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Abstract. Singular boundary value problems are considered for high or-

der nonlinear equations in the case where the right-hand side may have

singularities both in independent and phase variables. Existence, unique-

ness theorems are proved. A priori asymptotic estimates of solutions are

obtained. The obtained problems, in the case of the second order, involve

those arising while studying the 
ow of a viscuous 
uid when written in the

so-called Crocco variables.
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reziume. naSromSi ganxilulia singularuli sasazGvro amocanebi

maGali rigis araCrPivi gantolebebisaTvis im SemTxvevaSi, roca gan-

tolebis marJvena mxares SeiZleba Hqondes gansakuTrebulobebi rogorc

damoukidebeli, ise Pazuri cvladebis mimarT. damtkicebulia arsebobis,

erTaderTobis Teoremebi. miGebulia amonaxsnTa aprioruli asimpto-

turi SePasebebi. ganxiluli amocanebi meore rigis SemTxvevaSi moicavs

amocanebs, romlebic CarmoiSveba blanti siTxis moZraobis ganxilvisas

e.C. krokos cvladebSi.
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Introduntion

The present paper deals with the problem of �nding a solution of the

n-th order di�erential equation

u

(n)

= f(t; u; u

0

; : : : ; u

(n�1)

) (0.1)

satisfying the boundary conditions

lim

t!t

+

0

u

(i�1)

(t) = c

i

(i = 1; : : : ; n� 1); lim

t!b�

u

(n�1)

(t) = 0; (0.2)

where �1 < a � t

0

< b � +1 and c

i

� 0 (i = 1; : : : ; n � 1), and

the function f : [a; b[� ]0;+1[

n

! [�1; 0] satis�es the local Carath�eodory

conditions. The speci�c character of this problem is that f(t; x

1

; : : : ; x

n

)

may be unbounded both as x

i

! 0+ (i = 1; : : : ; n) and t! b�.

We call the problem (0.1), (0.2) the Blasius{Crocco type problem, moti-

vating this by the fact that problems of such kind go back to the classical

work of Blasius [1]. While studying the 
ow of a semi-in�nite plate by a

homogeneous stream of a viscuous incompressible 
uid, Blasius arrived at

the singular boundary value problem

v

000

+ vv

00

= 0;

v(0) = v

0

(0) = 0; lim

s!1

v

0

(s) = 1:

Written in the so-called Crocco vaiables (see [2]), it takes the form

u

00

= �

t

u

; (0.3)

u

0

(0) = 0; u(t) > 0 for 0 < t < 1; lim

t!1�

u(t) = 0: (0.4)

If one gives up the requirement that the 
uid should be incompressible,

the above mentioned problem on the 
ow of a plate reduces to the boundary

value problem (0.4) for the equation

u

00

= �

h(t)

u

(0.5)

with a nonnegative coe�cint h, which was considered by Callegari and Fried-

man [2]. The problems (0.3), (0.4) and (0.4), (0.5) are easily reduced to the

problem (0.1), (0.2).The problem

lim

t!0�

u(t) = 0; u

0

(1) = 0

studied by Callegari and Nachman [3] is also a special case of (0.1), (0.2).

The Blasius-Crocco type problem with conditions at in�nity for the equa-

tion

u

(n)

= g(t)juj

�

signu
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with � < 0 and g nonpositive, as well as a related problem on a �nite

interval, was studied by S. Talliaferro [7,8]. We study these problems for

higher order equations.

Everywhere below by K

loc

(I �D; J), where I; J � R are some intervals

and D � R

n

, we denote the class of all functions f : I �D ! J satisfying

the local Carath�eodory conditions. This means that f(�; x) : I ! J is

measurable for all x 2 D, f(t; �) : D ! J is continuous for almost all t 2 J

and supfjf(�; x)j : x 2 D

0

g is locally integrable for any compactumD

0

� D.

1. On Equations with the Property V

In this section, we consider the equation

u

(n)

= f(t; u; u

0

; : : : ; u

(n�1)

) (1.1)

under the assumptions

n � 1; �1 < a < +1; f 2 K

loc

([a;+1[�]0;+1[

n

;R): (1.2)

De�nition 1.1. We say that the equation (1.1) has the property V if for

any t

0

� a and r > 0 there is a positive �(t

0

; r) such that any solution

u : [t

0

; t

�

[! R of the equation (8.1) satisfying

0 < u

(i�1)

(t

0

) � r (i = 1; : : : ; n� 1); 0 < u

(n�1)

(t

0

) � �(t

0

; r) (1.3)

when n > 1 and

0 < u(t

0

) � �(t

0

) (1.4)

when n = 1 satis�es also

t

�

< +1; lim

t!t

�

�

u

(n�1)

(t) = 0: (1.5)

Theorem 1.1. Let the inequality

�f(t; x

1

; : : : ; x

n

) � '(t; x

1

; : : : ; x

n

); (1.6)

be ful�lled on [a;+1[�]0;+1[

n

, where ' 2 K

loc

([a;+1[�]0;+1[

n

;R

+

) is

nonincreasing in the last n arguments and for some n

mesf� � t : '(�; (� � a)

n�1

x

0

; : : : ; (� � a)x

0

; x

0

) > 0g > 0 for t�a: (1.7)

Then the equation (1:1) has the property V . Moreover, if

+1

Z

a

'(t; (t� a)

n�1

x; : : : ; (t� a)x; x)dt = +1 for x > 0; (1.8)

then the equation (8:1) has no solution de�ned in the vicinity of +1.
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Proof. Let t

0

� a and r > 0. One can �nd t

1

> t

0

such that

t

1

� t

0

� 1;

x

0

2

(t

1

� a) � r(n� 1): (1.9)

In view of (1.7), � 2]0;

x

0

2

] can be chosen such that

0 < � <

+1

Z

t

1

'(t; (t� a)

n�1

x

0

; : : : ; (t� a)x

0

; x

0

)dt: (1.10)

Put �(t

0

; r) = � and show that any solution u : [t

0

; t

�

[! R of the equation

(1.1) satisfying (1.3) for n > 1 and (1.4) for n = 1 satis�es also (1.5).

Suppose the contrary. Then t

�

= +1 and 0 < u

(n�1)

(t) �

x

0

2

for t � t

0

.

By (1.3) ((1.4) for n = 1) and (1.9) we have

u

(i�1)

(t) =

n�j�1

X

j=0

(t � t

0

)

j

j!

u

(j)

(t

0

) +

+

1

(n� i� 1)!

t

Z

t

0

(t� � )

n�i�1

u

(n�1)

(� ) � r(n� i)(t � a)

n�i�1

+

+

x

0

2

(t� a)

n�i

� (t� a)

n�i

x

0

for t � t

1

(i = 1; : : : ; n� 1): (1.11)

Therefore, taking (1.6) into account as well as the monotonicity of ' in

the last n arguments, we �nd

0 < u

(n�1)

(t) � ��

t

Z

t

1

'(�; (� � a)

n�1

x

0

; : : : ; (� � a)x

0

; x

0

)d� for t � t

1

;

which is impossible in view of (1.10). The obtained contradiction shows

that u satis�es (1.5).

Suppose now that (1.8) is ful�lled. Then, as it is clear from the above

reasoning, �(t

0

; r) can be taken arbitrarily large. Therefore, any solution of

(1.1) satis�es (1.5). �

2. Solvability and Estimates of Solutions of a Blasius-Crocco

Type Problem

In this section, we study the Blasius-Crocco type problem

u

(n)

= f(t; u; u

0

; : : : ; u

(n�1)

); (2.1)

lim

t!t

0

+

u

(i�1)

(t) = c

i

(i = 1; : : : ; n� 1); lim

t!b�

u

(n�1)

(t) = 0; (2.2)

where

n � 1; �1 < a � t

0

< b � +1; c

i

� 0 (i = 1; : : : ; n� 1);

f 2 K

loc

([a; b[�]0;+1[

n

;R): (2.3)
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In the �rst two subsections, a particular case of the problem (2.1), (2.2) is

considered, when c

i

> 0 (i = 1; : : : ; n� 1) and b = +1, i.e., the problem

u

(i�1)

(t

0

) = c

i

(i = 1; : : : ; n� 1); lim

t!+1

u

(n�1)

(t) = 0: (2.4)

Everywhere below we assume that the conditions (1.2) are ful�lled.

2.1. Theorems on Existence and Uniqueness of Solution of the Problem

(2.1), (2.4).

Theorem 2.1. Let t

0

� a, c

i

> 0, (i = 1; : : : ; n � 1), f be nondecreasing

in the last n arguments and let for any c > 0 the Cauchy problem

u

(i�1)

(t

0

) = c

i

(i = 1; : : : ; n� 1); u

(n�1)

(t

0

) = c (2.5)

for the equation (2:1) be uniquely solvable. Then the problem (2:1), (2:4)

has at most one solution.

Proof. Suppose, on the contrary, that the problem (2.1), (2.5) has two

di�erent solutions u

1

and u

2

. The unique solvability of Cauchy prob-

lems implies that, without restriction of generality, we can assume that

u

(n�1)

1

(t

0

) < u

(n�1)

2

(t

0

). According to the well known lemma on integral

inequalities (see, e.g., [4], Lemma 4.3), hence we have

u

(i�1)

1

(t) < u

(i�1)

2

(t) for t � t

0

(i = 1; : : : ; n):

Therefore, taking the monotonicity of f into account, we obtain u

(n)

1

(t) �

u

(n)

2

(t) for t � t

0

, and this fact along with the preceding inequalities con-

tradicts to u

(n�1)

1

(+1) = u

(n�1)

2

(+1) = 0. The obtained contradiction

proves the theorem. �

Theorem 2.2. Let t

0

� a, c

i

> 0 (i = 1; : : : ; n� 1), the equation (1) have

the property V , for any c > 0 the problem (2:5), (2:6) be uniquely solvable

and let the inequalities

0 � �f(t; x

1

; : : : ; x

n

) �  (t; x

1

; : : : ; x

n

) (2.6)

be ful�lled on [a;+1[�]0;+1[

n

, where  2 K

loc

([a;+1[�]0;+1[

n

;R

+

) is

nonincreasing in the last n arguments and the equation

u

(n)

= � (t; u; u

0

; : : : ; u

(n�1)

) (2.7)

have at least one solution u satisfying (2:4). Then the problem (2:1), (2:4)

is solvable.

Proof. Let u

c

: [t

0

; b

c

[! R be the solution of the problem (2.1), (2.5). We

say that c 2 �

1

if b

c

= +1 and lim

t!+1

u

(n�1)

c

(t) > 0, we say c 2 �

2

if

b

c

= +1 and lim

t!+1

u

(n�1)

c

(t) = 0, and we say c 2 �

3

if b

c

< +1 and

lim

t!b

�

c

u

(n�1)

c

(t) = 0.
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Suppose that, contrary to the assertion of the theorem, �

2

= ?. Let

c > u

(n�1)

(t

0

). According to (2.4) and the above mentioned lemma on

integral inequalities, we have

u

(n�1)

c

(t) > u

(n�1)

(t) for t

0

� t < b

c

; (2.8)

Therefore b

c

= +1, and since according to the hypothesis �

2

= ?, we

obtain c 2 �

1

. Thus ]u

(n�1)

(t

0

);+1[� �

1

.

Now take an arbitrary c

0

2 �

1

. There is t

1

2]t

0

;+1[ such that u

(i�1)

c

0

(t

1

)

> u

(i�1)

(t

1

) (i = 1; : : : ; n). In view of the continuous dependence of solu-

tions of a di�erential equation on initial values, the last inequalities remain

valid if we change c

0

by any su�ciently close c > 0. According to (2.6)

and the lemma on integral inequalities, this implies the validity of (2.8) for

t

1

� t < b

c

. Therefore, since �

2

= ?, all c

0

su�ciently close to c > 0 belong

to �

1

. Thus �

1

is a nonempty open subset of ]0;+1[.

The nonemptiness of �

3

follows from the property V of the equation

(2.1). Let c

0

2 �

3

. Put

� = maxfb

c

0

�t

0

; 1g; r = maxfc

i

: 1 � i � n�1g; r

0

= �

n�1

[r(n�1)+c

0

+1];

and choose t

1

2 [t

0

; b

c

0

[ such that

0 < u

(n�1)

c

0

(t

1

) < �(b

c

0

; r

0

);

where �(b

c

0

; r

0

) is the number appearing in the de�nition of the property

V . For any c > 0 su�ciently close to c

0

, we will have either b

c

> b

c

0

, and

then c 2 �

3

, or b

c

> b

c

0

and

0 < u

(i�1)

c

(b

c

0

) � r

0

(i = 1; : : : ; n� 1); 0 < u

(n�1)

c

(b

c

0

) < �(b

c

0

; r

0

):

In the last case, the property V again implies c 2 �

3

. Thus both �

1

and �

3

are nonempty open subsets of ]0;+1[.

On the other hand, ]0;+1[= �

1

[ �

3

and �

1

\ �

3

= ?. But this is

impossible since ]0;+1[ is connected. The obtained contradiction proves

the theorem. �

Theorem 2.3. Let t

0

� a, c

i

> 0 (i = 1; : : : ; n � 1),  2 K

loc

([a;+1[�

]0;+1[

n

;R

+

) be nonincreasing in the last n arguments, the equation (2:1)

have the property V , for any c > 0 the problem (2:7), (2:5) be uniquely

solvable, and let the problem

dx

dt

= � 

�

t;

(t� a)

n�1

(n� 1)!

x; : : : ; (t� a)x; x

�

; (2.9)

lim

t!+1

x(t) = 0 (2.10)

have at least one solution de�ned on [t

0

;+1[.

1

Then the problem (2:7),

(2:4) has a unique solution.

1

According to Theorem 2:1, this solution is unique.
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Proof. Let u

c

: [t

0

; b

c

[! R be a solution of the problem (2.7), (2.4). Writ-

ing for u

c

the equalities analogous to (8.11) and taking into account the

nonincreasingness of u

(n�1)

c

, we �nd

u

i�1

c

(t) �

(t� a)

n�i

(n� i)!

u

(n�1)

c

(t) for t

0

� t < b

c

: (2.11)

Therefore

u

(n)

c

(t) � � 

�

t;

(t � a)

n�1

(n� 1)!

u

(n�1)

c

(t); : : : ; (t� a)u

(n�1)

c

(t); u

n�1

c

(t)

�

(2.12)

for t

0

� t < b

c

:

De�ne the sets �

j

(j = 1; 2; 3) as in the proof of Theorem 2.2. Repeating

the arguments given there and taking Theorem 2.1 into account, we see that

it su�ces to prove the following: the assumption �

2

= ? implies that �

1

is

a nonempty open subset of ]0;+1[.

So let �

2

= ? and c > x(t

0

). According to (2.12) and the lemma on

integral inequalities, we have

u

(n�1)

c

(t) > x(t) for t

0

� t < b

c

: (2.13)

Therefore c 2 �

1

[ �

2

= �

1

and thus �

1

6= ?.

Let now c

0

2 �

1

. Then for some t

1

� t

0

we have u

(n�1)

c

0

(t

1

) > x(t

1

) which

along with (2.12) implies (2.13) for t

1

� t < b

c

and all c > 0 su�ciently

close to c

0

. �

Lemma 2.1. Let t

0

� a,  2 K

loc

([a;+1[�]0;+1[;R

+

) be nonincreasing

in the second argument, the equation

dx

dt

= � (t; x) (2.14)

have the property V , and let for any c > 0 the Cauchy problem

x(t

0

) = c (2.15)

for this equation be uniquely solvable. Let, moreover,

+1

Z

a

 (t; x)dt < +1 for x > 0: (2.16)

Then the problem (2:14), (2:10) has a unique solution de�ned on [t

0

;+1[.

Proof. Let x

c

: [t

0

; b

c

[! R be the solution of the problem (2.14), (2.15).

De�ne the sets �

j

(j = 1; 2; 3) as in the proof of Theorem 2.2. As above, it

su�ces to prove that �

1

is a nonempty open subset of ]0;+1[.
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In view of (2.16) and the monotonicity of  in the second argument,

� > 0 can be chosen such that

+1

Z

t

0

 (t; �) < �: (2.17)

Let c > 2�. Show that then c 2 �

1

. Indeed, if it is not the case, one can

�nd t

1

2]t

0

; b

c

[ such that

x

c

(t) > � for t

0

� t < t

1

; x

c

(t

1

) = �: (2.18)

But then by (2.17), (2.18) and the monotonicity of  , we will have

x

c

(t

1

) = x

c

(t

0

)�

t

1

Z

t

0

 (t; x(t))dt > 2�� � = �;

which contradicts (2.18). The obtained contradiction shows that ]2�;+1[�

�

1

.

Let now c

0

2 �

1

. There exists �

0

> 0 such that x

c

(t

1

) > 2�

0

for t � t

0

.

Choose t

1

� t

0

such that

+1

Z

t

1

 (t; �

0

) < �

0

:

For all c > 0 su�ciently close to c

0

, we will have x

c

(t

1

) > 2�

0

. Hence, as

above, it follows that for all such c the function x

c

can not admit the value

equal to �

0

. Therefore �

1

is a nonempty open set. �

Theorem 2.4. Let t

0

� a, c

i

> 0 (i = 1; : : : ; n� 1) and the inequality

'(t; x

1

; : : : ; x

n

) � �f(t; x

1

; : : : ; x

n

) �  (t; x

1

; : : : ; x

n

) (2.19)

hold on [a;+1[�]0;+1[

n

, where ',  2 K

loc

([a;+1[�]0;+1[

n

;R

+

) are

nonincreasing in the last n arguments and

0 <

+1

Z

t

'(�; (� � a)

n�1

x; : : : ; (� � a)x; x)d� �

�

+1

Z

t

 (�; (� � a)

n�1

x; : : : ; (� � a)x; x)d� <+1 for t � a; x>0: (2.20)

Then the problem (2:1), (2:4) has a solution. If, moreover, f is nondecreas-

ing in the last n arguments, then this solution is unique.
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Proof. We can replace  by the function  

�

satisfying all the hypotheses

of the theorem and, in addition, the local Lipshitz conditions in the last n

arguments. But then the theorem becomes an immediate consequence of

Theorems 1.1, 2.1-2.3 and Lemma 2.1. �

2.2. Asymptotic Behaviour of Solutions of the Problem (2.1), (2.2). Every-

where in this subsection we will have t

0

� a, c

i

> 0 (i = 1; : : : ; n� 1).

First of all, we will mention here some de�nitions and a lemmaon singular

di�erential inqualities which will be of use immediately.

Let w 2 K

loc

(]a; b[�R;R), where a < b � +1 and c

0

2 R. Consider the

problem

dx

dt

= w(t; x); lim

t!b�

x(t) = c

0

: (P)

De�nition 2.1. A solution x

�

(x

�

) of the problem (P) de�ned on ]a

0

; b[�

]a; b[ is said to be an upper (a lower) solution of the problem (P), if for any

solution x of this problem de�ned on an interval ]a

1

; b[�]a; b[, the inequality

x(t) � x

�

(t) (x(t) � x

�

(t)) for t 2]a

0

; b[\]a

1

; b[

holds.

We have [5]

Lemma 2.2. Let the problem (P) have an upper (a lower) solution x

�

(x

�

)

de�ned on ]a

0

; b[�]a; b[. Then for any locally absolutely continuous function

v :]a

0

; b[!R satisfying

lim sup

t!b�

v(t) � c

0

(lim inf

t!b�

v(t) � c

0

)

and almost everywhere on ]a

0

; b[ the inequality

v

0

(t) � w(t; v(t)) (v

0

(t) � w(t; v(t));

we have

v(t) � x

�

(t) (x(t) � x

�

(t)) for a

0

< t < b:

Theorem 2.5. Let the inequalities (2:19) be ful�lled on [a;+1[�]0;+1[

n

,

where ';  2K

loc

([a;+1[�]0;+1[

n

;R

+

) are nonincreasing in x

1

; : : : ; x

n�1

,

the problem (2:9), (2:10) has an upper solution x

�

de�ned on [t

0

;+1[, and

the problem

dx

dt

= �'(t; �(t); : : : ; �

(n�2)

(t); x); (2.21)

lim

t!+1

x(t) = 0: (2.22)
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where

�(t)=

n�1

X

j=1

c

j

(t� t

0

)

j�1

(j � 1)!

+

1

(n� 2)!

t

Z

t

0

(t� � )

n�2

x

�

(� )d� for t � t

0

; (2.23)

has a lower solution x

�

de�ned on [t

0

;+1[. Then for any solution u of the

problem (2:1), (2:4) we have

�

(j�1)

�

(t) � u

(i�1)

(t) � �

(i�1)

(t) for t � t

0

(i = 1; : : : ; n); (2.24)

where

�

�

(t) =

n�1

X

j=1

c

j

(t� t

0

)

j�1

(j � 1)!

+

1

(n� 2)!

t

Z

t

0

(t � � )

n�2

x

�

(� )d� (2.25)

for t � t

0

:

Proof. Let u be an arbitrary solution of the problem (2.1), (2.4). Analo-

gously to (2.11), we have

u

(i�1)

(t) �

(t� a)

n�i

(n� i)!

u

(n�1)

(t) for t � t

0

(i = 1; : : : ; n� 1):

Taking (2.19) into account as well as the monotonicity of  , and applying

Lemma 2.2, we �nd u

(n�1)

(t) � x

�

(t) for t � t

0

, i.e.,

u

(i�1)

(t) � �

(i�1)

(t) for t � t

0

(i = 1; : : : ; n): (2.26)

From (2.19), (2.26) and the monotonicity condition implied on ', according

to Lemma 2.2 it follows that u

(n�1)

(t) � x

�

(t) for t � t

0

which along with

(2.26) proves the estimates (2.24). �

Remark. Let ' and  be nonincreasing in the last n arguments and the

conditions (2.19) and (2.20) be ful�lled. Then the problems (2.9), (2.10)

and (2.21), (2.22) have unique solutions.

Indeed, the existence of a unique solution of the problem (2.9), (2.10)

follows from Lemma 2.1 (taking Theorem 1.1 into account). In order to

ascertain the unique solvability of the problem (2.21), (2.22), it su�ces to

notice that

�

(i�1)

(t) � �(t� a)

n�i

(i = 1; : : : ; n)

for large t, where � is a positive number.

Theorem 2.6. Let n � 2 and the inequalities

'(t; x

1

; : : : ; x

n�1

) � �f(t; x

1

; : : : ; x

n

) �  (t; x

1

; : : : ; x

n�1

) (2.27)
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be ful�lled on [a;+1[�]0;+1[

n

, where ';  2 K

loc

([a;+1[�]0;+1[

n�1

;

R

+

) are nonincreasing in the last n � 1 arguments. Let for at least one

solution u of the problem (2:1), (2:4) a �nite limit

lim

t!+1

u

(n�2)

(t) < +1 (2.28)

exist. Then for some � > c

n�1

;

+1

Z

a

(t � a)'(t; (t� a)

n�2

)�; : : : ; (t� a)�; �)dt < +1: (2.29)

Moreover, if

+1

Z

a

(t� a) (t; (t� a)

n�2

c

n�1

; : : : ; (t� a)c

n�1

; c

n�1

)dt < +1;

then for any solution u of the problem (2:1), (2:4) we have (2:28).

Proof. Let a solution u of the problem (2.1), (2.4) satisfy (2.28). Then,

denoting this limit by �, we will have

u

(i�1)

(t) � �(t� a)

n�i�1

for t � t

1

(i = 1; : : : ; n� 1);

where t

1

� t

0

is su�ciently large. By (2.27) and the monotonicity of '

u

(n�1)

(t) �

+1

Z

t

'(�; (� � a)

n�2

�; : : : ; (� � a)�; �)d� for t � t

1

:

Integrating from t to +1, we �nd

+1

Z

t

(� � t)'(�; (� � a)

n�2

�; : : : ; (� � a)�; �)d� � � < +1;

whence it follows (2.29). The second part of the theorem can be proved

analogously. �

From Theorems 2.4 {2.6, it immediately follows

Theorem 2.7. Let the inequalities

p(t)x

�

1

� �f(t; x

1

; : : : ; x

n

) � q(t)x

�

1

;

be ful�lled on [a;+1[�]0;+1[

n

, where � < 0, p; q 2 L

loc

([a;+1[;R

+

) and

0 <

+1

Z

t

(� � a)

(n�1)�

p(� ) �

+1

Z

t

(� � a)

(n�1)�

q(� )d� < +1 for t � a:
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Then the problem (2:1), (2:4) is solvable and any of its solutions satis�es

u

(n�1)

(t) �

h

1� �

[(n� 1)!]

�

+1

Z

t

(� � a)

(n�1)�

q(� )d�

i

1

1��

for t � t

0

: (2.30)

If, moreover,

+1

Z

a

(t� a)

�(n�2)+1

q(t)dt < +1;

then a �nite limit lim

t!+1

u

(n�2)

(t) exists. If, however,

+1

Z

a

(t � a)

�(n�2)+1

p(t)dt = +1;

then lim

t!+1

u

(n�2)

(t) = +1, and for any 
 > 1,

u

(n�1)

(t) �

h




(n� 2)!

i

�

+1

Z

t

p(� )

�

�

Z

a

(� � s)

n�2

eq(s)ds

�

�

d�

for large t, where eq(t) is the right-hand side of the inequality (2:30).

2.3. The Problem (2.1), (2.2). The Case Where b < +1 and c

i

> 0

(i = 1; : : : ; n�1). The approach which was used for the investigation of the

problem (2.1), (2.4) can be likewise applied to the problem

u

(i�1)

(t

0

) = c

i

(i = 1; : : : ; n� 1); lim

t!b

�

u

(n�1)

(t) = 0 (2.31)

for the equation (2.1), where

�1 < a � t

0

< b < +1; c

i

> 0 (i = 1; : : : ; n� 1): (2.32)

The following two theorems will be stated without proof.

Theorem 2.8. Let the conditions (2:32) be ful�lled, for any c > 0 the prob-

lem (2:1), (2:5) be uniquely solvable, and let the inequalities (2:19) hold on

[a; b[�]0;+1[

n

, where ';  2 K

loc

([a; b[�]0;+1[

n

;R

+

) are nonincreasing

in the last n arguments and

0 <

b

Z

t

'(�; x; : : : ; x)d� �

b

Z

t

 (�; x; : : : ; x)d� < +1 (2.33)

for a � t < b; x > 0:

Then the problem (2:1), (2:31) has a solution. If, moreover, f is nonde-

creasing in the last n arguments, then this solution is unique.
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Theorem 2.9. Let the conditions (2:32) be ful�lled and let the inequalities

(2:19) hold on [a; b[�]0;+1[

n

, where ';  2 K

loc

([a; b[�]0;+1[

n

;R

+

) is

nonincreasing in x

1

; : : : ; x

n�1

, the problem

lim

t!b

�

x(t) = 0 (2.34)

for the equation (2:9) have an upper solution x

�

de�ned on [t

0

; b[, and the

problem (2:21), (2:34), with the function � given by (2:23), have a lower

solution x

�

de�ned on [t

0

; b[. Then any solution u of the problem (2:1),

(2:31) satis�es (2:2) on [t

0

; b[, where �

�

is de�ned by (2:25).

Remark. Let ' and  be nonincreasing in the last n arguments and (2.19)

and (2.33) be ful�lled. Then the problems (2.9), (2.34) and (2.21), (2.34)

have unique solutions.

2.4. The Problem (2.1), (2.2). The General Case. In this subsection, we

consider the problem (2.1), (2.2) under the the general hypotheses (2.3).

Theorem 2.10. Let the conditions (2:3) be ful�lled and the inequalities

(2:19) hold on [a; b[�]0;+1[

n

, where ';  2 K

loc

([a; b[�]0;+1[

n

;R

+

) are

nonincreasing in the last n arguments and satisfy (2:20). Let, moreover,any

Cauchy problem for the equation (2:1) be uniquely solvable. Then the prob-

lem (2:1), (2:2) is solvable. Moreover, any of its solutions satisfy (2:24)

on ]t

0

; b[, where � and �

�

are de�ned by (2:23) and (2:25), and x

�

and x

�

are the unique solutions of the problems (2:9), (2:34) and (2:21), (2:34),

respectively.

2

Proof. For the sake of de�niteness, we will assume that b < +1. The case

b = +1 can be considered analogously. To ascertain the estimates (2.24), it

su�ces to consider a sequence (t

k

)

1

k=1

such that t

k

2]a; b[ (k = 1; 2; : : :) and

lim

k!1

t

k

= t

0

, to apply Theorem 2.9, and then to pass to limit as k!1.

Prove now the existence of a solution. Let r = maxfc

i

: 1 � i � n� 1g,

and let (c

ik

)

1

k=1

(i = 1; : : : ; n� 1) be sequences satis�ying

0 < c

ik

< r + 1 (k = 1; 2; : : :); lim

k!1

c

ik

= c

i

(i = 1; : : : ; n� 1): (2.35)

In the case of the �nite b; (2.20) implies (2.33), so �xing an arbitrary k,

according to Theorem 2.8 we see that the problem

u

(i�1)

(t

0

) = c

ik

(i = 1; : : : ; n� 1); lim

t!b

�

u

(n�1)

(t) = 0

for the equation (2.1) has a solution u

k

. Moreover, by Theorem 2.9 and

(2.35), we have

�

(i�1)

�

(t) � u

(i�1)

k

(t) � �

(i�1)

(t) for t

0

� t < b (i = 1; : : : ; n); (2.36)

2

The existence and uniqueness of x

�

and x

�

follow from Remarks to Theorems 2:5

and 2:9.
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where

�(t) = (r + 1)

n�2

X

j=0

(t� a)

j

j!

+

1

(n� 2)!

t

Z

t

0

(t� � )

n�2

x

�

(� )d�;

�

�

(t) =

1

(n� 2)!

t

Z

t

0

(t � � )

n�2

x

�

(� )d� for t

0

< t < b:

From (2.36) we see that the sequences (u

(j�1)

k

)

1

k=1

(i = 1; : : : ; n) are uni-

formly bounded and equicontinuous on each subsegment of ]t

0

; b[. Therefore,

by the Arzela-Ascoli lemma, we can assume that they converge uniformly

on every such subsegment. The function u(t) = lim

k!1

u

k

(t) for t

0

< t < b

obviously is a solution of the problem (2.1), (2.2). �

2.5. On Solutions of an Emden-Fowler Type Equation with the Negative

Exponent. In this subsection, we consider the equation

u

(n)

= g(t)juj

�

signu; (2.37)

with g 2 L

loc

([a;+1[;R) and

� < 0; g(t) � 0 for t � a: (2.38)

Note that if

mesf� � t : g(� ) 6= 0g for t � a (2.39)

and for some solution u : [t

0

; t

1

[! R of (9.37) there is t

�

2]t

0

; t

1

[ such that

(8.5) is ful�lled, then

t

1

< +1; lim

t!t

1

�

u(t) = 0: (2.40)

So under the conditions (2.38) and (2.39), the property V of the equation

(2.37) is equivalent to the following one: for any t

0

� a and r > 0, there

is �(t

0

; r) > 0 such that for any solution u : [t

0

; t

1

[! R of (2.37) satisfying

(1.3) if n > 1 and (1:4) if n = 1, the condition (2.40) holds.

Theorem 1.1 immediately implies

Theorem 2.11. Let (2:36) and (2:39) be ful�lled. Then the equation (2:37)

has the property V . If, moreover,

+1

Z

a

(t � a)

(n�1)�

jg(t)jdt = +1;

then the equation (2:37) does not have solutions de�ned in the vicinity of

+1.
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Below we will be interested in the solutions of (2:27) satisfying

u(t) > 0; u

(n�2)

(t) > 0 for t � t

0

; lim

t!+1

u

(n�1)

(t) = 0: (2.41)

Theorem 2.7 implies

Theorem 2.12. Let (2:38) and (2:29) be ful�lled. The equation (2:37) has

solutions satisfying (2:41) if and only if

+1

Z

a

(t � a)

(n�1)�

jg(t)jdt < +1; (2.42)

and in this case there exists an (n�1)-parametrical family of such solutions.

If, moreover,

+1

Z

a

(t � a)

(n�2)�+1

jg(t)jdt < +1;

then for any solution u of (2:37) satisfying (2:41) there exists a �nite limit

lim

t!+1

u

(n�2)

(t) = c and

u

(n�2)

(t) = c� c

�

(1 + o(1))

+1

Z

t

(� � t)(� � a)

�(n�2)

jg(� )jd� for t! +1:

If along with (2:42) it holds

+1

Z

a

(t � a)

�(n�2)+1

jg(t)jdt = +1;

then for any solution u of (2:37) satisfying (2:41), we have

lim

t!+1

u

(n�2)

(t) = +1 (2.43)

and, given 
 > 1,

h




(n� 2)!

i

�

+1

Z

t

jg(� )j

�

�

Z

a

(� � s)

n�2

eg(s)ds

�

�

d� � u

(n�1)

(t) � eg(t)

for large t, where

eg(t) =

h

1� �

[(n� 1)!]

�

+1

Z

t

(� � a)

(n�1)�

jg(� )jd�

i

1

1��

for t � t

0

:
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Theorem 2.13. Let � < 0 and 


1

� �t

�

g(t) � 


2

for t > 0 with � 2 R

and 


1

, 


2

positive constants. Then (2:37) has a solution satisfying (2:41)

and (2:43) i� �(n � 1) + 1 < � � �(n � 2) + 2. Moreover, any of such

solutions u admits the estimate

c

�

t

n��

1��

� u(t) � c

�

t

n��

1��

for large t, where c

�

and c

�

are positive constants depending only on n, �,

�, 


1

, and 


2

.

3. On a Modification of the Blasius{Crocco Problem

In this section, we consider the problem

u

(n)

= f(t; u; u

0

; : : : ; u

(n�1)

); (3.1)

lim

t!t

0

+

u

(i�1)

(t) = c

i

(i = 1; : : : ; n� 1); lim

t!b�

u(t) = 0; (3.2)

Everywhere below we will assume, not stating it explicitly, that n � 1,

�1 < a � t

0

< b < +1, c

i

� 0 (i = 1; : : : ; n � 1) and f 2 K

loc

([a; b[�

]0;+1[

n

;R).

Lemma 3.1. Let �1 < t

0

< b < +1, s

0

= (b�t

0

)

�1

and u : [t

0

; b[! R be

locally absolutely continuous along with its (n�1)-st derivatives inclusively.

Then the function v : [s

0

;+1[! R de�ned by

v(s) = s

n�1

u

�

b�

1

s

�

(3.3)

almost everywhere on [s

0

;+1[ satis�es

v

(n)

(s) =

1

s

n�1

u

(n)

�

b�

1

s

�

:

Moreover,

s

i�1

v

(i�1)

(s) =

i

X

j=1




nij

s

n�j

u

(j�1)

�

b�

1

s

�

for s

0

� s < +1 (i = 1; : : : ; n+ 1);

where 


nij

� 0 (n = 1; 2; : : : ; 1 � j � i � n+ 1).

The proof of this lemma can be found in [6].

If f is nonpositive, then by Lemma 3.1, the function u 2

e

C

n�1

loc

is a

solution of the problem (3.1), (3.2) i� the function v 2

e

C

n�1

loc

(]s

0

;+1[)

de�ned by (3.3) with s

0

= (b� t

0

)

�1

is a solution of the problem

v

(n)

=

e

f (s; v; v

0

; : : : ; v

(n�1)

); (3.4)

lim

s!s

0

+

v

(i�1)

(s

0

) =

i

X

j=1




nij

s

n�i�j+1

0

c

j

; lim

s!+1

v

(n�1)

(s) = 0; (3.5)
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where

e

f 2 K

loc

([(b � a)

�1

;+1[�]0;+1[

n

;R) is nonpositive and the con-

stants 


nij

(i = 1; : : : ; n � 1; j = 1; : : : ; i) are nonnegative. If, moreover,

n � 2, then

lim

t!b�

u

0

(t) = �1 (3.6)

if and only if

lim

s!+

1

v

(n�2)

(s) = +1: (3.7)

Indeed, let (3.6) hold. Then lim

t!b�

u(t)

b�t

= +1, i.e.,

lim

s!+1

v(s)

s

n�2

= +1: (3.8)

By (3.5) and the nonpositiveness of

e

f , the limit lim

s!+1

v

(n�2)

(s) 2]0;+1]

exists. If this limit is �nite, then such will be the limit of v(s)=s

n�2

as well

which contradicts (3.7). Analogously, (3.7) implies (3.6).

Taking the above said into account and applying Theorems 2.10 and 2.6

to the problem (3.4), (3.5), we ascertain the following

Theorem 3.1. Let the inequalities

'(t; x

1

) � �f(t; x

1

; : : : ; x

n

) �  (t; x

1

); (3.9)

be ful�lled on [a; b[�]0;+1[

n

, where ';  2 K

loc

([a; b[�]0;+1[;R

+

) are

nonincreasing in the second argument and

0<

b

Z

t

(b� t)

n�1

'(�; x)d��

b

Z

t

(b� � )

n�1

 (�; x)d� <+1 for a� t<b; x>0:

Then the problem (3:1), (3:2) is solvable.

Theorem 3.2. Let n � 2 and the inequalities (3:8) be ful�lled on [a; b[�

]0;+1[

n

, where ';  2 K

loc

([a; b[�]0;+1[;R

+

) are nonincreasing in the

second argument. Let for at least one solution u of (3:1), (3:2) a �nite limit

lim

t!b�

u

0

(t) > �1 (3.10)

exist. Then for some � > 0 we have

b

Z

a

(b� t)

n�2

'(t; (b� t)�)dt < +1:

On the other hand, if

b

Z

a

(b � t)

n�2

 (t; (b � t)x)dt < +1 for x > 0;
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then any solution u of (3:1), (3:2) satis�es (3:10).

Consider the Emden-Fowler type equation

u

(n)

= g(t)juj

�

signu; (3.11)

where g 2 L

loc

([a; b[;R) and

� < 0; g(t) � 0 for a � t < b: (3.12)

The transformation (3.3) changes (3.11) into

v

(n)

= s

�[n+1+�(n�1)]

g

�

b�

1

s

�

jvj

�

sign v:

Applying to the last equation Theorems 2.12 and 2.13, we ascertain the

following.

Theorem 3.3. Let t

0

2 [a; b[, (3:12) hold and

mesf� 2 [t; b[; g(� ) 6= 0g > 0 for a � t < b:

The equation (3:11) has a solution u satisfying

u(t) > 0; u

0

(t) < 0 for t � t

0

; lim

t!b�

u(t) = 0 (3.13)

if and only if

b

Z

a

(b� t)

n�1

jg(t)jdt < +1; (3.14)

and in this case there exists an (n� 1)-parametric family of such solutions.

If, moreover,

b

Z

a

(b� t)

�+n�2

jg(t)jdt < +1;

then for any solution u of (3:11) satisfying (3:13), there exists a �nite limit

lim

t!+1

u

0

(t) = c < 0 and u(t) � jcj(b� t): If, however, along with (3:14) the

condition

b

Z

a

(b� t)

�+n�2

jg(t)jdt = +1

is ful�lled, then for any solution u of (3:11) satisfying (3:13) we have (3:6)

and, given 
 > 1,

1

(n� 1)!

h




(n� 2)!

i

�

b

Z

t

(b� � )

�+n�1

jg(� )j

�

�

Z

a

eg(�)d�

(b� �)

2

�

�

d� �



118

� u(t) �




(n� 2)!

(b� t)

t

Z

a

eg(� )

(b � � )

2

d�

for all t su�ciently close to b, where

eg(t) =

h

1� �

[(n� 1)!]

�

b

Z

t

(b � � )

n�1

jg(� )jd�

i

1

1��

for a � t < b:

Theorem 3.4. Let � < 0 and 


1

� �(b � t)

�

g(t) � 


2

with � 2 R and




1

and 


2

positive constants. Then (3:11) has a solution u satisfying (3:13)

and (3:6) i� � + n � 1 � � < n. Moreover, any of such solutions for all t

su�ciently close to b admits the estimates

c(b� t)

n��

1��

� u(t) � c

n��

1��

(b � t);

where c and c are positive constants depending only on n, �, �, 


1

and 


2

.
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