a rather simple and convenient

for application functional (integral).

Bearing in mind the condition �(

e

f ) = 0, we note (by V.I. Smirnov's

theorem (see, e.g., [5], p. 583)) that if

e

f conjugate to f 2 L(0; 2�) is

summable, then

2�

Z

0

e

f (x)dx = 0: (6.2)

This means that the integrals in the iterated integral

R

2�

0

dx

R

2�

0

f(t)

ctg

t�x

2

dt can be interchanged.

Quote here one assertion following fromTheorem 6.2 which will be proved

below.

Let f 2 L(0; 2�). There exists a measurable set E � [0; 2�] of measure

2� such that if a, b 2 E, then the function

h(x) =

2�

Z

0

f(t)

1

2

ctg

t� x

2

dt�

b

Z

a

f

1

(t)

1

2�

ctg

t � x

2�

dt;

where f

1

is the restriction of f on [a; b], and � =

b�a

2�

, is summable on [a; b].

The above mentioned and the next results of this section follows from the

two last facts.

6.1.

e

L-integral and conjugate functions. We say that a function f is

e

L-

integrable on [a; b] if it can be represented as

f = g +

e

h; where g; h 2 L(a; b); (6.3)

e

h(x) = �

1

�

b

Z

a

h(t)

1

2�

ctg

1

2�

(t � x)dt with � = (b� a)=2� (6.4)

is conjugate to h on [a; b]. The number

e

L(f) = (

e

L)

b

Z

a

f(x)dx �

b

Z

a

g(x)dx

will be termed an

e

L-integral of f on [a; b]. The quantity

e

L(f) does not

depend on the manner how f is represented in terms of (6.3). Indeed, let

besides (6.3) we have

f = g

1

+

e

h

1

; where g

1

; h

1

2 L(a; b): (6.5)
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Then, by de�nition,

(

e

L)

b

Z

a

f(x)dx =

b

Z

a

g

1

(x)dx:

From (6.3) and (6.5) we �nd that g� g

1

+(

^

h � h

1

) = 0. Further, according

to (6.2),

b

Z

a

(

^

h� h

1

)(x)dx =

b

Z

a

(g

1

� g)(x)dx = 0

and hence

b

Z

a

g(x)dx =

b

Z

a

g

1

(x)dx:

Remark. It is evident that the function conjugate the summable function

is

e

L-integrable, and its

e

L-integral equals zero. Obviously, any integral being

an extension of the Lebesgue integral in whose sense the conjugate func-

tion is integrable and its integral equals zero, contains also the

e

L-integral.

Therefore all the results obtained by means of the

e

L-integral are valid for

the above mentioned integrals (in particular, for A- and B-integrals which

are the extensions of the Lebesgue integral).

Let a 2�-periodic bounded function ' satisfy the condition

2�

Z

0

j'(t)� '(x)jj ctg

1

2

(t� x)jdt < C (C is a constant) (6.6)

(such, for example, are the functions ' for which w('; �)�

�1

2 L(0; �),

where w(';�) is the module of continuity of ').

Theorem 6.1. If f 2 L(0; 2�) and ' satis�es condition (6:6), then '

e

f 2

e

L(0; 2�), and we have the equality

(

e

L)

2�

Z

0

'(x)

e

f (x)dx = �

2�

Z

0

e'(x)f(x)dx: (6.7)

Proof. Indeed, '(x)

e

f (x) = (

f

'f )(x)+

1

�

R

2�

0

f(t)['(x)�'(t)]

1

2

ctg

1

2

(t�x)dt,

where the function f(t)['(x)�'(t)]

1

2

ctg

1

2

(t�x) is, by Fubini's theorem and

condition (6.6), summable on the square [0; 2�; 0; 2�]. Hence '

e

f 2

e

L(0; 2�).

Taking the

e

L-integral on the both sides of the last equality and changing

the order of integration, we obtain the equality (6.7). �
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Corollary 1. A series conjugate to Fourier trigonometric series of func-

tion f 2 L(0; 2�) is the Fourier

e

L-series of the function

e

f if coe�cients

de�ned by the

e

L-integral (in particular, the Fourier A{ and B-series with

coe�cients de�ned respectively).

This follows from equality (6:7) taking into consideration that the func-

tions cosnx and � sinnx (n = 0; 1; 2; : : :) are self-conjugate.

Corollary 2. If f 2 L(0; 2�), u(r; �) is its Poisson integral and v(r; �) is

harmonically conjugate to u(r; �) function, i.e.,

v(r; �) = �

1

�

2�

Z

0

f(t)

r sin(t� �)

1 � 2r cos(t� �) + r

2

dt;

then v(r; �) is representable by the Poisson

e

L-integral (in particular, by of

A integral, of B integral) of the function

e

f ,

v(r; �) =

1

2�

(

e

L)

2�

Z

0

e

f (t)

1� r

2

1� 2r cos(t� �) + r

2

dt:

Theorem 6.2. Let f 2 L(0; 2�) and ' satis�es the condition (6:6). Then

there exists the set E � [0; 2�] of measure 2� depending only on f such that

if a; b 2 E, then '

e

f 2

e

L(a; b) and

(

e

L)

b

Z

a

'(x)

e

f (x)dx = �

1

�

2�

Z

0

f(t)dt

b

Z

a

'(x)

1

2

ctg

1

2

(t� x)dt: (6.8)

Proof. Show that we can take as E the set of all x for which f(�) ln j��xj 2 L.

Let a; b 2 E, x 2 (a; b). Consider the equality

'(x)

e

f (x)� '(x)

�

�

1

�

b

Z

a

f

1

(t)

1

2�

ctg

t� x

2�

dt

�

=

= �

1

�

2�

Z

0

f(t)

'(t) � '(x)

2 tg

t�x

2

dt+ (

]

�

1

'f )(x) + (

]

�

3

'f )(x) +

+

�

(

]

�

2

'f )(x)� '(x)

�

�

1

�

b

Z

a

f

1

(t)

1

2�

ctg

t� x

2�

dt

��

; (6.9)

where f

1

is the restriction of f on (a; b), and �

1

, �

2

, �

3

are the characteristic

functions of the segments [0; a], [a; b], [b; 2�] respectively.
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Using Fubini's theorem, we can easily verify that the right-hand side of

(6.9) is summable on [a; b]. Hence '

e

f 2

e

L(a; b). Further, taking the

e

L-

integral on the both sides of the last equality and replacing the iterated

integrals, we obtain (6.8). �

Corollary. There exists the set E � [0; 2�] of measure 2� depending only

on f such that if a; b 2 E, then the function

e

f is

e

L-integrable (A{, B-

integrable) on (a; b).

Remark. It has been shown in [58] that the function

e

f is, generally

speaking, non-integrable for all [a; b] � [0; 2�] for none of the extensions of

the L-integral being a positive functional (i.e., for non-negative functions

taking non-negative values).

Theorem 6.3 ([58]). If f 2 L(0; 2�), then for almost all x 2 [0; 2�],

f(x) �

a

0

2

= limas

"!0

(

e

L)

�

x�"

Z

"

+

2�+"

Z

x+"

�

e

f(t)

1

2

ctg

1

2

(t� x)dt; (6.10)

where a

0

=2 is the mean-value of the function f on [a; b].

Here limas denotes an asymptotic (approximate) limit (see, e.g., [169],

Ch. IV, x2). Obviously, if

e

f 2 L(0; 2�), then the asymptotic limit can be

replaced by the usual one, while the

e

L-integral by the Lebesgue integral.

The equality (6.10) together with (6.1) is a generalization of Hilbert's

inversion formula.

Theorem 6.4. Let f 2 L(0; 2�) and let ' be an absolutely continuous

function such that '

0

2 L

p

(0; 2�), p > 1. Then

(1) (

e

L)

2�

Z

0

'(x)

e

f (x)dx = �

2�

Z

0

'

0

(x)G(x)dx, where

G(x) =

1

�

2�

Z

0

f(t) lg j sin

1

2

(t � x)jdt;

(2) (

e

L)

b

Z

a

'(x)

e

f (x)dx = '(b)G(b) � '(a)G(a) �

b

Z

a

'

0

(x)G(x)dx, for a,

b 2 E and E is the set from Theorem 6:2.

Proof. We will prove only the equality (2), since the equality (1) can be

proved analogously.
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Let a; b 2 E. Using the integration by part, we can easily verify that the

equality

b

Z

a

'(x) ctg

1

2

(t � x)dx = �'(b) lg j sin

1

2

(t� b)j+ '(a) lg j sin

1

2

(t � a)j+

+

b

Z

a

'

0

(x) lg j sin

1

2

(t� x)jdx

is valid for almost all t 2 [0; 2�]. The latter equality and Theorem 6.2

(which can be used, since ' 2 H(�)) allows us to write

(

e

L)

b

Z

a

'(x)

e

f (x)dx = �

1

�

2�

Z

0

f(t)dt

b

Z

a

'(x)

1

2

ctg

1

2

(t� x)dx =

= '(b)G(b) � '(a)G(a) �

1

�

2�

Z

0

f(t)dt

b

Z

a

'

0

(x) lg j sin

1

2

(t � x)jdx:

Changing the order of integration in the iterated integral of the above

equality, we obtain the equality (2). �

6.2.

e

L-integral and Cauchy singular integrals. Here and in what follows, � is

assumed to be a simple, closed, recti�able curve. Without loss of generality

we also assume that the length of the curve � is equal to 2� and write the

equality in the form t = t(s), 0 � s � 2� where s is the arc coordinate.

Moreover, � is supposed to satisfy the condition

2�

Z

0

�

�

�

t

0

(�)

t(�)� t(s)

�

1

2

ctg

1

2

(� � s)

�

�

�

d� < C; (C is a constant) (6.11)

(the last condition is satis�ed, for example, by for piecewise Lyapunov curves

without cusps and those of bounded rotation without cusps (see subsection

3.1).

We say that the function f is

e

L-integrable on � if t

0

(s)f [t(s)] 2

e

L(0; 2�)

and write f(t) 2

e

L(�). Under the

e

L -integral of f along � is meant a number

(L)

Z

�

f(t)dt = (

e

L)

2�

Z

0

f [t(s)]t

0

(s)ds:

Remark. It is evident that the following two conditions are equivalent:

(1) f(t) = f

1

(t) + S

�

(f

2

)(t); where f

1

, f

2

2 L(�);

(2) t

0

(s)f [t(s)] 2

e

L(0; 2�).
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Moreover, the equality

(

e

L)

Z

�

f(t)dt � (

e

L)

2�

Z

0

f [t(s)]t

0

(s)ds =

Z

�

[f

1

(t) � f

2

(t)]dt (6.12)

holds.

Indeed, by virtue of (1) we have

t

0

(s)f [t(s)] = t

0

(s)f

1

(t(s)) +

1

�i

2�

Z

0

f

2

(t(�))t

0

(�)

t

0

(s)

t(�) � t(s)

d� =

= t

0

(s)f

1

(t(s)) +

1

�i

2�

Z

0

f

2

(t(�))t

0

(�)

h

t

0

(s)

t(�) � t(s)

�

1

2

ctg

1

2

(� � s)

i

d� +

+

1

�i

2�

Z

0

f

2

(t(�))t

0

(�)

1

2

ctg

� � s

2

d�: (6.13)

The second summand on the right-hand side of the last equality is, by

the condition (6.11) and Fubini's theorem, summable on [0; 2�], and hence

t

0

(s)f [t(s)] 2

e

L(0; 2�).

Let now the condition (2) be ful�lled, i.e., there exist f

1

, f

2

2 L(0; 2�)

such that

t

0

(s)f [t(s)] = f

1

(s) +

2�

Z

0

f

2

(�)

1

2

ctg

� � s

2

d� =

= f

1

(s) +

2�

Z

0

f

3

(�)t

0

(�)

�

1

2

ctg

� � s

2

�

t

0

(s)

t(�)� t(s)

�

d� +

+t

0

(s)

2�

Z

0

f

3

(�)

t

0

(�)

t(�) � t(s)

d�; where f

3

(�) = f

2

(�)=t

0

(�):

Analogously, using Fubini's theorem, we can easily see that the second

summand on the right-hand of the last equality is summable on [0; 2�].

Hence t

0

(s)f [t(s)] = g

1

(s) + t

0

(s)

R

�

g

2

(�)d�

��t(s)

, where g

1

, g

2

2 L(�) and f(t) =

g

1

(s)=t

0

(s) +

R

�

g

2

(�)d�

��t

, � = t(�).

The equality (6.12) can be obtained by integrating the equality (6.13) and

interchanging the integrals in the iterated integral. Indeed, by de�nition of

the

e

L-integral along �, we �nd that

(

e

L)

Z

�

f(t)dt = (

e

L)

Z

�

f [t(s)]t

0

(s)ds =

Z

�

t

0

(s)f

1

(t)ds+
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+

1

�i

2�

Z

0

ds

2�

Z

0

f

2

(t(�))t

0

(�)

h

t

0

(s)

t(�) � t(s)

�

1

2

ctg

� � s

2

i

d� =

=

Z

�

[f

1

(t)� f

2

(t)]dt:

It follows from what has been said above that if f(t) = f

1

(t)+S

�

(f

2

)(t),

where f

1

, f

2

2 L(�), we can de�ne its

e

L- integral along � by the equality

(

e

L)

Z

�

f(t)dt =

Z

�

[f

1

(t)� f

2

(t)]dt:

Theorem 6.5. Let f 2 L(�). Let

' 2 L

1

(�) and C = sup

t2�

Z

�

j'(� )� '(t)j

j� � tj

jd� j <1: (6.14)

Then 'S

�

(f) 2

e

L(�) and

(

e

L)

Z

�

'(t)S

�

(f)(t)dt = �

Z

�

f(t)S

�

(')(t)dt: (6.15)

Proof. Consider the identity

t

0

(s)'(t)S

�

(f)(t) =

'(t)t

0

(s)

�i

Z

�

f(� )d�

� � t

=

=

t

0

(s)

�i

Z

�

'(t)� '(� )

� � t

f(� )d� +

t

0

(s)

�i

Z

�

'(� )f(� )

� � t

d� =

=

t

0

(s)

�i

Z

�

'(t) � '(� )

� � t

f(� )d� +

+

1

�i

2�

Z

0

'(� )f(� )t

0

(�)

h

t

0

(s)

t(�)� t(s)

�

1

2

ctg

� � s

2

i

d� +

+

1

�i

2�

Z

0

'(� )f(� )t

0

(�)

1

2

ctg

� � s

2

d�: (6.16)

Because of (6.11), (6.14) and Fubini theorem on the inversion of the order

of integration, the �rst and the second summands on the right-hand side of

the last equality are functions summable on �. Hence 'S

�

(f) 2

e

L(�).

Further, integrating (6.16) and using Fubini's theorem and Theorem 6.1,

we obtain (6.15). �
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Remark 1. For ' 2 H

�

(�), 0 < � � 1, and � 2 R it is easy to verify that

the condition (6.14) is satis�ed.

Remark 2. By a line of integration is meant as above a closed curve

satisfying certain conditions. But as is seen from the proof of the theorem,

it is also valid when the line of integration consists of a �nite number of

non-intersecting curves of the type mentioned above.

This remark concerns all the results obtained for the

e

L-integral.

Theorem 6.6. Let f 2 � and conditions (6:11), (6:14) are ful�led. There

exists a measurable depending only on f set E � [0; 2�] of measure 2� such

that if s

0

, s

00

2 [0; 2�] then 'S

�

(f) 2

e

L(�

t

0

t

00

) and

(

e

L)

Z

�

t

0

t

00

'(t)dt

Z

�

f(� )d�

� � t

=

Z

�

f(� )d�

Z

�

t

0

t

00

'(t)dt

� � t

; (6.17)

where �

t

0

t

00

is a portion of the contour � with the ends t

0

= t(s

0

) and t

00

=

t(s

00

).

The theorem is proved in the same way as Theorem 6.5 with the only

di�erence that instead of Theorem 6.1 we use Theorem 6.2.

Theorem 6.7 ([58]). Let � satisfy the condition t

00

(s) 2 H(�), f 2 L(�)

and ' satisfy the conditions (6:14). Then

limas

"!0

(

e

L)

Z

�

"

'(t)dt

t� t

0

Z

�

f(� )d�

� � t

=

= ��

2

'(t

0

)f(t

0

) +

Z

�

f(� )d�

Z

�

'(t)dt

(� � t)(t� t

0

)

(6.18)

for almost all t

0

2 �

The equality (6.18) is a generalization of the well-known Poincar�e{Ber-

trani equality (see, e.g., [66], p. 30). If '(x) � 1, then we obtain the

generalization of the inversion formula of a singular Cauchy integral

limas

"!0

(

e

L)

Z

�

"

dt

t� t

0

Z

�

f(� )d�

� � t

= ��

2

f(t

0

): (6.19)

Obviously, if S

�

(f) is summable on �, the then asymptotic limit in for-

mula (6.19) can be replaced by the ordinary one and the

e

L-integral by the

Lebesgue integral.
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6.3. Cauchy type

e

L-integrals. Let � satisfy the conditions (6.11) and let

f 2

e

L(�). Then, according to Theorem 6.5, the analytic function

F (z) =

1

2�i

(

e

L)

Z

�

f(t)dt

t� z

(6.20)

is de�ned in the domain z 62 � and is called a Cauchy type

e

L -integral. For

almost all t 2 �, there exist boundary values F

+

(t) and F

�

(t) belonging to

e

L(�) and almost everywhere on �

F

+

(t)� F

�

(t) = f(t): (6.21)

Indeed, without restriction of generality, we may assume that f(t) =

S

�

(f

1

)(t), where f

1

2 L(�). Then, by Theorem 6.5, for z 62 � we have

F (z) =

1

2(�i)

2

(

e

L)

Z

�

dt

t� z

Z

�

f

1

(� )d�

� � t

=

=

1

2(�i)

2

Z

�

f

1

(� )d�

Z

�

dt

(t � z)(� � t)

=

=

1

2(�i)

2

Z

�

f

1

(� )d�

� � z

Z

�

dt

t� z

+

1

2(�i)

2

Z

�

f(� )d�

� � z

Z

�

dt

� � t

=

=

(

1

2�

R

�

f

1

(�)d�

��z

for z 2 D

+

;

�

1

2�

R

�

f

1

(�)d�

��z

for z 2 D

�

:

(6.22)

Moreover, by the Sokhotski��-Plemelj formulas,

F

+

(t) � F

�

(t) = S

�

(f

1

)(t) = f(t) and F

+

(t) + F

�

(t) = f

1

(t): (6.23)

If, in addition, we have t

00

(s) 2 H(�), then by virtue of (6.19) and (6.23)

in

F

+

(t) + F

�

(t) =

1

�i

limas

"!0

(

e

L)

Z

�

"

f(� )d�

� � t

; (6.24)

where �

"

is the largest arc of the contour � with the ends t(s

0

� ") and

t(s

0

+ ").

The equalities (6.21) and (6.24) generalize the Sokhotski��-Plemelj formu-

las.

Theorem 6.8. Let f 2 L(�), F (z) = K

�

(f)(z). Then F

+

2

e

L(�) and

F (z) is representable in D

+

by the Cauchy

e

L-integral. Moreover,

(

e

L)

Z

�

�

+

(t)F

+

(t)dt = 0 (6.25)
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�

in particular; (

e

L)

Z

�

t

n

F

+

(t)dt = 0; n = 0; 1; 2; : : :

�

;

where �

+

(t) is the boundary value of the bounded in D

+

analytic function

satisfying (6:14).

Proof. Let z 62 �. By Theorem 6.5 and the Sokhotski��-Plemelj formulas,

1

2�i

(

e

L)

Z

�

F

+

(t)dt

t � z

=

1

4�i

Z

�

f(t)dt

t� z

+

+

1

(2�i)

2

(

e

L)

Z

�

dt

t� z

Z

�

f(� )d�

� � t

=

=

1

4�i

Z

�

f(t)dt

t� z

+

1

(2�i)

2

Z

�

f(� )d�

Z

�

dt

(t� z)(� � t)

=

=

1

4�i

Z

�

f(t)dt

t� z

+

1

(2�i)

2

Z

�

f(� )d�

� � z

Z

�

dt

t� z

+

+

1

(2�i)

2

Z

�

f(� )d�

� � z

Z

�

dt

� � t

=

(

F (z) for z 2 D

+

;

0 for z 2 D

�

:

The proof of the equality (6.25) is performed analogously to the previous

one by using Theorem 6.5 and the fact that if � is a bounded in D

+

analytic

function, then S

�

(�

+

)(t) = �

+

(t). �

Corollary. If f 2 L(�) and the boundary value of Cauchy type integral

K

�

(f) is summable on �, then K

�

(f) is representable in D

+

by the Cauchy-

Lebesgue integral.

The assertion of the corollary in the case where � is a circumference

represents by itself well-known V. I. Smirnov's theorem [146], (see also [133],

p. 116).

Theorem 6.9. A class of functions representable inD

+

[D

�

by the Cauchy

type

e

L-integral coincides with the a of functions representable in the form

F (z) =

(

F

1

(z) for z 2 D

+

;

F

2

(z) for z 2 D

�

;

(6.26)

where F

i

(z) = K

�

(f

i

)(z), f

i

2 L(�), i = 1; 2.

Proof. Let F be representable in the form (6.26). Consider on � the function

f(t) = F

+

1

(t) � F

�

2

(t), where

F

+

1

(t) =

1

2

f

1

(t) +

1

2

S

�

(f

1

)(t) and F

�

2

(t) = �

1

2

f

2

(t) +

1

2

S

�

(f

2

)(t):
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Obviously, f 2

e

L(�), and owing to the previous theorem and the formula

(6.21), for z 62 � we can write

1

2�i

(

e

L)

Z

�

f(t)dt

t� z

=

1

2�i

(

e

L)

Z

�

F

+

1

(t) � F

�

2

(t)

t� z

dt =

=

1

2�i

(

e

L)

Z

�

F

+

1

(t)dt

t� z

�

1

2�i

(

e

L)

Z

�

F

�

2

(t)

t� z

dt =

=

(

F

1

(z) for z 2 D

+

;

F

2

(z) for z 2 D

�

:

The inverse assertion follows from the equality (6.22). �

Corollary. The function representable in D

+

(in D

�

) by the Cauchy type

e

L-integral is representable by the Cauchy

e

L-integrals as well.

Indeed, by Theorem 6.9, the function representable, for example, in

D

+

by the Cauchy type

e

L-integral is representable in D

+

by the Cauchy-

Lebesgue type integral and, hence, by the Cauchy

e

L-integral, according to

Theorem 6.8.

Remark. The function F representable in the form (6.26) cannot always

be representable in D

+

[ D

�

by a single Cauchy-Lebesgue type integral

(see, e.g., Remark 2 to Theorem 6.10).

Theorem 6.10. Assume that the functions � and F are representable in

D

+

(D

�

) by the Cauchy-Lebesgue type integrals with densities ' and f 2

L(�), respectively, where ' satis�es the conditions (6:14), then the product

�F is also representable in D

+

(D

�

) by a Cauchy-Lebesgue type integral.

Proof. Let z 2 D

+

(D

�

). Then, since S

�

(') is bounded on �, by Theorem

6.5,

(

e

L)

Z

�

'(t)S

�

(t)

t� z

dt =

1

�i

Z

�

f(� )d�

Z

�

'(t)dt

(� � t)(t� z)

=

= �

Z

�

'(� )S

�

(')(� )

� � z

d� +

1

�i

Z

�

f(� )

� � z

d�

Z

�

'(t)dt

t� z

:

Hence

�(z)F (z) =

1

4�i

Z

�

f(� )S

�

(')(� )

� � z

d� +

1

4�i

(

e

L)

Z

�

'(t)S

�

(t)

t� z

dt;

that is, �F is representable in D

+

(D

�

) as a sum of a Cauchy-Lebesgue

type integral and a Cauchy type

e

L-integral. But this implies the validity
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of the theorem, since by Theorem 6.9, a Cauchy type

e

L-integral is also

representable in D

+

(D

�

) by a Cauchy-Lebesgue type integral. �

Corollary. If the functions � and F are representable in D

+

[ D

�

by

the Cauchy type integrals with densities ' and f 2

e

L(�), respectively, '

satisfying the conditions (6:14), then the product �F is also representable

in D

+

[D

�

by a Cauchy type

e

L-integral.

Indeed, due to the assertion of the theorem, �F is representable by the

Cauchy-Lebesgue type integral both in D

+

and in D

�

. Then, by Theorem

6.9, �F is representable in D

+

[D

�

by the Cauchy type

e

L-integral.

Remark 1. Note that the assertion of the theorem is about the repre-

sentability in D

+

(or in D

�

) by a Cauchy type integral, whereas the corol-

lary states the representability in D = D

+

[D

�

.

Remark 2. As it follows from the assertion of the corollary, the

e

L-integral,

in general, cannot be replaced by the Lebesgue integral even for f 2 L(�).

Example. Let � be a unit circumference, '(t) � 1 on � and f 2 L(�) be

such that S

�

(f) 62 L(�). Then the function

 (z) =

1

2�i

Z

�

dt

t� z

1

2�i

Z

�

f(t)dt

t� z

=

(

1

2�i

R

�

f(t)dt

t�z

for z 2 D

+

;

0 for z 2 D

�

;

representable in D

+

[D

�

by a Cauchy type

e

L-integral, neverthless cannot

be represented by a Cauchy{Lebesgue integral. Otherwise, we would have

 

+

(t)�  

�

(t) =

1

2

f(t) +

1

2

S(f)(t) 2 L(�) which is impossible since S(f) 62

L(�).

6.4. An extension to more general curves. Let � be a simple, recti�able,

closed curve and let, moreover, for � the following analogue of Smirnov

theorem is valid:

If the boundary value F

+

(t) of the Cauchy-Lebesgue type integral F (z) =

K

�

(f)(z) is summable on �, then F (z) is representable in D

+

by a Cauchy

integral (such are, for example, regular curves).

The above-formulated theorem is equivalent to the following assertion: if

F

+

is summable on �, then

R

�

F

+

(t)dt = 0, which implies that for f 2 L(�)

and S

�

(f) 2 L(�), the equality

Z

�

S

�

(f)(t)dt =

1

�i

Z

�

dt

Z

�

f(� )d�

� � t

= �

Z

�

f(t)dt (6.27)

holds.

On the basis of the last equality, in exactly the same way as in subsection

6.2, we introduce the following de�nition.
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We say that the function f is

e

L-integrable on � if it can be represented

in the form

f(t) = f

1

(t) + S

�

(f

2

)(t); f

1

; f

2

2 L(�): (6.28)

The number

e

L(f) = (

e

L)

Z

�

f(t)dt =

Z

�

[f

1

(t) � f

2

(t)]dt

is termed an

e

L-integral of f on �.

The correctness of the de�nition of the

e

L-integral (that is, the indepen-

dence of

e

L(f) on the representation (6.28)) is proved in the same way as in

subsection 6.1, using equality (6.27) instead of (6.2).

Note also that Theorems 6.5, 6.8, 6.9 and 6.10 are valid in the case in

which the line of integration satis�es the conditions of the present section

(i.e., when equality (6.27) is valid for it). They are proved in exactly the

same way as in subsections 6.2, 6.3.

Notes and Comments to Chapter I

The notion of singular integrals used in x1 is accepted, for example, in

monograph [105], [106], [66]. Independence of the de�nition of a singular

integral on parametrization of curve is proved in [124].

In connection with the assertion from the remark to Theorem 1.1 the

reader can be referred to [98], [38].

For the results of x2 in non-weighted case see [112].

The boundedness of singular operators over curves in L

p

(1 < p < 1)

comes from S. Mikhlin (the curves of continuous curvature) [98], B. Khve-

delidze (Lyapunov curves) [66], I. Danilyuk and V. Shelepov (curves of

bounded rotation) [20]. Such boundedness for piecewise Lyapunov contours

with cusps has been proved by E. Gordadze [44]. The problem remained

open for smooth curves.

In 1976, A. P. Calderon proved the boundedness of Cauchy singular

integral operators in L

2

over Lipschitz curves under the assumption that

Lipschitz constant is su�ciently small. This additional condition was later

removed by R. Coifman, A. McIntosch, and Y. Meyer [14]. The other proofs

can be found in R. Coifman, P. Jones, and S. Semmes [13], G. David [23],

G. David and S. Semmes [24], T. Murai [101], M. Melnikov and T. Verdera

[97], etc.

It has been shown by V. Paatashvili and G. Khuskivadze [122] that if S

�

is bounded in L

p

(�) for some p, 1 < p < 1, then the curve � is regular,

i.e., satis�es the condition (3.2). In the same paper it is shown that this

condition is su�cient in a class of broken lines and also of those over which

this boundedness fails and the hypothesis on its su�ciency is stated in the

general case.
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In 1982, G. David solved this problem completely; he proved that condi-

tion (3.2) is necessary and su�cient for S

�

to be continuous in L

p

, 1 < p <

1.

At his lectures A. Zygmund noted that the boundedness of the oper-

ator S

�

in L

p

(�) for any smooth curves has a consequence the existence

almost everywhere of the integral S

�

f(t) for arbitrary recti�able curves and

summable on them functions f . Subsequently, this fact has been proved by

V. Havin (see [28], pp. 248{249).

The proof of Theorem 3.5 follows the method used by M. Cotlar for the

Hilbert transform [15].

The proof of the boundedness of S

�

over a closed curve from J

0

has

been performed by V. Kokilashvili [72]. The case of open arcs from J

0

was

considered later in [125].

The equivalence of the boundedness of S

�

from L

p

(�) into L

s

(�) (p �

s > 1) and the belonging to Smirnov class E

s

of the Cauchy type integral of

K

�

(f) for any f 2 L

p

(�) is proved by V. Havin [51] and V. Paatashvili [114].

For individual functions, some su�cient conditions for such an inclusion

were obtained in [113], [119]. In the case of smooth curves the similar

problem is investigated in x5.

The fact that the condition A

p

with respect to the arcs is necessary and

su�cient in the case of smooth curves (but not only for Lyapunov contours

as is incorrectly cited in [7]) was proved by V. Kokilashvili [73]. I. Simonenko

has constructed an example of a function which satis�es the Muckenhoupt

condition over arcs but is not a weight function for the Cauchy singular

integral in the case of a contour with cusps.

The conventional exposition of one-weight norm inequalities for singular

integrals on curves based on the well-known Calderon-Zygmund theory as

well as on Coifman's concept can be found in [7]. In fact, all these results can

be considered as a particular case of the weight theory of singular integrals

de�ned on homogeneous type spaces, the comprehensive investigation of

which is presented in the monograph of I. Genebashvili, A. Gogatishvili, V.

Kokilashvili and M. Krbec [40].

Exposition of Theorem 4.5 on two-weighted estimates for conjugate func-

tions is an amalgam of the proof presented in [80]. For more general pair of

weights see D.E. Edmunds and V. Kokilashvili [30]. For optimal conditions

for two-weight strong and weak type inequalities for singular integrals of

homogeneous type spaces, in particular, for fractal sets, the reader can be

referred to [40].

As for the p-mean singular integrals in connection with the belonging to

Smirnov classes E

p

(D) of Cauchy type integrals for individual functions,

they have been used V. Paatashvili [114].

An example of the curve � and of a continuous on it function ' for

which (S

�

')2L(�), is given in [51]. Curves from Examples (3) and (4) of

subsection 3.4 were constructed by G. Khuskivadze [62]. Moreover, it has

been shown therein that the curves satisfying conditions (3.44) ((3.48)) can
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be constructed so as to have !

r

(�; �) � C�

�

, r > 1, � > r

�1

, r > 1, � > r

�1

where !

r

(�; �) is an integral module of continuity of the function � = �(s),

t

0

(s) = exp i�(s).

Some properties of the Cauchy type integral, when a line of integration

is an in�nite set of curves, were investigated for the �rst time in [2] and

[55{56]. The questions of the continuity of S

�

in the Lebesgue spaces are

studied in [1], [64], [126], [127].

Theorem 6.1 (under more general assumptions with respect to '), the

assertion of Corollary 2 of Theorem 6.1 and Theorem 6.3, for the A-integral,

have been proved by P. Ul'yanov [156]. The assertion of Corollary 1 of

Theorem 6.1, for the B-integral, is due to A. Kolmogorov [84], and for

the A-integral, to E.C. Titchmarsh [154]. The assertion of corollary of

Theorem 6.2, and Theorem 6.4, for the A-integral,have been obtained by

E.C. Titchmarsh [154]. Theorem 6.8 in the case of

e

A-integrals and Lyapunov

curves has been obtained earlier in [158]. The main results of x6 in the case

where � is a Lyapunov curve were obtained by G. Khuskivadze [58], [62].
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CHAPTER II

THE DISCONTINUOUS BOUNDARY VALUE PROBLEM

IN CLASS OF CAUCHY TYPE INTEGRALS

Let � be a closed, recti�able Jordan curve bounding a �nite domain

D

+

and an in�nite domain D

�

. In xx1{3, 5 we consider the problem of

linear conjugation formulated as follows: de�ne a function � 2 K

p

(�; w),

whose boundary values �

+

(from D

+

) and �

�

(from D

�

) satisfy almost

everywhere on � the condition

�

+

(t) = G(t)�

�

(t) + g(t); t 2 �; (I)

where G and g are functions given on �, and g 2 L

p

(�; w).

It is assumed that � 2 J

�

and the function G (or G

w

which will be

de�ned by means of G and w in x5) belongs to the class

e

A(p) introduced in

Section 1.2. The assumptions for w are adopted (see (5.1)) which in the case

of Lyapunov contours cover all admissible in this problem weight functions.

Along with the problem (I) in the class L

p

(�; w) we consider a singular

integral equation of the type

a'+ bS

�

'+ V ' = f; (II)

where a; b; f are functions given on �, f 2 L

p

(�; w), (a� b)(a+ b)

�1

2

e

A(p)

and V is a compact operator in L

p

(�; w).

Comprehensive investigation of the character of solvability of the problem

(I) allows one to obtain Noetherian theorems for the equation (II).

As far as the problem (I) is, generally speaking, unsolvable in the class

K

1

(�), it is advisable in this case either to narrow this class and to consider

those subsets in which the character of solvability is similar as in case of

K

p

(�), 1 < p < 1, or to extend, within reasonable limits, the class of

unknown functions containingK

1

(�) and to clarify the picture of solvability.

Both possibilities are realized in x4 and x8, respectively.

x

1. The Problem of Linear Conjugation in the Class K

p

(�)

1.1. Assumption regarding the boundary curve. We will assume that �

belongs to the class J

�

(see x3, Chapter I). Recall the de�nition.

The curve � 2 K belongs to the class J

�

if it is divided into a �nite

number of arcs belonging to the class J and having tangents at the ends.

The Jordan curve � 2 K with the equation t = t(s), 0 � S � l is assumed

to belong to the class J if there exists for it a Jordan smooth curve � of the

same length with the equation � = �(s), 0 � s � l, such that

ess sup

0���l

l

Z

0

�

�

�

t

0

(s)

t(s) � t(�)

�

�

0

(s)

�(s) � �(�)

�

�

�

ds <1: (1.1)
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1.2. The Class

e

A(p) of functions. The index of the function G 2

e

A(p).

We will say that a measurable on � function G belongs to the class

e

A(p),

1 < p <1, if the following conditions are ful�lled:

(1) 0 < ess inf jGj; ess sup jGj <1

(2) for all t 2 �, with the possible exception of a �nite number of points

c

k

= t(s

k

), s

k

< s

k+1

(k = 1; n), there exists on � a neighbourhood in

which the values of G lie in some sector with the vertex at the origin and

the angle less than a(p) =

2�

max(p;p

0

)

, p

0

=

p

p�1

;

(3) there exist at the points c

k

the limits G(c

k

�) and G(c

k

+); let the

angles �

k

between the vectors corresponding to G(c

k

�) and G(c

k

+) be such

that

2�

p

< �

k

�

2�

p

0

; for p > 2 and

2�

p

0

� �

k

�

2�

p

; 1 < p < 2; k = 1; n:

The points c

k

will be called p-points of discontinuity of the function G.

By analogy with the class A(p), the set

e

A(p) has been introduced in [78].

Recall, that the class A(p) has been introduced and applied to the boundery

value problem of linear conjugation by I. Simonenko [141]. The subset of the

functions from

e

A(p) which do not posses p-points of discontinuity, coincides

with A(p). The existence of p-points of discontinuity makes it possible to

cover by the class

e

A(p) the most part of those functions satisfying condition

(1) which were considered in terms of the coe�cients of the problem of

conjugation with a �nite index. In particular, it can be easily veri�ed that

e

A(p) contains any admissible piecewise continuous coe�cients ([168]) and

the functions whose argument ' is representable in the form ' = '

0

+ '

1

,

where '

0

is continuous and '

1

is of a bounded variation, i.e.,

e

A(p) contains

the class of coe�cients considered in [18], [21].

Combining the de�nitions of the argument for piecewise continuous func-

tions and for a function from A(p), we can for a given p determine the ar-

gument for G(t) at every point t 2 � so that the increment of the argument

resulting of going around � appears to be exactly the same characteristic

for the problem with the coe�cient G as the increment of the argument is

for the continuous coe�cient.

arg

p

G(t). Suppose that �

k

= [c

k

; c

k+1

), c

n+1

= c

1

, k = 1; n, are half-

open arcs of the curve � connecting the points c

k

and c

k+1

, where c

n+1

= c

1

.

Given " > 0, there exist arcs [t(s

k

); t(s

k

+�

k

)) and (t(s

k+1

��

k+1

); t(s

k+1

)),

�

k

, �

k+1

2 (0;

1

2

(s

k+1

� s

k

)) such that the values of G lie in a sector with

the vertex at the origin and the angle less than ". Assume that the numbers

�

k

correspond to the choice of " = a(p), and let �

k

and �

k+1

be some points

from these intervals. Every point of the closed arc [�

k

; �

k+1

] possesses a

neighbourhood in which the values of the function G are located in a sector

with the angle less than a(p). These neighbourhoods cover [�

k

; �

k+1

], and

therefore we can choose a �nite covering. Adding to the set of intervals of

this covering the intervals [t(s

k

); t(s

k

+ �

k

)] and (t(s

k

� �

k+1

); t(s

k+1

)), we

obtain the arc covering [c

k

; c

k+1

). Since � = [�

k

, we �nally conclude that
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there exists a �nite covering B of the curve � consisting either of open arcs

or of those of the kind [t(s

k

); t(s

k

+ �

k

)); on every arc, the values of the

functions are located in a sector with the vertex at the origin and the angle

less than a(p).

Let now c be an arbitrary point on �. If c is not a p-point of discontinuity

of G, then we form a new covering B

0

of the curve � replacing the arc

(a; b) 3 c in the covering B by the arcs (a; c] and [c; b). But if c = c

k

, then

we put B

0

= B. For a �xed covering B

0

, we select arbitrarily an argument of

the number G(c) and denote it by arg

p

G(c)

+

. Going along � in the positive

direction, we de�ne the argument arg

p

G(t) on all arcs from B

0

so that if t

1

and t

2

belong to the same arc, then j arg

p

G(t

1

)� arg

p

G(t

2

)j < a(p). Thus

we reach the arc whose right end is the nearest to c point c

k

, and there

exists lim

s!s

k

�

argG(t(s)) = �

k

. De�ne arg

p

G(c

k

) according to the rule

arg

p

G(c

k

) =

(

�

k

+ �

k

for �

k

<

2�

p

;

�

k

+ �

k

� 2� for �

k

>

2�

p

:

(1.2)

Continuing the process of de�ning the argument, after going around the

curve we come at the point c to a new value of arg

p

G(c)

�

.

The integer

{ = {

p

= {

p

(G) =

1

2�

[arg

p

G(c)

�

� arg

p

G(c)

+

]

does not depend on the choice of the covering B

0

and on the point c; we will

call it the index of the function G in the class K

p

(�) and denote by ind

p

G.

Note here that arg

p

G(c

k

) for all k is de�ned by the �rst equality from

(1.2) if 1 < p < 2, and by the second one if p > 2. There are no p-points of

discontinuity for p = 2.

1.3. Decomposition of the function G 2

e

A(p). . From the de�nition of the

function '(t) = arg

p

G(t) it follows that for its oscillation


('; t) = inf

l(t)��

f sup

�2l(t)

'(� ) � inf

�2l(t)

'(� )g (1.3)

the inequality

sup

t2�


('; t) < 2� (1.4)

is valid. Therefore, by Lemma 1 from [141] we can determine a real function

'

1

(t) such that '

1

(t(s)) satis�es the Lipschitz condition on [0; l), lim

s!l

'

1

(t(s))

='

1

(t(0)) + 2�{

p

, and j'(t) � '

1

(t)j<�. The function G(t) exp(�i'

1

(t))

belongs to

e

A(p).

Put

'

2

(t) = '(c

k

) +

s(t; c

k

)

s(c

k+1

; c

k

)

['(c

k+1

) � '(c

k

)];
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t 2 [c

k

; c

k+1

); c

n+1

= c

1

; k = 1; n; (1.5)

where s(t; c

k

) is the length of the least arc of the curve � with the ends t

and c

k

.

Then the function '

3

= ' � '

1

� '

2

is continuous at the points c

k

and

sup

t2�


('

3

; t) < a(p).

Thus the following lemma is valid.

Lemma 1.1. Let G 2

e

A(p) and c

k

, k = 1; n, be its p-points of discontinu-

ity. Then

G(t) = jG(t)jG

1

(t)G

2

(t)G

3

(t); (1.6)

where G

k

(t) = exp i'

k

(t), k = 1; 2; 3; G

1

satis�es the Lipschitz condition

and {(G

1

) = {

p

(G); '

2

is a piecewise continuous function given by (1:5),

'

3

is continuous at the points c

k

and sup

t2�


('

3

; t) < a(p). If G 2 A(p),

then in decomposition (1:6) we take G

2

� 1.

In view of the remark of the previous section, the jump of the function

arg

p

G(t) at the points c

k

or, which is the same thing, of the function '

2

will be �

k

for 1 < p < 2 and �

k

� 2� for 2 < p <1. Denoting this jump by

2��

k

, we obtain

1

p

0

� �

k

<

1

p

for 1 < p < 2;

�

1

p

0

< �

k

< �

1

p

for 2 < p <1:

(1.7)

1.4. Statement of the result. The aim of x1{3 is to prove the validity of the

following

Theorem 1.1. Let � be a closed curve of the class J

�

, G 2

e

A(p), 1 <

p < 1 and { = {

p

(G) be its index. Then

I. For the problem (I) in the class K

p

(�) the following assertions are

valid:

(i) if { � 0, then the problem is solvable for any g 2 L

p

(�), and its

general solution is given by the equality

�(z) = X(z)K

�

�

g

X

+

�

(z) +X(z)P

{�1

(z); (1.8)

where the function X is constructed in quadratures in terms of G (by for-

mulas 3:30; 3:27� 3:29) and P

{�1

is an arbitrary polynomial of degree not

higher than { � 1, P

�1

(z) � 0;

(ii) if { < 0, then the homogeneous problem has only the zero solution,

while the inhomogeneous problem is solvable only for the functions g satis-

fying the condition

Z

�

t

k

X

+

(t)

g(t)d = 0; k = 0; 1; : : : ; j{j � 1: (1.9)
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If this condition is ful�lled, then the solution is given by (1:8), where

P

{�1

�0.

II. For the singular integral equation (II) in the space L

p

(�), 1 < p <1,

the Noether theorems are valid under the assumption that (a� b)(a+ b)

�1

2

e

A(p).

Moreover,

l � l

0

= {

p

(G); (1.10)

where l and l

0

is the number of linearly independent solutions of the homo-

geneous equation (II) and its adjoint.

Solutions of the singular integral equation (II) with V = 0, are given by

the formula

' = �

+

� �

�

; (1.11)

where � is the solution of the problem of conjugation

�

+

= (1� b)(a + b)

�1

�

�

+ f(a + b)

�1

:

1.5. On the method of proving Theorem 1:1. The �rst assertion of Theorem

1.1 is a generalization of the well-known results [66], [18], [141]. In those

works, by developing the method of solving the problem (I) in continuous

and piecewise continuous posing, the authors justi�ed the theory of solv-

ing the problem of conjugation in the classes K

p

(�) using the method of

factorization.

The essence of this method consists in the following: if for a function G,

inf jGj > 0, one can construct a function X which is analytic on the plane

cut along �, and for which the relations: (i) X 2

e

K

p

(�); (ii)

1

X

2

e

K

p

0

,

(�); (iii) X

+

= GX

�

, (iv) X

+

2 W

p

(�) are valid, then the assertion I of

Theorem 1.1 with { de�ned by the relation lim

z!1

X(z)z

{

= const 6= 0 is

valid (see, e.g., [68]).

The functionX satisfying the condition (i){(iv) is called a factor-function

for G in the class K

p

(�). Since the solution of the characteristic singular

integral equation in the class L

p

(�) reduces equivalently to the solution of

the problem of linear conjugation ([66]) with the coe�cient G = (a� b)(a+

b)

�1

, from the characterizability of the function follows neotherianness of

the characteristic singular integral equation, and hence neotherianness of

the operator A : a'+ bS

�

' in L

p

(�). As far as the neotherianness and the

index do not vary by adding a compact operator to a Noetherian operator

[3], we immediately arrive at the assertion II of Theorem 1.1.

Proof of Theorem 1.1 is performed by means of the factor-function for

G 2

e

A(p). At this step the results of Chapter I, x2{4, are of importance.

Construction of a factor-function �rst for particular cases of curves and

coe�cients allows one to investigate the problem in the general case.



96

x

2. On the Belonging to the Smirnov Class of the Function

expK

�

'

2.1. The belonging to the Smirnov class of the function expK

�

'. When a

function is factored in the class K

p

(�), there naturally arises the problem

of �nding the conditions on � and ' under which the function

X(z) = exp

h

1

2�i

Z

�

'(t)dt

t� z

i

belongs to some Smirnov class in domains bounded by the curve �. In this

section we present su�cient conditions for this.

First of all, we prove the following

Lemma 2.1. If � 2 R, then for the norm of the operator S

�

in L

p

(�) the

inequality

kS

�

k � Cp (2.1)

is valid for p � 2, where C is independent of p.

Proof. By induction we prove that for an arbitrary natural k,

kS

�

k

2

k � kS

�

k

2

ctg

�

2

k+1

:

For k > 1 we use the inequality (see Chapter I, subsection 3.2, inequality

(3.38))

kS

�

k

2p

� kS

�

k

p

+

q

1 + kS

�

k

2

p

:

Then for p = 2

k

we will have

kS

�

k

2

k+1
� kS

�

k

2

ctg

�

2

k+1

+

r

1 + kS

�

k

2

2

ctg

2

�

2

k+1

�

� kS

�

k

2

h

ctg

�

2

k+1

+ sin

�1

�

2

k+1

i

= kS

�

k

2

ctg

�

2

k+2

:

Let now 2

k

< p < 2

k+1

and t be such that

1

p

=

t

2

k

+

1�t

2

k+1

. Then by virtue

of the interpolation theorem we arrive at

kS

�

k

p

� (kS

�

k

2

ctg

�

2

k+1

)

t

(kS

�

k

2

ctg

�

2

k+2

)

1�t

�

4

�

kS

�

k

2p

= Cp: �

Theorem 2.1. Let � be a closed Jordan curve of the class R bounding a

�nite domain D

+

and and an in�nite domain D

�

. Then:

(i) for any bounded, measurable on � function ' there exist numbers � > 0

and an integer n

0

� 0 such that

exp(K

�

') = X(z) 2 E

�

(D

+

); (z � z

0

)

�n

0

[X(z) � 1] 2 E

�

(D

�

);

(ii) for an arbitrary continuous on � function ' we have

X(z) 2 \

p>1

E

p

(D) and [X(z) � 1] 2 \

p>1

E

p

(D

�

):
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Proof. Assume that sup j'j < M and show that X 2 E

�

(D

+

) for � <

(CeM )

�1

, where C is a constant from the inequality (2.1). Denote by �

r

the image of the circumference j�j = r under a conformal mapping of the

circle U onto the domain D

+

. We have

Z

�

r

jX(z)j

�

jdzj �

1

X

n=0

1

n!

Z

�

r

�

�

�

�

2�i

Z

�

'(t)dt

t� z

�

�

�

n

jdzj: (2.2)

Since � 2 R and ' is bounded, by the corollary of Theorem 3.3 fromChapter

I we obtain

(K

�

')(z) =

1

2�i

Z

�

'(t)dt

t� z

2 \

p>1

E

p

(D

+

):

Hence [K

�

']

n

2 E

1

(D

+

) for an arbitrary natural n. Therefore

R

�

r

j(K

�

')(z)j

n

jdzj increases together with r ([43], p. 422), and

Z

�

r

�

�

�

1

2�i

Z

�

'dt

t � z

�

�

�

n

jdzj �

Z

�

�

�

�

'(� )

2

+

1

2�i

Z

�

'(t)dt

t� �

�

�

�

n

d� �

� 2

n

�

Z

�

�

�

�

'(� )

2

�

�

�

n

d� +

Z

�

�

�

�

1

2�i

Z

�

'(t)dt

t � �

�

�

�

n

d�

�

: (2.3)

Now (2.2) implies

Z

�

r

jX(z)j

�

jdzj �

1

X

n=0

�

n

n!

�

Z

�

j'(� )j

n

d� +

Z

�

�

�

�

1

�i

Z

�

'(t)dt

t� �

�

�

�

n

d�

�

�

� le

�M

+ l

1

X

n=0

(�MkS

�

k

n

)

n

n!

; (2.4)

where l is the length of the curve �. By lemma 2.1, kS

�

k

n

� Cn. Taking

into account the last inequality we can see that for � < (CMe)

�1

the series

converges. Thus we conclude that for such �, X 2 E

�

(D

+

).

In the domain D

�

consider now the functions

Y

n

(z) = (z � z

0

)

�n

[X(z) � 1]; z

0

2 D

+

:

If �

r

are the images of circumferences j�j = r for conformal mapping of

the circle U onto D

�

(we mean that the mapping function is of the form

z =

1

�

+w(�), where w is a regular in U function), then we can easily see that

for small r the length of the curve �

r

{ j�

r

j = 0(

1

r

), and jY (z)j

�

= 0(r

n�

),

z 2 �

r

. Then

Z

�

r

jY

n

(z)j

�

jdzj � sup

z2�

r

jY

n

(z)j

Z

�

r

jdzj � Nr

n��1

: (2.5)



98

Assuming n �

�

1

�

�

, from (2.5) it follows that for some r

0

2 (0; 1),

sup

r�r

0

Z

�

r

jY

n

(z)j

�

jdzj <1:

For r 2 (r

0

; 1), as in the case of D

+

, we have

sup

r

0

<r<1

Z

�

r

jY

n

(z)j

�

jdzj <1: (2.6)

On the basis of the inequalities (2.5){(2.6) we conclude that for � <

(CMe)

�1

and n �

�

1

�

�

the inclusion

(z � z

0

)

�n

[X(z)� 1] 2 E

�

(D

�

)

is valid.

Assume now that ' is a continuous on � function, p arbitrary posi-

tive number and '

0

is a rational function with poles outside � such that

M = sup j'(t) � '

0

(t)j < (Cpe)

�1

, where C is a number from (2.1).

As is proven, X 2 E

�

(D

+

), where � < (CMe)

�1

, M = sup

t2�

j'(t)j.

Consequently, [K

�

(' � '

0

)(z)] belongs to E

p

(D

+

). On the other hand,

X

0

(z) = exp(K

�

'

0

)(z) is continuous. Hence jX

0

(z)j � m > 0, and thus

expK

�

' 2 E

p

(D

+

).

The fact that [expK

�

'� 1] 2 \

p>1

E

p

(D

�

) is proved analogously. �

Remark. As it follows from the proof of the conclusive part of the theo-

rem, the number � can be taken from the condition � < (Ce�('))

�1

, where

�(') = inf

 

sup

t2�

j'(t) �  (t)j, and the lower bound is taken over all ra-

tional functions  .

2.2. The case of unclosed curves. In the case where � is an open curve of

the class R with the tangents at the end points, then complementing it with

respect to the closed curve

e

� 2 R (see Lemma 3.4, Chapter I) and applying

Theorem 2.1 to the function K

�

'

1

, where

'

1

(t) =

(

'(t); t 2 �;

0; t 2

e

�n�;

we easily �nd that if �('

1

)< (2Ce)

�1

, then the functionX(z)=exp(K

�

')(z),

z2� is representable in the form

X(z) =

1

2�i

Z

�

X

+

(t) �X

�

(t)

t� z

dt+ 1:
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2.3. On the solution of the problem (I) with a continuous coe�cient and

� 2 R. The above proven theorem allows one to solve the problem in the

class K

p

(�), when � 2 R and G is a continuous function. In this case, the

function

X(z) =

(

exp h(z); z 2 D

+

;

(z � z

0

)

�{

exp h(z); z 2 D

�

; z

0

2 D

+

;

(2.7)

where

{ = indG; h(z) =

1

2�i

Z

�

ln[(t� z

0

)

�{

G(t)]

t� z

dt (2.7

0

)

satis�es the conditions (i){(iii) from the de�nition of the factor-function,

and

lim

z!1

z

{

X(z) = 1: (2.8)

Indeed, the ful�lment of the conditions (i)� (ii) is a consequence of The-

orem 2.1. The condition (iii) is veri�ed by the Sokhotski��-Plemelj formula;

the ful�lment of the condition (2.8) is obvious.

From the above arguments it follows that all the solutions of the problem

(I) of the class K

p

(�) are contained in the set of functions speci�ed by the

equality

�(z) =

X(z)

2�i

Z

�

g(t)dt

X

+

(t)(t � z)

+ P

{�1

X(z); (2.9)

where P

{�1

is an arbitrary polynomial of degree { � 1. It is not also

di�cult to verify that � 2

e

K

r

(�), r 2 (1; p). But for { � 0 any such a

solution belongs to the class K

p

(�) (see [68], Chapter IV, x5, Theorem 1).

Hence, if { � 0, then the problem (I) is solvable for any g 2 L

p

(�), and all

its solutions of the class K

p

(�) are representable in the form (2.9), where

X is given by the equalities (2.7){(2.7

0

).

In spite of the fact that for { < 0 the function � (with P

{�1

= 0) belongs

to

e

K

p

(�), it does not belong to K

p

(�), because X possesses the pole of order

j{j at the point z = 1. As usual, the expansion of the integral multiplier

in the neighbourhood of that point results in a solvability condition of the

type (1.9).

2.4. Some functions fromW

p

(�), � 2 R. On the basis of the result obtained

in the section 2.3, we can point out some functions fromW

p

(�) when � 2 R.

Theorem 2.2. Let � be a closed Jordan smooth curve. If ' is a real con-

tinuous on � function, then

w(t) = exp

n

1

2�i

Z

�

'(� )d�

� � t

o

2 \

�>1

W

�

(�): (2.10)
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Moreover, if � is a curve such that for some p > 1 the function

�(t) =

n

Y

k=1

jt� c

k

j

h

k

; �

1

p

< h

k

<

1

p

0

;

belongs to W

p

(�), then

�(t)w(t) =

n

Y

k=1

jt� c

k

j

h

k

exp

n

1

2�

Z

�

'(� )d�

� � t

o

2 W

p

(�): (2.11)

Proof. Let G(t) = exp i'(t). Then G is continuous and indG = 0. Accord-

ing to the result obtained from (2.3), the problem with such a coe�cient is

solvable for any g 2 L

p

(�) and its solutions are given by (2.9). But then

the operator

T : g ! X

+

S

�

g

X

+

is de�ned on the entire L

p

(�) and maps this space into itself. Consequently,

the operator T , by Theorem 2.2 in Chapter I, is continuous in L

p

(�). Hence

the function X

+

= w

p

G, and thus w (because of jGj = 1) belongs to the

set \

�>1

W

�

(�). Next, taking into account the fact that � 2 W

p+"

(�) for

some " > 0, by means of the theorem from (0.20) we obtain the inclusion

(2.11) as well. �

Remark. If � 2 K then as K � R we have � 2W

p

(�) ([68], p.79)

Remark. The result of Theorem 2.2 allows one o construct a factor-

function for a piecewise continuous on � function G under the assumptions:

(i) � 2 R and possesses the tangents at the points of discontinuity of G; (ii)

1

2�

[argG(t

k

+)� argG(t

k

�)] = h

k

6=

1

p

( mod 1) We omit the details.

x

3. The Construction of a Factor-Function for G 2

e

A(p) and

� 2 J .

3.1. The case where � is a smooth curve and G 2 A(p). The construction is

divided into two steps: �rst we prove the unique solvability of the problem

(I) for indG = 0 and then, relying on the existence of the solution, we

construct the factor-function explicitly.

Step 1. Let G 2 A(p), ind

p

G = 0. As is shown in [68], any solution of the

problem (I) under the assumption � 2 K

p

(�), � 2 R, generates the solution

' = �

+

��

�

of the class L

p

(�) of the linear singular integral equation (3.1),

a' + bS

�

' = g; (3.1)

where a =

1

2

(1 + G) and b =

1

2

(1 � G). Conversely, to every solution

' 2 L

p

(�) of the equation (3.1) there corresponds the solution � = K

�

'

of the problem (I) (with G = (a � b)(a + b)

�1

and g(a + b)

�1

instead of

g) corresponding to K

p

(�). Therefore to prove the unique solvability of the
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problem (I), it su�ces to show the unique solvability of the equation (3.1).

Rewrite it in the form

M' � a(t(s))'(t(s)) +

b(t(s))

�i

l

Z

0

'(t(�))ie

i�

d�

e

i��

� e

i�s

+

+

b(t(s))

�i

l

Z

0

'(t(s))

h

t

0

(�)

t(�) � t(s)

�

i�e

i�

e

i��

� e

i�s

i

d� = g(t(s));

� =

2�

l

; 0 � s � l

or

M' � a'+ bS




' + b(S

�

� S




)' = g; (3.2)

where 
 is a circumference of length l.

Since � is the smooth curve, the operator S

�

�S




is compact in L

p

([0; l])

[48]. Moreover we have (a � b)(a + b)

�1

= G 2 A(p) and indG = 0.

Therefore for the equation

a'+ bS




' = g

in the class L

p

(
) the Fredholm theorems are valid. But then by virtue of

Atkinson's theorem [3], the equation (3.2) is also Fredholmian.

Show that the equation M' = 0 in L

p

(�) has only the zero solution. To

this end, we consider along with it the equation

M

0

 � a � S

�

(b ) = 0: (3.3)

The operators M

0

andM are conjugate. (This follows from the fact that

for every linear functional � on L

p

(�) there exists a function  2 L

p

0

(�)

such that �(') =

R

�

'(t) (t)dt:) If we put

	(z) =

1

2�i

Z

�

b(t) (t)dt

t� z

;

where  is a solution of the equation (3.3) in L

p

0

(�), then 	 2 K

p

0

(�) and

satis�es the boundary condition

	

+

(t) =

1

G

	

�

(t): (3.4)

But �	 2 K

1

(�) (because densities of the corresponding integrals belong to

conjugate classes) and (�	)

+

= (�	)

�

, and this problem in K

1

(�) has only

the zero solution. Therefore either � or 	 = 0. This implies that either the

equationM' = 0 in L

p

(�) or the equation M

0

 = 0 has only zero solution.

As far as the operator M is Fredholmian, both equations have only zero

solutions, and the inhomogeneous equations M' = g, g 2 L

p

(�),M

0

 = f ,
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f 2 L

p

0

(�) are uniquely solvable. Thus we arrive at the conclusion on the

solvability of the problem (I).

Remark. Note that after establishing of Fredholm property for the equa-

tion (3.1), the smoothness of � has no importance. So, if � 2 R and the

equation (3.1) is Fredholmian, then it is uniquely solvable (see also [42],

p. 258).

Step 2. The construction of a factor-function.

Lemma 3.1. Let a closed Jordan recti�able curve � 2 R. If for a function

G, inf jGj > 0 there exists a function lnG (i.e., we select a function argG)

such that it is bounded and the boundary values X

+

of the function

X(z) = exp[K

�

(lnG)(z)] (3.5)

belong to W

p

(�), then X is the factor-function of G in K

p

(�).

Proof. Since lnG is bounded, by Theorem 2.1 there exists � > 0 such that

X 2 E

�

(D

+

). But X

+

2 W

p

(�), and therefore X

+

2 L

p

(�),

1

X

+

2 L

p

0

(�)

(see x4, Chapter I, Lemma 4.2). Since X

�

=

1

G

X

+

, X

�

2 L

p

(�) as well,

and

1

X

�

2 L

p

0

(�). Hence (X�1) 2 E

p

(D

�

),

�

1

X

�1

�

2 E

p

0

(D

�

). From this

we can conclude that X possesses all the properties of the factor-function

(see section 1.5). �

Lemma 3.2. Let � 2 R, inf jGj > 0 and let the problem of linear con-

jugation (I) be solvable for any g 2 L

p

(�). If for some function X the

conditions (ii) and (iii) from the de�nition of a factor-function are ful�lled,

then X

+

2W

p

(�).

Proof. Under our assumptions, the function given by the formula (2.9) for

P

{�1

= 0 belongs to L

p

(�) for any g 2 L

p

(�). The statement of the lemma

follows now from Theorem 2.2 of Chapter I. �

Theorem 3.1. Let a closed Jordan recti�able curve � 2 R be such that for

an arbitrary G 2 A(p) with indG = 0, the problem (I) is uniquely solvable

in K

p

(�). If lnG = ln jG(t)j + i arg

p

G(t), then the function X given by

(3:5) is the factor-function of G in the class K

p

(�).

Proof. Put

u(z) = expK

�

(ln jGj)(z); v(z) = expK

�

(i arg

p

G)(z)

and show that u

+

2 \

�>1

W

�

(�), v

+

2 W

p
+"

(�) where p = max(p; p

0

) and

" is a positive number.

Let H(z) = K

�

(ln jGj)(z). By Theorem 2.1 we can choose �

0

> 0 such

that the functions

u

�

=

(

expf�H(z)g; z 2 D

+

;

expf�H(z)g � 1; z 2 D

�

(3.6)
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and u

�1

�

(z) belong to K

2

(�) for j�j < �

0

.

As is easily seen, u

�

is a solution of the problem of conjugation

�

+

= jGj

�

�

�

+ jGj

�

of the class K

2

(�).

By the assumption of the theorem, this problem is uniquely solvable in

K

p

(�) for an arbitrary p > 1 (as jGj

�

2 \

p>1

A(p)). Therefore u

�

(z), being

a solution from the class K

2

(�), is a solution from all the classes K

p

(�),

p > 1. Thus u

�

(z) 2 \

p>1

K

p

(�) for j�j < �

0

. From the expansion of

jGj

�

= jGj

��

1

jGj

��

2

� � � jGj

��

k

, where j�

i

j < �

0

,

P

k

i=1

�

i

= 1, we can

see that u

�1

2 \

p>1

K

p

(�), whence by Lemma 3.2 it follows that u

+

2

\

�>1

W

�

(�).

Prove that v

+

2 W

p+"

(�).

By virtue of Lemma 1.1, we may assume that j arg

p

Gj <

�

p

(because

G

1

belongs to the Liepschitz class and it can be factored by a function Z

such that Z

�1

are bounded functions). Then, as it follows from the proof

of Theorem 2.1, there exists an absolute constant d = (Ce�)

�1

< 1 such

that v

�1

2 E

�

(D

+

) for � < pd = �

0

, p = max(p; p

0

).

Let �rst p > 1 +

1

d

. Then p

0

<

�

1+d

d

�

0

= 1 + d. From the assumption

regarding p we have 1 + d < pd = pd = �

0

. Therefore p

0

< �

0

, and hence

1

v

2 K

p

0

(�).

Choose " > 0 so small as to have G 2 A(p+") and ind

p+"

G = ind

p

G = 0

(by the de�nition of the class A(p) and of its index, such " exists). By the

above proven,

1

v

2 K

(p+")

0

(�), and by the assumption, the problem (I) with

the coe�cient G

0

= exp(i arg

p+"

G) = exp(i arg

p

G) is uniquely solvable in

the class K

p+"

(�). On the basis of the above reasoning we apply Lemma

3.2 and conclude that v

+

2W

p+"

(�) = W

p+"

(�).

Let now p be an arbitrary number from the interval [2;+1) and jarg

p

Gj<

2�

p

. Assume p

0

= 2 +

1

d

. Then

p

p

0

j arg

p

Gj <

2�

p

0

. The functions G

�1

0

=

exp(�ipp

�1

0

arg

p

G) belong to A(p

0

), p

0

> 1 +

1

d

and, according to the just

proven,

exp

n

�p

2p

0

S

�

(i arg

p

G)

o

2W

p

0

+"

(�);

whence we obtain

exp

n

�

1

2

S

�

(i arg

p

G)

o

2 L

p+"

1

(�):

Consequently,

v

�1

(z)� 1 =

�

expf�K

�

(i arg

p

G)(z)g � 1

�

2 E

p+"

1

(D

�

)

and hence, using again Lemma 3.2, v

+

2W

p
+"

1

(�).
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The case p < 2 can be reduced to the previous one by considering the

problem

	

+

=

1

G

	

�

+ g

in the class K

p

0

(�) and taking into account that A(p

0

) = A(p).

It follows from the above arguments that:

(i) for an arbitrary � > 0, (u

�

)

+

2 \

p>1

W

p

(�);

(ii) there exists �

0

> 0 such that for 0 < � < �

0

we have (v

+

)

1+�

2W

p

(�).

Using the interpolation theorem from (0.20), we �nd that X

+

= u

+

v

+

2

W

p

(�) which, by Lemma 3.1, completes the proof of the theorem. �

It has been proved that if � is a smooth curve, then for an arbitrary

p > 1 and for G 2 A(p) with indG = 0 the problem (I) is uniquely solvable

and therefore from Theorem 3.1 we have

Theorem 3.2. If � is a closed smooth curve, G 2 A(p) with ind

p

G = 0,

lnG = ln jGj+ i arg

p

G, then the function

w(t) = exp

n

1

2

S

�

(lnG)(t)

o

belongs to the class W

p

(�), and the function X given by (3:5) is the factor-

function of G in the class K

p

(�).

3.2. The case G 2 A(p), � 2 J . Let us �rst show that if � 2 J , then the

function

�

�

(�) = expf

1

2

S

�

(lnG)(t(�))g =

= exp

n

1

2�i

l

Z

0

[lnG

0

(s)]t

0

(s)ds

t(s)� t(�)

o

; G

0

(s) = G(t(s)); (3.7)

belongs to the class W

p

(�).

Since � 2 J , there exists a Jordan smooth curve � = �(s), 0 � s � l, for

which the condition (1.1) is ful�lled. By Theorem 3.2, the function

�

�

(�) = exp

�

1

2�i

l

Z

0

[lnG

0

(s)]�

0

(s)ds

�(s) � �(�)

�

(3.8)

belongs to the class W

p

(�). Because � is a smooth curve, by Theorem 4.3

of Chapter I, we conclude that �

p

�

belongs to the Muckenhoupt class A

p

.

On the other hand, � 2 K � R. Therefore by Theorem 4.2 of Chapter

I we have �

�

2 W

p

(�). It follows from the de�nition of the class J that

0 < c

1

< �

�

(�)

1

�

�

(�)

< c

2

<1. Consequently �

�

2W

p

(�) as well.

Let now G 2 A(p), indG = 0 and X be a function given by (3.5). Then

X

+

=

p

G�

�

. Since 0 < m � jGj � M and �

�

2 W

p

(�), we �nd that
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X

+

2 W

p

(�). From this on the basis of Lemma 3.1 we conclude that X is

the factor-function for G in K

p

(�).

3.3. The case G 2 A(p), � 2 J

�

. The construction of the factor-function

is performed in two steps. First we construct it for the case where G is

a constant outside the arc of small length and then for the general case.

Proceeding from the representation (1.6) of the function G 2 A(p), without

restriction of generality we may assume that ReG > 0, and the intersection

of the range of G with a small circle with center at the point (1; 0) is of

positive measure.

Let c be an arbitrary point on �. By virtue of Proposition 3.1 in Chapter

I and by de�nition of the function from the class A(p), there is an arc

e

�

ab

� � such that c 2

e

�

ab

,

e

�

ab

2 J having tangents at the ends and all the

values adopted on

e

�

ab

are located in a sector with the vertex at the origin

and the angle less than

2�

p

.

Complement the curve

e

�

ab

by a broken line � as in Lemma 3.4 of Chap-

ter I. Then �

ab

=

e

�

ab

[ � will, by Proposition 3.2, be a closed curve of the

class R.

On

e

�

ab

, choose an arc �

de

with the ends d and e lying at positive dis-

tance from the ends a and b and consider an auxiliary problem of linear

conjugation: to determine a function � 2 K

p

(�

ab

) satisfying the condition

�

+

(t) = G

c

(t)�

�

(t) + g(t); t 2 �

ab

; (3.9)

where g 2 L

p

(�

ab

).

G

c

(t) =

(

G(t); t 2 �

de

1; t 2 �

ab

n�

de

:

(3.10)

Since ReG > 0, G

c

2 A(p) on the closed curve �

ab

, owing to the result from

section 3.2 we can conclude that the function

X(z) = exp

�

1

2�i

Z

�

ab

lnG

c

(t)dt

t� z

�

(3.11)

is the factor-function for G

c

in K

p

(�

ab

). Therefore the function

�(t

0

) = exp

�

1

2�i

Z

�

ab

lnG

c

(t)dt

t� t

0

�

; lnG

c

= ln jG

c

j+ i arg

p

G

c

(3.12)

belongs to W

p

(�

ab

), and hence to W

p

(

e

�

ab

). But it follows from (3.10) and

the de�nition of arg

p

G

c

(t) that

�(t

0

) = exp

�

1

2�i

Z

�

de

lnG(t)dt

t� t

0

�

: (3.13)
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Hence, if t

0

2 �n�

de

, then 0 < inf j�(t

0

)j � sup j�(t

0

)j < 1. Now it is

not di�cult to verify that � 2 W

p

(�). This implies that the function X

given by (3.11) is the factor-function for G

c

in K

p

(�). Since ind

p

G

c

= 0,

the problem (I) is uniquely solvable.Along with this we also �nd that the

operator

A

G

c

: '!

1

2

(1� G

c

)(�' + S

�

')

is Noetherian in L

p

(�).

Owing to the local principle of investigation of singular operators (see

[42], Theorem 2.1, Chapter XII) whose validity can be easily veri�ed even

when � 2 R, we �nally conclude that the operator A

G

in the class L

p

(�)

and the problem of conjugation (I) with the coe�cient G in the class K

p

(�)

are Noetherian for � 2 J

�

and G 2 A(p), respectively.

Lemma 3.3. If � 2 J

�

, G 2 A(p), ReG > 0, then the problem (I) is

uniquely solvable.

Proof. In L

p

(�), consider a family singular operators A

�

: '! A

�

', where

A

�

' = �

+

�G

�

�

�

, �

�

=

1

2

(�' + S

�

'), G

�

= �+ (1� �)G, � 2 [0; 1].

From the condition ReG > 0 it follows that G

�

2 A(p), indG = 0.

By the above proven, the operators A

�

are Noetherian. Moreover, A

�

is a

continuous on [0; 1] operator function and therefore its indices are the same

for all� (see, e.g., [42], p. 163). But A

0

= �

+

�G�

�

, A

1

= I. Consequently,

the operator A

0

is Fredholmian. From this, just in the same way as in section

3.1, we obtain the unique solvability in L

p

(�) of the equation A

0

' = g, i.e.,

of the problem (I). �

Show that for G 2 A(p) the factor-function is again given in an ordinary

way, that is, by (3.5) with lnG = ln jGj+ i arg

p

G.

Let �rst ind

p

G = 0. Present G as G = G

1

G

2

, where G

1

is a function

from the Lipschitz class with indG

1

= 0, G

2

2 A(p), ReG

2

> 0 ([141],

see also Lemma 1.1). The factor-function for G

1

is bounded from above

and separated from zero. Using this fact, we reduce the problem (I) to

the problem of same kind with coe�cient G

2

, ind

p

G

2

= 0. The latter is

uniquely solvable by Lemma 3.3. Thus the conditions of Theorem 3.1 are

ful�lled, and the factor-function of G can be written out by formula (3.5).

In particular, we have

w(t) = exp

�

1

2

S

�

(lnG)(t)

�

2 W

p

(�): (3.14)

Consideration of the case ind

p

G 6= 0 reduces in a common way to the

case of the non-zero index and then the corresponding factor-function is

constructed. We do not write it out for the time being. This will be done

in the sequel in a more general case.

Remark. In fact, in the present subsection the following statement was

proved: Let for any c 2 � there exist an arc �

c

� �, a closed curve

e

�

c
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containing �

c

and extension G

c

of G onto

e

�

c

which is factorizable in K

p

(

e

�

c

).

Then G is factorizable in K

p

(�).

3.4. Some subclasses of the set W

p

(�), � 2 J

�

.

Lemma 3.4. Let � 2 J

�

, c 2 �, 1 < p <1, �

1

p

< h <

1

p

0

. The oscillation


( ; t) of the function  (see 1:3) is supposed to satisfy the condition

sup

t2�


( ; t) <

2��(p)

p

; p = max(p; p

0

);

where

�(p) = 1� jhjp

0

: (3.15)

Then the function

w(t) = jt� cj

h

exp

�

1

2�

Z

�

 (� )d�

� � t

�

belongs to W

p

(�).

Proof. For h = 0, the lemma is valid according to subsection 3.3 (see 3.14),

because exp i 2 A(p). Let 0 < h <

1

p

0

. Choose " so small that

sup

t2�


( ; t) <

2�(1� hp

0

� ")

p

:

Since � 2 J

�

� K, then w

1

(t) = jt � cj

h(hp

0

+")

�1

2 W

p

(�). On the other

hand, the function

w

2

(t) = exp

�

1

2(1� hp

0

� ")

(S

�

 )(t)

�

also belongs to W

p

(�) (since under our assumptions exp

i (t)

1�hp

0

�"

2 A(p)).

Using Theorem from (0.20), from which in particular it follows that if w

i

2

W

p

(�), i = 1; 2, p > 1, � 2 (0; 1) then w

�

1

w

1��

2

2 W

p

(�) and putting

� = hp

0

+", we can easily see that the lemma in the case under consideration

is valid.

The case �

1

p

0

< h < 0 is treated analogously. �

Theorem 3.3. Let � be a simple closed curve of the class J

�

and  be a

real measurable function such that


( ; t) <

2�

p

; t 2 �: (3.16)

If  is continuous at the points c

k

2 �, (k = 1; n) and �

1

p

< h

k

<

1

p

0

,

then the function

w(t) =

n

Y

k=1

jt� c

k

j

h

k

exp

h

i

2

(S

�

 )(t)

i
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belongs to the class W

p

(�).

Proof. Assume �rst of all that n = 1. Put c

1

= c, h

1

= h and prove that

w(t) = jt� cj

h

exp

h

1

2�

Z

�

 (� )d�

� � t

i

2W

p

(�):

Since the function  is continuous at the point c, there exists an arc

�

0

� � such that

sup

t2�

0


( ; t) <

2��(p)

p

;

where �(p) is de�ned by the equality (3.15).

Choose the points t

i

= t(s

i

) (i = 1; 4) on �

0

such that the point t

i

while

moving in the positive direction precedes the point t

i+1

and, moreover,

c 2 (t

2

; t

3

). Introduce the notation (t

i

; t

i+1

) = �

i

, i = 1; 4, t

5

= t

1

.

Let now f 2 L

p

(�; w). By virtue of the Minkowski inequality, we have

�

Z

�

�

�

�

�

Z

�

f(� )d�

� � t

w(t)

�

�

�

�

p

jdtj

�

1

p

�

4

X

i;j

�

Z

�

i

�

�

�

�

w(t)

Z

�

j

f(� )d�

� � t

�

�

�

�

p

jdtj

�

1

p

: (3.17)

Show �rst that

Z

�

2

�

�

�

�

w(t)

Z

�

2

f(� )

� � t

�

�

�

�

p

jdtj � C

1

Z

�

jw(t)f(t)j

p

jdtj:

Let � 2 �

1

, � 2 �

3

, �

0

2

= (�; �) and let a function  

�

, given on �

and coinciding with  on �

0

2

be continuous on �n�

0

2

, and  

�

(�) =  (�),

 

�

(�) =  (�). Obviously,

sup

t2�


( 

�

; t) � sup

t2�

0

2

��

0


( ; t) <

2��(p)

p

(3.18)

and

sup

t2�

2

�

�

�

�

Z

�

 (� ) �  

�

(� )

� � t

d�

�

�

�

�

= sup

�

�

�

�

Z

�n�

0

2

 (� ) �  

�

(� )

� � t

d�

�

�

�

�

<1: (3.19)

Assume

�(t) =

(

f(t) for t 2 �

2

;

0 for t 2 �n�

2

:
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We have

Z

�

2

�

�

�

�

w(t(s))

Z

�

f(� )d�

� � t(s)

�

�

�

�

p

ds =

Z

�

2

�

�

�

�

w(t(s))

Z

�

�(� )d�

� � t(s)

�

�

�

�

p

ds =

=

Z

�

2

�

�

�

�

Z

�

�(� )d�

� � t

jt� cj

h

exp

�

1

2�

Z

�

 

�

(� )

� � t

+

1

2�

Z

�

 (� ) �  

�

(� )

� � t

d�

�
�

�

�

�

p

ds �

� C

2

Z

�

�

�

�

�

Z

�

�(� )d�

� � t

jt� cj

h

exp

�

1

2�

Z

�

 

�

(� )d�

� � t

�
�

�

�

�

p

ds:

Owing to (3.18), we use Lemma 3.4 to obtain

Z

�

2

jw(t(s))

Z

�

2

f(� )d�

� � t(s)

j

p

ds�C

3

Z

�

�

�

�

�

f(t)jjt� cj

h

exp

�

1

2�

Z

�

 

�

(� )d�

� � t

�

�

�

�

�

p

ds;

whence, taking into account (3.19), we get

Z

�

2

�

�

�

�

w(t(s))

Z

�

f(� )d�

� � t(s)

�

�

�

�

p

ds �

� C

3

Z

�

2

�

�

�

�

f(t)jt� cj

h

exp

�

1

2�

Z

�

 (� )d�

� � t

+

1

2�

Z

�

 

�

(� )�  (� )

� � t

d�

�

�

�

�

�

p

ds �

� C

4

Z

�

2

jw(t)f(t)j

p

ds: (3.20)

Let now i 6= 2 and

F (� ) =

(

f(t) for � 2 �

i

;

0 for � 2 �n�

i

:

Since � 2 J

�

, under the adopted assumptions on  we conclude that

exp

�

1

2�

R

�

 (�)d�

��t

�

2W

p

(�) (see Lemma 3.4). On the other hand, for i 6= 2

we have

0 < inf

t2�

i

jt� cj

hp

� sup

t2�

i

jt� cj

hp

<1:

Therefore

Z

�

i

jw(t)

Z

�

i

f(� )d�

� � t

j

p

ds = C

5

Z

�

�

�

�

�

Z

�

f(� )d�

� � t

�

�

�

�

p

�

�

�

�

exp

p

2�

Z

�

 (� )d�

� � t

�

�

�

�

ds �

� C

6

Z

�

jF (� )j

p

�

�

�

�

exp

p

2�

Z

�

 (� )d�

� � t

�

�

�

�

ds =
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= C

6

Z

�

i

jf(t)j

p

�

�

�

�

exp

p

2�

Z

�

 (� )d�

� � t

�

�

�

�

ds � C

7

Z

�

jw(t)f(t)j

p

ds: (3.21)

Further, consider the case in where �

i

and �

j

have no common end points.

It follows from (3.20){(3.21) that the restrictions of the function w on the

arcs �

i

belong to W

p

(�

i

), i = 1; 4. Hence w 2 L

p

(�

i

),

1

w

2 L

p

0

(�

i

). If

� 2 �

j

, t 2 �

i

, then inf j� � tj > 0, and using H�older's inequality, we obtain

Z

�

i

�

�

�

�

w(t)

Z

�

j

f(� )d�

� � t

�

�

�

�

p

ds � C

8

Z

�

i

�

Z

�

j

jf(t(�))jd�

�

p

jw(t(s))j

p

ds �

� C

9

�

Z

�

j

jw(t)f(t)j

p

ds

��

Z

�

j

�

�

�

1

w

p

0

(t)

�

�

�

ds

�

p�1

�

� C

10

Z

�

jw(t)f(t)j

p

ds: (3.22)

Let now �

i

and �

j

have common ends. For the sake of de�niteness

suppose that j = i + 1, and let �

i

= �

i

[ �

i+1

. On �

i

we de�ne the

function

'

i

(t) =

(

f(t) for t 2 �

i+1

;

0 for t 2 �n�

i+1

:

Obviously,

Z

�

i

�

�

�

�

Z

�

i+1

f(� )d�

� � t

w(t)

�

�

�

�

p

ds �

Z

�

i

�

�

�

�

Z

�

i

'

i

(� )d�

� � t

w(t)

�

�

�

�

p

ds:

But for the arcs �

i

, in exactly the same way as it has been proven for the

arcs �

i

, we can state that

Z

�

i

�

�

�

�

Z

�

i

'

i

(� )d�

� � t

w(t)

�

�

�

�

p

ds �

� C

11

Z

�

i

j'

i

(t)w(t)j

p

ds � C

11

Z

�

jf(t)w(t)j

p

ds: (3.23)

From the estimates (3.17), (3.20), (3.21) and (3.23) it follows the assertion

of the theorem for n = 1.

For n > 1, we partition the curve � into non-intersecting arcs �

k

, k = 1; n,

each containing only one point c

k

. If we put

w

k

(t) = jt� c

k

j

h

k

exp

�

1

2�

Z

�

 (� )d�

� � t

�

;
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then w

k

2W

p

(�). Let

F

j

(� ) =

(

f(� ); � 2 �

j

;

0; � =2 �n�

j

:

Then we have

Z

�

k

�

�

�

�

w(t(s))

Z

�

j

f(� )d�

� � t(s)

�

�

�

�

p

ds � A

1

Z

�

k

�

�

�

�

w

k

(t(s))

Z

�

F

j

(� )d�

� � t(s)

�

�

�

�

p

ds �

� A

2

Z

�

jF

j

(t)w

k

(t)j

p

ds � A

3

Z

�

jf(t(s)w(t))j

p

ds;

and from the inequality

Z

�

�

�

�

�

w(t)

Z

�

f(� )d�

� � t

�

�

�

�

p

ds � A

n

X

k;j

Z

�

k

�

�

�

�

w(t(s))

Z

�

j

f(� )d�

� � t(s)

�

�

�

�

p

ds

we arrive at the assertion of the theorem. �

Lemma 3.5. Let � 2 J

�

, 1 < p <1, c 2 �, �

1

p

< h <

1

p

0

. If

sup
( ; � ) <

2�

ep

; ep = max

�

p; p

0

;

p

1 + hp

;

p

p� 1� hp

�

;

then the function

w(t) = jt� cj

h

exp

h

i

2

(S

�

 )(t)

i

belongs to the class W

p

(�).

Proof. The assertion of the above lemma for 1 < p < 2 and 0 < h <

1

p

0

or for p > 2 and �

1

p

< h < 0 is contained in Lemma 3.4. The remaining

part of the theorem is proved by the scheme suggested in [36] (see also [42],

p. 377) for the proof of an analogous assertion in the case of Lyapunov

curves, using Theorem 2.1 and the results from subsection 3.5. In view of

the complete analogy, the proof is omitted. �

In exactly the same way as in Theorem 3.3, using only Lemma 3.5 instead

of Lemma 3.4, we prove

Theorem 3.4. Let � be a closed Jordan curve of the class J

�

, and  be a

real measurable function for which the condition (3:16) is ful�lled. If c

k

2 �,

k = 1; n, �

1

p

< h

k

<

1

p

0

and


( ; c

k

) <

2�

ep

; ep = max

�

p; p

0

;

p

1 + h

k

p

;

p

p� 1� h

k

p

�

;
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then the function

w(t) =

n

Y

k=1

jt� c

k

j

h

k

exp

h

i

2

(S

�

 )(t)

i

belongs to the class W

p

(�).

Remark 3. Theorems 3.3 and 3.4 are stated for the curves of the class

J

�

. However, following the thread of the proof, they remain valid for those

curves of the class R for which, as is known,

(1) �(t) =

Q

n

k=1

jt� c

k

j

h

k

2W

p

(�), �

1

p

< h

k

<

1

p

0

;

(2) w(t) = exp

h

i

2

(S

�

 )(t)

i

belongs to the class W

p

(�) if sup( ; t) <

2�

p

.

Remark 4. If the conditions (1) and (2) take place for some p > 1, then

they may be considered to be ful�lled for p+ " with any su�ciently small

" > 0.

Therefore the function w in the hypotheses of Theorems 3.3 and 3.4

belongs to W

p+"

(�).

To construct the factor-function for G 2

e

A(p), we will need, besides the

above arguments, an assertion ensuring an estimate of a singular integral

whose density is a piecewise linear function.

Lemma 3.6. Let � be a closed Jordan curve of the class K, c

k

= t(s

k

) 2 �,

s

1

< s

2

< � � � < s

n

and '(t(s)) = A

k

s + B

k

for t 2 [c

k

; c

k+1

), c

n+1

= c

1

;

A

k

and B

k

are real numbers. Then

0 < m �

exp

h

i

2

(S

�

')(t)

i

Q

n

k=1

jt� c

k

j

h

k

�M; (3.24)

where h

k

=

1

2�

['(c

k

�) � '(c

k

+)], k = 1; n.

Proof. Without restriction of generality we assume n = 2, c

1

= a, c

2

= b,

'(t) =

(

As +B; t 2 (a; b) = e;

0; t 2 �ne;

and we have to prove the inequality

0 < m �

exp[

i

2

(S

�

')(t)]

jt� aj

h

1

jt� bj

h

2

�M; (3.25)

where h

1

= �

1

2�

'(a), h

2

=

1

2�

'(b).

We have

i

2

(S

�

')(t) =

1

2�

Z

e

'(� ) � '(b)

� � t

d� +

'(b)

2�

Z

e

d�

� � t

=
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=

1

2�

Z

e

'(� )� '(b)

� � t

d� +

'(b)

2�

h

i��

e

(t) + ln

b� t

a� t

i

; (3.26)

where �

e

is the characteristic function of the arc (a; b).

Let c 2 �n[a; b] and

 

b

(� ) =  (� ) =

8

>

<

>

:

'(� )� '(b) for � 2 (a; b];

0 for � 2 (b; c);

(� � c)

'(a)�'(b)

a�b

for � 2 [c; a]:

Then the equality (3.26) can be written in the form

�

i

2

S

�

'

�

(t) =

1

2�

Z

�

 (� )d�

� � t

�

1

2�

Z

�ne

 (� )d�

� � t

+

'(b)

2�

[i��

e

(t) + ln

b� t

a� t

]:

Since ' satis�es the Lipschitz condition with respect to s and � 2 K, the

�rst summand is bounded on �. Moreover,

Z

�ne

 d�

� � t

=

Z

ca

 d�

� � t

;

and the distance from the point b to the arc (c; a) is positive. Therefore

there exists an arc neighbourhood (b

1

; b

2

) of the point b such that the second

summand in it is bounded. This implies the validity of (3.25) for t 2 (b

1

; b

2

).

Considering the function  

a

(� ) similar to  

b

(� ), we �nd that the inequal-

ity (3.25) is valid in some neighbourhood (a

1

; a

2

) of the point a. Its validity

in (b

2

; a

1

) is obvious.

Next, from the equalities

i

2

(S

�

')(t) =

1

2�

Z

e

A(s � s

0

)

� � t

d� +

'(t)

2�

Z

e

d�

� � t

and

1

2�

Z

e

d�

� � t

=

1

2�

Z

�

d�

� � t

�

1

2�

Z

�ne

d�

� � t

=

i

2

�

1

2�

Z

�ne

d�

� � t
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follows the boundedness of

i

2

S

�

' on the arc (a

2

; b

1

), and therefore (3.25) is

also valid on the same arc. �

Remark. If we assume in the hypotheses of the lemma that A

k

and B

k

are complex numbers and the curve at the point c

k

has tangents, then the

inequality (3.24) remains valid if we replace h

k

by Reh

k

.

3.5. The case � 2 J

�

, G 2

e

A(p). By Lemma 1.1, we have G = jGjG

1

G

2

G

3

,

where G

k

= exp i'

k

, k = 1; 2; 3. Moreover, G

1

2 H(1), {

p

(G

1

) = {

p

(G),

'

2

is a piecewise linear function with respect to s, '

3

is continuous at the

points of discontinuity of the function '

2

and sup j'

3

j <

2�

p

.

Let

h(z) = K

�

fln[G

1

(t)(t � z

0

)

�{

p

]g(z); z

0

2 D

+

:

Assume

X

0

(z) = exp[K

�

(ln jGj)](z); (3.27)

X

1

(z) =

(

exp h(z); z 2 D

+

;

(z � z

0

)

�{

p

exp h(z); z 2 D

�

;

(3.28)

X

k

(z) = exp[i(K

�

'

k

)(z)]; k = 2; 3; (3.29)

and

X(z) =

3

Y

k=0

X

k

(z) (3.30)

Prove thatX is the factor-function forG in the class K

p

(�). It is su�cient

to show that X

+

2W

p

(�) (the rest of the properties of the factor-function

follow from the this fact, Theorem 2.1 and Smirnov's theorem from (0.19)).

We have X

+

=

Q

3

k=0

X

+

k

. Due to the fact that G

1

2 H(1), the function

X

+

1

is bounded and inf jX

+

1

j > 0. Moreover X

0

2 \

�>1

W

�

(�), since jGj 2

\

p>1

A(p), ind

p

jGj = 0 (see 3.14). Further, from the de�nition of '

2

(see

1.5) and by Lemma 3.6 it follows that

X

+

2

(t) =

n

Y

k=1

jt� c

k

j

h

k

Z(t);

where �

1

p

< h

k

<

1

p

0

and Z satis�es the condition m < jZj < M .

Hence

X

+

(t) =

n

Y

k=1

jt� c

k

j

h

k

exp

h

i

2

S

�

'

3

i

Y (t) = w(t)Y (t);

where Y (t) = X

+

0

(t)X

+

1

(t)Z(t) and therefore Y 2 \

�>1

W

�

(�). For w all

the conditions of Theorem 3.3 are ful�lled (since sup

t2�


('

3

; t) < a(p), by

Lemma 1.1) and therefore, taking into account that theorem and Remark

2 to Theorem 3.4, we conclude that w 2W

p+"

(�). Using the theorem from
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(0.20), we obtain X

+

= (wY ) 2 W

p

(�). Thus the function X given by

(3.30) is the factor-function of G in K

p

(�).

Sum up the results of subsetions 3.1{3.5.

Theorem 3.5. If a simple closed curve � belongs to the class J

�

, G 2

e

A(p), { = {

p

(G), then the function X given by (3:30) is the factor-function

for G in K

p

(�). It possesses the following properties: (1) X 2

e

K

p

(�);

(2)

1

X

2

e

K

p

0

(�); (3) X

+

(t) = G(t)X

�

(t), t 2 �; (4) X

+

2 W

p

(�); (5)

lim

z!1

X(z)(z � z

0

)

{

p

(G)

= 1, z

0

2 D

+

.

Having this theorem we immediately obtain all the assertions of Theo-

rem 1.1.

3.6. The class of functions M (p) and problem (I) in the class K

p

(�) for

� 2 J

�

, G 2 M (p). Denote by M (p) the set of measurable on � functions

G representable in terms of G(t) = a(t)b(t), where a 2 A(p), and b is a

piecewise continuous function with a �nite number of points of discontinuity

of c

k

, k = 1; n, jb(t)j = 1 and if b(c

k

+)[b(c

k

�)]

�1

= exp 2�i


k

, then

min(0; 2p

�1

� 1) � 


k

� max(0; 2p

�1

� 1): (3.31)

(For de�nition of the class M (p) see [36], [42], p. 380.)

Prove that

e

A(p) �M (p).

Let G 2

e

A(p) and 2�


k

be jumps of its argument at the points c

k

. Denote

by  a real piecewise linear function with the jumps 2�


k

, where




k

=

(

�

k

�

1

p

0

+ " for 1 < p < 2;

�

k

+

1

p

� " for p > 2:

Since j�

k

� 


k

j =

1

max(p;p

0

)

� ", it is not di�cult to verify that the

function G(t) exp i (t) for su�ciently small " belongs to A(p). Assume

b(t) = exp i (t). Then G(t) = a(t)b(t). If we prove that the conditions

(3.31) are ful�lled for b(t), then this will imply that G 2M (p).

If 1 < p < 2, then 


k

= �

k

�

1

p

0

+ ". By (1.7),

1

p

0

< �

k

<

1

p

. Therefore

�

k

=

1

p

0

+ �

k

, 0 � �

k

<

2

p

0

� 1 and hence 


k

= �

k

+ ". For p > 2, (1.7)

yields �

k

= �

1

p

� �

0

k

, whence 0 � �

0

k

< 1�

2

p

. Obviously, in the both cases

one can choose " such that the inequalities (3.31) will be ful�lled for all 


k

(k = 1; n). Hence G 2M (p).

Let now � 2 J

�

and G 2 M (p). Then G(t) = a(t)b(t), where a and

b satisfy the above-mentioned conditions. Since � 2 J

�

and a 2 A(p),

by Theorem 3.5 we can construct a factor-function X

a

(z) with the property

lim

z!1

X

a

(z)(z�z

0

)

{

p

(a)

= 1, where z

0

2 D

+

and {

p

(a) is the index of the

function a. Moreover, we have b(t) = exp i (t), where  is a real piecewise

continuous function. Assume X

b

(z) = exp[i(K

�

 )(z)]. By Theorem 2.1 we

have (X

�1

b

� 1) 2 E

�

(D

�

), � > 0. Suppose X(z) = X

a

(z)X

b

(z). It is not

di�cult to see that Theorem 3.4 can be applied to X

+

. Hence X

+

2W

p

(�).
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From this, we immediately conclude that X satis�es all the conditions re-

quired for the factor-function. From the uniqueness of the factor-function

([68],) it follows that {

p

(a) does not depend on the representation of G in

terms of the product of a and b, and now we can state that:

If � 2 J

�

, G 2 M (p) and {(G) = {(a) then all statements of Theorem

1:1 are true.

This result is more general than that formulated in Theorem 1.1. In this

way, the factor-function for G is obtained in terms of X = X

a

X

b

, but to

construct a formula of solution for G 2

e

A(p), it is necessary �rst to �nd

a representation G = ab. There was no necessity in such a representation

in subsections 3.1{3.5, so we considered it reasonable to study in detail

the problem of conjugation with a coe�cient from the signi�cant particular

subclass

e

A(p) of the set M (p).

3.7. The problem of linear conjugation in the classes K

p

(�) for multiply

connected domains and open curves.

1. The case of a �nitely connected domain. Let � be a �nite family of

nonintersecting closed curves �

i

2 J

�

, i = 1; n, bounding a �nite domain

D

+

and let D

�

be the complement of the set D

+

[ � with respect to the

entire plane. The function G given on � will be called a function of the class

e

A(p) if it belongs to

e

A(p) on every curve �

i

. Assume x

p

(G) =

P

x

(i)

p

(G),

where {

(i)

p

(G) is the index of the restriction of �

i

on G. If for every curve

�

i

we construct by Theorem 3.5 a factor-function and assume that X is

the product of these functions, then, as is easily veri�ed, it will be the

factor-function of G in K

p

(�). Thus Theorem 1.1 is true in the case under

consideration.

2. The case of an open curve. Let � be a simple, open, oriented, rec-

ti�able curve. We seek for a function � 2 K

p

(�), whose boundary values

satisfy the condition of conjugation (I). If

e

� is a closed curve with � on

it, then, as is known (see, e.g., [66]), the solution of the above-formulated

problem reduces to the solution in the class K

p

(

e

�) of the following problem

of conjugation:

�

+

(t) =

e

G(t)�

�

(t) + eg(t); t 2

e

�;

where

e

G(t) =

(

G(t); t 2 �;

1; t 2

e

�n�;

eg(t) =

(

g(t); t 2 �;

0; t 2

e

�n�:

(3.32)

Thus, if one sets oneself the task of constructing in this a way a solution

of the problem on an unclosed curve, the boundary curve in this case must

be complemented to such curve

e

� for which the problem has already been

studied. On this basis we can extent the results of Theorems 3.5 and 1.1 to

the case of unclosed from the class J

�

curves with the tangents at the ends.

For this purpose, applying Lemma 3.4 and assertion 3.2 from Chapter I, we

have to complement � with respect to a closed curve

e

� 2 J

�

and to impose
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on G the conditions guaranteeing on � the belonging to the class

e

A(p) of

the function

e

G which is formed by formula (3.32).

As an example, we cite a version of function factorizability on an open

curve of the class J without additional assumptions that it has tangents at

the ends.

Theorem 3.6. Let �

ab

2 J and G 2 A(p) with the condition that the end

points a and b possess the neighbourhoods V

a

and V

b

(on �

ab

) such that all

values G(t) for t 2 V

a

[V

b

lie in an angle of

2�

p

with the vertex at the origin.

Then G is factorizable in the class K

p

(�), p > 1.

Proof. Let � be the smooth curve for which condition (1.1) is ful�lled. De-

�ne on � the function G

0

(� ) = G

0

(� (s)) = G(t(s)), 0 � s � l and comple-

ment � with respect to a simple smooth curve e�. By the assumption on G,

there exists a constant h such that the function

e

G

0

(� ) =

(

G

0

(� ); � 2 �;

h; � 2 e�n�;

(3.33)

belongs to

e

A(p) on e�. The function

1

h

f

G

0

will be the same. For the sake of

simplicity, we assume that ind

p

1

h

e

G

0

= 0. (As is seen from the above, to

this case easily reduces the case with nonzero index).

Since e� is a closed smooth curve, the problem (I) with this coe�cient

is by Theorem 3.1 uniquely solvable in the class K

p

(e�), and X

e�

(z) =

exp

h

K

e�

(ln

1

h

e

G

0

)(z)

i

is its factor-function. But if � 2 e�n�, then

1

h

e

G

0

= 1

and since ind

p

1

h

e

G

0

= 0, we may assume that ln

1

h

e

G

0

= 0 when � 2 e�n�.

Therefore X

e�

(z) = exp

h

K

�

�

ln

1

h

e

G

0

�

(z)

i

. Moreover, since X

e�

2 K

p

(e�) and

X

e�

(1) = 1, we �nd that X

e�

(z) = K

e�

(X

+

e�

�X

�

e�

)+ 1 = K

�

(X

+

�

�X

�

�

)+ 1:

Denote restrictions on � of the functions X

�

e�

by X

�

. Obviously, X

�

2

L

p

(�),

1

X

�

2 L

p

0

(�). We also have X

+

e�

2 W

p

(e�) and hence X

+

2 W

p

(�).

In exactly the same way as for the closed curves (see subsection 3.2) we

establish that w(t) = exp

h

1

2

S

�

�

1

h

lnG

�i

belongs to the class W

p

(�). Using

now a result from subsection 2.2, we can easily establish that the function

1

h

G is factorizable in the class K

p

(�) and hence G has the same property. �

x

4. The Linear Conjugation Problem in the Class of

Functions Representable in Domains D

�

by a Cauchy

Integral

Let � be a closed, recti�able, Jordan curve bounding the domains D

+

and D

�

, z = 1 2 D

�

. Consider the problem (I) in the class of functions

which are analytic on a plane cut along � and representable in the domains

D

+

and D

�

by the Cauchy integral (i.e., belonging to E

1

(D

�

)). In what
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follows, the class of such functions will be denoted by E

1

(�). This class

is the subset of K

1

(�). Thus, for example, there exists an integrable on 


function '

0

such that the boundary values �

+

0

of the Cauchy type integral

�

0

= K

�

'

0

are not summable. Evidently, �

0

2E

1

(�).

Note herewith that if p > 1 and boundary of D

�

belongs to R then the

class E

p

(�) coincides with the class K

p

(�) (see Chapter I, x3, Theorem 3.4).

In the sequel we will assume that

G 6= 0; G 2 H; { = indG; g; S

g

2 L(�); � 2 K: (4.1)

The assumption S

�

g 2 L(�) is necessary if we wish the jump problem

�

+

(t) � �

�

(t) = g(t)

to have a solution in the class E

1

(�).

The following assertions are valid:

(1) if � 2 K, ' 2 H then (S

�

')(t) coincides almost everywhere with the

function of the class H;

(2) if � 2 R, ' 2 L(�) then K

�

' 2 \

�>1

E

�

(D

�

) (see Chapter I, Corollary

of Theorem 3.3);

(3) if K

�

' 2 E

1

(�), a 2 H then K(a') 2 E

1

(�).

The validity of the assertion (1) follows directly from the following rea-

soning. Let ' 2 H(�). The second summand in the equality

(S

�

')(t) =

1

�i

Z

�

'(� )� '(t)

� � t

d� +

'(t)

�i

Z

�

d�

� � t

coincides almost everywhere with '(t). The �rst one also belongs to the

H�older class (generally speaking, with the exponent less than �). In order

to see that this is so, it su�ces to follow the proof of the same assertion (see

[106], p.70{73) in the case of smooth curves with the only di�erence that

the estimate of the integral I

1

appearing there should be replaced by

jI

1

j �

1

2�

j'(t

0

) � '(t

0

+ h)j

Z

L�l

jdtj

jt� t

0

j

�

�

k

2�

j'(t

0

)� '(t

0

+ h)j

Z

L�l

ds

js� s

0

j

� cjhj

�

j lnhj � c

1

h

��"

: (4.2)

Prove the assertion (3).

By virtue of (2), we have K

�

(a') 2 \

�<1

E

�

(D

�

). Further,

Z

�

j(K

�

(a'))

+

jds �

1

2

Z

�

ja'+ S

�

(a')jds =

=

1

2

Z

�

�

�

�

�

a'+ 2aS

�

' +

1

2�i

Z

�

a(� )� a(t)

� � t

'(� )d�

�

�

�

�

ds �
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�

1

2

Z

�

ja'jds+max jaj

Z

�

jS

�

'jds+

M

2�

Z

�

Z

�

j'(� )(�)jd�

j� � sj

1��

ds:

Replacing the order of integration in the third summand on the right-

hand side, we can see that [K

�

(a')]

+

2 L(�), and hence (K

�

(a')) 2

E

1

(D

�

).

On the basis of assertions (1){(3) we can easily prove

Theorem 4.1. Let a closed curve � 2 K bound the domains D

+

and D

�

.

If the conditions (4:1) are satis�ed, then for the linear conjugation problem

(I) in the class E

1

(�) the assertion I from Theorem 1:1 is valid.

x

5. The Linear Conjugation Problem in the Classes K

p

(�; w)

and Its Applications

Let � be a simple, closed, recti�able curve and

w = exp iS

�

 ; Im = 0;  2 L

1

(�); w 2W

p

(�): (5.1)

If � 2 J

�

, then as an example of such a function may serve  = arg

p

G,

G 2

e

A(p) (see Theorem 3.5). Under the above assumption regarding w con-

sider the problem: de�ne a function � 2 K

p

(�; w) which almost everywhere

on � satis�es the boundary condition (I).

We will also consider the linear singular integral equation (II) in the class

L

p

(�; w).

To preserve the equivalence of the problem (I) in the class K

p

(�;w) and of

the singular equation (II) in the space L

p

(�;w), it is necessary to require for

the operator S

�

to act fromL

p

(�; w) to L

p

(�;w). Consequently by Theorem

2.3 of Chapter I, S

�

is bounded in that space, and hence w 2 W

p

(�).

We arrive at the same conclusion when we want that the jump problem

�

+

� �

�

= g would be solvable for every g 2 L

p

(�;w) in the class of those

functions from the class K

p

(�;w) for which �

�

2 L

p

(�;w). Thus, in the

above-mentioned cases the necessary condition is: w 2 W

p

(�). But in a

number of cases, every weighted function from W

p

(�) is equivalent to the

function w from (5.1); (e.g., by Theorem 4.8 of Chapter I, for every function

w 2W

p

(�) in the case of Lyapunov curves there exist bounded u and v such

that Imv = 0, w = exp(u+ iS

�

v).

On the basis of the above arguments, the assumptions (5.1) adopted by

us with respect to the weight function w may be considered to be natural.

5.1. Reduction of the problem (I) in the class K

p

(�;w) to the linear con-

jugation problem in K

p

(�).

Theorem 5.1. Let a closed curve � 2 R and  be a real bounded function

such that w = exp

�

i

2

S

�

 

�

belongs toW

p

(�). Then for an arbitrary solution

� 2 K

p

(�;w) of the problem (I) the function 	(z) = Y (z)�(z), where

Y (z) = exp[i(K

�

 )(z)];
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is a solution of the class K

p

(�) of the conjugation problem

	

+

(t) = G(t) exp(i )	

�

(t) + g

1

(t); g

1

(t) = g(t)[Y

+

(t)]

�1

: (5.2)

Conversely, if 	 is a solution of the problem (5:2) belonging to K

p

(�), then

the function �(z)Y

�1

(z)	(z) belongs to the class K

p

(�; w) and satis�es the

boundary condition (I).

Proof. Show �rst that Y 2

e

K

p

0

(�; w

�1

). By Theorem 2.1, for some � > 0

we have Y 2 E

�

(D

+

). But y

+

= exp

h

i 

2

+

i

2

S

�

 

i

= w exp

i 

2

, and since

w 2W

p

(�), we have that Y

+

2 L

p

(�) (by Lemma 4.2 of Chapter I). Using

the fact that � 2 R and D

+

is a Smirnov's domain, we conclude that Y 2

E

p

(D

+

). From this, following the proof of Theorem 2.1 we notice that one

can take in it n

0

= 0. Then (Y �1) 2 E

p

(D

�

), and thus (Y �1) 2 E

p

(D

�

).

Therefore (Y �1) in the domainsD

�

is representable by the Cauchy integral,

that is, Y 2

e

K(�). The density of the corresponding integral will be

Y

+

� Y

�

= w

h

exp

i 

2

� exp

�i 

2

i

:

This function, evidently, belongs to the class L

p

0

(�; w

�1

), and hence Y 2

e

K

p

0

(�; w

�1

).

Thus the functions � and Y belong to the adjoint classes

e

K

p

(�; w) and

e

K

p

0

(�; w

�1

), respectively, and so 	 = �Y belongs to the class

e

K(�) (see,

e.g., [68], p. 98{99). Next, it is obvious that 	

�

2 L

p

(�), 	(1) = 0.

Consequently, 	 2 K

p

(�). It can be easily veri�ed that g

1

2 L

p

(�) and 	

satis�es the boundary condition (5.2).

The converse assertion is proved analogously. �

Remark. Theorem 5.1 holds also valid in the case where the condition

w 2W

p

(�) from (5.1) is replaced by the conditionw 2 L

p

(�), w

�1

2 L

p

0

(�).

Indeed, Y belongs to

e

K

p

0

(�) since by Theorem 2.1, Smirnov's theorem

and also the condition w

�1

2 L

p

0

(�). Further � 2 \

�<1

E

�

(D

+

), so as we

have L

p

(�; w) � L(�) and � 2 \

�<1

R

1;�

(see Chapter I, (3.4)), and we can

apply the corollary of Theorem 3.3 in Chapter I. Therefore 	 2 E

r

(D

�

) for

some r > 0. But 	

�

2 L

p

(�), and hence 	 2 K

p

(�).

In the same way, from the assumptions 	 2 K

p

(�; w) and w 2 L

p

(�) we

establish that � 2 K

p

(�).

5.2. The problem (I) in the class K

p

(�; w) for � 2 J

�

. As far as the problem

(I) is well studied in the class K

p

(�), Theorem 5.1 allows one to obtain the

appropriate results for this problem in the class K

p

(�; w) when w is required

to satisfy conditions (5.1). As an example, we give here a result based on

Theorem 1.1.
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Theorem 5.2. Let � 2 J

�

, g 2 L

p

(�; w) and let  be a real, measurable,

bounded function such that w = exp[

i

2

S

�

 ] 2 W

p

(�). If the function G

w

=

G exp i belongs to the class

e

A(p) (or to M (p)) and {(G

w

) is the index

of the function G

w

in the class K

p

(�), then for problem (I) in the class

K

p

(�; w) assertion I of Theorem 1:1 is true.

5.3. On the Noetherianness of a singular integral equation in the spaces

L

p

(�; w). The results of subsection 5.2 allow one to obtain an analogue

for the second part of Theorem 1.1 regarding singular integral equations

in the spaces L

p

(�; w). We will use the results of I.B. Simonenko on the

equivalence between the Noetherian characteristic singular integral equation

in the Lebesgue spaces and the factorizability of the de�nite function in the

classes representable by the Cauchy type integral.

Theorem 5.3. Let the closed curve � 2 R and the function w satisfy the

conditions (5:1). If a and b are bounded, measurable on � functions and

inf

t2�

ja

2

(t)� b

2

(t)j > 0; (5.3)

then the equation

a' + bS

�

' = g (5.4)

is Noetherian in the space L

p

(�; w) if and only if the equation

a

1

f + b

1

S

�

f = g

1

; (5.5)

with

a

1

= a(1 +m) + b(1�m); b

1

= a(1�m) + b(1 +m); m = exp i ;

is Noetherian in the space L

p

(�; w).

The equations (5:4) and (5:5) have the same indixes.

Proof. We will rely on the following assertion: - the noetherianness of the

equation (5.4) in the space L

p

(�; w), w 2 W

p

(�) is, under the condition

(5.3), equivalent to the factorizability of the function G = (a � b)(a + b)

�1

in the class K

p

(�;w), the index of equation (II) in L

p

(�;w) being equal to

(�{), where { is the order of the factor-function G at in�nity.

This assertion for w = 1 is proved in [143]. The case of the power weight

has been considered in [42, pp. 272{275]. Making slight modi�cation in the

proof of [143] (connected with the properties of the Cauchy type integrals

on the curves from the class R), we can see that the above assertion is also

valid for the assumptions � 2 R, w 2 W

p

(�).

Let the equation (5.4) be Noetherian in L

p

(�;w). Show that the equa-

tion (5.5) is Noetherian in L

p

(�). By the above, it su�ces to show the

factorization in K

p

(�) of the function G

1

= (a

1

� b

1

)(a

1

+ b

1

)

�1

, provided

the factorizability in K

p

(�;w) of the function G = (a� b)(a+ b)

�1

.
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Let X be a factor-function for G in K

p

(�;w). Show that the function

Z = XY; (5.6)

where

Y (z) = exp

�

1

2�

Z

�

 (� )d�

� � z

�

; z2�; (5.7)

is the factor-function for G in K

p

(�).

Since (a

1

� b

1

)(a

1

+ b

1

)

�1

= (a� b)(a+ b)

�1

m and

Z

+

Z

�

=

X

+

Y

+

X

�

Y

�

=

a� b

a+ b

exp i =

a� b

a+ b

m;

we �nd that

Z

+

(Z

�

)

�1

= (a

1

� b

1

)(a

1

+ b

1

)

�1

:

Determine the remaining properties of the factor-function.

In proving Theorem 5.1, we have shown that Y 2

e

K

p

0

(�;w

�1

). The

fact that X 2

e

K

p

(�;w), w 2 W

p

(�), implies Z 2

e

K

1

(�). Then Z =

K

�

(Z

+

� Z

�

), where

Z

�

(t) = X

�

(t)w(t)m

�

1

2

(t): (5.8)

It can be easily veri�ed that Z

�

2 L

p

(�). Moreover, both X and Y

belong to the classes E

�

(D

�

), � < 1 and so Z 2 E

�

0

(D

�

), �

0

> 0. Therefore

Z 2 K

p

(�). Analogously we can prove that Z

�1

2 K

p

0

(�), taking into

account that w

�1

2 L

p

0

(�).

Thus, Z 2

e

K

p

(�;w), Z

�1

2 K

p

0

(�;w

�1

). It remains to prove that the

operator Z

+

S

�

1

X

+

is continuous in L

p

(�). This immediately follows from

the continuity in L

p

(�;w) of the operator X

+

S

�

1

X

+

, if we take into account

(5.8).

With regard for (5.6), it is evident that both Z and X have the same

order at in�nity, and consequently the equations (5.4) and (5.5) have the

same index in the classes L

p

(�;w) and L

p

(�), respectively.

In exactly the same way we can prove that the noetherianness of equation

(5.5) in L

p

(�) leads to that of the equation (5.4) in L

p

(�;w), and hence we

conclude that these equations have the same indexes. �

In addition to the arguments proved above, we will point out the formulas

providing one-to-one correspondence between the solutions of the equations

(5.4) and (5.5). For the sake of simplicity we suppose that their index is

equal to zero. Since

' = �

+

� �

�

; f = F

+

� F

�

;

where

�

+

= G�

�

+ g; F

+

= G

1

F

�

+ g

1

;
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we can easily determine that: if ' the solution of equation (5.4) of the class

L

p

(�;w) and Y is the function given by (5.7), then the function

f =

1

2

(Y

+

+ Y

�

)' +

1

2

(Y

+

� Y

�

)S

�

'

will be a solution in the class L

p

(�) of equation (5.5) with g

1

=

g

Y

+

on the

right-hand side. If, however,  is a solution of (5.5) of the class L

p

(�), then

the function

' =

1

2

(

1

Y

+

+

1

Y

�

)f +

1

2

(

1

Y

+

�

1

Y

�

)S

�

f

will be a solution in the class L

p

(�; w) of (5.4) with g = g

1

Y

+

on the

right-hand side.

x

6. The Linear Conjugation Problem in the Case of a

Straight Line

6.1. Functions of the class

e

A(p) on a straight line. Let t be an arbitrary

point on the real D axis and let e be its neighbourhood (the case t = 1 is

not excluded; any set of the kind (t < �N )[ (t > M ); N;M > 0 is assumed

to be the neighbourhood of this point). If  is a bounded function, then its

oscillation 
( ; t

0

), t

0

2 D, can again be de�ned by the equality (1.3).

Let G be a function given on D and let

�

t�i

t+i

�

�

2

p

be a boundary value

on D of the function

�

z�i

z+i

�

�

2

p

, analytic on the plane cut along the non-

intersecting rays coming out the points z = �i and lying on the ordinate

axis.

We will say that G 2

e

A

D

(p), 1 < p < 1 if: (1) 0 < m � jGj � M ; (2)

for all t 2 D with the possible exception of the points c

k

, k = 1; n (the case

c

k

= 1 is not excluded) there exists a neighbourhood in which the values

of the function G

(1)

(t) = G(t)

�

t�i

t+i

�

�

2

p

lie in an angle less than

2�

max(p;p

0

)

with the vertex at the origin; (3) at the points c

k

there exist the limits

G(c

k

�) (and hence G

(1)

(c

k

�)). Moreover,

2�

p

< �

k

�

2�

p

0

for p > 2 and

2�

p

0

� �

k

<

2�

p

for 1 < p < 2, where �

k

is the angle formed by the vectors

G

(1)

1

(c

k

�) and G

(1)

(c

k

+) for jc

k

j <1 and by the vectors lim

t!+1

G

(1)

(t)

and lim

t!�1

G

(1)

(t) for c

k

=1.

Together with G we will consider the function G

1

(� ) = G

�

i

1+�

1��

�

de�ned

on the circumference 
 and assume G

2

(� ) = G

1

(� )�

�

2

p

, where �

�

2

p

is the

boundary value at the point � of that branch of the function z = w

�

2

p

, ana-

lytic in the plane cut along the ray [0;+1), which takes the value exp(�

�i

p

)

at the point w = i.

For the function G 2

e

A

D

(p) we can determine an argument and an index

just in the same way as in x1. It is not di�cult to verify that

{

p

(G;D) = {

p

(G

2

; 
) + 1:
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6.2. The class of the functions m

p

(
). Let � = K

D

('). Then the function

	(w) = �

�

i

1 +w

1�w

�

; (6.1)

analytic in the circle U , is representable in the form

�

�

i

1 + w

1� w

�

=

1�w

2�i

Z




'(i

1+�

1��

)d�

(� � w)(1� � )

=

1

2�i

Z




'

�

(� )d�

� �w

+

1

2�i

Z




'

�

(� )d�

1� �

;

where

'

�

(� ) = '

�

i

1 + �

1 � �

�

; '

�

2 L

p

(
; w); w = j1� � j

�

2

p

: (6.2)

Denote by m

p

(
) the set of the functions 	 representable in the form

	(w) =

1

2�i

Z




 (� )d�

� � w

+

1

2�i

Z




 (� )d�

1� �

; jwj 6= 1 (6.3)

and such that 	

�

2 L

p

(
; w) or, which is the same,

 ; S




 2 L

p

(
; w); w = j1� � j

�

2

p

:

Then if � 2 K

p

(D), then the given by (6.1) function 	 2 m

p

(
), and

conversely, if 	 2 m

p

(
), then �(z) = 	

�

z�i

z+i

�

2 K

p

(D).

6.3. Reduction of the problem in the class K

p

(D) to the problem in the class

m

p

(
). Let one seek for the function � 2 K

p

(D) satisfying the boundary

value

�

+

(t) = G(t)�

�

(t) + g(t): (6.4)

If � is a solution of this problem, then 	(w) = �

�

i

1+w

1�w

�

will be a solution

in the class m

p

(
) of the problem

	

+

(� ) = G

�

i

1 + �

1� �

�

	

�

(� ) + g

�

i

1 + �

1� �

�

:

Assuming G

1

(� ) = G

�

i

1+�

1��

�

, and g

1

(� ) = g

�

i

1+�

1��

�

, the last equality

takes the form

	

+

(� ) = G

1

(� )	

�

(� ) + g

1

(� ); (6.5)

and we can easily verify that g

1

2 L

p

(
; w).

Rewrite (6.5) as

	

+

(� ) = G

1

(� )�

�

2

p

�

2

p

	

�

(� ) + g

1

(� ): (6.6)
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Let now f(w) =

�

1�w

w

�

2

p

be a function, analytic in the plane cut along

the segment of the real axis [0; 1] such that f(i) = exp(�

3�

2p

i). In the

plane cut along the ray [1;+1), de�ne the functions r(w) = (1 � w)

2

p

,

r(i) = exp(�

�i

2p

). They are continuous up to 
 except for the point � = 1

and branches are chosen such that the function

�(w) =

(

(1� w)

2

p

; jwj < 1;

(

1�w

w

)

2

p

; jwj > 1

(6.7)

satis�es the condition �

+

(� )[�

�

(t)]

�1

= �

2

p

on 
nf1g. Now (6.6) can be

written as

	

+

(� )

�

+

(� )

= G

1

(� )�

�

2

p

	

�

(� )

�

�

(� )

+

g

1

(� )

(1� � )

2=p

:

Denote

F (w) =

	(w)

�(w)

; G

2

(� ) = G

1

(� )�

�

2

p

; g

2

(� ) =

g

1

(� )

(1� � )

2=p

: (6.8)

Then

F

+

(� ) = G

2

(� )F

�

(� ) + g

2

(� ): (6.9)

Since 	 2 m

p

(
), then F 2

e

K

p

(D).

Thus if � 2 K

p

(D) is a solution of the problem (6.4) and 	(w) =

�

�

i

1+w

1�w

�

, then

	(w) = F (w)�(w); (6.10)

where �(w) is de�ned by (6.7), and F is a solution of the problem (6.9) of

the class

e

K

p

(
). However, if it will happen that 	 2 m

p

(
), then �(z) =

	

�

z�i

z+i

�

will be a solution of the problem (6.4) of the class K

p

(D).

6.4. Solution of the problem. Since G 2

e

A

D

(p), then G

2

2

e

A(p) on 
 and

therefore it is factorizable in K

p

(
). Let X be its factor-function. It can be

easily seen that the solution of the class

e

K

p

(
) of the problem (6.9) given

by

F (w) =

X(w)

2�i

Z




g

2

(� )d�

X

+

(� )(� � w)

+X(w)P

{

(w);

where { = {

p

(G

2

) and P

{

= 0, if { � �1.

The function

	(w) = �(w)X(w)

�

1

2�i

Z




g

2

(� )d�

X

+

(� )(� � w)

+ P

{

(w)

�

(6.11)

satis�es the conditions 	

�

2 L

p

(
; w). In order for 	 to belong to m

p

(�),

it is necessary to �nd a function  such that equality (6.3) would hold.
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Consider the following cases. I. {(G

2

) > �1; II. {(G

2

) � �1.

I. {(G

2

) > �1 (that is, {(G) > 0). The set of solutions given by (6.11)

involves {(G

2

) = {(G) � 1 constants. So we must choose them in such

a manner that the corresponding to them function 	(w) would belong to

m

p

(
). Since ind

p

G

2

= {, there exists lim

w!1

w

{

X(w) = c, c 6= 0.

The function 	(w) �

c

w

x

P

{

(w) vanishes at in�nity, and therefore it can be

represented by the Cauchy type integral

	(w) �

cP

{

(w)

w

{

=

1

2�

Z




[	

+

�

c

�

x

P

{

]� [	

�

�

c

�

{

P

{

]

� � w

d� =

=

1

2�i

Z




	

+

(� )� 	

�

(� )

� �w

d�:

If P

{

(w) = A

0

w

{

+A

1

w

{�1

+ � � �+A

{

, then we �nd that

	(w)=

1

2�

Z




	

+

(� )� 	

�

(� )

� � w

d�+cA

0

�

c

2�i

Z




�

A

1

�

+� � �+

A

{

�

{

�

d�

� � w

=

=

1

2�i

Z




[	

+

(� )� 	

�

(� )] +R(� )

� � w

d� + cA

0

;

where

R(� ) = �c

�

A

1

�

+ � � �+

A

{

�

{

�

;

and

	

+

� 	

�

=�

+

�

g

2

+X

+

S




g

2

X

+

+X

+

P

{

�

� �

�

�

g

2

G

2

+X

�

S




g

2

X

+

+

+X

�

P

{

�

=

h

�

+

�

g

2

+X

+

S




g

2

X

+

�

� �

�

�

g

2

G

2

+X

�

S




g

2

X

+

�i

+

+X

+

�

+

P

{

�X

�

�

�

P

{

= 	

0

+X

�

�

�

�

X

+

�

+

X

�

�

�

� 1

�

P

{

=

=	

0

+	

1

P

{

; 	

0

=

h

�

+

�

g

2

+(g

2

)+X

+

S




g

2

X

+

�

��

�

�

g

2

G

2

�X

�

S




g

2

X

+

�i

:

For the inclusion 	 2 m

p

(
) it is necessary and su�cient that the con-

dition

cA

0

=

1

2�i

Z




	

+

(� )� 	

�

(� ) + R(� )

1� �

d�;

that is,

cA

0

=

1

2�i

Z




	

0

(� ) + 	

1

(� )P

{

1� �

d� + c(A

1

+ � � �+ A

{

)

be ful�lled.



127

Hence we have

c(A

0

� A

1

� � � � �A

{

) = a+ A

0

b

1

+ � � �+ A

{

b

{

; (6.12)

where

a =

1

2�i

Z




	

0

(� )d�

1� �

; b

j

=

1

2�i

Z

�

�

�

(� )X

�

(� )(G

1

� 1)�

{�j�1

1� �

d�:

With respect to the unknown numbers A

0

; : : : ; A

{

and { > 0, the equa-

tion (6.12) is solvable. Indeed, this is evident for {(G

2

) > 0 . Substituting

the above-found values in (6.11), we obtain the general solution of the prob-

lem. Note that this solution contains {(G

2

) arbitrary constants. For { = 0,

we will proceed from the representations (6.3) and (6.11). According to the

former, 	(1) =

1

2�i

R




	

0

(�)d�

1��

, while to the latter, 	(1) = A

0

. Whence

A

0

=

1

2�i

Z




	

0

d�

1� �

:

Thus, if ind

p

G

2

> �1, the coe�cients of the polynomialP

{

satisfy (6.12)

and the function 	 is given by (6.11), then the function �(z) = 	

�

z�i

z+i

�

is

a solution of the problem (6.4).

II. {(G

2

) � �1 (that is, {(G) � 0). In this case the problem (6.5) may

have perhaps only one solution given by equation (6.11) with P

{

= 0. For

its solvability, the following conditions are to be ful�lled:

Z




g

2

(� )

�

k

X

+

(� )

d� = 0; k = 0; 1; : : : ; j{j � 1: (6.13)

Show that the function 	 belongs to m

p

(
). Since the conditions (6.13)

are ful�lled, there exists lim

w!1

F (w) = c, i.e., 	(1) = c. Then

	(w) =

1

2�i

Z




	

+

(� )� 	

�

(� )

� � w

d� + c

and for the inclusion 	 2 m

p

(
) we must have

0 =

1

2�i

Z




	

+

(� ) �	

�

(� )

1� �

d�: (6.14)

The function

	

+

(w)

1�w

=

(1�w)

2

p

F (w)

1�w

belongs to H

1

, and therefore

1

2�i

Z




	

+

(� )d�

1� �

= 0:
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Further, (6.3) implies that 	(1) = c = �

1

2�i

R




	

�

(�)d�

1��

, and hence

(6.14) is ful�lled.

Thus, problem (6.5) for {(G

2

) � �1 possesses the solution in the class

m

p

(
) if and only if are ful�lled conditions (6.13). In this case the solution

is unique and given by formula (6.11).

Transforming the variable in (6.11) and taking into account the fact that

{(G

2

; 
) = {(G;D)� 1, the solutions (if any) of problem (6.4) are given in

all the cases by the equality

�(z) =

�

2i

z + i

�

2

p

X

�

z � i

z + i

�

�

�

�

z + i

2�i

1

Z

�1

(t+ i)

2

p

�1

g(t)dt

X

+

(

t�i

t+i

)(t� z)

+ P

{(G)�1

�

z � i

z + i

�

�

: (6.15)

Note that if {(G) � 0, then the conditions (6.12) must be ful�lled ensuring

{(G) � 1 arbitrary coe�cients for the polynomial P

{(G)�1

. If {(G) < 0,

then for the problem to be solvable it is necessary and su�cient that the

conditions

1

Z

�1

g(t)

�

t� i

t+ i

�

k

1

X

+

(

t�i

t+i

)

dt

(t+ i)

2

= 0; k = 0; : : : ; j{

p

(G)j � 1; (6.16)

be ful�lled, where X(z) is the factor-function for G

2

(� ) = G

�

i

1+�

1��

�

�

�

2

p

.

6.5. One theorem on weights in the case of a straight line. As a consequence

of the result obtained in subsection 6.4 we present the following:

Proposition 6.1. If �

1

p

< �

k

<

1

p

0

, �

1

p

< � +

P

n

k=1

�

k

<

1

p

and X is the

factor-function of a function from

e

A(�) on 
, then the functions

w

1

(t) = X

+

�

t� i

t+ i

�

(t+ i)

1�

2

p

(6.17)

and

w(t) = (1 + jtj

�

)

n

Y

k=1

jt� t

k

j

�

k

; t

k

2 D; (6.18)

belong to the class W

p

(D).

Proof. The �rst assertion is a consequence of the fact that the function

given by the equality (6.15) is a solution of the problem (6.4) in the class

K

p

(D).
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To prove the second assertion, it su�ces to show that the function �(t) =

(t+ i)

�

n

Q

k=1

jt� t

k

j

�

k

belongs to the class W

p

(D). Suppose

�

0

= 1�

2

p

�

n

X

k=1

�

k

� �; �

k

= �

k

; k = 1; n:

Then

1

p

< �

0

<

1

p

0

. Indeed, by assumption we have �

1

p

0

�

P

n

k=1

�

k

< � <

P

n

k=1

�

k

+

1

p

0

. Therefore

�

0

<

�

1�

2

p

�

n

X

k=1

�

k

�

+

1

p

+

n

X

k=1

�

k

=

1

p

0

;

�

0

>

�

1�

2

p

�

n

X

k=1

�

k

�

+

n

X

k=1

�

k

�

1

p

0

= �

1

p

:

Consequently, the function �

1

(� ) =

Q

n

k=1

j� � c

k

j

�

k

, where c

k

= i

1+t

k

1�t

k

,

belongs to the class W

p

(
). But 0 < m <

�

�

�

�

1

(�)

X

+

(�)

�

�

�

< M , where X is

the factor-function of the piecewise continuous on 
 function of the class

e

A(p). Therefore, by virtue of (6.17), we have �

1

�

t�i

t+i

�

(t+ i)

1�

2

p

2 W

p

(D).

THe transformation of the variable in �

1

(� ) shows that the our assertion is

valid. �

6.6. On the problem of conjugation in the case of an in�nite curve. Singular

integrals on in�nite lines or the problem of conjugation in domains with

such boundaries have been investigated in [32], [168], etc. The problem in

the class K

p

(�) is considered in [111] for a class of curves. Following the

reasoning of subsections 6.1{6.4 and using the results of [111] (such as the

belonging of the curves under consideration to R, reduction of the problem

to the case of bounded curve, and etc.) we can extend the result of the

present section to the curves from the above-mentioned class. Despite the

complete analogy, we do not dwell on the question.

x

7. On the Riemann{Hilbert Problem in a Class of Cauchy

Type Integrals

Let � 2 R be a closed Jordan curve bounding a �nite domain D. Denote

by K

p

(D; �), 1 < p <1 a set of analytic in D functions � representable in

terms of

�(z) =

1

2�i

Z

�

'(t)dt

t� z

; z 2 D; ' 2 L

p

(�; �):

In other words, the class K

p

(D; �) consists of the restrictions on D of the

functions from the class K

p

(�; �). Let a, b, c be real functions de�ned on �,
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and

a; b 2 L

1

(�); c 2 L

p

(�; �); inf

t2�

ja

2

+ b

2

j > 0: (7.1)

Consider the Riemann-Hilbert problem formulated as follows: de�ne the

function � 2 K

p

(D; �) whose angular values �

+

(t) satisfy almost everywhere

on � the condition

Re[(a(t) + ib(t))�

+

(t)] = c(t): (7.2)

This problem will be called homogeneous for c = 0.

In the sequel will be used Muskhelishvili method of reduction of Riemann-

Hilbert problem to the problem of linear conjugation. For such a reduction

it is necessary to know properties of the integrals (K

�

f)(z(w)) in a circle,

where z = z(w) is a conformal mapping of the circle onto D. The obtained

linear conjugation problem has to be considered in the class

e

K

p

(
; r), where

r is independent not only of � but of the derivative z

0

(w), namely r(�) =

�(�)

p

p

z

0

(�). In the general case r di�ers from the conventional weight-

w =

Q

j� � c

k

j

�

k

. Moreover, such a situation takes place even if � = 1 and

� is a smooth curve.

7.1. Reduction of the problem (7.2) to the linear conjugation problem. The

conditions

1) � 2 R; 2) � 2 W

p

(�); 3) �(z(�))

p

p

z

0

(�) 2W

p

(
) (7.3)

will be assumed to be ful�lled. Note that the condition � 2 W

p

(�) implies

�(z(�))

p

p

z

0

(�) 2 L

p

(
). The requirement 3) is more strict.

Let �(z) = (K

�

f)(z) be a solution of problem (7.2) of the class K

p

(D; �),

p > 1. In the circle U , consider the function

	(w) = �(z(w)) =

1

2�i

Z

�

f(t)dt

t� z(w)

;

which under the conditions (7.3) belongs to the class K

p

(U; r) (see Chapter

I, Proposition 4.1) and satis�es the boundary condition

Re[(A(�) + iB(�))	

+

(�)] = C(�); � 2 
; (7.4)

where A(�) = a(z(�)), B(�) = b(z(�)), C(�) = c(z(�)).

Conversely, if 	 2 K

p

(U; r) is a solution of the problem (7.4), then �(z) =

	(w(z)), where w = w(z) is the inverse to z = z(w) function, is a solution of

the problem (7.2) belonging to the class K

p

(D; �) (see Chapter I, Proposition

4.2).

This implies that if we possess all the required solutions of problem (7.4),

then will have all reqired solutions for (7.2) as well.

If, however, there appear conditions for solvability of problem (7.4), then

they can be interpreted as the conditions for solvability of problem (7.2).

Moreover, since the systems of functions �

1

(z); : : : ; �

n

(z) and �

1

(z(w));
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�

2

(z(w)); : : : ; �

n

(z(w)) are simultaneously linearly independent in the do-

mains D and U , respectively, the number of linearly independent solutions

of the homogeneous problems (7.2) and (7.4) coincide.

Thus we have to solve the problem (7.4) in the class K

p

(U; r), r = �

p

p

z

0

under the assumption that the conditions (7.3) are ful�lled.

In the same way as in [106], consider the function


(w) =

(

	(w); jwj < 1;

	(

1

w

); jwj > 1;

(7.5)

where 	(w) = (K

�

f)(z(w)), f 2 L

p

(
; r).

Following the proof of Theorem 1 of Chapter IV in [66] (in which r =

Q

jt� t

k

j

�

k

, t

k

2 
), we can easily verify the validity (see also [118], Lemma

4) of the following

Lemma 7.1. Let  2 L

p

(
; r), r 2W

p

(
) and


(w) =

8

<

:

1

2�i

R




 (�)d�

��w

; jwj < 1

1

2�i

R




 (�)d�

��

1

w

; jwj > 1:

Then the function 


1

(w) = 
(w) � 	(0), 	(0) =

1

2�i

R




 (�)

�

d� is repre-

sentable by the Cauchy type integral with density from the class L

p

(
; r),

i.e., 
 2

e

K

p

(
; r).

Now we are on the point of reducing the problem (7.4) to the linear

conjugation problem.

Rewrite (7.4) as follows:

(A+ iB)	

+

+ (A + iB)	

+

= 2C: (7.6)

De�ne the funcyion 
 by (7.5). Taking into account that 


+

= 	

+

, 


�

=

	

+

, the equality (7.6) takes the form

(A+ iB)
 + (A � iB)


�

= 2C: (7.7)

Thus, if 	 is a solution of the Riemann-Hilbert problem (7.4) of the class

K

p

(U; r), then 
 is a solution of the problem (7.7) of the class

e

K

p

(
; r).

If 
 is a solution of the problem (7.7) of the class

e

K

p

(
; r), then its

restriction on U fails, generally speaking, to be a solution of the problem

(7.4). For this to be so, it is necessary that the equality




+

= 


�

(7.8)

be ful�lled. If this equality does take place, then using the same equalities

as in obtaining (7.7) but in reverse order, we can see that the restriction on

U of the function 
 is a solution of the problem (7.4).

Assume that




�

= 
(

1

w

); jwj 6= 1:
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The equalities

[


�

(w)]

�

= 
(w); 


�

�

(�) = 


+

(�); 


+

�

(�) = 


�

(�)

are obvious.

Passing in (7.7) to complex conjugate functions, we obtain

(A� iB)


+

+ (A + iB)


�

= 2C;

or

(A� iB)


�

�

+ (A+ iB)


+

�

= 2C; (7.9)

It is not di�cult to prove that if 
 2

e

K

p

(
; r), then 


�

2

e

K

p

(
; r).

Therefore, owing to (7.9) we conclude: if 
 is a solution of the problem (7.7)

of the class

e

K

p

(
; r), then 


�

is likewise a solution of the same problem.

Then the function

1

2

(
 + 


�

) which already satis�es the condition (7.8) is

also the solution of the problem (7.7). Consequently, the restriction 	(w) =

1

2

(
(w) + 


�

(w)), of this function on U will be a solution of the problem

(7.4) of the class K

p

(U; r). However, if 	 is a single solution of (7.4), then

the equalities  (w) = 
(w) = 


�

(w) in U are valid, and hence 	(w) =

1

2

(
(w) + 


�

(w)). Thus we have proved the following

Lemma 7.2. Every solution 
 2

e

K

p

(
; r) of problem (7:7) generates a

solution of problem (7:4) of the class K

p

(D; �) speci�ed by the equality

	(w) =

1

2

(
(w)+


�

(w)), jwj < 1 and vice versa, every solution of problem

(7:4) of the class K

p

(D; �) has such a form.

Write the boundary condition (7.7) as




+

= G


�

+ g; (7.10)

where

G = (iB � A)(iB + A)

�1

; g = 2C(iB +A)

�1

:

By Lemma 7.2, it su�ces to investigate the problem (7.10) in the class

e

K

p

(
; r), r = �

p

p

z

0

.

Since r(�) 2W

p

(
) (see (7.3)), there exists by Theorem 4.8 a real function

 2 L

1

(
) such that r(�) is equivalent to the function exp

i

2

S

�

 , i.e.,

0 < m �

�

�

�

exp

i

2

S




 

r

�

�

�

�M , and we may assume that

r(�) = exp

i

2

(S




 )(�): (7.11)

The assumptions (7.1), (7.3) and (7.11) imply that the conditions of

Theorem 5.1 are ful�lled and we are able to reduce problem (7.10) of the

class

e

K

p

(
; r) to the linear conjugation problem.
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Theorem 7.1. Let the conditions (7:1), (7:3) and (7:11) be ful�lled, and

Y (w) = exp

�

1

2�

Z




 (�)d�

� � w

�

; jwj 6= 1:

Then if F (w) is a solution of the problem

F

+

(�) = G(�)[exp(i (�))]F

�

(�) + g(�) (7.12)

of the class

e

K

p

(
; r), then the function

	(w) =

1

2

[
(w) + 


�

(w)]; 
(w) = F (w)[Y (w)]

�1

; jwj < 1; (7.13)

is a solution of the problem (7:4) of the class K

p

(D; �), and the function

�(z) = 	(w(z)); z 2 D;

is the solution of problem (7:2) of the class K

p

(D; �). All the solutions can

be obtained in such a way.

Let us give to the condition (7.12) a somewhat di�erent form. To this

end we assume that

�(t) = �(z(�)) = exp

1

2�

Z




�(� )d�

� � �

; (7.14)

lim

w!�

arg z

0

(w) = �(�); (7.15)

G(�) = jG(�)j exp i�(�): (7.16)

Then the following corollary is valid.

Corollary. If the weight function � 2W

p

(�) is of the form (7:14) and the

function r(�) = exp

�

1

2�

R

gm

�(�)p

�1

+�(�)

���

d�

�

belongs to W

p

(
), then the

conclusion of Theorem 7:1 with F as a solution of the problem

F

+

(�) = jG(�)j exp

h

i

�

�(�)

p

+ �(�) + �(�)

�i

F

�

(�) + g (7.17)

is valid.

The character of the solvability of the problem (7.17) depends on the

coe�cient

jGj exp

h

i

�

�

p

+ �+ �

�i

:

Here jGj and exp i� are de�ned by means of the coe�cients a and b of

problem (7.2); exp i

�

p

is de�ned by a curve and by a class of unknown

functions, and exp i� by a weight function �. On the basis of the above-said,

varying the sets of unknown functions (i.e., those of weight functions and of

the exponent p), coe�cients of the boundary condition and the domains of
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analyticity of unknown functions, the corollary of Theorem 7.1 allows one to

deal with such of linear conjugation problems which have already been well

studied and thus to obtain the appropriate results for the Riemann-Hilbert

problem. Of course, we intend to apply for this purpose Theorem 1.1, but

postpone this until Chapter IV bearing in mind an application of properties

of the function �(�) which will be established in Chapter III.

x

8. On the Inhomogeneous Linear Conjugation Problem in a

Class of Cauchy Type

e

L-Integrals

In this section the use will be made of the results obtained in Chapter I, x6

to solve an inhomogeneous linear conjugation problem under the following

assumptions.

Let � be a simple, recti�able curve, belonging to the class R, G satisfy

the H�older condition on � and di�er on � from zero, g 2 L(�).

A solution will be sought in the class of functions representable in the

form

�(z) =

(

K

�

('

1

)(z) for z 2 D

+

;

K

�

('

2

)(z) + P (z) for z 2 D

�

;

(8.1)

where '

1

, '

2

2 L(�), P is a polynomial. The last class coincides the class

of functions representable by the Cauchy type

e

L-integral. whith polyno-

mial principal part at in�nity. The above-formulated problem in the case

under consideration has, in general, no solutions in the class of functions

representable by the Cauchy-Lebesgue type integral even under the sim-

plest assumptions with respect to � and G which can be illustrated in the

following example.

Let � = 
 be a unit circumference, G(t) � �1, g be a summable on 


function for which S




(g) is not summable.

Suppose there exists a solution of the problem � representable by the

Cauchy-Lebesgue type integral K




('), ' 2 L(
). Then by the Sokhotski��-

Plemelj formulas,

�

+

(t) + �

�

(t) = S




(')(t):

On the other hand, by the assumption,

�

+

(t) + �

�

(t) = g(t):

Consequently, S




(')(t) = g(t). Using the inversion formula of a singular

Cauchy integral from Chapter I, x6, we obtain '(t) = S




(g)(t) which is

impossible since ' 2 L(
) and S




(g) 62 L(
).

The solution of the boundary value problem can be obtained as well

under the above assumptions as is done in Chapter II, x3, by substituting
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the Lebesgue integral by the

e

L-integral. The general solution will have the

form

�(z) =

X(z)

2�i

Z

�

g(t)dt

X

+

(t)(t� z)

+X(z)P (z); (8.2)

where X is a canonical solution of the homogeneous problem representable

by the Cauchy integral with density from the class H(�), and P is a poly-

nomial.

Using the results of subsection 6.4, Remark 1 to Theorem 6.5 from Chap-

ter I, and the fact that S

�

' 2 H(�) for ' 2 H(�) and � 2 R (see [28], p.

253), it can be veri�ed that the function � is representable by the Cauchy

type

e

L-integral with polynomial principal part at in�nity (i.e., in the form

of (8.1)).

It follows from formula (8.2) that:

(1) if g and S

�

(g) are summable on �, then any solution of the problem

is representable by the Cauchy-Lebesgue type integral;

(2) if g 2 L

p

(�), p > 1, then any solution of the problem is representable

by the Cauchy-Lebesgue type integral with density from the class L

p

(�);

(3) if g 2 H(�), then any solution of the problem is piecewise holomor-

phic.

Thus, the extension in cases (1){(3) of the class of unknown functions to

the class of functions representable in the form of (8.1) fails to provide us

with new solutions.

Notes and Comments to Chapter II

Theorem 2.1 can be considered as a generalization of V. Smirnov's the-

orem ([146], see also [43], p. 401) in which it is stated that if � is a cir-

cumference and ' is continuous, then X belongs to the Hardy class H

p

for

any p > 0. On the other hand, this theorem can also be assumed to be a

generalization of A. Zygmund's theorem on the integrability of a function

of the kind exp�e', ([169]). The analogues of Theorem 2.1 under di�er-

ent assumptions regarding � and ' can be found in I. Simonenko [141], I.

Danilyuk [21], V. Shelepov [139].

Problem (I) was investigated in the classes K

p

(�) by B. Khvedelidze [66]

when G 2 H and � is a Lyapunov curve. G. Manjavidze and B. Khvedelidze

[90] studied the mentioned problem in case G 2 C(�) under the same as-

sumption on curves. The last authors have not focused their attention on

extension of the class of boundary curves. Neverthless their method, in

fact, works in a more general situation when � 2 R. For more detail con-

sideration see [44{45]. In the case of piecewise continuous coe�cients E.

Gordadze [44{45] studied Problem (I) under some restrictions at the points

of discontinuity of G. In [7] it was shown that for a Noethericity of (II)

it is necessary to bind the character of discontinuity of G and geometric

properties of G in a neighborhood of discontinuity points (see also [138]).
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In [78] it was derived that the well-known formulas for solution in the case

of Lyapunov curves remain valid for � 2 R as well.

In I. Simonenko's paper [141], a class of functions A(p) has been intro-

duced and a complete investigation of the problem (I) with the coe�cient

G 2 A(p), when � is the Lyapounov curve, is presented. Analogous results

have been obtained by I. Danilyuk [18] for coe�cients admitting the repre-

sentation G = exp('

0

+ '

1

), where '

0

2 C(�) and '

1

is a function with a

�nite variation. It is proved by V. Shelepov [139] that the above-mentioned

results remain also valid for the curves with bounded rotation.

As for singular equations with oscillating coe�cients, the work due to [7]

is worth mentioning.

Problem (I) in the class E

1

(�) has been studied in the case of Lyapunov

�-curves [25].

The main goal of investigations carried out in papers [78{79] and pre-

sented in x1{4 is simultaneous extension both of a class of boundary curves

and of a class of coe�cients. For example, the class A(p) does not contain

all admissible piecewise continuous coe�cients. To make up a de�ciency,

the class

e

A(p) has been introduced. Along with this, has established that

boundary curves belong to that class of curves which contains, for exam-

ple, any curves (without cusps) made up of smooth arcs and of those with

bounded rotation.

Recently, in [46-47] has been considered the discontinuous boundary value

problem in a domain with an arbitrary piecewise smooth boundary with

coe�cient G 2 A(p) which satis�es at the cusps some additional condition

under oscillation.

Reduction of the problem of conjugation (I) in the class K

p

(�; w) to

the analogous weightless problem was �rst performed in [110] in the case

where � is the Lyapunov curve. The general case of curves from the R

class has been considered in [78]. The statement appearing in the corollary

of Theorem 5.1 is due to David's theorem. Reduction of singular integral

equation (II) in the class L

p

(�; w), w =

Q

jt � c

k

j

�

to the equation in the

class L

p

(�) is also available in [107] for the case of Lyapounov curves. The

case � 2 R, w 2 W

p

(�) is considered in [121]. In [149] the criterion for

equation (II) with piecewise continuous coe�cients to be Noetherian in the

classes L

p

(�; w) with weights w from the class A

p

, is established.

The method of reducing the boundary problems to the problem with

shifts is pointed out in [92].

The results obtained with respect to the boundary value problem on a

straight line in that generality which is set forth here, are presented for the

�rst time (see also [32], [168], [111]).

The technique permitting one to reduce the Riemann-Hilbert problem in

the class K

p

(D;w) to the linear conjugation problem with circular boundary

contour 
, whose coe�cient absorbs all singularities of the boundary, weight

and initial coe�cient, has been suggested in [118].
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CHAPTER III

APPLICATION OF SOLUTION OF THE LINEAR CONJUGATION

PROBLEM TO CONFORMAL MAPPINGS

x

1. One Representation of a Derivative of Conformal

Mapping of a Circle onto a Domain with a Piecewise

Smooth Boundary and Its Consequences

Below the use will be made of the following fact (see, e.g., [43], p. 405]:

if a function z = z(w) maps conformally the unit circle U onto a �nite

domain D bounded by a closed, recti�able curve �, then: (i) z

0

2 H

1

; (ii)

z is continuous on U and absolutely continuous on its boundary 
; (iii) for

almost all � 2 [0; 2�] there exists an angular boundary limit of the functions

z

0

(w) and

lim

wb! exp i�

z

0

(w) = �ie

�i�

dz(e

i�

)

d�

: (1.1)

Since t = z(e

i�

) is the equation of the curve �, we have

dz(e

i�

)

d�

=

�

�

�

dz(e

i�

)

d�

�

�

�

e

i�(�)

, where �(�) is the angle between the oriented tangent to � at

the point z(e

i�

) and the real axis.

Let z

0

(0) > 0 and consider an analytic in D function

ln z

0

(w) = ln jz

0

(w)j+ i arg z

0

(w); arg z

0

(0) = 0:

From the equality (1.1) we can conclude that there exists an angular limit

lim

wb! exp i�

arg z

0

(w) = �(�) � � +

�

2

+ 2k(�)� = �(�) + 2k(�)�; (1.2)

where k(�) is a function taking integer values.

If � is a smooth curve, then in the equality (1.2) as �(�) one can take a

continuous on [0; 2�] function with the condition

�(2�) = �(0) + 2�: (1.3)

If � is a piecewise smooth curve with angular points t

k

, k = 1; n, then

as �(�) will be taken a piecewise continuous function which at the points

c

k

corresponding to the points t

k

(z(c

k

) = t

k

) has jump discontinuities

h

k

= �(c

k

+) � �(c

k

�) = � � ��

k

, where �

k

�, 0 � �

k

� 2 is the interior

with respect to D angle at the vertex t

k

. The function � will be called the

tangential function of the curve �.

Theorem 1.1. If z = z(w) maps conformally a unit circle U onto the

domain D bounded by a closed piecewise smooth Jordan curve �, then

z

0

(w) = z

0

(0) exp

�

1

�

Z




�(�)d�

� �w

�

; � = e

i�

; (1.4)
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where

�(�) = �(�) � � �

�

2

: (1.5)

Proof. Consider the function


(w) =

8

>

<

>

:

p

z

0

(w); jwj < 1;

q

z

0

(

1

w

); jwj > 1:

(1.6)

This function belongs to the class

e

K

2

(
) (see Chapter II, Lemma 7.1), and

owing to (1.2) we have




�

(� ) =

p

jz

0

(� )j exp[�

i

2

(�(�) + 2�k(�))]; � = e

i�

:

Assume

G(� ) = 


+

(� )[


�

(� )]

�1

;

Then

G(e

i�

) = exp i�(�): (1.7)

In the class

e

K

2

(
), consider the problem

�

+

(� ) = G(� )�

�

(� ): (1.8)

Let

X(w) = exp

�

1

2�i

Z




lnG(� )d�

� �w

�

= exp

�

1

2�

Z




�(�)d�

� � w

�

: (1.9)

Represent the function � in terms of � = �

0

+�

1

, where �

0

is continuous

on [0; 2�] and �

0

(2�) = �

0

(0) + 2�, while �

1

is a piecewise linear function.

Then it follows from (1.9) that in the neighbourhood of 
 (see Chapter II,

Lemma 3.6 and inequality (3.24)) we have

X(w) = O

�

n

Y

k=1

(w � c

k

)

�

k

�1

2

exp

�

1

2�

Z




�

0

(�)d�

� � w

�

X

0

(w)

�

; (1.10)

where 0 < C

1

� jX

0

(w)j � C

2

<1.

Let �rst

�

k

2 [0; 2); k = 1; n (1.11)



139

Then on the basis of (1.10) we conclude that

1

X

2

e

K

2

(
). Therefore �X

�1

2

e

K(
) and we can easily verify that the solutions of the problem (1.8) are

contained in the set of functions given by the equality

�(w) = CX(w) = C exp

�

1

2�

Z




�(�)d�

� � w

�

; (1.12)

where C is an arbitrary complex constant.

Since the function 
(w) is one of the solutions of the class

e

K

2

(
) of the

problem (1.8), this implies that


 =

e

CX (1.13)

and from (1.12) for jwj < 1 we have

p

z

0

(w) =

e

C exp

�

1

2�

Z




�(�)d�

� �w

�

=

e

CX(w); (1.14)

where

e

C is a constant. Find

e

C.

By virtue of (1.13){(1.12), for jwj > 1 we have

r

z

0

�

1

w

�

=

e

C exp

�

1

2�

Z




�(�)d�

� �w

�

:

Passing to limit as w ! 1, we obtain

e

C =

p

z

0

(0) and as z

0

(0) > 0, we

have

e

C =

p

z

0

(0): (1.15)

From (1.14) and (1.15) we obtain the equality (1.4) with the additional, for

the time being, assumption (1.11).

We will dwell on the case where �

k

= 2 for some k. Without loss of

generality we assume that there exists only one such point. Denote the

corresponding angular point on � by C and let z(c) = C, c = exp i�

c

.

Consider on � two sequences of points �

n

and t

n

converging to C, such

that argw(�

n

) " �

c

, argw(t

n

) # �

c

respectively. Let

e

�

n

be the part of � left

after removing the arc �

n

Ct

n

. Draw smooth Jordan arcs 


n

through the

points �

n

, t

n

and C, that is, construct on the segment [argw(�

n

); argw(�

n

)]

the functions �

n

= �

n

(�) for which �

0

n

are continuous and di�erent from

zero. Moreover, the tangents of 


n

and � are assumed to coincide at the

points �

n

and t

n

. Since Cn

e

�

n

is a domain and two smooth arcs of the

curve � meet at the point C, such arcs 


n

can be constructed. Indeed, if

� < min(�

1

; �

2

), where �

i

are standard radii of smooth arcs of the curve

� meeting in C (for the de�nition and for the properties of such a radius

see [106], p. 18), then the circumference with center in C and radius �

intersects � in two points � and t only, and therefore this neighbourhood
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does not contain the points from �n�Ct. Of course, we may assume that

jC��

n

j < �, jC�t

n

j < � and draw arcs 


n

inside the standard circumference.

Moreover, we also assume that the oriented tangents form at the points �

n

and t

n

starting from n

0

an angle which is less than �+ ", say

3�

2

. Therefore

one can construct the arcs 


n

in such a way that the tangent oscillation

along them would not exceed

7�

4

.

Let �

n

=

e

�

n

[ 


n

. Then �

n

is a closed piecewise smooth Jordan curve

with angular points for which the condition (1.11) is ful�lled. Denote by

D

n

a �nite domain bounded by �

n

. From the construction of the domains

D

n

it follows that they converge to the domain D as to the kernel (see [43],

p. 56). Furthermore, we can easily verify that the mapping of � onto �

n

given by the equality

M

n

(z) =

(

z; z 2

e

�

n

;

�

n

(e

i�

); z(e

i�

) 2 


n

;

is one-to-one and continuous. Note that lim

n!1

[M

n

(z) � z] = 0.

Thus all the assumptions of Rado's theorem are ful�lled (see, e.g., [43],

p. 62{63), and if z

n

= z

n

(w), z

n

(0) = z(0), z

0

n

(0) = z

0

(0), then z

n

converges

uniformly on U to z(w). Obviously,

limz

0

n

(w) = z

0

(w); w 2 U: (1.16)

Since �

n

are piecewise smooth curves not containing angular points with

the interior cusp, by virtue of the already proven we have that

z

0

n

(w) = z

0

n

(0) exp

�

1

2�

Z




�

n

(�)d�

� �w

�

;

where �

n

(�) = �

n

(�)� � �

�

2

, and �

n

is the tangential function of the curve

�

n

. Because �

n

is a sequence of uniformly bounded functions (j�

n

j <

7�

4

)

converging on 
nfcg to �(�), then passing in the last equality to limit and

taking into account (1.16), we arrive to (1.4) for the case under consideration

as well. �

Corollary 1. If � is a smooth curve, then

z

0

;

1

z

0

2 \

p>0

H

p

; (1.17)

z

0

(� ) 2 \

p>0

W

p

(
); (1.18)

w

0

;

1

w

0

2 \

p>0

E

p

(D); (1.19)

ln z

0

2 \

p>0

H

p

: (1.20)
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Proof. Indeed, the assertions (1:17) and (1:18) follow from the properties of

the factor function X for the continuous function G, since z

0

=

e

CX

2

. The

relation (1:19) is a consequence of the equality

Z

�

jw

0

(z)j

�p

jdzj =

Z




jz

0

(w)j

�p�1

jdwj

and of assertion (1:17). Finally, (1:20) follows from the equality

ln

z

0

(w)

z

0

(0)

= K




(2i�)(w): �

Theorem 1.1 establishes the connection between z

0

and the Cauchy type

integral of the function � which is de�ned by the geometry of the curve �,

that is, by the angle of slope of its tangent to the real axis. Having known

the character of the variation of the function � and proceeding from the

equality (1:4), we can throw light on the properties of z

0

. Below we will

adduce some results obtained in this way.

Theorem 1.2 (Lindel�of ). If a function z = z(w), z

0

(0) > 0 maps confor-

mally the circle U onto the domain D bounded by a closed smooth curve,

and w = w(z) is the inverse to it function, then arg z

0

(w) is a function con-

tinuous on U , and argw

0

(z) is continuous on D. Moreover, for � 2 [0; 2�]

we have

arg z

0

(e

i�

) = �(�) � � �

�

2

+ 2m�; (1.21)

where m is an integer.

Proof. In the case under consideration, z

0

is representable by the equality

(1.4), where � is a continuous function. Suppose w = re

i�

, �

r

x = 1 �

2r cos x+ x

2

. Then

z

0

(w) = z

0

(0) exp

�

1

2�

2�

Z




�(s)ie

is

ds

e

is

� re

i�

�

=

= z

0

(0) exp

�

1

�

2�

Z

0

�(s)

h

r sin(s � �)

�

r

(s � �)

+ i

1 � r cos(s � �)

�

r

(s � �)

i

ds

�

=

=z

0

(0) exp

�

1

�

2�

Z

0

�(s)

h

r sin(s � �)

�

r

(s � �)

+ i

1� r

�

r

(s� �)

+ i

r � r cos(s� �)

�

r

(s� �)

i

ds

�

=

=z

0

(0) exp

�

1

�

2�

Z

0

r sin(s � �)

�

r

(s � �)

�(s)ds

�

exp

�

i

(1 + r)�

2�

Z

0

1� r

2

�

r

(s� �)

�(s)ds

�

�
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� exp

�

ir

�

2�

Z

0

1� cos(s � �)

�

r

(s � �)

�(s)ds

�

: (1.22)

Thus in the representation of z

0

there appear the Poisson integral of a

continuous function �, its conjugate function and also the function k(r; x) =

1�cosx

�

r

x

, which is continuous on the rectangle [0; 1;�2�; 2�]. Taking into

account the properties of these integrals, from (1.22) we obtain

lim

w

^

!exp i�

z

0

(w) = z

0

(0) exp[

e

�(�)] exp[i�(�)] exp

�

i

2�

2�

Z

0

�(s)ds

�

; (1.23)

for almost all � 2 [0; 2�], where

e

� is the conjugate to � function (see 0.10).

Prove that

2�

Z

0

�(s)ds = 4k�

2

; (1.24)

where k is an integer. Indeed, from (1.14) we have

e

C =

p

z

0

(0) exp

�

i

2�

2�

Z

0

�(s)ds

�

;

which together with (1.15) yields

p

z

0

(0) =

p

z

0

(0) exp

�

i

2�

2�

Z

0

�(s)ds

�

;

whence it follows the validity of equality (1.24). The equality (1.23) with

regard for (1.24) takes the form

lim

w

^

!exp i�

z

0

(w) = z

0

(0)[exp

e

�(�)] exp[i�(�)]: (1.25)

By virtue of (1.4) and (1.22) we now have

ln z

0

(w)=ln z

0

(0) +

1

�

Z




�(�)d�

� � w

=ln z

0

(0)+

1

2�

2�

Z

0

2r sin(s � �)

�

r

(s � �)

�(s)ds+

+

i

(1 + r)�

2�

Z

0

1� r

2

�

r

(s � �)

�(s)ds+

ir

�

2�

Z

0

1� cos(s � �)

�

r

(s � �)

�(s)ds+2��i;
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where � is an integer. The latter equality results in

arg z

0

(w) =

1

(1 + r)�

2�

Z

0

1� r

2

�

r

(s� �)

�(s)ds +

+

r

�

2�

Z

0

1� cos(s � �)

�

r

(s � �)

�(s)ds + 2��: (1.26)

The right-hand side of the above expression contains the sum of continuous

in U functions. Bearing in mind that

lim

w

^

!exp i�

r

�

2�

Z

0

1� cos(s � �)

�

r

(s � �)

�(s)ds =

1

2�

2�

Z

0

�(s)ds = 2k�;

from (1.26) we �nd that

arg z

0

(e

i�

) = lim

w

^

!c

i�

arg z

0

(w) = �(w) + 2(k + �)�:

which is the very equality (1.21) with m = k + �.

The continuity of the function argw

0

(z) follows from the equalityw

0

(z) =

1

z

0

(w)

. �

Remark 1. It is obvious that the continuous function � in all the equal-

ities can be replaced by the function �(�) + 2j� with an arbitrary integer

j. Therefore, if we take � = �

1

� 2�, then the geometrical meaning of the

function �

1

will remain the same as before, and the equality (1.21) will take

the form

arg z

0

(e

i�

) = �

1

(�) � � �

�

2

:

Remark 2. From the equality (1.26) and from the property of the Poisson

integral we obtain a more general assertion than Theorem 1.2, namely:

If � is a piecewise smooth curve, then arg z

0

(w) is continuously extendable

at all di�erent from c

k

points of the circumference 
 (while argw

0

(z) is

continuously extendable at all points of � di�erent from angular points t

k

),

and equality (1.21) is valid everywhere except for the points c

k

.

Theorem 1.3 (Kellog). If the function z = z(w) maps conformally the

unit circle U onto a domain D bounded by a Lyapunov curve for which

j�(s

1

)� �(s

2

)j �M js

1

� s

2

j

�

; 0 < � < 1; (1.27)

then the functions z

0

(w) and ln z

0

(w) belong to the H�older class H(�) in the

closed circle U .
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Proof. We have

j�(�

1

) � �(�

2

)j = j�(�(s

1

)) � �(�(s

2

))j �

�M js

1

� s

2

j

�

=

�

�

2

Z

�

1

jz

0

(e

i�

)jd�

�

�

: (1.27

0

)

Since z

0

2 \

p>0

H

p

, this implies that on 
 the function �(� ) = �(e

i�

) for

any p > 1 belongs to the H�older class H

�

�

p

�

. By virtue of (1.5) and (1.3),

� belongs to the same class as well. But then (K

�

�)(z) belongs to H

�

�

p

�

in U (see, e.g., [106], x21). From (1.27

0

) we can now conclude that �, and

thereby �, belongs to H(�). As a result of the above reasoning, we obtain

the both assertions of Theorem 1.3. �

Remark. If � = 1 in (1.27), then � 2 H(1), and in addition to the above-

said, from Privalov theorem on a singular integral with density from the

class H(1) we obtain

jz

0

(e

i�

1

)� z

0

(e

i�

2

)j � M j�

1

� �

2

j ln

1

j�

1

� �

2

j

; j�

1

� �

2

j < 1:

Theorem 1.4. Let � be a piecewise smooth, closed, oriented Jordan curve

with angular points t

k

, bounding the �nite domain D, and let ��

k

, 0 � �

k

�

2, k = 1; n be sizes of interior (with respect to D) angles at these points.

Then, if the function z = z(w) maps conformally the unit circle U onto D,

and

z

0

(0) > 0; z(c

k

) = t

k

; c

k

2 
; (1.28)

then

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

exp

�

1

�

Z




�(� )d�

� �w

�

; (1.29)

where � = �(t) is a continuous on 
 function.

Proof. By Theorem 1.1 we have

z

0

(w) = z

0

(0) exp

�

1

�

Z




�(�)d�

� � w

�

; � = e

i�

; �(�) = �(�) � � �

�

2

;

where � is a piecewise continuous on [0; 2�] function.

Let c

k

= exp i�

k

, 0 � �

1

< �

2

< � � � < �

n

< 2� and let �

1;k

be an oriented

subarc of 
 with the ends 1 and c

k

, and �

2;k

= 
n�

1;k

. Consider piecewise

linear functions

�

k

(�) =

(

0; e

i�

2 �

1;k

(i.e.; 0 � � < �

k

);

2���

2���

k

h

k

; e

i�

2 �

2;k

(i.e.; �

k

� � � 2�);
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where k = 1; n, and

h

k

= �(�

k

+) � �(�

k

�) = �(�

k

+) � �(�

k

�) = � � ��

k

= �(1� �

k

): (1.30)

Suppose

�

�

(�) =

n

X

k=1

�

k

(�):

The function �

0

(�) = �(�) � �

�

(�) is continuous on [0; 2�] and �

0

(0) =

�

0

(2�), i.e., �

0

(� ) � �

0

(�) is continuous on 
.

We now have

z

0

(w) = z

0

(0) exp

�

1

�

Z




�(�)d�

� �w

�

=

= z

0

(0) exp

�

1

�

Z




�

0

(�)d�

� � w

�

exp

�

1

�

Z




�

�

(�)d�

� � w

�

: (1.31)

To estimate the integral

1

�

R




�

�

(�)d�

��w

in the neighbourhood of c

k

, we will

use the following result from [106] (x26):

Let nonintersecting smooth arcs L

k

, k = 1; n meet at the point c; the

function ' belongs to the H�older class on L

k

; and L = [L

k

. Then

1

2�i

Z

L

'(� )d�

� � w

= A ln(w � c) + �

0

(w);

where �

0

(w) is continuous in every closed sector into which L divides the

neighbourhood of the point c, �

+

0

belongs on L to the H�older class, and

A =

n

X

k=1

�'(c

k

)

2�i

;

the plus sign is taken for the incoming in c arcs and the minus sing for the

outgoing arcs, and '(c

k

) = lim

t!c

k

;t2L

k

'(t).

In connection with this assertion, we have

1

�

Z




�

k

d�

� �w

=

1

2�i

Z




2i�

k

� �w

d�=

1

2�i

Z

�

1;k

2i�

k

d�

� � w

+

1

2�i

Z

�

2;k

2i�

k

d�

� �w

=

= �

h

k

�

ln(w � c

k

) + �

ok

= (�

k

� 1) ln(w � c

k

) + �

ok

(w)

This and (1.31) imply that

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

exp

�

1

�

Z




�

0

(�)d�

� �w

�

exp

n

X

k=1

�

0;k

(w); (1.32)
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where �

0;k

are holomorphic in U and continuous in U functions, and �

0;k

(� )

belongs on 
 to the H�older class. Let �

0

=

P

n

k=1

�

0;k

. This function is

representable in U by its Cauchy integral, that is, �

0

(w) = (K




�

+

0

)(w),

where �

+

0

is a H�older continuous function. Now (1.32) yields

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

exp

�

1

�

Z




�(� )d�

� �w

�

;

where �(� ) = �

0

(� ) +

1

2i

�

0

(� ), and hence it is continuous on 
. �

From Theorem 1.4 we get the following Warschawski

Theorem 1.5. Let � be a piecewise Lyapunov, closed Jordan curve with

angular points t

k

, bounding the �nite domain D, and let, �

k

�, 0 < �

k

� 2

be the interior angles at the point t

k

. If z = z(w), z

0

(0) > 0 is a function

conformally mapping the circle U onto D, then

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

z

0

(w); (1.33)

where z

0

(w) is a H�older class function on U , di�erent from zero.

Remark. It should be noted that in [164] was proved only the continuity

of z

0

. The H�older continuity of this function was established by I.N. Vekua

([159], p. 38).

Proof of Theorem 1:5. We will proceed from the equality (1.32) from which

it is seen that to prove the theorem, it su�ces to state that the function

�

0

(�) = �(�) � � �

�

2

�

P

n

k=1

�

k

(�) satis�es the H�older condition.

Let t = z(e

i�

) and t = t(s), 0 � s � l be the equations of the curve

� with respect to the arc abscissa. Then � = �(s), and by assumption,

�(s) = �(�(s)) is a piecewise H�older function on [0; l].

Since �

0

2 C(
), its H�older continuity on 
 will be proved if we show

that �

0

satis�es the H�older condition in the neighbourhood of the points c

k

.

Suppose c

k

= exp i�

k

= t(s

k

), �

1

< �

k

< �

2

, z(e

i�

1

) = t(s

(1)

), z(e

i�

2

) =

t(s

(2)

), js

(1)

� s

(2)

j < min

k

js

k

� s

k+1

j, s

n+1

= s

1

+ l.

We have

j�

0

(�

1

)� �

0

(�

2

)j � j�

0

(�

1

) � �

0

(�

k

)j+ j�

0

(�

k

)� �

0

(�

2

)j =

= j�(t(s

(1)

)) � �(t(s

k

))j+ j�(t(s

k

))� �(t(s

(2)

))j �

�M

�

js

k

� s

(1)

j

�

+js

k

� s

(2)

j

�

�

� 2M js

(1)

� s

(2)

j

�

=2M

�

�

2

Z

�

1

jz

0

(w)jjdwj

�

�

:

By Theorem 1.4 (equality (1.29)), we obtain

j�

0

(�

1

)� �

0

(�

2

)j �
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� 2M

1

�

�

2

Z

�

1

jw � c

k

j

�

k

�1

�

�

�

exp

�

1

�

Z




�(� )d�

� �w

�
�

�

�

jdwj

�

�

: (1.34)

Since � is continuous, we have exp

�

1

�

R




�(�)d�

��w

�

2 \

p>0

L

p

(
). Moreover,

by assumption, �

k

> 0, and therefore jw � c

k

j

(�

k

�1)(1+")

is summable and

hence

j�

0

(�

1

) � �

0

(�

2

)j � 2M

2

j�

1

� �

2

j

"�

1+"

:

Consequently, �

0

and thus z

0

, belong to the Holder class. �

x

2. On Derivatives of Conformal Mappings in Case of

Oscillating Tangent of Boundaries

The method of the proof of Theorem 1.1 can also be applied to the

domains with more complicated boundaries than piecewise smooth curves.

2.1. A class T (�) of curves. Let t = t(s), 0 � s � l be the equation of a

simple, recti�able curve �, and let �(s) be the angle formed by a oriented

tangent at the point t(s) and the x-axis.

De�nition. We say that � belongs to the class T (�), � 2 (0; �] if for

every point t 2 � there exists its arc neighbourhood on which the values of

the function e

i�(s)

lie in an angle of size � and with the vertex at the origin.

Let � 2 T (�), and de�ne speci�cally the tangential function �(�) �

�(s(�)). Here the use will be made of the rule of selection of an argument's

branch of the function from the class A(p) (see Chapter II, x1).

Since � 2 T (�), the curve � can be covered by a �nite number of arcs

�

k

= (t

k;1

; t

k;2

) = (t(s

k;1

); t(s

k;2

)), k = 1; n, t

k+1;1

2 �

k

such that for

s 2 (s

k;1

; s

k;2

) the values of e

i�(s)

lie in an angle less than � with the vertex

at the origin. Add to the points t(s

k

) the point t

0

= z(e

i�

0

) at which the

equality (1.1) holds, and let

�

0

= lim

w

^

!exp i�

0

arg z

0

(w) + �

0

+

�

2

:

Without restriction of generality, we may assume that the curve � at the

points t

k;1

, t

k;2

has tangents. For the sake of de�niteness, assume that t

0

lies on the arc �

1

, and replace it by the arcs (t

1;1

; t

0

) and (t

0

; t

1;2

). De�ne

on (t

0

; t

1;2

) a function �(t) = �(t(s)) = �(s) such that �(s

0

) = �

0

and

j�(s)��

0

j < � for all s for which t(s) 2 (t

0

; t

1;2

). Thus we have de�ned the

value �(s

2;1

). Next, on the arc �

2

we de�ne the function �(s), keeping to

the condition j�(s) � �(s

2;1

)j < �. Continuing this process, we de�ne the

function �(s) on [0; l] (and hence the function �(s(�)) on [0; 2�]).

Consequently, we have de�ned the tangential function �(s) for the curves

from T (�).
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2.2. A derivative of conformal mapping of a circle onto a domain with a

boundary from T (

�

�

), � > 1. The following theorem is valid.

Theorem 2.1. If a simply connected domain is bounded by a curve from

the class T (

�

�

), � > 1, then (z

0

)

�1

2 H

�

, and for any p 2 [

1+�

�

;+1] the

function [z

0

(e

i�

)]

�p

belongs to W

p�

(
).

Proof. Let

p �

1 + �

�

(2.1)

and


(w) =

8

<

:

p

p

z

0

(w); jwj < 1;

p

q

z

0

(

1

w

); jwj > 1:

(2.2)

It can be easily veri�ed that 
 2

e

K

p

(
) and

�

+

(e

i�

) = exp

n

i2�(�)

p

o

�

�

(e

i�

); (2.3)

where �(�) = �(�) � � �

�

2

, and �(�) = �(s(�)) is the targential function

de�ned in subsection 2.1.

Suppose

G(� ) = G(e

i�

) = exp

n

i2�(�)

p

o

:

It follows from the condition � 2 T (

�

�

) and the fact that the function

G

1

(�) = exp[�i(

�

2

+ �)] is continuous that every point � 2 
 possesses a

neighbourhood on which the values of the function G(� ) lie in an angle of

size

2�

�p

. This means that G 2 A(p�), and owing to (2.1), p� � 1 + � � 2.

Calculate the index of the function G. First consider the function '(e

i�

) =

exp i�(�) = exp i�(�) exp(�i(

�

2

+ �)) = '

1

(�)'

2

(�). Since angular degree of

simple curve equal 1 ([100], p. 84), one can see that the index of the function

'

1

(e

i�

) = exp i�(�) in

e

K

p�

(
) is equal to 1. Obviously, ind'

2

= �1. But

if '

1

2 A(p), and '

2

is continuous, then ind('

1

'

2

) = ind'

1

+ ind'

2

.

Therefore ind' = ind('

1

'

2

) = 0. Represent the function ' in terms of

' = g

1

g

2

, where g

1

belongs to the Lipschitz class on 
,

ind g

1

= 0; g

2

(�) = exp i�(�); j�(�)j <

�

2�

(2.4)

(see Chapter II, subsection 1.3). Since G = '

2=p

, this implies that

G = g

2

p

1

g

2

p

2

= g

2

p

1

exp

n

i2�

p

o

:

Denote G

1

= g

2=p

1

, G

2

= exp

n

i2�

p

o

= exp i�. Then indG = 0, indG

1

= 0,

j�j <

�

�p

.
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Let

X

1

(w)=exp

�

1

2�i

Z




lnG

1

d�

� �w

�

; X

2

(w)=exp

�

1

2�i

Z




i�d�

� � w

�

:

Then X(w) = X

1

(w)X

2

(w) is the factor function of G in the class

e

K

p�

(
).

Consequently, the function � = CX, where C is an arbitrary constant, is

a solution of the problem (2.3). Since 
 is a solution of the problem (2.3)

of the class

e

K

p�

(
), we have 
 = C

0

X, where C

0

6= 0 is a constant. But

for jwj < 1 we have 
 =

p

p

z

0

(w), and thus z

0

(w) = C

p

0

X

p

(w), where X is

the factor function of the function G 2 A(p�) in the class K

p�

(
). Since

p� � 2, both assertions of the theorem follow from the properties of the

factor function. �

2.3. Curves of the class

e

T (

�

�

) and properties of conformal mapping of a

circle U onto a domain with a boundary from

e

T (

�

�

). As is seen from sub-

section 2.2, the class T (�) has been introduced in order for the function 


constructed according to the equality (2.2) by means of z

0

(w) to be a so-

lution of the class

e

K

p�

(
) of the problem (2.3) whose coe�cient belongs to

the class A(p�). Bearing these arguments in mind and proceeding from the

classes

e

A(p), one can extend the class T

�

�

�

�

so that the results analogous

to those of Theorems 1.1 and 2.1 will remain valid for domains bounded by

curves from the extended class.

De�nition. The curve � belongs to the class

e

T (�), � 2 (0; �] if for every

point t 2 �, except possibly for the points t

1

; t

2

; : : : ; t

n

, there exists an arc

neighbourhood on which the values of the function t

0

(s) = exp i�(s) lie in

an angle of size less than � with the vertex at the origin, and in the points

t

k

there exist limits t

0

(s

k

�)).

Let � 2

e

T (�). Exactly as in subsection 2.1, following the rule for de�-

nition of an argument branch of the function from the class

e

A(p), de�ne

on that curve a tangential function �(�). Then the function G(e

i�

) =

exp i�(s(�)) satis�es the following condition: every point from 
, except

possibly the points c

j

corresponding to the cusps, possesses a neighbour-

hood on which the valuesG(e

i�

) lie in an angle less than �, while the function

�(�)(� �(s(�)) at the points c

j

= exp i�

j

has one-sided limits; moreover,

�(�

j

+)� �(�

j

�) = (�

j

� 1)�, �

j

2f0; 2g.

Using the results of subsection 3.7 from Chapter II and arguing as when

deducing Theorems 1.1 and 2.1, we conclude that the following theorem is

valid.

Theorem 2.2. If D is a simply connected domain bounded by a curve � 2
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e

T

�

�

�

�

, � > 1, then

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

z

0

(w); (2.5)

where z

0

,

1

z

0

2 H

�

, and for every p 2 [

1+�

�

;+1), the function [z

0

(e

i�

)]

�p

2

W

p�

(
).

Corollary 1. If D is a simply connected domain with the boundary from

e

T (�), then for almost all � 2 [0; 2�] there exists an angular limit of the

function arg z

0

(w) for w ! exp i�, and the equality

lim

wb! exp i�

arg z

0

(w) = �(�) = �(�) � � �

�

2

+ 2m� (2.6)

holds, where �(�) is the tangential function of the curve �, and m is an

integer.

Corollary 2. If � is a curve with bounded rotation and fc

k

g = fz(t(s

k

))g,

where fs

k

g is a set of points of discontinuity of t

0

(s), then

z

0

(w) =

1

Y

k=1

(w � c

k

)

�

k

�1

z

0

(w); (2.7)

where

z

�1

0

2 \

p>0

H

p

: (2.8)

In particular, z

0

2 H

�

for any � < inf

�

k

<1

n

1

j�

k

�1j

o

and

1

z

0

2 H

�

for any

� < inf

�

k

>1

n

1

�

k

�1

o

.

x

3. Behaviour of Conformal Mapping in the Neighbourhood

of Angular Points

The results obtained in allow one to describe for the domain under con-

sideration the behaviour of the functions z = z(w) and z

0

(w) in the neigh-

bourhood of the points c

k

, of the inverse function w = w(z) as well as of

the function w = w

0

(z) in the neighbourhood of the points t

k

.

Lemma 3.1. Let a simply connected domain D be bounded by a closed,

piecewise smooth curve � with angular points t

k

=z(c

k

), being sizes of inte-

rior angles �

k

�, 0 � �

k

� 2. Then the function

z

k

(w) = [z(w)� z(c

k

)](w � c

k

)

��

k

belongs to H

p

0

for some p

0

> 1.
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Proof. Consider the equality

z

k

(w) =

z(w)� z(c

k

)

(w � c

k

)

�

k

=

1

(w � c

k

)

�

k

Z




wc

k

z

0

(�)d�; (3.1)

where 


wc

k

= 


ww

k

[ 


w

k

c

k

, 


ww

k

is assumed to be the small arc of the

circumference with center at the origin, passing through the points w and

w

k

= jwj exp i�

k

, �

k

= arg c

k

while 


w

k

c

k

is a rectilinear segment connecting

the points w

k

and c

k

. Therefore

Z




wc

k

jz

0

(�)jjd�j �

Z




ww

k

jz

0

(�)jjd�j+

Z




w

k

c

k

jz

0

(�)jjd�j: (3.2)

Let now �

k

< 1. Then it is clear from (3.1) that

jz

k

(w)j �

M

jw� c

k

j

�

k

(3.3)

and therefore z

0

2 H

p

0

, p

0

2 (1;

1

�

k

). However, if �

k

2[1; 2], then by Theorem

1.4 we have z

0

(w)=(w�c

k

)

�

k

�1

ez

0

(w), where ez

0

(w) =

Q

j 6=k

(w�c

j

)

�

j

�1

z

0

(w),

z

0

2 \

p>0

H

p

. Put m = min

1�i;j�n;i6=j

jc

i

� c

j

j and jw � c

k

j <

1

2

m.

If we denote by d(E;F ) the distance between the sets E and F , then

we obtain d(


wc

k

; fc

j

g

j 6=k

) �

1

2

m. Moreover, when � 2 


wc

k

, then j� � c

k

j <

jw� c

k

j.

Now for an arbitrary � > 1 we have

Z




w

k

c

k

jz

0

(�)jjd�j�

Z




w

k

c

k

j� � c

k

j

�

k

�1

Y

�

j

<1

j� � c

j

j

�

j

�1

Y

�

j

�1

j� � c

j

j

�

j

�1

jz

0

(�)jjd�j�

� jw� c

k

j

�

k

�1

�

m

2

�

P

�

j

<1

(�

j

�1)

2

P

�

j

�1

(�

j

�1)

Z




w

k

c

k

jz

0

(�)jjd�j �

� jw � c

k

j

�

k

�1

M

1

�

Z




w

k

c

k

jz

0

(�)j

�

jd�j

�

1

�

jw � c

k

j

��1

�

�

�M

1

jw � c

k

j

�

k

�

1

�

�

1

Z

�1

jz

0

(xe

i�

k

)j

�

dx

�

1

�

: (3.4)

But according to the Fejer-Riesz theorem (see [27], p. 46),

1

Z

�1

jz

0

(xe

i�

k

)j

�

dx �

1

2

2�

Z

0

jz

0

(e

i�

)j

�

d� =

1

4�

Z




jz

0

(e

i�

)jjd�j;
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and therefore (3.4) yields

Z




w

k

c

k

jz

0

(�)jjd�j �M jw � c

k

j

�

k

�

1

�

�

Z




jz

0

(�)j

�

jd�j

�

1=�

: (3.5)

Further,

Z




ww

k

jz

0

(�)jjd�j �

� jw� c

k

j

�

k

�1

�

1

2

m

�

P

�

j

<1

(�

j

�1)

2

P

�

j

�1

(�

j

�1)

Z




ww

k

jz

0

(�)jjd�j �

�M

1

jw� c

k

j

�

k

�1

�

Z




ww

k

jz

0

(�)j

�

jd�j

�

1

�

(l

ww

k

)

��1

�

: (3.6)

But we have that jc

k

� wj > jw

k

� wj �

2

�

j


ww

k

j, and the inequality (3.5)

results in

Z




ww

k

jz

0

(�)jjd�j �M

1

jw � c

k

j

�

k

�

1

�

�

�

2

�

��1

�

�

Z

j�j=w

jz

0

(�)j

�

jd�j

�

1=�

�

�M

2

jw � c

k

j

�

k

�

1

�

�

Z




jz

0

(�)j

�

jd�j

�

1=�

: (3.7)

By virtue of (3.5) and (3.7), from (3.2) we obtain

Z




wc

k

jz

0

(�)jjd�j � 2M jw� c

k

j

�

k

�

1

�

�

Z




jz

0

(�)j

�

jd�j

�

1=�

: (3.8)

Having the inequality (3.8) at hand, we can easily conclude from (3.1)

that

jz

k

(w)j �

2M

jw� c

k

j

1=�

�

Z

�

jz

0

(�)j

�

jd�j

�

1=�

: (3.9)

This implies that z

k

2 H

p

0

for every p

0

2 (1; �). �

Remark 1. Proceeding from the fact that � is any number greater than

1, we have proved much more than it has been stated in the lemma, namely,

that z

0

2 \

1<p<p

0

H

p

, p

0

= min

�

k

<1

f

1

�

k

g.
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Remark 2. As is seen from the proof, the statement of Lemma3.1 remains

valid for domains which are bounded by the curves from

e

T (

�

�

), � > 1; note

that as p

0

one can take any number from the interval (1; �) (thus in the

inequality (3.4) one can take � = �).

Theorem 3.1. Let the domain D be bounded by a simple, piecewise smooth

curve � with angular points t

k

, k = 1; n and with sizes of interior with

respect to D angles ��

k

. If z = z(w) is the function mapping conformally the

unit circle U onto D, w = w(z) is an inverse to it function, and z(c

k

) = t

k

,

then

z(w) = z(c

k

) + (w � c

k

)

�

k

z

k

(w); �

k

2 [0; 2]; (3.10)

w(z) = w(t

k

) + (z � t

k

)

1=�

k

w

k

(z); �

k

2 (0; 2]; (3.11)

z

0

(w) =

n

Y

k=1

(w � c

k

)

�

k

�1

z

0

(w); �

k

2 [0; 2]; (3.12)

w

0

(z) =

n

Y

k=1

(z � t

k

)

1

�

k

�1

w

0

(z); �

k

2 (0; 2]; (3.13)

where the functions w

k

, z

k

(w) and z

k

(e

i�

), k = 1; n, satisfy the conditions

(z

k

)

�1

2 \

p>1

H

p

; (w

k

)

�1

2 \

p>1

E

p

(D); [z

k

(e

i�

)]

�1

2 \

p>1

W

p

(
): (3.14)

Proof. First of all it should be noted that the assertion (3.12) follows im-

mediately from Theorem 1.4 if we take into account the properties of the

function exp

�

1

�

R




�d�

��w

�

, when � is a continuous function.

Alongside with the function z

k

(w) we consider the function z

k

(

1

w

) jwj > 1

and put G

k

(� ) = z

k

(� )=z

k

(1=�), j� j = 1. It can be easily veri�ed that G

k

(� )

is di�erent from zero, continuous everywhere on 
 function. Really,

G

k

(� ) =

z(� )� z(c

k

)

z(� )� z(c

k

)

(� � c

k

)

�

k

(� � c

k

)

�

k

= G

1k

(� )G

2k

(� );

and since jG

k

(� )j = 1, it su�ces to show that �

�

(� ) = argG

k

(� ) is contin-

uous at the point c

k

. Indeed the argument of the function G

1k

(� ) at the

point c

k

has a jump equal to 2��

k

, while the function G

2k

(� ) has the jump

equal to (�2��

k

). Hence �

k

(� ) is continuous.

The above-mentioned jumps are simultaneously equal to the increments

of the corresponding functions as the result of a circuit of the point �

around 
. Therefore the increment of the function argG

k

(� ) equals zero,

i.e., {(G

k

) = [argG

k

]




= 0.

Consider the boundary value problem of linear conjugation

�

+

(� ) = G

k

(� )�

�

(� ): (3.15)
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As we know, the problem (3.15) for continuous G

k

, {(G

k

) = 0, is solvable

in any class

e

K

p

(
), p > 1, and all its solutions (the same for any p) are given

by the formula

�

k

(w) = CX

k

(w); (3.16)

where C is an arbitrary constant and X

k

satis�es the conditions

(X

k

)

�1

2 \

p>1

e

K

p

(
) and [X

+

k

(e

i�

)]

�1

2 \

p>1

W

p

(
): (3.17)

Let us now show that the function z

k

for some p

0

> 1 is the restriction on

U of the solution of the problem (3.15) of the class

e

K

p

0

(
). Such a solution

is presented by the function




k

(w) =

(

z

k

(w); jwj < 1;

z

k

(1=w); jwj > 1:

(3.18)

By lemma 3.1 we have z

k

2 H

p

0

, p

0

> 1. Owing to this fact, we state

that 


k

2

e

K

p

0

(
) (see Chapter II, x7). Consequently, z

k

is the required

solution of the problem (3.15). But then according to (3.16), there exists

a constant C

k

6= 0 such that 


k

(w) = C

k

X

k

(w). Therefore the functions

(z

k

)

�1

coincide in U with X

k

(w). However, by (3.17),X

k

2

e

K

p

(
) (8p > 1)

and as is known (Chapter I, x3), the restrictions of such functions on U

belong to the class H

p

. This implies that (z

k

)

�1

2 \

p>1

H

p

and [z

k

(e

i�

)]

�1

2

\

p>1

W

p

(
), taking into account (3.17).

Consider now the function w

k

. Substituting the values w = w(� ) and

c

k

= w(t

k

) into the equality z(w)� z

k

(� ) = (w � c

k

)

�

k

z

0

(w), we obtain

z � t

k

= (w(z) �w(t

k

))

�

k

z

0

(w(z)):

Hence

w(z) �w(t

k

) = (z � t

k

)

1

�

k

[z

0

(w(z))]

�

1

�

k

=

= (z � t

k

)

1

�

k

w

k

(z); w

k

(z) = [z

0

(w(z))]

�

1

�

k

: (3.19)

Show that (w

k

)

�1

2 \

p>1

E

p

(D). Indeed, for any p > 0, " > 0 we have

Z

�

r

jw

k

(z)j

�p

jdzj =

Z

jwj=r

1

jz

0

(w)j

�

p

�

k

jz

0

(w)jjdwj �

�

�

Z

jwj=r

jdwj

jz

0

(w)j

�

p

�

k

1+"

"

�

"

1+"

�

Z

jwj=r

jz

0

(w)j

1+"

jdwj

�

1

1+"

: (3.20)

By Theorem 1.4 and condition �

k

> 0, we can choose " > 0 so small

that the right-hand side of inequality (3.20) becomes �nite. Thus (w

k

)

�1

2

E

p

(D) for any p > 0. Consequently, (w

k

)

�1

2 \

p>1

E

p

(D).



155

There remains to prove the relation (3.13) and the inclusion (w

0

)

�1

2

\

p>0

E

p

(D).

We have

w

0

(z)=

1

z

0

(w(z))

=

1

Q

n

k=1

(w(z)�w(t

k

))

�

k

�1

z

0

(w(z))

=

=

n

Y

k=1

(w(z)� w(t

k

))

��

k

+1

ew

1

(z); ew

1

(z) =

1

z

0

(w(z))

: (3.21)

Substituting in it the values of the di�erence w(z) � w(t

k

) from the

equality (3.19), we arrive at

w

0

(z) =

n

Y

k=1

(z � t

k

)

1

�

k

�1

w

1��

k

k

(z) ew

1

(z); w

k

(z) = [z

0

(w(z))]

�

1

�

k

:

(3.22)

Therefore, w

0

(z) = [z

0

(w(z))]

P

n

k=1

1��

k

�

k

�1

and w

�1

0

2 \

p>1

E

p

(D). �

Corollary. If � is a piecewise Lyapunov curve with angular points t

k

by

conditions 0 < �

k

� 2 (k = 1; 2; : : : ; n), then the functions z

k

, w

k

, k = 0; n,

in the representations (3:10){(3:13) are H�older class functions di�erent from

zero.

This follows from the fact that the function G

k

(the coe�cient of the

problem (3.15)) in the case under consideration belongs to the H�older class.

Notes and Comments to Chapter III

The assertions that the derivative of a function mapping conformally the

unit circle onto a simply connected domain satisfy the inclusions z

0

2 \

p>0

H

p

and ln z

0

2 H

1

, which are the particular cases of Corollary 1 of Theorem

1.1, are well known (see [43], pp. 410{411).

Formulation of Lindel�of's theorem (Theorem 1.2) is taken from [43], p.

409. For more general Lindel�of's result see [89], [167], [86].

The proof of Theorem 1.4, di�erent from that cited in the text, can be

found in [65].

Warschawski's theorem (Theorem 1.5) is given in the form as it is in

[159].

Classes of the curves T (�) and

e

T (�) have been introduced in [117]. The

proofs of Theorems 2.1 and 2.2 (without corollaries) based on the general-

izations of Lindel�of's theorem for domains with a boundary from the class

T (�) and also the particular cases of Theorem 1.4 are given therein.

Corollary 2 of Theorem 2.2 is due to Warschawski [166].
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CHAPTER IV

BOUNDARY VALUE PROBLEMS IN THE DOMAINS

WITH PIECEWISE SMOOTH BOUNDARIES

The Riemann-Hilbert problem will be investigated on the basis of the

results obtained in Chapter II, x7 and in Chapter III. We begin with the

consideration of particular cases of the problem, that is, with the Dirichlet

and Neumann problems for harmonic functions.

x

1. The Dirichlet Problem in e

p

(D) in Domains with a

Piecewise Smooth Boundary

1.1. Statement of the problem and its reduction to the problem of linear

conjugation. Let D be a simply connected domain bounded by a simple,

piecewise smooth curve �. Denote by e

p

(D) the set of harmonic functions

presenting a real part of functions from the class E

p

(D), i.e.,

e

p

(D) = fu : u = Re�(z); � 2 E

p

(D)g: (1.1)

The functions of this class possess almost everywhere on � angular bound-

ary values forming a function of the class L

p

(�).

Consider the following Dirichlet problem:

Find a harmonic in D function u(t), p > 1 from the class e

p

(D) whose

angular boundary values coincide almost everywhere on the boundary � of

the domain D with the given on it real function f from the class L

p

(�).

Thus we have to determine the function u for which

�u = 0; u 2 e

p

(D); p > 1;

u(t) = f(t); t 2 �; f 2 L

p

(�):

�

(1.2)

Let u = Re�, and assume

	(w) =

p

p

z

0

(w)�(z(w)); jwj < 1; (1.3)

where z = z(w) is a function mapping conformally the unit circle U onto

D. Following [102], [105] suppose


(w) =

(

	(w); jwj < 1;

	(

1

w

); jwj > 1;

(1.4)




�

(w) = 


�

1

w

�

; jwj 6= 1: (1.5)

The problem (1.2) is equivalent to the problem in the following statement

(see Chapter II, x7)




+

(� ) = �

p

p

z

0

(� )

p

p

z

0

(� )




�

(� ) + g(� ); g(� ) = 2f(z(� ))

p

p

z

0

(� );


 2

e

K

p

(
); 
(w) = 


�

(w)

9

>

=

>

;

(1.6)
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in the sense that any solution u (= Re�) of (1.2) generates by means of

equalities (1.3){(1.4) the function 
 which satis�es the conditions (1.6),

and vice versa, if 
 satis�es (1.6), and 	 is its restriction on U , then

u = Re

h

	(w)

p

p

z

0

(w)

i

is a solution of (1.2).

The problem

�u = 0; u 2 e

p

(D); p > 1;

u(t) = 0; t 2 �

�

(1:2

0

)

will be called the homogeneous problem corresponding to (1.2), or simply,

the homogeneous problem.

We quote here a lemma which will be used below.

Lemma 1.1. If X 2 H

p

, g 2 L(�) then the function XK




g belongs to the

Hardy class H

�

for some � > 0.

To prove this, it su�ces to notice that the Cauchy type integral K




g

belongs to \

�<1

H

�

([133], p. 116).

1.2. The solution of problem (1.2) in case of one angular point. We assume

here that � contains only one angular point C with the angle size ��, 0 �

� � 2 and consider separately the cases (i) 0 < � < p; (ii) p < �; (iii) � = p;

(iv) � = 0.

(i) 0 < � < p. Let

X(w) =

8

<

:

�

p

p

z

0

(w); jwj < 1;

p

q

z

0

(

1

w

); jwj > 1:

(1.7)

Since z

0

2 H

1

, then X 2 H

p

in U . Moreover, by Theorem 1.4 of Chapter

III, we have

X

+

(� ) = (� � c)

��1

p

z

1

p

0

(� ); c = w(C);

z

�1

0

2 \

�>1

H

�

; (z

+

0

)

�1

2 \

�>1

W

�

: (1.8)

In the case under consideration,

��1

p

2 (�

1

p

;

1

p

0

). Therefore, using Lemma

7.1 of Chapter II, we can easily conclude that X

�1

2

e

K

p

0

(
). Consequently,




0

(w) = �X(w);

where � is an arbitrary complex constant, is the general solution of the

homogeneous problem given by (1.6). Since

(�X)

�

=

8

<

:

�

p

p

z

0

(w); jwj < 1;

��

q

z

0

(

1

w

); jwj > 1;



158

the condition 


0

= (


0

)

�

yields � = ��. Thus Re� = 0, and hence

u

0

= Re

h

�


0

(w)

p

p

z

0

(w)

i

= �Re� = 0.

Further, since




X

2

e

K

1

(
),

g

X

+

2 L(
) and

�




X

�

+

=

�




X

�

�

+

g

X

+

;

the function


(w) =

X(w)

2�i

Z




g(� )

X

+

(� )

d�

� � w

(1.9)

is the only one possible solution of the problem (1.6). By Lemma 1.1,


 2 H

�

for some � > 0. On the other hand, if in the representation (1.8)

�

1

(� ) = (� � c)

��1

p

; �

2

(� ) = z

1

p

0

(� );

then �

1

2 W

p+"

(
), �

2

2 [

�>1

W

�

(
) and applying theorem from (0.20) to

the product �

1

�

2

, we obtain X

+

2 W

p

(
). This, by virtue of Sokhotski��-

Plemelj's formulas applied to 
, implies that 


+

2 L

p

(
) from which by

means of Smirnov's theorem we conclude that 
 2 H

p

. But then 
 2

e

K

p

(
),

by Lemma 7.1 of Chapter II.

Thus the problem of linear conjugation (1.6) has a solution given by (1.9).

Consequently,


(w) =

1

2

�

X(w)

2�i

Z




g(�)d�

X

+

(�)(� �w)

+

�

X(

1

w

)

2�i

�

Z




g(�)d�

X

+

(�)(� �

1

w

)

�

is a solution satisfying 
(w)=


�

(w). Since X(w(z))=�

1

p

p

w

0

(z)

, X(

1

w(z)

)=

1

p

p

w

0

(z)

it follows from (1.3) and the above equality that

u(z) = Re

h

1

2�i

Z




f(z(�))d�

� � w(z)

+

w(z)

2�i

Z




f(z(�))

�

d�

� �w(z)

i

:

Taking into account that f is a real function, we �nally obtain

u(z) = Re

�

1

2�i

Z




f(z(�))

�

� +w(z)

� �w(z)

d�

�

: (1.10)

(ii) p < �. Suppose

X

1

(w) = X(w)(w � c)

�1

; (1:7

1

)
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where X is a function given by (1.7). Using the representation (1.29) of

Chapter III, we conclude that

X

1

(w) = O

�

(w � c)

��p�1

p

z

1

(w)

�

; z

1

(w) = z

1

p

0

(w); (1.11)

in the neighbourhood of the point c. Since �

1

p

<

��p�1

p

<

1

p

0

(this is

equivalent to the inequality p < � < 2p which is valid for the assumptions

p < �, p > 1, � � 2), all possible solutions of the conjugation problem from

(1.6) are contained in the set of functions


(w) =

X

1

(w)

2�i

Z




g(� )

X

+

1

(� )

d�

� �w

+ (�w + �)X

1

(w); (1.12)

where � and � are arbitrary complex constants. The general solution of the

corresponding homogeneous problem will be the function 


0

(w) = (�w +

�)X

1

.

In order for the second condition from (1.6) to be ful�lled, it is necessary

to have

�

�

�

1

w

+ �

�
p

p

z

0

(w)

1

w

� c

=

(�w + �)

p

p

z

0

(w)

w � c

:

Since c = c

�1

,

�

�

�

w

+ �

�

wc

c� w

=

�w + �

w � c

:

Consequently, �c� � = 0, �c� � = 0 and we �nd that � = �c. That is,

if � is assumed to be arbitrary, we must have � = �c. Thus, the function

u

0

(z(w)) = Re

h

1

p

p

z

0

(w)

w�c + �

w � c

p

p

z

0

(w)

i

= Re

h

w�c+ �

w � c

i

is a solution of the homogeneous Dirichlet problem (1:2

0

).

But if w = re

i�

, c = c

1

+ ic

2

= e

i�

c

, � = � + i� then

�cw + �

w � c

=

(�cw + �)(w � c)

jw � cj

2

=

(�cr

2

� �c) � (�w � �w)

jw� cj

2

:

Taking into account that Re[�w � �w] = 0 and supposing �c = d + ie,

we obtain

Re

�cw + �

w � c

= Re

�cr

2

� �c

jw � cj

2

= Re

(d+ ie)r

2

� (d� ie)

jw� cj

2

=

d(r

2

� 1)

jw � cj

2

;

where d = Re �c = Re[(�� i�)(c

1

+ ic

2

)] = �c

1

+ �c

2

.

Hence

u

0

(z(re

i�

)) =

�(�c

1

+ �c

2

)(1 � r

2

)

1 + r

2

� 2r cos(� � �

c

)

;
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where � and � are arbitrary real constants. Obviously, �(�c

1

+ �c

2

) passes

through all real numbers, so that

u

0

(z(re

i�

)) =M Re

c+ w

c� w

;

where M is an arbitrary real constant.

Thus

u

0

(z) =M Re

c+ w(z)

c� w(z)

(1.13)

is the general solution of problem (1:2

0

).

One can obtain a particular solution of the problem (1.2) by using again

the equality u

f

=

1

2

[
(w(z)) + 


�

(w(z))], where 
 is the function de�ned

by (1.12) for � = � = 0.

As a result, we obtain the particular solution having the form

u

f

(z) =

= Re

h

1

w(z)

�

1

2�i

Z




f(z(�))(� � c)

� �w(z)

d� �

cw

2

(z)

2�i

Z




f(z)(� � c)

�(� � w(z))

d�

�i

: (1.14)

Consequently, for p < �, the Dirichlet problem (1.2) is solvable for any

f 2 L

p

(�) and has the set of solutions given by the equality

u(z) = u

0

(z) + u

f

(z); (1.15)

where u

0

and u

f

are de�ned by the formulas (1.13) and (1.14), respectively.

(iii) � = p. Consider �rst the homogeneous problem.

If X is given by (1.7), then X(w) = O((w � c)

1

p

0

z

0

(w)), z

0

2 \

�>1

e

K

�

(�)

(including the case �=2=p). The function F (w)=
(w)[X(w)]

�1

satis�es

the condition F

+

= F

�

, belongs to the class \

�<1

H

�

in U and to the class

\

�<1

e

H

�

in CnU . Let us show that the function F is regular at all, di�erent

from c, points of the plane. Let � be an arbitrary on 
 point, di�erent from

c. Choose on 
 a pair of points �

1

and �

2

on either side from � so close

to � that the circumference arc with these ends 
(�

1

; �

2

) does not contain

c. Consider the domain S

+

�

(a part of the circle U ) bounded by the radii

passing through the points �

1

and �

2

and by the arc 
(�

1

; �

2

). Since the

function 
 2 H

�

, according to the Fejer-Riesz theorem ([27], p. 46) we

have

1

Z

0

j
(re

i�

0

)j

�

dr �M

2�

Z

0

j
(e

i�

)j

�

d�; �

0

2 [0; �]; � 2 (0;+1);

and thus we can easily state that 
 2 E

p

(S

+

�

). Analogously we show that


 2 E

p

(S

�

�

), where S

�

�

is the domain bounded by the arc, extension of
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radii passing through the points �

1

and �

2

and by the arc of circumference

jwj = 1 + �, � > 0. Since �2
(�

1

; �

2

), [X(w)]

�1

is bounded in domains S

�

�

;

hence F 2 E

p

(S

�

�

), p > 1 and therefore it is representable in these domains

by the Cauchy integral

F (w) =

8

>

<

>

:

1

2�i

Z




1

F (�)d�

� �w

; w 2 S

+

�

;

0; w 2 S

�

�

;

F (w) =

8

>

<

>

:

1

2�i

Z




2

F (�)d�

� � w

; w 2 S

�

�

;

0; w 2 S

+

�

;

(1.16)

where 


1

and 


2

are the boundaries of the domains S

+

�

and S

�

�

, respectively.

Let 


3

= (


1

[ 


2

)n
(�

1

; �

2

). Since on 
(�

1

; �

2

) we have F

+

= F

�

, the

function

F

1

(w) =

1

2�i

Z




1

[


2

F (�)d�

� �w

=

1

2�i

Z




3

F (�)d�

� �w

is regular at the points of the arc 
(�

1

; �

2

). On the other hand, the function

F inside of 


3

on account of (1.16) coincides with F .

Thus, the function F is regular everywhere with the exclusion of the point

c at which it may possibly have a pole of the �rst order, since it fails to

belong to the class [

�<1

H

�

otherwise. Consequently, F (w) = � +

�

w�c

, and

all possible solutions of the homogeneous problem from (1.6) are contained

in the set of functions given by




0

(w) = �X(w) + �(w � c)

�1

X(w) = �X(w) + �X

1

(w); (1.17)

where � and � are arbitrary constants.

Let us now �nd conditions for 


0

to belong to

e

K

p

(
). Since X 2

e

K

p

(
),

for the inclusion 


0

2

e

K

p

(
) the condition X

1

2

e

K

p

(
) must be satis�ed.

With this end in view, it is necessary and su�cient for X

1

to be the function

H

p

in U . In this connection, there may appear two possible cases.

I. X

1

2 H

p

in U . As in case (ii), we obtain that 


0

is a solution of (1.6)

if � is arbitrary and � = �c. Then the general solution of the homogeneous

problem (1:2

0

) is again given by equality (1.13).

II.X

1

2H

p

. Then 


0

2

e

K

p

(�) if and only if � = 0. Moreover, by virtue of

the second condition from (1.6) we again arrive at Re� = 0, and therefore

the problem (1:2

0

) has only zero solution.

Consider now the question whether the inhomogeneous problem has a

solution.

Let X

1

be given by the equality (1:7

1

). Then in the case under consid-

eration, owing to (1.29) of Chapter III, in the neighbourhood of the point
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c we have X

1

= O((w � c)

�

1

p

z

1

p

0

(w)); moreover, (z

+

1

)

�1

2 W

�>1

�

(
), where

z

1

= z

1

p

0

. Since X

�1

1

2

e

K

p

0

(
), we can easily �nd that a possible solution of

the problem (1.6) is contained in the set


(w) =

X

1

(w)

2�i

Z




g(�)

X

+

1

(�)

d�

� �w

+ (�w + �)X

1

(w):

Consider again two cases.

I. X

1

2 H

p

. In this case (�w + �)X

1

2

e

K

p

(
) and 
 2

e

K

p

(
), if and

only if




g

=

X

1

(w)

2�i

Z




g(�)

X

+

1

(�)

d�

� � w

(1.18)

belongs to the class

e

K

p

(
). Obviously, this equality is equivalent to the

condition 


g

2 H

p

in U . However, 


g

does not belong to H

p

for some

g 2 L

p

(
). Indeed, assume 


g

to belong to H

p

for any g 2 L

p

(
). Then, by

Lemma 1.1 and Smirnov's theorem from (0.19), we have 


+

g

2 L

p

(
) which,

owing to Sokhotski��-Plemelj's formulas, is equivalent to the condition that

the function

T

1

g =

X

+

1

(�

0

)

2�i

Z




g(�)

X

+

1

(�)

d�

� � �

0

belongs to the class L

p

(
) for all g 2 L

p

(
).

But

T

1

g(�

0

) = X

+

1

(�

0

)

Z




g(�)

X

+

1

(�)

d�

� � �

0

=

= (�

0

� c)

�

1

p

z

1

(�

0

)

Z




g(�)

(� � c)

�

1

p

z

1

(�)

d�

� � �

0

; (1.19)

and if the function T

1

g belongs to the class L

p

(
) for any g 2 L

p

(
), then

by Theorem 2.2 of Chapter I, T

1

will be an operator, continuous on L

p

(
).

However, T

1

is not such. Indeed, the function �(�

0

) = (�

0

�c)

�

1

p

z

0

(�) under

such an assumption belongs to W

p

(
) and hence to W

p+"

(
) as well (see

Chapter I, x4). Therefore there must be � 2 L

p+"

(
). But this is impossible,

since the condition z

�1

0

2 \

�>1

L

�

(
) implies that �2 \

�>p

L

�

(
).

Thus, ifX

1

2 H

p

, there exist functions g

0

of the class L

p

(
) for which the

problem (1.6) is unsolvable. Consequently, the problem (1.6) is unsolvable

for the functions f

0

(t) = eg

0

(w(t))

h

p

p

w

0

(t)

i

�1

, f

0

2 L

p

(�).

II. X

1

2H

p

. In the case of piecewise smooth Lyapunov curves with angle

sizes ��, � 6= 0, it follows fromWarschawski's theorem (Theorem 1.5, Chap-

ter III) that X

1

(w)2H

p

. However, as it will be shown in subsection 1.3, for
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any such curve with one angular point c, of angular size p�, 1 < p � 2 there

exists a function f

0

2 L

p

(�) for which the problem (1.2) is unsolvable.

Thus when the curve has an angular point c of the angular size p�, the

problem (1.2) is, generally speaking, unsolvable if the given function f is

required to satisfy the condition f 2 L

p

(�) only.

On the basis of Theorem 4.7 of Chapter I, one can point out a rather

wide set of functions f from the class L

p

(�) for which the problem (1.2)

becomes solvable.

Suppose

f(t) ln jw(t)�Cj 2 L

p

(�): (1.20)

Then

g(�) ln j� � cj 2 L

p

(
); (1:20

1

)

and thus g(�) ln(� � c) 2 L

p

(
).

Let X be the function de�ned by equality (1.7). Then

g(�) ln(��c)

X

+

(�)

2 L(
).

Consider the function




g

(w) =

X(w)

2�i

Z




g(�)

X

+

(�)

d�

� � w

(1.21)

and show that this function is a particular solution of the problem (1.6).

For this purpose, it is seen to be su�cient to show (observing that 


g

2 H

�

for some � > 0 in domains U and CnU ) that 


+

g

2 L

p

(
). But




+

g

(�

0

) =

1

2

g(�

0

) +

X

+

(�

0

)

2�i

Z




g(�)

X

+

(�)

d�

� � �

0

; (1.22)

where X

+

(�

0

) = O((�

0

� c)

1

p

0

z

1

p

0

(�

0

)) and z

0

(�

0

) = exp(K

�

�)

+

(�

0

) with the

function � continuous on �. By Corollary of Theorem 1.1 of Chapter III,

z

q

0

2 \

�>1

W

�

for any q 2 R. From this and the expression (1:20

1

) it follows

immediately that to the second summand in (1.22) we have applied Theorem

4.7 of Chapter I on the basis of which we can conclude that this summand,

and thus 


+

g

2 L

p

(
). Consequently, 


g

2 H

p

in U and by Lemma 7.1 of

Chapter I we �nd that 


g

2

e

K

p

(
) as well. Again, a particular solution of

the problem (1.2) is given by (1.10).

Summarizing the above results, we conclude that: if � = p, then the

problem (1.2) has only zero solution if in the circle U the function X

1

(w) =

(w � c)

�

1

p

z

1

p

0

(w)2H

p

, or a set of solutions given by (1.13), when X

1

2

H

p

. The inhomogeneous problem is, generally speaking, unsolvable. If

the condition (1.20) is ful�lled, then the problem (1.2) is solvable, and its

general solution is given by the equality

u(z) = u

f

(z) + u

0

(z); (1.23)
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where u

f

is the function given by equality (1.10), and

u

0

(z) =

8

<

:

0; for; X

1

2H

p

;

M Re

w(z) + c

w(z)� c

; for X

1

2 H

p

:

(1.24)

Remark 1. If � is a piecewise Lyapunov curve, then 0 < m < jz

0

j � M .

Therefore X

1

2H

p

, and hence the problem (1:2

0

) for � = p has only the

zero solution. Moreover, using Corollary 1 of Theorem 2.2 from Chapter

III, condition (1:20) can be written in the form

g(t) ln jt� cj 2 L

p

(�): (1:20

2

)

Remark 2. On the basis of the above-considered cases, we have the fol-

lowing picture for the solvability of the problem (1.2) in domains with one

interior angle of size � = 2:

for p < 2, the problem (1:2) is solvable not uniquely, and all its solutions

are given by (1:15), (1:13) and (1:14). For p > 2, it is solvable uniquely, and

its unique solution is given by (1:10). If p = 2, then the problem (1:2

0

) has

only the zero solution for X

1

2H

p

, and the set of solutions is given by (1:13)

for X

1

2 H

p

. The inhomogeneous problem (1:2) is, generally speaking,

unsolvable. If, however, f(t) ln jw(t) � Cj 2 L

2

(�), then this problem is

solvable, and its general solution is given by (1:23) and (1:24).

(iv) � = 0. If X is speci�ed by (1.7), then in the neighbourhood of the

point c we have X = O((w � c)

�

1

p

z

1

p

0

) so

1

X

2

e

K

p

0

(
). Therefore 


0

= �X,

and the homogeneous conjugation problem (1.6) is solvable, and its general

solution is given by the equality 


0

= �X. As in case (i), we conclude

that Re� = 0. Thus the problem (1:2

0

) has only the zero solution. All the

solutions of the inhomogeneous problem are contained in the set of functions


(w) =

X(w)

2�i

Z




g(�)

X

+

(�)

d�

� �w

+ �X(w); (1.25)

where X

+

(�) = (� � c)

�

1

p

z

1

p

0

.

Obvious X 2

e

K

p

(
) as X 2 H

p

in U . Therefore 
 2

e

K

p

(
) if and only if

XK

�

�

g

X

+

�

2

e

K

p

(
). However, if this inclusion is ful�lled for any g 2 L

p

(
),

then the operator T

1

, de�ned by (1.19), is continuous in L

p

(
) (by Theorem

2.2 of Chapter II). But as is shown in the case (iii), the operator T

1

is not

such. Hence, there exists a function g

0

2 L(
) for which the problem (1.6)

is unsolvable. This implies the existence of such f

0

2 L

p

(�) for which the

problem (1.2) is unsolvable.

Assume again that the condition (1.20) is ful�lled and let us show that

the function 
 given by (1.25) for � = 0 provides a particular solution of the

problem (1.6), i.e., 
 2

e

K

p

(
). It su�ces to show that 
 2 H

p

in U . For



165

this purpose, as it follows from Lemma 1.1 and Smirnov's theorem (0.19),

it su�ces in its turn to show that 


+

2 L

p

(
).

Suppose g

1

(�) = g(�) ln j� � cj, �(�) = X

+

(�)(� � c)

1

p

z

1

p

0

(�). Then g

1

2

L

p

(
) (because of (1.20)), and �

q

2W

p

(
) for every q 2 R (see Theorem 2.2

of Chapter II).

We now have

2�i


+

(�

0

) = g(�

0

) +X

+

(�

0

)

Z




g

1

(�)(� � c)

(� � c)

1

p

0

�(�) ln j� � cj

d�

� � �

0

=

= g(�

0

) +X

+

(�

0

)

Z




g

1

(�)[(� � �

0

) + (�

0

� c)]

(� � c)

1

p

0

�(�) ln j� � cj

d�

� � �

0

=

= g(�

0

) + AX

+

(�

0

) + �(�

0

)(�

0

� c)

1

p

0

Z




g

1

(�)

(� � c)

1

p

0

�(�) ln j� � cj

d�

� � �

0

=

= g(�

0

) + AX

+

(�

0

) + (Tg

1

)(�

0

); A =

Z




g

1

(�)d�

(� � c)

1

p

�(�) ln j� � cj

: (1.26)

Here X

+

2 L

p

(
), since X

+

(�) =

p

p

z

0

(�), and it follows from the above-

mentioned properties of � (by Theorem 4.7 of Chapter I) that Tg

1

2 L

p

(
).

Thus, (1.26) implies that 


+

2 L

p

(
). Consequently, 
 2

e

K

p

(
), and hence

this is a unique solution of the problem (1.6). The solution of (1.2) is given

by the equality (1.10).

From the above considered cases (i){(iv) we obtain

Theorem 1.1. Let � be a simple, closed, piecewise smooth curve contain-

ing one angular point C with interior angle of size ��, 0 � � � 2 and

X

1

(w) = (w � c)

�1

X(w), where X is given by (1:7), c = w(C). Then the

Dirichlet problem (1:2):

{ is uniquely solvable for o < � < p;

{ has for p < � a set of solutions depending on only one parameter;

{ is, in general, unsolvable for p = � and becomes solvable when the

condition (1:20) is ful�lled. Moreover, it has a unique solution, if X

1

2H

p

,

and a set of solutions depending on only one parameter for X

1

2 H

p

;

{ is, in general, unsolvable for � = 0. If condition the (1:20) is ful�lled,

it has a unique solution.

When the solution exists, it is given by (1:10) for 0 � � < p, by (1:15),

(1:14) and (1:13) for p < � and by (1:23) and (1:24) for p = �.

1.3. An example of the function f

0

2 L

p

(�) for which the problem (1.2) has

no solution if � contains an angular point with an angle of size p�. Let � be

an arbitrary, closed, piecewise Lyapunov curve containing only one angular

point with an angle (interior with respect to a �nite domain bounded by this

curve) p�, 1 < p � 2. To construct the function f

0

for which the problem
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(1.2) is unsolvable, we will �rst show that upon its solvability the solution

is obtained from that solution of problem (1.6) which has a speci�c form.

Write the boundary condition from (1.6) in the following form:

(� � c)


+

(�) = �

(� � c)

p

p

z

0

(�)

p

p

z

0

(�)




�

(�) + g(�)(� � c):

It is easily veri�ed that if X is the function given by (1.7), then the function

F (w) = (w � c)
(w)X

�1

(w) will, after subtraction from it of some linear

function, belong to the class

e

K

p

(
). Therefore all possible solutions of the

problem (1.6) lie in the set of functions

e


(w) =

X(w)

w� c

1

2�i

Z




g(�)(� � c)

X

+

(�)(� � w)

d� +

aw + b

w � c

X(w); (1.27)

where a and b are arbitrary constants. SinceX 2

e

K

p

(
),

e


 will be a solution

of the class

e

K

p

(
), if one can choose a constant B such that the function




0

(w) =

X(w)

w � c

1

2�i

Z




g(�)(� � c)

X

+

(�)

d�

� �w

+

BX(w)

w � c

(1.28)

would belong to the class

e

K

p

(
).

We can easily show that in the unit circle and in its complement 


0

2

\


<1

H

�

, and therefore 


0

2

e

K

p

(
) if and only if 


+

0

L

p

(
). For this it is

necessary and su�cient that the function

h

g;B

=

X

+

(�

0

)

�

0

� c

Z




g(�)(� � c)d�

X

+

(�)(� � �

0

)

+

BX

+

(�

0

)

�

0

� c

(1.29)

would belong to the class L

p

(
).

Construct now a function g

0

2 L

p

(
) such that h

g

0

;B

2L

p

(
) for any

values of B.

Suppose c = 1 and let

g

0

(�) = g

0

(e

i�

) =

8

<

:

m

n

X

+

(�)

� � 1

; �

n

� � < �

n+1

;

0; � 2 (1; 2�);

(1.30)

where �

n

=

1

n

and m

n

=

1

ln(n+1)

.

Since � is a piecewise Lyapunov curve, near c = 1 (see Warschawski's

theorem in Chapter III) we have X

+

= O((��1)

1

p

0

z

0

(�)), where z

0

2 H(
),
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z

0

(1) 6= 0. Therefore

�

�

�

X

+

(�)

��1

�

�

�

�

M

j��1j

, and

2�

Z

0

jg

0

j

p

d� �

X

n=1

m

p

n

�

n

+1

Z

�

n

d�

j� � 1j

�

�

1

X

n=1

m

p

n

q

(1 � cos

1

n

)

2

+ sin

2

1

n

�

1

n

�

1

n+ 1

�

� const

1

X

n=1

1

n ln

p

(n+ 1)

<1:

Thus g

0

2 L

p

(
). Show that h

g

0

;B

2L

p

(
). We have

h

g

0

;B

=

X

+

(�

0

)

�

0

� 1

�

Z




g

0

(�)(� � 1)

X

+

(�)(� � �

0

)

d� + B

�

;

where

X

+

(�

0

)

�

0

�1

2L

p

(
). Therefore if we prove that

lim

�

0

!1

Z




g

0

(�)

X

+

(�)

� � 1

� � �

0

d� =1; (1.31)

then this will imply that the assertion regarding h

g

0

;B

is valid.

Given k > 0 and N such that

P

N

n=1

1

n ln(n+1)

> k. Suppose �

0

= e

i�

,

� 2

�

0;

1

N+1

�

, �

n

= e

i�

n

, �

n

=

1

n

. We have

�

�

�

�

Z




g

0

(�)(� � 1)d�

X

+

(�)(� � �

0

)

�

�

�

�

�

�

�

�

�

1

X

n=1

m

n

ln

�

�

�

�

n

� �

0

�

n+1

� �

0

�

�

�

�

�

�

�

; (1.32)

ln

�

�

�

�

n

� �

0

�

n+1

� �

0

�

�

�

= ln

�

�

�

sin(

�

2

+

1

2n

)

sin(

�

2

+

1

2(n+1)

)

�

�

�

> 0; � 2

�

0;

1

N + 1

�

:

Therefore from (1.32) we �nd that

�

�

�

�

Z




g

0

(�)(� � 1)

X

+

(�)(� � �

0

)

d�

�

�

�

�

�

1

X

n=1

m

n

ln

�

�

�

sin(

�

2

+

1

2n

)

sin(

�

2

+

1

2(n+1)

)

�

�

�

=

=

1

X

n=1

m

n

ln

�

1 +

2 cos(

�

2

+

1

4n(n+1)

) sin

1

4n(n+1)

sin(

�

2

+

1

2(n+1)

)

�

�

�

1

2

N

X

n=1

m

n

2 cos(

�

2

+

1

4n(n+1)

) sin

1

4n(n+1)

sin(

�

2

+

1

2(n+1)

)

�

�

1

2

N

X

n=1

m

n

2 cos(

�

2

+

1

4n(n+1)

) sin

1

4n(n+1)

sin(

1

2(N+1)

+

1

2(n+1)

)

� m

0

k; (1.33)

where m

0

=

1

2�

inf

N

cos

2N + 3

4N (N + 1)

> 0:
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which proves the relation (1.31).

If

g

0

p

p

z

0

(�)

= g

1

+ig

2

, then it is obvious that the problem (1.2) is unsolvable

for one of the functions g

1

(w(t)) or g

2

(w(t)).

1.4. Problem (1.2) in domains bounded by arbitrary piecewise smooth

boundaries. From the results obtained in sections 1.2 and 1.3 it follows

Theorem 1.2. Let � be a closed, piecewise smooth curve bounding the �-

nite domain D, and let C

k

, k = 1; n, be its angular points with interior

angles �

k

�, 0 � �

k

� 2. Denote by n

1

the number of angular points with

the values n

1

from the interval (p; 2] (assuming (2; 2] = ?). Then all the

solutions of the homogeneous problem (1:2

0

) are given by the equality

u

0

(z)=

X

�

k

2(p;2]

N

k

(p)Re

w(C

k

)+w(z)

w(C

k

)�w(z)

+

X

�

k

=p

M

k

(p)Re

w(C

k

)+w(z)

w(C

k

)+w(z)

;(1.34)

where N

k

are arbitrary constants, w = w(z) is a function mapping confor-

mally the domain D onto U , and

M

k

(p) =

(

0; if X

k

2H

p

; X

k

(w) = (w � c

k

)

�

1

p

z

1

p

0

;

M

k

is an arbitrary constant if X

k

2 H

p

;

(1.35)

z

0

is the function de�ned from equality (2:7) of Chapter III.

The inhomogeneous problem is, in general, unsolvable if there exist angu-

lar points with the values �

k

from the set f0; pg. If f satis�es the condition

f(t) ln

�

�

�

Y

k

�

k

2f0;pg

(w(t)� w(C

k

))

�

�

�

2 L

p

(�); (1.36)

then the problem is solvable.

In all the cases in which a solution exists, it is given by the equality

u(z) = u

0

(z) + u

f

(z); (1.37)

where u

0

is de�ned by (1:34), and

u

f

(z) = Re

��

1

2�i

f(z(�))�(�))

� �w(z)

d� +

+

(�1)

n

1

2�i

w(z)

n

1

+1

Y

�

k

2(p;2]

c

k

Z




f(z(�))�(�)

�(� � w(z))

�

1

�(w(z))

�

; (1.38)

�(w(z)) =

Y

�

k

2(p;2]

(w � c

k

) and � � 1; if f�

k

: �

k

2 (p; 2]g = ?: (1.39)
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x

2. The Neumann Problem in the Class e

0

p

(D) in Domains with

Piecewise Smooth Boundary

Suppose

e

0

p

(D) =

n

u : �u = 0; sup

0�r<1

Z

�

r

�

�

�

�

@u

@x

�

�

�

p

+

�

�

�

@u

@y

�

�

�

p

�

jdzj

o

; p > 1; (2.1)

where �

r

is as usual the image of the circumference jwj = r for the conformal

mapping of U onto D.

Let u 2 e

0

p

(D), v be a function conjugate harmonically to it, and � =

u + iv. Since

@u

@x

=

@v

@y

and

@v

@x

= �

@u

@y

, and �(z) =

@u

@x

+ i

@v

@y

, z = x + iy,

it follows from (2.1) that �

0

2 E

p

(D). Thus e

0

p

(D) = ReE

0

p

(D), where

E

0

p

(D) = f� : �

0

2 E

p

(D)g. This implies that the functions u from e

0

p

(D)

are continuous in D, absolutely continuous on � (see, e.g., [133], p. 208),

and

@u

@x

and

@u

@y

have on � angular boundary values

�

@u

@x

�

+

and

�

@u

@y

�

+

summable on 
 with degree p.

Let

�

@u

@n

�

�

=

�

@u

@x

�

+

cos(n; x) +

�

@u

@y

�

+

cos(n; y) =

=

�

@u

@x

�

+

(� sin�(t)) +

�

@u

@y

�

+

cos(�(t));

where (n; x) and (n; y) denote the angles formed by the normal at the point

t and the coordinate axes and �(t) is the angle lying between the oriented

tangent at the point t and the x-axis.

Consider the Neumann problem formulated as follows: de�ne the func-

tion u for which

�u = 0; u 2 e

0

p

(D); p > 1;

�

@u

@n

�

�

= f; f 2 L

p

(�):

)

(2.2)

Let u = Re� be a solution of the problem (2.2). Then �

0

2 E

p

(D).

Taking �

0

in terms of �

0

=

@u

@x

� i

@u

@y

and assuming a(t) = cos�(t), b(t) =

sin�(t), we can write the boundary condition from (2.2) in the following

form:

Re[i(a(t) + ib(t))�

0

(t)] = f(t)

([106], x74{75) or, what comes to the same thing, in the form

Re[it

0

(s)�

0

(t(s))] = f(t(s)): (2.3)

Let

	(w) =

p

p

z

0

(w)�

0

(z(w)); f(z(� )) = g

1

(� ): (2.4)



170

Taking into account the fact that t

0

(s) = exp i�(t(s)), we write (2.3) as

Re

h

i exp i�(z(� ))

p

p

z

0

(� )

	

+

(� )

i

= g

1

(� ):

If


(w) =

8

<

:

	(w); jwj < 1;

	

�

1

w

�

; jwj > 1;

(2.5)

then 
 satis�es the conditions




+

(� ) = exp(�2i�(z(� )))

p

p

z

0

(� )

p

p

z

0

(� )




�

(� ) + g(� );


 2

e

K

p

(
); 
(w) = 


�

(w);

9

>

=

>

;

(2.6)

where

g(� ) = �i

p

p

z

0

(� ) exp(�i�(z(� ))2g

1

(� ); g 2 L

p

(
): (2.7)

Let � = exp i�. Assume �(z(� )) � �(�). Since

lim

w

^

!exp i�

arg z

0

(w) = �(�) � � �

�

2

(see Corollary 1 of Theorem 2.2 in Chapter III), the conjugation problem

from (2.6) will take the form




�

(� )=M

0

exp

h

� 2i

�

�

p

+

�(�)

p

0

�i




�

(� )+g(� ); M

0

=exp

�

�

�i

p

�

: (2.8)

The coe�cient G(� ) = M

0

exp

h

� 2i

�

�

p

+

�(�)

p

0

i

of the problem (2.8)

has a jump discontinuity at the point c = w(C). Moreover, when the

point � moves along the unit circumference in the positive direction, the

argG(� ) = �2

�

�(�)

p

0

+

�

p

�

possesses the increment �4�. Choosing on 
 a

point �

0

6= C and assuming it to be the initial point of the going around


, then argG(� ) will have a discontinuity equal to (�4�). Let c = exp i�

c

.

Then (�(�

c

+) � �(�

c

�)) is equal to the angle between the right and the

left tangents at the point C, that is, � � ��. Therefore the argG(� ) has

at the point c a discontinuity equal to � =

2�(��1)

p

0

. Let '

1

(� ) =

�

2�

�

c

(� )

and '

2

(� ) = 2�

�

0

(� ) where �

c

, �

�

0

are the continuous, respectively on 
nfcg

and 
nf�

0

g, branches of the function arg � . Then the function '

0

(� ) =

argG(� )� '

1

(� ) � '

2

(� ) is continuous on 
.

Let now

X

c

(w) = (w � �

0

)

2

�

c

(w)

2

Y

k=0

exp

�

1

2�i

Z




'

k

(� )d�

� � w

�

=
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= (w � �

0

)

2

�

c

(w)

2

Y

k=0

X

k

(w); (2.9)

where

�

c

(w) =

(

1 for � < p

0

w � c for � � p

0

;

X

k

(w) = exp

�

1

2�i

Z




'

k

(� )d�

� �w

�

: (2.10)

The function X

c

(w) is a solution of the homogeneous boundary value

problem (2.8) representable by the Cauchy type integral with density from

the class L

p

(
) and its principal part at in�nity of order {

c

+ 2 (that is,

X

c

(w) =

R




x(�)d�

��w

+ P

{

c

+2

(w), x 2 L

p

(
) and P

{

c

+2

is a polynomial of

order {

c

+ 2), where {

c

= 0 for � < p

0

and {

c

= 1 for � � p

0

. The function

[X

c

(w)]

�1

is representable by the Cauchy type integral with density from

\

">0

L

p

0

�"

(
), while the functions [X

�

c

(� )]

�1

are integrable, with degree p

0

,

on any closed portion of 
 not containing the point c (see subsection 1.2).

Further, X

+

c

[X

�

c

]

�1

= G, and we can easily verify that near the point c,

X

c

(w) = O((w � c)

1��

p

0

X

0

(w)) for � < p

0

;

X

c

(w) = O((w � c)

1��

p

0

+1

X

0

(w)) for � � p

0

;

)

(2.11)

where X

0

(w) = exp

�

1

2�

R




 

0

(�)d�

��w

�

with the continuous on 
 function  

0

,

and therefore X

�1

0

2 \

�>1

H

�

, X

+

2 \

�>1

W

�

(
).

If 


0

is a solution of the problem (2.6), and F (w) = 


0

(w)[X

c

(w)]

�1

,

then: �rst, almost everywhere on 
 we have F

+

(� ) = F (� ), and F (w) has

at in�nity zero of order {

c

+2; secondly, F is regular at all points of 
 when

�2f0; 2; p

0

g or � = 2 and p < 2: (2.12)

If, however,

� 2 f0; p

0

g or � = 2 and p � 2; (2.13)

then the function F is regular on 
nfcg, and at the point c it may perhaps

have a pole of the �rst order. (This can be justi�ed in the same manner as

it was done in subsection 1.2.)

On this basis we can conclude that F , and hence 


0

, is everywhere equal

to zero. But then only the functions u

0

�M , where M is an arbitrary real

constant, will be solutions of the problem (2.2) for f = 0.

Construct now a particular solution of the inhomogeneous problem (2.2).

For this purpose we notice that under the assumption (2.12) and owing to

(2.11), we have g[X

+

c

]

�1

2 L(
), and consider the function

e


(w) =

X

c

(w)

2�i

Z




g(� )d�

X

+

c

(� )(� � w)

: (2.14)
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It is not di�cult to see that

e


 is the only possible function providing

us with the solution. It is also easy to show that

e


 2 H

p

in U . In order

for 
 to belong to the class

e

K

p

(
), it is necessary and su�cient that the

conditions

Z




g(� )[X

+

c

(� )]

�1

�

k

d� = 0; k = 0;{

c

; (2.15)

x

c

=

(

0; if � < p

0

;

1; if � � p

0

or, what is the same, the conditions

Z

�

f(t)Z

c

(t)w

k

(t)dt = 0; k = 0;{

c

; (2.16)

be ful�lled, where

Z

c

(t)=exp

�

1

2�

Z




�(z(� ))d�

� �w(t)

�

(w(t)�w(C))

��

p

(w(t)�w(t

0

))

2

w

0

(t); (2.17)

t

0

= z(�

0

); �

p

=

(

0; if � < p

0

1; if � � p

0

:

If (2.13) takes place, and if � is a piecewise Lyapunov curve, then for any

p > 1 we can, as in subsection 1.3, construct an example of the function f

0

2

L

p

(�) for which the problem (2.2) is unsolvable. Note that the condition

(2.16) can be ful�lled for the function f

0

.

This implies that if f 2 L

p

(�) then the problem (2.2) under conditions

(2.13), (2.16), is, in general, unsolvable. Therefore we assume that the

condition (1.20), appearing in the previous section, is full�lled, i.e.,

f(t) ln jw(t)�Cj 2 L

p

(�): (2.18)

In this case we can show, as in the above-mentioned section (see the case

(ii) of subsection 1.2), that the function

e


 given in U and in its complement

by (2.14) belongs to some Hardy class. According to Smirnov's theorem,

for the belonging to the class H

p

of the function

e


, it is su�cient to have

e




+

2 L

p

(
). By (2.18) and (2.11), on the basis of Theorem 4.7 of Chapter

I, we can conclude that this inclusion is ful�lled. In order for the function

e




to be the desired solution (i.e., for the existence of the �nite limit lim

z!1

e


(z)),

it is necessary and su�cient that the conditions (2.16) be ful�lled. If these

conditions are ful�lled, then the solution of the problem (2.2) is given by
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the equality

u(z) = Re

�

w(z)

Z

0

e


(�)d�

X

+

c

(�)

�

+M; (2.19)

where X

c

and

e


 are functions given by the equalities (2.9), (2.10) and (2.14),

and the integral in (2.19) is taken over any path in U from the point 0 to

w(z), and M is an arbitrary real constant.

As a result of the above reasoning we have the following

Theorem 2.1. Let � be a simple, closed, piecewise smooth curve contain-

ing one angular point C with the angle 0 � � � 2, and let X

c

be de�ned

by (2:9) and (2:10). Then for the solvability of the Neumann problem in

the class e

0

p

(D) it is necessary to ful�l the conditions (2:16). When these

conditions are ful�lled, the problem becomes solvable for � 2 2f0; 2; p

0

g or

for � = 2 and p < 2. However, if � 2 f0; p

0

g or � = 2 and p � 2, then the

problem is, in general, unsolvable. In these cases, if along with conditions

(2:16) for f the condition (2:18) is ful�lled, then the problem is solvable.

In all the cases in which the solution exists, it is given by (2:19), where

e


 is de�ned by (2:14).

The case with a general piecewise smooth curve can be considered by

means of the function which is the product of the functions X

c

k

, where X

c

k

are constructed by (2.9) with C replaced by C

k

. In particular, the number

of conditions for solvability is equal to 1 + n

p

, where n

p

is the number of

angular points C

k

at which �

k

� p

0

. If on the boundary there exist points

�

k

from the set f0; p

0

g, or �

k

= 2 and p � 2, then the ful�lment of the

condition of orthogonality guarantees the solvability of the problem if

f(t) ln

Y

�

k

2fp

0

;0g

jw(t)�C

k

j

Y

�

k

=2

jw(t)�C

k

j

�(p)

2 L

p

(�);

�(p) =

(

0; if p < 2;

1; if p � 2:

We will dwell in detail on the case where the curve � contains only one

angular point: a cusp C.

If � = 2 and p < 2, then the problem (2.2) is solvable for any f 2 L

p

(�)

under the condition that it must be orthogonal to the function Z

c

(t) de�ned

by (2.17). If p � 2 and f(t) ln jw(t)� Cj 2 L

p

(�), then for the problem to

be solvable, it is necessary (and su�cient) for f to be orthogonal to the

function Z

c

(t)w(t) as well.

If � = 0, then there exists in any L

p

(�), p > 1, the function f

0;p

for

which the Neumann problem is unsolvable in the class e

0

p

(D). If along with

(2.16) condition (2.18) is ful�lled, then the problem is solvable.
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Finally we will remark that the condition (2.16) with {

c

= 0 takes also

place in the case, where � is a smooth curve. In this case the condition

(2.16) can be written in a more simple form.

In the case of domains bounded by smooth curves, ln z

0

(w) 2 H

1

(see,

e.g., (1.20) from Chapter III), and therefore the equality

i ln z

0

(w) =

1

2�i

Z




Re[i ln z

0

]

�

� + w

� � w

d� (2.20)

is valid. Moreover, it is not di�cult to verify that

2�

Z




�d�

� � �

=

2�

Z

0

�ie

i�

d�

e

i�

� �

= ln(1� � ) � i�

0

� i�; � = e

i�

0

: (2.21)

The condition (2.16) with regard for (2.20) and (2.21) takes the form

Z

�

f(t)ds = 0:

Consequently, the condition for solvability of the Neumann problem in

the class e

0

p

(D) in the case under consideration has the same form as the

condition for its solvability in di�erent classes of smooth functions (see, e.g.,

[106], x75).

x

3. On the Asymptotics of the Solutions in the

Neighbourhood of Angular Points

As we have seen from the foregoing sections, the solutions of the Dirichlet

and Neumann problems, as they were formulated above, can be written out

in quadratures by means of the Cauchy type integrals and conformal map-

ping of D onto U . These integrals and mappings are studied well enough.

This circumstance allows one to obtain, under some additional assumptions

regarding the given functions, the asymptotics of the solutions in the neigh-

bourhood of angular points of the boundary. As an example, consider one

case of the Dirichlet problem.

Let � be a piecewise Lyapunov curve containing one angular point with

the angle ��, 0 < � < p and let f(t) = jt�Cj

��

'(t), 0 < � <

1

p

, ' 2 H(�),

'(C) 6= 0.

Since t�C = w(� )�w(c) = (� �c)

�

w

0

(� ), where w

0

2 H(
) and w

0

6= 0

(see, e.g., Corollary of Theorem 3.4 from Chapter III),

f(z(� )) = j� � cj

���

 (� );  (� ) 6= 0;  2 H(
):

The solution of the Dirichlet problem in e

p

(D) is given by the formula

u(z)=Re

�

1

2�i

Z




f(z(� ))

�

� + w

� � w

d�

�

+M Re

w(C)+w(z)

w(C)�w(z)

=u

1

(z)+u

2

(z):
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Consider the function u

1

(z),

u

1

(z) = Re
(w(z)); 
(w) =

1

2�i

Z




f(z(� ))

�

� +w

� �w

d�:

We write the function 
(z) as follows:


(w) =

1

2�i

Z




j� � cj

���

 (� )d�

� � w

+

+

w

2�i

Z




j� � cj

���

 (� )

� (� � w)

d� = 


1

(w) + 


2

(w):

The estimates for the 


1

and 


2

are well known when 0 < �� < 1 ([106],

x22). Consequently, if �� 2 (0; 1), then applying the appropriate results

from [106] and separating the real part of 
, we obtain the estimate of

the function u

1

(z(w)) in the neighbourhood of the point c, and thus the

estimate of u

1

(z) in the neighbourhood of the point C. The estimate for

the summand u

2

can be obtained easily from Theorem 3.1 of Chapter III.

x

4. The Riemann{Hilbert Problem in Domains with Piecewise

Smooth Boundaries

Let D be a simply connected domain bounded by a simple, closed, piece-

wise smooth curve � containing one angular point C with the angle ��,

0 � � � 2. We will consider the Riemann-Hilbert problem and formulate it

as follows: de�ne the function � of the class E

p

(D) whose angular boundary

values �

+

(t) satisfy almost everywhere on � the condition

Re[(a(t) + ib(t))�

+

(t)] = c(t); (4.1)

where a; b; c are the given on � real functions, and c 2 L

p

(�).

As for the coe�cients a and b, they will be assumed to be measurable on

� functions such that if G(t) = [a(t)� ib(t)][a(t) + ib(t)]

�1

, then

G(t) 2

e

A(p); and G is continuous in the neighbourhood of C: (4.2)

We denote the class of such functions G by

e

A

C

(p).

Let '

p

(t) = argG(t) and { = {(p) = {(p;G) (the index of the function

G be de�ned as in subsection 1.2 of Chapter II).

Passing to the circle U as in x1{2 of the present chapter, we arrive at the

problem of de�ning the function 
 2

e

K

p

(
) by the following conditions:




+

(�) = �

p

p

z

0

(�)

p

p

z

0

(�)

A(�)� iB(�)

A(�) + iB(�)




�

(�) + g(�); z 2 �; (4.3)




�

(w) = 
(w); jwj 6= 1; (4.4)
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where 
 is de�ned by (1.4), A(�) = a(z(�)), B(�) = b(z(�)), g(�) =

2c(z(�))[A(�) + iB(�)]

�1

.

The function

G




(�) = [A(�) � iB(�)][A(�) + iB(�)]

�1

on the circumference belongs to the class

e

A

c

(p).

Owing to Theorem 3.5 of Chapter II, G




is factorizable in the class

e

K

p

(
),

and its factor function has the form

Y (w) =

8

>

>

<

>

>

:

exp

�

1

2�

R




'

p

(�)d�

��w

�

; jwj < 1;

w

�{

exp

�

1

2�

R




'

p

(�)d�

��w

�

; jwj > 1;

(4.5)

where '

p

(�) = arg

p

G




(�).

Before we proceed to investigating the problem (4.1), we will assume that

C 6= t

k

and consider the following cases separately: (i) 0 < � < p; (ii) p < �;

(iii) � = p; (iv) � = 2; (v) � = 0.

(i) If 0 < � < p, and the function X is given by (1.7), then

T (w) = AY (w)X(w); (4.6)

will be a factor function for

e

G




= �

p

p

z

0

(�)

p

p

z

0

(�)

G




of order �{(p) at in�nity.

Here A is an arbitrary constsnt. Choosing A as in x41 of [106], we achieve

the ful�lment of the equality T

�

(w) = w

{(p)

T (w), and hence conclude: if

{ = {(p) � 0, then the homogeneous problem corresponding (4.1), has an

in�nite number of solutions given by the equality

�(z) = T (w(z))P

{

(w(z))[

p

p

w

0

(z)]

�1

;

where P

{

(w) = a

0

+ a

1

w + � � � + a

x

w

{

is an arbitrary polynomial whose

coe�cients satisfy the condition

a

i

= a

{�i

; i = 1;{: (4.7)

The inhomogeneous problem (4.1) is, unconditionally, solvable. However,

if { < 0, then the homogeneous problem has only zero solution, and in order

for the inhomogeneous problem to be solvable, it is necessary and su�cient

that the conditions

Z

�

w

k

(t)

c(t)w

0

(t)

T

+

(w(t))

dt = 0; k = 0; 1; : : :; j{j � 2; (4.8)

be ful�lled (If { = �1, there are no conditions for the solvability).

(ii) p < � < 2. Suppose T

1

(w) = AY (w)X

1

(w), where Y is de�ned by

(4.5), and X

1

(w) = X(w)(w � c)

�1

.
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By a suitable choice of A, we can arrive at the ful�lment of the equality

(T

1

)

�

(w) = w

{(p)+1

T

1

(w); jwj 6= 1;

and therefore the result of the previous section with substitution of {(p) by

{(p) + 1 holds valid .

Write out the conditions of solvability for {(p) + 1 < 0. They have the

form

Z

�

w

k

(t)c(t)w

0

(t)dt

T

+

1

(w(t))

= 0; k = 0; 1; : : : ; j{ + 1j � 2: (4.9)

(iii) � = p. By analogy with subsection 1.2, we �nd that only the function




0

(w) = Y (w)

h

P

{

(w) +

M

w � c

i

X(w): (4.10)

can be a solution of the homogeneous problem (4.3).

Let

{ � 0; T

1

2 H

p

: (4.11)

Then all solutions of the homogeneous problem are given by (4.10), where

M is an arbitrary constant and P

{

is an arbitrary polynomial of order {

whose coe�cients a

i

satisfy (4.7).

However, if

{ � 0; T

1

2H

p

; (4.12)

then the general solution is again given by (4.10) with M = 0.

For { < 0, the homogeneous problem has only zero solution. The inho-

mogeneous problem is, generally speaking, unsolvable.

Let the condition (1.20) be ful�lled. Since G




at the point c is continuous,

and in the neighbourhood of this point (Y

+

)

a

2 [

�>1

W

�

for any a 2 R, using

Theorem 4.7 of Chapter I, we �nd that the function


(w) =

T

1

(w)

2�i

Z




g(�)

T

+

1

(�)

d�

� � w

(4.13)

for { � 0 is a solution of the inhomogeneous problem (4.3).

However, if { < 0, then in order for the problem to be solvable, it is

necessary and su�cient that the conditions (4.8) be ful�lled.

(iv) � = 2. For p < 2 and p � 2 we have a diverse picture. If p < 2, we

can prove as in x1 that the function [Y (w)X(w)]

�1

is analytically extendable

everywhere on 
, with the exception of the point c. This implies that the

general solution of the homogeneous problem (4.3) is given by the equality




0

(w) = Y (w)X(w)(w � c)

�1

P

{+1

(w); (4.14)
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where P

{+1

� 0 for { < �1, while for { > �1 the coe�cients a

i

of

the polynomial P

{+1

are connected by the relation a

i

= a

{+1�i

. The

inhomogeneous problem is, undoubtedly, solvable for { � �1. However,

if { � �2, then the problem is solvable if and only if the conditions (4.9)

are ful�lled. In this case the solution can be written out easily.

If p > 2, then 2 = � < p (this case has been considered in (i)). If p = 2,

then � = 2 = p (this case has been considered in (iii).

(v) � = 0. For { > 0, the homogeneous problem (4.1) has an in�nite

number of solutions given by the equality (4.10) and the condition (4.7).

However, if { � 0, then it has only the zero solution.

The inhomogeneous problem is, generally speaking, unsolvable.

If the condition (1.20) is ful�lled and { � 0, and if for { < 0, along with

(1.20), there take place condition (4.8), then the inhomogeneous problem is

solvable.

Finally we summarize the above-obtained results for the general case.

Theorem 4.1. Let the Riemann-Hilbert problem be considered in the class

E

p

(D), where D is bounded by the curve �, and 0 2 D. Assume that:

(i) � is a simple, piecewise smooth curve containing angular points C

k

,

k = 1; n, with the angles �

k

�, 0 � �

k

� 2;

(ii) G(t) = (a(t)� ib(t))(a(t)+ ib(t))

�1

belongs to the class

e

A(p), C

k

6= t

i

where t

i

are the p-points of discontinuity of G, G(t) being continuous in

small neighbourhoods of the points C

k

; {(p) = {(p;G) is the index of G

and '

p

(�) = argG(z(�));

Y (w) =

8

>

>

>

>

<

>

>

>

>

:

exp

�

1

2�

Z




'

p

(�)d�

� � w

�

; jwj < 1;

w

�{(p)

exp

�

1

2�

Z




'

p

(�)d�

� �w

�

; jwj > 1;

(4.15)

(iii) Let

c

k

= w(C

k

); h

p

= fc

k

: �

k

� pg; h

0

= fc

k

: �

k

= 0g;

h

p;1

=

�

c

k

: �

k

= p; Z(w) = Y (w)(w � c

k

)

�

1

p

z

1

p

0

2H

p

	

;

h

0;1

=

�

c

k

: �

k

= 0; Z(w) = Y (w)(w � c

k

)

�

1

p

z

1

p

0

2H

p

	

and let n

p

; n

p;1

; n

0;1

be numbers of points of the sets h

p

, h

p;1

and h

0;1

,

respectively. Here z

0

is the function de�ned by (2:5) from Chapter III.

Further, put

T (w) = Y (w)�(w); (4.16)
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where

�(w) =

8

<

:

Y

c

k

2h

p

(w � c

k

)

�1

if h

p

6= ?;

1 if h

p

= ?

(4.17)

and

{ = {(p;G) + n

p

� n

p;1

� n

0;1

: (4.18)

Then

(1) All the solutions of the homogeneous problem are given by the equality

�

0

(z) = AY (w(z))P

{

(w(z))

Y

c

k

2h

p;1

[h

0;1

(w(z) � c

k

); (4.19)

where for { � 0, P

{

(w) =

{

P

k=0

a

k

w

k

is an arbitrary polynomial with the

condition

a

j

(�1)

{

Y

c

k

2h

p

c

k

Y

c

k

2h

p;1

[h

0;1

c

�1

k

= a

{�j

; j = 0;{; (4.20)

and P

{

(w) = 0 if { < 0. The constant A in (4:19) is de�ned from the

condition

(AY )

�

(w) = w

{

AY (w): (4.21)

(2) For the inhomogeneous problem we can conclude that:

If { � 0 and

c(t) ln

�

�

�

�

Y

�

k

2f0;pg

(w(t) � c

k

)

�

�

�

�

2 L

p

(�); (4.22)

then the problem is solvable.

If { < 0 and (4:22) holds, then in order for the problem to be solvable, it

is necessary and su�cient that

Z

�

w

k

(t)c(t)w

0

(t)

T

+

(w(t))

dt = 0; k = 0; 1; : : : ; j{j � 2: (4.23)

In all the cases, in which the solution exists, it is given by the equality

�(z) = �

c

(z) + �

0

(z);

where �

0

is de�ned by (4:19), and

�

c

(z) =

T (w(z))

2�i

Z




c(z(�))

T

+

(�)

p

p

z

0

(�)d�

� � w(z)

+



180

+w(z)

�

T (

1

w(z)

)

2�i

�

Z




c(z(�))

T

+

(�)

p

p

z

0

(�)d�

�(� � w(z))

: (4.24)

Remark. If � is a piecewise Lyapunov curve and a(t), b(t) belong to the

H�older class, then h

p;1

= fc

k

: �

k

= pg and h

0;1

= ?.

Notes and Comments to Chapter IV

The Dirichlet and Neumann problems, as well as Riemann-Hilbert prob-

lem for harmonic and analytic functions from Smirnov classes in domains

with piecewise Lyapunov curves, containing no cusps with the zero angle

have been investigated earlier by V. Kokilashvili and V. Paatashvili [80],

[81]. Subsequently, generalization of Warschawski's theorem to the case of

non-smooth boundaries, considered in x1 of Chapter III and new two-weight

inequalities for singular integrals allowed us to extend the class of bound-

aries to the problems mentioned above. The results of Chapter IV regard-

ing boundary value problems in domains with piecewise smooth boundaries

(containing, generally speaking, cusps of any kind) have been announced

earlier in [82] and [83].

The Dirichlet and Neumann problems for domains with boundaries ad-

mitting cusps in di�erent functional classes are considered by A. Soloviev

and V. Maz'ya and A. Soloviev [93{95].

A vast number of works is available which are devoted to the investigation

of these problems in multi-dimensional domains (involving sometimes plane

cases) under di�erent assumptions for unknown functions to be harmonic

in domains of harmonicity. For the cases with non-regular boundaries the

reader can be referred to the papers [85], [96], [11] and etc.

General singular integral equations in a class of curves containing cusps

of special type have been studied by R. Duduchava, T. Latsabidze and A.

Saginashvili [26].
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