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Abstract. Singular boundary value problems are considered for high or-
der nonlinear equations in the case where the right-hand side may have
singularities both in independent and phase variables. Existence, unique-
ness theorems are proved. A priori asymptotic estimates of solutions are
obtained. The obtained problems, in the case of the second order, involve
those arising while studying the flow of a viscuous fluid when written in the
so-called Crocco variables.

1991 Mathematics Subject Classification. 34B15.

Key words and Phrases. Singular boundary value problem, existence,
uniqueness, asymptotic estimates.

69bondy.  bIemddo 60660@3@00 bog&‘{]QOé‘{]Qo lsolsoqbqvﬁém 080’)606360
BQQoQo éoaols oéoﬁéxgogo 606(8)m0236360bom80b od 'c'JUmeSUSo'{Jo, émeo 606—
@m@g&ob 8063{8360 8&%3[5 3306@360 EijQUB 606bodﬂm636t3@m6360 ém&mée

QOBM‘GJOQUBUQC, 0[53 CBO%":]é)O GSQOQUBOB 808060). QOB@JOGUB"UQCO oébgamaob,
UémoQgémm&)b 0030')638360. 80@336"8@00 ogmgobbgmo 0360(")6"8@0 QBOBB(S)M—

oBmGQEUBB, éwoBQUBOG %’063«)088360 6@06(8)0 boobols dend&ramdols 60%0@30[50[5



101

INTRODUNTION

The present paper deals with the problem of finding a solution of the
n-th order differential equation

™ = f(t,u,u/,...,u("_l)) (0.1)
satisfying the boundary conditions

lim w=Y(t)=¢; (i=1,...,n=1), lim «"" V() =0, (0.2)

t—tF t—b—

where —o00 < a < tp < b < 4ooand ¢ > 0 (¢ = 1,...,n— 1), and
the function f : [a, b[ x ]0, +00["— [—o0, 0] satisfies the local Carathéodory
conditions. The specific character of this problem is that f(¢,21,...,2,)
may be unbounded both as z; — 0+ (i =1,...,n) and ¢t — b—.

We call the problem (0.1), (0.2) the Blasius—Crocco type problem, moti-
vating this by the fact that problems of such kind go back to the classical
work of Blasius [1]. While studying the flow of a semi-infinite plate by a
homogeneous stream of a viscuous incompressible fluid, Blasius arrived at
the singular boundary value problem

U/// + UU// — 0’

v(0) =v(0) =0, lim v'(s) = 1.

§— 00

Written in the so-called Crocco vaiables (see [2]), it takes the form

i
' =——, (0.3)

U

w'(0)=0, u(t)>0 for 0<t<1, tlirln u(t) = 0. (0.4)

If one gives up the requirement that the fluid should be incompressible,
the above mentioned problem on the flow of a plate reduces to the boundary
value problem (0.4) for the equation

u' = —-—2 (0.5)

with a nonnegative coefficint h, which was considered by Callegari and Fried-
man [2]. The problems (0.3), (0.4) and (0.4), (0.5) are easily reduced to the
problem (0.1), (0.2).The problem
th%l u(t)y=0, «'(1)=0
studied by Callegari and Nachman [3] is also a special case of (0.1), (0.2).
The Blasius-Crocco type problem with conditions at infinity for the equa-
tion

u™) = g(t)|u] sign u
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with A < 0 and ¢ nonpositive, as well as a related problem on a finite
interval, was studied by S. Talliaferro [7,8]. We study these problems for
higher order equations.

Everywhere below by Kioc(I x D,J), where I,J C R are some intervals
and D C R", we denote the class of all functions f : I x D — J satisfying
the local Carathéodory conditions. This means that f(-,z) : I — J is
measurable for all € D, f(¢,-) : D — J is continuous for almost all ¢t € J
and sup{|f(-,x)|: # € Dy} is locally integrable for any compactum Dy C D.

1. ON EQUATIONS WITH THE PROPERTY V

In this section, we consider the equation
u("):f(t,u,u/,...,u("_l)) (1.1)
under the assumptions
n>1 —oco<a<4o0, fE€ Kpel(la,+o0[x]0,+o0[" R). (1.2)

Definition 1.1. We say that the equation (1.1) has the property V if for
any tg > a and r > 0 there is a positive 5(tg,r) such that any solution
u : [to,t*[— R of the equation (8.1) satisfying

0<ul™H(tg)<r (i=1,...,n=1), 0<u""(to) < nlto,r) (1.3)

when n > 1 and

0 < u(te) < n(to) (1.4)
when n = 1 satisfies also
t* < 400, ﬁguWﬂm:o (1.5)

Theorem 1.1. Let the inequality

—fltmy, . ) > ot e, .. ), (1.6)
be fulfilled on [a, +00[X]0, +0o[?, where ¢ € Kioe([a, +00[x]0, +oo[?; Ry) s
nonincreasing in the last n arguments and for some n
mes{T >t : (7, (1 —a)" tao, ..., (1 — a)xo,x0) > 0} >0 for t>a. (1.7)
Then the equation (1.1) has the property V.. Moreover, if

+oo
/ o(t,(t—a)* e, ..., (t —a)z,x)dt = +oo for x>0, (1.8)

a

then the equation (8.1) has no solution defined in the vicinity of +oo.
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Proof. Let tg > a and r > 0. One can find ¢; > tg such that

X

tl_tOZ 1, 5 tl—a)Zr(n—l). (19)

In view of (1.7), « €]0, %] can be chosen such that

+o00
I<ax< / o(t, (t —a)" g, ..., (t —a)zo, xo)dt. (1.10)

t1

Put n(tg, r) = « and show that any solution u : [ty,t*[— R of the equation
(1.1) satisfying (1.3) for n > 1 and (1.4) for n = 1 satisfies also (1.5).

Suppose the contrary. Then t* = 400 and 0 < w(»~1)(¢) < o for t > 1.
By (1.3) ((1.4) for n = 1) and (1.9) we have

, noj-lo i
W0 = 3 U )
j=o 7
1 13
+m /(t — iy D1y < p(n = d)(E — @)
to
—I-Q;—O(t —a)"t < (t—a)" ey for t>t (i=1,...,n—1). (L.11)

Therefore, taking (1.6) into account as well as the monotonicity of ¢ in
the last n arguments, we find

1
0 < u(”_l)(t) <o - / o(r, (1 —a)"tao,..., (T —a)xg, xo)dr for t >ty
t1
which is impossible in view of (1.10). The obtained contradiction shows
that u satisfies (1.5).
Suppose now that (1.8) is fulfilled. Then, as it is clear from the above

reasoning, 7(tg, 7) can be taken arbitrarily large. Therefore, any solution of

(1.1) satisfies (1.5). W
2. SOLVABILITY AND ESTIMATES OF SOLUTIONS OF A BLAsIus-CrRocco
TYPE PROBLEM
In this section, we study the Blasius-Crocco type problem
ut™) :f(t,u,u',...,u("_l)), (2.1)
lim v Vt)y=¢ (i=1,...,n—1), [lim WY =0, (2.2)

t—to+ b—
where
n>1l, —co<a<tyg<b<4o0, >0 (i=1,...,n—1),

f € Kioe([a, b[x]0, +oc["; R). (2.3)
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In the first two subsections, a particular case of the problem (2.1), (2.2) is
considered, when ¢; >0 (i =1,...,n— 1) and b = 400, i.e., the problem

WDt = ¢ (i=1,..,n=1), lim u®"V()=0.  (24)

t—+o00
Everywhere below we assume that the conditions (1.2) are fulfilled.

2.1. Theorems on Existence and Uniqueness of Solution of the Problem
(2.1), (2.4).

Theorem 2.1. Lettg > a, ¢; >0, (i =1,...,n—1), f be nondecreasing
i the last n arguments and let for any ¢ > 0 the Cauchy problem

u(i_l)(to) =¢ ({=1,...,n-1), u(n_l)(to) =c (2.5)

for the equation (2.1) be uniquely solvable. Then the problem (2.1), (2.4)
has at most one solution.

Proof. Suppose, on the contrary, that the problem (2.1), (2.5) has two
different solutions u; and wus. The unique solvability of Cauchy prob-
lems implies that, without restriction of generality, we can assume that
u(ln_l)(to) < u(zn_l)(to). According to the well known lemma on integral
inequalities (see, e.g., [4], Lemma 4.3), hence we have

u(li_1)(t)<u(2i—1)(t) for t>t (i=1,...,n).

Therefore, taking the monotonicity of f into account, we obtain u(ln)(t) <
u(zn)(t) for t > ty, and this fact along with the preceding inequalities con-
tradicts to u(ln_l)(—l—oo) = u(zn_l)(—l—oo) = 0. The obtained contradiction
proves the theorem. W

Theorem 2.2, Letty > a, ¢; >0 (i=1,...,n—1), the equation (1) have
the property V., for any ¢ > 0 the problem (2.5), (2.6) be uniquely solvable
and let the inequalities

0< —flt,xn, ..., 2n) <Yt 21, ..., 20) (2.6)
be fulfilled on [a, +00[x]0, +o0[?, where ¢ € Kioe([a, +00[x]0, +00[™; Ry) is

nonincreasing in the last n arguments and the equation
™ = —1/)(t,u,u/,...,u("_1)) (2.7)

have at least one solution u satisfying (2.4). Then the problem (2.1), (2.4)
15 solvable.

Proof. Let u. : [to, be[— R be the solution of the problem (2.1), (2.5). We
say that ¢ € I'y if b, = 400 and tligrn uf:"_l)(t) > 0, we say ¢ € [y if
b, = 400 and tlifl_n u(cn_l)(t) = 0, and we say ¢ € I's if b, < +o0 and

lim u(cn_l)(t) =0.

t—bg
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Suppose that, contrary to the assertion of the theorem, I's = @. Let
¢ > ul»(ty). According to (2.4) and the above mentioned lemma on
integral inequalities, we have

WD) > W) for to <t <b, (28)

Therefore b, = 400, and since according to the hypothesis I'y = @, we
obtain ¢ € I'y. Thus ]u(”_l)(to), +oo[C Ty.

Now take an arbitrary ¢ € T'y. There is {1 €]tg, +oo[ such that u(ci_l)(tl)
> wl=D(t;) (i = 1,...,n). In view of the continuous dependence of solu-
tions of a differential equation on initial values, the last inequalities remain
valid if we change ¢y by any sufficiently close ¢ > 0. According to (2.6)
and the lemma on integral inequalities, this implies the validity of (2.8) for
ty <t < b.. Therefore, since I'y = @&, all ¢y sufficiently close to ¢ > 0 belong
to I'y. Thus Ty is a nonempty open subset of ]0, 4+o0].

The nonemptiness of I's follows from the property V of the equation
(2.1). Let ¢g € T'5. Put

§ = max{b,,—to, 1}, r = max{c; : 1 <i<n—1}, ro = 6" r(n—1)4co+1],
and choose ¢y € [tp, b, [ such that
0< u(cg_l)(tl) < n(bcua TO),

where n(b.,,ro) is the number appearing in the definition of the property
V. For any ¢ > 0 sufficiently close to ¢g, we will have either b. > b.,, and
then ¢ € I's, or b, > b., and

0<ult=Db.)<r (i=1,...,n=1), 0<u V(b)) < n(bey,r0).

In the last case, the property V again implies ¢ € I's. Thus both I'; and I's
are nonempty open subsets of ]0, +oo].

On the other hand, ]0,+oc[= Iy UT3 and Ty NT's = @. But this is
impossible since |0, +oo[ is connected. The obtained contradiction proves
the theorem. W

Theorem 2.3. Lettg > a, ¢; >0 (i=1,...,n—1), ¥ € Kioel[a, +o0[X
10, +o0[™; Ry) be nonincreasing in the last n arguments, the equation (2.1)
have the property V, for any ¢ > 0 the problem (2.7), (2.5) be uniquely
solvable, and let the problem

Ccll_f = _¢(t,%x,...,(t—a)x,x)’ (2.9)
Jim e (t) =0 (2.10)

have at least one solution defined on [to,+oo[.t Then the problem (2.7),
(2.4) has a unique solution.

T According to Theorem 2.1, this solution is unique.
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Proof. Let u. : [to, b;[— R be a solution of the problem (2.7), (2.4). Writ-
ing for u. the equalities analogous to (8.11) and taking into account the

. . n—1
nonincreasingness of u(c ), we find

(t—a)~

W) 2 STtV for b <t<he (211)

c

Therefore

(t—a)”

a(t) >~ (t, o a7, (= @) D), ) (212)

for to <t <b,.
Define the sets T'; (j = 1,2,3) as in the proof of Theorem 2.2. Repeating
the arguments given there and taking Theorem 2.1 into account, we see that
it suffices to prove the following: the assumption I's = @ implies that I’y is
a nonempty open subset of |0, +ool.

So let Ty = @ and ¢ > z(tp). According to (2.12) and the lemma on
integral inequalities, we have

wPmH() > w(t) for to <t <b,. (2.13)

Therefore ¢ € I'y Uy = 'y and thus I'1 # @.

Let now ¢g € I'y. Then for some t; > t; we have u(cg_l)(tl) > x(t1) which
along with (2.12) implies (2.13) for ¢; <t < b, and all ¢ > 0 sufficiently
close to ¢g. M

Lemma 2.1. Letty > a, ¥ € Kioe([a, +00[x]0, 400[; Ry) be nonincreasing
i the second argument, the equation

@ T (2.14)

T°=
have the property V, and let for any ¢ > 0 the Cauchy problem
z(tg) =c (2.15)

for this equation be uniquely solvable. Let, moreover,
+oo
/ W(t, ¥)dt < +oo for x> 0. (2.16)

Then the problem (2.14), (2.10) has a unique solution defined on [ty, +o0l.

Proof. Let . : [to,b:]— R be the solution of the problem (2.14), (2.15).
Define the sets I'; (j = 1,2, 3) as in the proof of Theorem 2.2. As above, it
suffices to prove that T’y is a nonempty open subset of ]0, 4o0l.
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In view of (2.16) and the monotonicity of 1 in the second argument,
a > 0 can be chosen such that

+oo
/E(t,a) <a. (2.17)
to
Let ¢ > 2«. Show that then ¢ € I'y. Indeed, if it is not the case, one can
find ¢ €]to, b.[ such that
z(t) > for to<t<ty, z(t)=a. (2.18)

But then by (2.17), (2.18) and the monotonicity of ¥, we will have

ze(t1) = we(to) — /E(t, z(t)dt > 20 — o = @,

which contradicts (2.18). The obtained contradiction shows that |2, +00[C
Iy.

Let now ¢y € T'y. There exists ag > 0 such that #.(¢1) > 2aq for ¢ > .
Choose t; > tg such that

+oo
/ E(t,ao) < Q.
t1

For all ¢ > 0 sufficiently close to ¢y, we will have #.(t1) > 2aq. Hence, as
above, 1t follows that for all such ¢ the function z. can not admit the value
equal to agp. Therefore I'y 1s a nonempty open set. W

Theorem 2.4. Lettg > a, ¢; >0 (i=1,...,n—1) and the inequality

et ey, o) < —ft ey, xn) <Y 2, 20) (2.19)

hold on [a,+00[x]0,+o0[?, where ¢, ¢ € Kioe([a, +00[x]0, +00[?; Ry) are
nonincreasing in the last n arguments and

+o00
0< / o(r,(t—a)" e, ... (1 —a)x,z)dr <

t

+oo
< /1/)(7', (r—a)"te,... (1—a)r,z)dr<4oco for t >a, x>0.(2.20)
t

Then the problem (2.1), (2.4) has a solution. If, moreover, f is nondecreas-
g in the last n arguments, then this solution is unique.
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Proof. We can replace ¢ by the function ¥* satisfying all the hypotheses
of the theorem and, in addition, the local Lipshitz conditions in the last n
arguments. But then the theorem becomes an immediate consequence of
Theorems 1.1, 2.1-2.3 and Lemma 2.1. W

2.2. Asymptotic Behaviour of Solutions of the Problem (2.1), (2.2). Every-
where in this subsection we will have tg > a, ¢; >0 (i =1,...,n—1).
First of all, we will mention here some definitions and a lemmaon singular
differential inqualities which will be of use immediately.
Let w € Kioe(]a, b X R; R), where a < b < 400 and ¢y € R. Consider the
problem

dx .
= w(t, z), tl_l,rz?_ z(t) = eq. (P)

Definition 2.1. A solution z* () of the problem (P) defined on Jag, b[C
Ja, b[ is said to be an upper (a lower) solution of the problem (P), if for any
solution z of this problem defined on an interval Jai, b[Cla, b[, the inequality

z(t) <a*(t) (x(t) > z.(t)) for t€lag, b[N]ay,b|
holds.

We have [5]

Lemma 2.2. Let the problem (P) have an upper (a lower) solution x* ()
defined on Jag, b[Cla, b[. Then for any locally absolutely conlinuous function
v :Jag, b[— R salisfying

limsup v(?) < ¢o (litmbinfv(t) > ¢g)
t—b— 0=

and almost everywhere on |ag, b[ the inequalily

V() > w(t v(t) (V') < w(t, (1)),
we have

() <z*(t) (2(t) > we(t)) for ag <t <b.

Theorem 2.5. Let the inequalities (2.19) be fulfilled on [a, +00[x]0, +00[™,
where @, 1 € Kioe([a, +00[x]0, +00[*; Ry) are nonincreasing in xy, ..., Tn_1,
the problem (2.9), (2.10) has an upper solution x* defined on [y, +o0|, and
the problem

e _ —o(t, A1), ..., 8D (1), z), (2.21)

dt
lim z(¢) =0. (2.22)

t—+o0
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ﬁ(t):z_:cj((tj__ti);!_ —l—(n_lQ)!/(t—T)"_zx*(T)dr for t > to, (2.23)

ji=1 to

has a lower solution . defined on [tg,+oo[. Then for any solution u of the
problem (2.1), (2.4) we have

BTV <ul=D(1) < BV for £t (i=1,...,n), (2.24)

n—1 i

a.=3% ((tj__ti))]!_ o ! 5 /(t e (rydr (2.25)

ji=1 to
for t > tg.

Proof. Let u be an arbitrary solution of the problem (2.1), (2.4). Analo-
gously to (2.11), we have

%u("_l)(t) for t>ty (i=1,...,n—1).
n—1)!

Taking (2.19) into account as well as the monotonicity of v, and applying
Lemma 2.2, we find u(”_l)(t) < z*(t) for t > tg, i.e.,

u=0(1) >

WD) < BUD@) for t >t (i=1,...,n). (2.26)

From (2.19), (2.26) and the monotonicity condition implied on ¢, according
to Lemma 2.2 it follows that «(*=D(t) > x,(t) for t > to which along with
(2.26) proves the estimates (2.24). W

Remark. Let ¢ and v be nonincreasing in the last n arguments and the
conditions (2.19) and (2.20) be fulfilled. Then the problems (2.9), (2.10)
and (2.21), (2.22) have unique solutions.

Indeed, the existence of a unique solution of the problem (2.9), (2.10)
follows from Lemma 2.1 (taking Theorem 1.1 into account). In order to
ascertain the unique solvability of the problem (2.21), (2.22), it suffices to
notice that

iV <at—a)™ (i=1,...,n)

for large t, where « is a positive number.
Theorem 2.6. Let n > 2 and the inequalities

Qp(t,l‘l, .. 'axn—l) S _f(taxla .. .,l‘n) S 1/)(tax1a .. 'axn—l) (227)
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be fulfilled on [a,+oo[x]0, 400", where ¢, € Kioe([a, +00[x]0, +o0[?1L;
Ry) are nonincreasing in the last n — 1 arguments. Let for at least one
solution u of the problem (2.1), (2.4) a finite limit

lim u("_z)(t) < 400 (2.28)

t—+o0
exist. Then for some o > ¢,_1,

+oo
/ (t —a)p(t, (t —a)" Ha,...,(t — a)a,a)dt < +oo. (2.29)

Moreover, if
+oo
/ (t —a)(t, (t —a)" 2en_1, ..., (t —a)en_1,cn1)dt < 400,

a

then for any solution u of the problem (2.1), (2.4) we have (2.28).

Proof. Let a solution u of the problem (2.1), (2.4) satisfy (2.28). Then,
denoting this limit by «, we will have

u(i_l)(t) <alt—a)" 7Y for t>t; (i=1,...,n—1),
where ¢, > tg is sufficiently large. By (2.27) and the monotonicity of ¢
400
u("_l)(t) > / o(r, (1 —a)"2a,..., (1 — a)a,a)dr for t>t;.
1
Integrating from ¢ to +oo, we find
400
/ (r=)p(r, (t —a)"2a,..., (1 — a)a,a)dr < a < +oo,
1

whence it follows (2.29). The second part of the theorem can be proved
analogously. H

From Theorems 2.4 2.6, it immediately follows
Theorem 2.7. Let the inequalities
p(t)ey < —f(t,xr,. .. xn) < q(t)x?,
be fulfilled on [a,+o0[x]0, +00[?, where A < 0, p,q € Lisc([a, +0[; Ry) and

+00 400
0< /(T — )" p(r) < /(T —a)" Y2 (7)dr < 400 for t>a.

t t
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Then the problem (2.1), (2.4) is solvable and any of its solutions satisfies

+00 .

1_A] /(T—a)““mq(r)dr T for t>10. (230)

W00 < [

t

If, moreover,
+ oo

/(t — )P () dt < 40,
then a finite limit lim;_ oo w"=2)(t) exists. If, however,

+oo
/ (t — )= DH () dt = +oo,

then lim;_ 4 oo u"=2(t) = 400, and for any v > 1,

+oo T 2

WD(1) > [(n ;V 2)!]A / p(7) [/(T — $)"2%(s)ds| dr

a

for large t, where q(t) is the right-hand side of the inequality (2.30).

2.3. The Problem (2.1), (2.2). The Case Where b < +oco and ¢; > 0
(i=1,...,n=1). The approach which was used for the investigation of the
problem (2.1), (2.4) can be likewise applied to the problem

U(i_l)(tO) = (Z = 1a sy 1)a lim u(n_l)(t) =0 (231)

t—b—

for the equation (2.1), where
—co<a<tg<b< 400, >0 (i=1,...,n—1). (2.32)
The following two theorems will be stated without proof.

Theorem 2.8. Let the conditions (2.32) be fulfilled, for any ¢ > 0 the prob-
lem (2.1), (2.5) be uniquely solvable, and let the inequalities (2.19) hold on
[a, B[]0, +oo[?, where v, ¢ € Kioe([a, b[x]0, +00[; Ry) are nonincreasing
i the last n arguments and

b b

0</gp(r,x,...,x)drg/1/)(T,x,...,x)d7'<—|—oo (2.33)
t t
for a<t<b, x>0

Then the problem (2.1), (2.31) has a solution. If, moreover, f is nonde-
creasing in the last n arqguments, then this solution is unique.



112

Theorem 2.9. Let the conditions (2.32) be fulfilled and let the inequalities
(2.19) hold on [a,b[x]0,4+o0[?, where ¢, € Kioc([a, b[x]0, +o0[™; Ry) is

NONINCTEASING IN T1,...,Tn_1, the problem
lim z(t) =0 (2.34)
t—b—

for the equation (2.9) have an upper solution x* defined on [to, b[, and the
problem (2.21), (2.34), with the function 8 given by (2.23), have a lower
solution x, defined on [to,b]. Then any solution w of the problem (2.1),
(2.31) satisfies (2.2) on [to, b, where By is defined by (2.25).

Remark. Let ¢ and ¢ be nonincreasing in the last n arguments and (2.19)
and (2.33) be fulfilled. Then the problems (2.9), (2.34) and (2.21), (2.34)

have unique solutions.

2.4. The Problem (2.1), (2.2). The General Case. In this subsection, we
consider the problem (2.1), (2.2) under the the general hypotheses (2.3).

Theorem 2.10. Let the conditions (2.3) be fulfilled and the inequalities
(2.19) hold on [a,b[x]0,+o0[?, where ¢, € Kioe([a, b[x]0, +00[™; R4) are
nonincreasing in the last n arguments and satisfy (2.20). Let, moreover,any
Cauchy problem for the equation (2.1) be uniquely solvable. Then the prob-
lem (2.1), (2.2) is solvable. Moreover, any of its solutions satisfy (2.24)
on lto, b[, where 5 and B, are defined by (2.23) and (2.25), and z* and z.
are the unique solutions of the problems (2.9), (2.34) and (2.21), (2.34),
respectively. 2

Proof. For the sake of definiteness, we will assume that b < +o0. The case
b = 400 can be considered analogously. To ascertain the estimates (2.24), it
suffices to consider a sequence (¢3)52 such that ¢ €]a,b[(k=1,2,...) and
lim t; = tp, to apply Theorem 2.9, and then to pass to limit as & — co.

k—o0
Prove now the existence of a solution. Let r = max{¢; : 1 <i<n— 1},

and let (¢;5)52, (¢ =1,...,n— 1) be sequences satisfiying
O<ecir<r+1 (k=1,2,...), klim gr=¢ ({=1,...,n—1). (2.35)

In the case of the finite b, (2.20) implies (2.33), so fixing an arbitrary k,
according to Theorem 2.8 we see that the problem

u Do) =cir (i=1,...,n—1), limu""D(t)=0

t—b—

for the equation (2.1) has a solution ug. Moreover, by Theorem 2.9 and
(2.35), we have

sV < WP () < 6UD(1) for to<t<b (i=1,...,n), (2.36)

2The existence and uniqueness of #* and xx follow from Remarks to Theorems 2.5
and 2.9.



where

ioay 1
_a o
() =(r+1)) ——+ (n_Q)!/(t—T) 2x*(r)dr,
j=0 J to
. ¢
5 (1) = m /(t — T)"_Zx*(r)dr for t9 <t <b.
to
From (2.36) we see that the sequences (ugcj_l))zozl (i =1,...,n) are uni-

formly bounded and equicontinuous on each subsegment of ]¢g, b[. Therefore,

by the Arzela-Ascoli lemma, we can assume that they converge uniformly

on every such subsegment. The function u(t) = klim up(t) fortg <t < b
— 00

obviously is a solution of the problem (2.1), (2.2). N

2.5. On Solutions of an Emden-Fowler Type Equation with the Negative
Exponent. In this subsection, we consider the equation
u™ = g(t)|u] sign u, (2.37)
with g € Lioe([a, +o0[; R) and
A<0, gt) <0 for ¢>a. (2.38)

Note that if
mes{r >t:¢(r) #0} for t>a (2.39)

and for some solution u : [ty, t1[— R of (9.37) there is t* €]tg, #1] such that
(8.5) is fulfilled, then

t < +oo, lim w(t) =0. (2.40)

t—t1—

So under the conditions (2.38) and (2.39), the property V of the equation
(2.37) is equivalent to the following one: for any ¢g > a and r > 0, there
is (tg,r) > 0 such that for any solution u : [tg,t1[— R of (2.37) satisfying
(1.3) if n > 1 and (1.4) if n = 1, the condition (2.40) holds.

Theorem 1.1 immediately implies
Theorem 2.11. Let (2.36) and (2.39) be fulfilled. Then the equation (2.37)
has the property V. If, moreover,

+ oo

[ =gl =+,

a

then the equation (2.37) does not have solutions defined in the vicinity of
+00.
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Below we will be interested in the solutions of (2.27) satisfying
u(t) >0, u"H(t) >0 for t>t, . liin WD) = 0. (2.41)
Theorem 2.7 implies

Theorem 2.12. Let (2.38) and (2.29) be fulfilled. The equation (2.37) has
solutions satisfying (2.41) if and only if
+ oo
/(t —a) DA g(1)|dt < 400, (2.42)

a

and in this case there exists an (n—1)-parametrical family of such solutions.
If, moreover,
+ oo

[ =g < o,

a

then for any solution w of (2.37) satisfying (2.41) there exists a finite limit
. liin u"=2(t) = ¢ and

+oo
w2 () = ¢ — M1+ o(1)) /(r_t)(r_a)k<"—2>|g(r)|dr for t — +oo.

t
If along with (2.42) it holds

+oo
/ (t — )" g(1)]di = oo,

a

then for any solution w of (2.37) satisfying (2.41), we have

Jim w2 (t) = 400 (2.43)
and, giwen vy > 1,
+oo T 2
2 A n—2~ (n—1) ~
] [ o] [t i< <)
t a
for large t, where
+oo

_1_
1

3(t) = [ﬁ [ = a7 for ez

t
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Theorem 2.13. Let A < 0 and v1 < —1%g(t) < 72 fort > 0 witho € R
and v1, y2 positive constants. Then (2.37) has a solution satisfying (2.41)
and (243) iff An— 1)+ 1 < o < AXn—2)4+2. Moreover, any of such
solutions u admits the estimate

el T3 < u(t) < et
for large t, where c, and ¢* are positive constants depending only on n, o,
A, v1, and 7ys.
3. ON A MODIFICATION OF THE BLASIUS-CROCCO PROBLEM
In this section, we consider the problem
ut™) :f(t,u,u',...,u("_l)), (3.1)
lim «=Y(t)=¢ (i=1,...,n—=1), lim u(t) =0, 3.2)

t—to+ t—b—

~~

Everywhere below we will assume, not stating it explicitly, that n > 1,

—o<a<ty<b< 400, ¢, >0(=1,...,n—1)and f € Kioc([a,b[x
10, +o0[; R).

Lemma 3.1. Let —co < g < b < 400, s = (b—to) ™! and u : [to, b[— R be
locally absolutely continuous along with its (n —1)-st derivatives inclusively.
Then the function v : [sg, +oo[— R defined by

v(s) = 5"_1u(b - 1) (3.3)

S

almost everywhere on [sg, +0o[ satisfies

oM(s) = — u(n)(b_l).

1

sn= s
Moreover,
s 1pli=D(s) = ZZ:,ymjsn—ju(j—l)(b — 1)
, s
j=1
for sp<s<+4oc0 (i=1,...,n+1),
where v, >0 (n=1,2,...;1<j<i<n+1).

The proof of this lemma can be found in [6].

If f is nonpositive, then by Lemma 3.1, the function u € 6’{2;1 is a

solution of the problem (3.1), (3.2) iff the function v € 6’"_1(]50,—1—00[)

loc

defined by (3.3) with so = (b —t7)~! is a solution of the problem

(") = f(s,v,v/,...,v("_l)), (3.4)
lim v(i_l)(so) = Z'ymjsg_i_jﬂcj, lim v("_l)(s) =0, (3.5)

s—So+ s—+00
ji=1
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where f € Kioe([(b — @)1, +00[x]0, +00[?; R) is nonpositive and the con-

stants v,;; (1 = 1,...,n—1; j = 1,...,7) are nonnegative. If, moreover,
n > 2, then
lirgl u'(t) = —o0 (3.6)
t—b—

if and only if

Jim o7s) = e, (37)
Indeed, let (3.6) hold. Then lim Ut = 4oo, i,
s£+oo ;}”(f)z = teo (38)

By (3.5) and the nonpositiveness of f, the limit lim »(*=2)(s) €]0, 4-o¢]

s—400
exists. If this limit is finite, then such will be the limit of v(s)/s"~2 as well
which contradicts (3.7). Analogously, (3.7) implies (3.6).
Taking the above said into account and applying Theorems 2.10 and 2.6
to the problem (3.4), (3.5), we ascertain the following

Theorem 3.1. Let the inequalities
Sp(ta$1) S _f(taxla"'axn) S,l/)(taxl)a (39)
be fulfilled on [a,b[x]0, 400", where p,¢ € Kioe([a,b[x]0,+o0[; Ry) are

nonincreasing in the second argument and
b b

0</(b — )", J:)drg/(b — )", 2)dr < +oo for a<t<b, x>0.
1 1

Then the problem (3.1), (3.2) is solvable.

Theorem 3.2. Let n > 2 and the inequalities (3.8) be fulfilled on [a,b]x
10, +oo[™, where ¢, € Kioe([a,b[x]0,400[; Ry) are nonincreasing in the
second argument. Let for at least one solution u of (3.1), (3.2) a finite limit

lirgl u'(t) > —o0 (3.10)
trb—

exist. Then for some a > 0 we have

/(b — )" 2p(t, (b — t)a)dt < +oo.

On the other hand, if

b
/(b — )" 2(t, (b — )a)dt < 400 for x>0,



then any solution u of (3.1), (3.2) satisfies (3.10).
Consider the Emden-Fowler type equation
u™ = g(t)]u)* sign u, (3.11)
where g € Lioc([a, b]; R) and
A<0, gt) <0 for a<t<bh. (3.12)
The transformation (3.3) changes (3.11) into

o) = 5_["+1+>‘("_1)]g(b - 1) |o|* sign v.
s

Applying to the last equation Theorems 2.12 and 2.13, we ascertain the
following.

Theorem 3.3. Let ty € [a,b], (3.12) hold and
mes{T € [t,b], g(r)#0} >0 for a<t<hb.
The equation (3.11) has a solution u satisfying
u(t) >0, o'(t)<0 for t>to, tgrgl_ w(t)=0 (3.13)

of and only if

/(b—t)”‘1|g(t)|dt < foo, (3.14)

and in this case there exists an (n — 1)-parametric family of such solutions.

If, moreover,
b

/(b — )M g(t)]dt < +oo,

a

then for any solution u of (3.11) satisfying (3.13), there exists a finite limit
. liin w(t) =<0 and u(t) ~ |c|(b—1t). If, however, along with (3.14) the

condition
b
/ (b= 1M =2|g()]dt = +o0

is fulfilled, then for any solution u of (3.11) satisfying (3.13) we have (3.6)
and, giwen vy > 1,

resiilee 2)!]:/[]@— PP ()] [/ (fg;(f)j)i]kdr <

a




<ult) £ gm0 —1) [ i

for allt sufficiently close to b, where

i(t) = [ﬁ/(b—r)"_wg(rﬂdr]ﬁ for a<t<b.

t

Theorem 3.4. Let A < 0 and 1 < —(b—1)7¢g(t) < v2 with ¢ € R and
1 and 7y positive constants. Then (3.11) has a solution u satisfying (3.13)
and (3.6) iff A+ n—1< o <n. Moreover, any of such solutions for all t
suffictently close to b admits the estimates

e(b—1)FF <u() <2 =F (b —0),

where ¢ and T are posittive constants depending only on n, o, A\, y1 and 72.
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