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ON EXISTENCE OF A MEASURE UNBOUNDED EXPONENTIAL

SPECTRAL QUANTIZATION ON SYMPLECTIC MANIFOLDS

(Reported on November 10, 1997)

Consider the linear system

" _x = A(t)x; " 2 (0;1]; x 2R

2

; t � 1; (1

A="

)

with piecewise continuous bounded coe�cients, which has the characteristic exponents

�

1

(A) � �

2

(A) and the Grobman coe�cient of inequality [1] �

G

(A) at " = 1: Starting

with fundamental works of A. N. Tikhonov, monographs and papers by A. B. Vasil'eva,

V. F. Butuzov, E. F. Mishchenko, N. Kh. Rozov, M. V. Fiedoryuk, I. S. Lomov and many

others were devoted to the investigationof more general singularly perturbed systems (for

details, see [2{8]). In the paper [9], a partial case of the n-dimensional system (1

(A+Q)="

)

was consideredunder perturbationsQ(�) of su�ciently small norm. Therein su�cient and

necessary conditions were obtained for tending to zero as "! +0 of all solutions of such

system on any �nite segment of positive half-axis.

A set S

�

(A=") �

S

�[Q]���

(�

1

(

A+Q

"

); �

2

(

A+Q

"

)); � = const > 0, where �[Q] �

lim

t!1

t

�1

ln kQ(�)k, is called a spectral sigma-set of the system (1

A="

) (the de�nition

of the Grobman spectral set see in [10, 11]). It holds the following

Theorem 1. For any real numbers �

1

< �

2

and �

0

> 2(�

2

� �

1

), there exists a

two-dimensional system (1

A

) with in�nitely di�erentiable bounded coe�cients and their

derivatives which has the characteristic exponents �

i

(A) = �

i

; i = 1;2, and the Grobman

coe�cient of inequality �

G

(A) = �

0

and is such that the spectral sigma-set S

�

(A=") of

the system (1

(A+Q)="

) for all � > 0 and 0 < " < (�

0

+ 2(�

1

� �

2

))�

�1

contains the set

of points (�

1

; �

2

) 2 R

2

de�ned by the inequalities. �

2

��

0

(��1)

�1

� "�

1

< �

2

< "�

2

�

(�

2

� "�

1

)�

�2

+ �

2

+ (�

0

+ �

1

� �

2

� "�)�

�1

, where � > 2�

0

(�

2

� �

1

)

�1

� 1.

Scheme of the proof. Denote �

j;l

� �

l

� j�; t

l

� �

l

= �

0;l

, where l 2 Z

+

; j = 0; 3;

� 2 (0; (� � 1)=3): Consider the set of functions '

i

k;l

(t); k = 1;4; l 2Z

+

; i = 1; 2; from

the class C

1

[1;+1)

of in�nitely di�erentiable functions de�ned as follows: '

i

2j�1;l

(t) �

[[(�1)

ji�jj

t

�1

2l

t+ (�+1)ji� jj](�

i

+ �

i

)� ��

i

� �

i

](�� 1)

�1

, '

i

2j;l

(t) � [�

i

� (�

i

+ �

i

)ji�

jj]�

2;2l+j

t

�1

; i; j = 1; 2; where �

1

� �

0

+ �

1

� 2�

2

; �

2

� �

0

� �

2

: One can see that

�

1

+ �

2

= �

2

+ �

1

= �

0

+ �

1

� �

2

� �

1

> 0. �

By means of this set of functions and the in�nitely di�erentiable Gelbaum function

g(t; a; b) with bounded derivatives of any order (see [12]) which is equal to zero at t 2

[1; a]; equal to exp[�(t � a)

�2

exp[�(t � b)

�2

]] at t 2 2 (a; b) and equal to 1 at t 2

[b;+1), 1 < a < b, we de�ne the functions f

i

(t) = '

i

1;0

(t) +

1

P

l=0

2

P

m;k=1

['

i

2m�k+2;l

(t)�

'

i

2m�k+1;l

(t)]g(t;�

2k�1;2l+m

; �

2k�2;2l+m

), i = 1; 2, t � 1, '

i

5;l

(t) � '

i

1;l+1

(t); which
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belong to the class C

1

[1;+1)

as a sum and a product of functions from that class. Besides,

on any segment [t

2l

; t

2l+2

] we have ��

i

� 2�(j�

i

j + j�

i

j)t

�1

2l

� f

i

(t) � �

i

+ 2�(j�

i

j +

j�

i

j)t

�1

2l

, t 2 [t

2l

; t

2l+2

], l 2Z

+

; therefore the functions f

i

(t) are bounded on [1;+1).

The system (1

A

) will be constructedby its CauchymatrixX

A

(t; �) = diag[exp[tf

1

(t)�

�f

1

(�)], exp[tf

2

(t) � �f

2

(�)]]: The coe�cients a

i

(t); i = = 1;2; of the matrix A(t) =

diag[a

1

(t); a

2

(t)] of this system have the form a

i

(t) = tf

0

i

(t) + f

i

(t) and belong to the

class C

1

[1;+1)

as a sum and a product of functions of this class. By direct calculations,

it is possible to show that the coe�cients and their derivatives of any order are bounded

on [1;+1):

Calculate now the characteristic exponents �

i

(A) and �

i

(A); i = 1;2; of the initial

system and of the conjugate one, respectively. Taking into acoount the above men-

tioned estimatens for f

i

(t) on [t

2l

; t

2l+2

], we obtain �

i

(A) = lim

t!1

f

i

(t) � �

1

; �

i

(A) =

�

i

(�A

T

) = lim

t!1

[�f

i

(t)] � �

1

. Besides, these limits will be realized by the sequences

ft

2l+i

g " +1 and ft

2l+i�1

g " +1. Thus we get �

i

(A) = �

i

, �

i

(A) = �

i

, i = 1; 2.

The Grobman coe�cient of inequality for this system �

G

(A) � max

i

f�

i

(A)+�

i

(A)g =

�

2

+ �

2

= �

0

is equal to the given value �

0

.

For the singular system (1

A="

) with a small parameter " > 0 by the derivative, the

characteristic exponents and the Grobman coe�cient of inequality are �

i

(A=") = �

i

=",

i = 1;2, �

G

(A=") = �

0

=", respectively.

Take a point (�

1

; �

2

) from the domain D � R

2

de�ned by

�� �

�

1

"

(� + 1) � �

1

< �

2

< �

2

(�

2

+ 1)� �

1

+

�

1

"

(�

2

� 1) �

�

0

"

(� + 1) + �

2

: (2)

Take also a parameter r 2 (1;1+e

�4

], and take a rather small angle � = �(r) 2 (0; r�1),

satisfying r

�1

� � sin � < � < tg � � r�: Take also l

0

2Z

+

large enough for

t

2l

0

� ln[C

"

r

7

�

�1

(r� 1)

�1

]=minf�; �

2

� �

1

; �

2

�

2

� �

1

+ �

1

"

�1

(�

2

� 1)g; (3)

where C

"

� exp[2��

1

"

�1

]. Note that the inequality (3) is true for any l � l

0

.

Let us show that there exists a piecewise continuous perturbationQ(�)�[Q]� �� < 0

such that for the singularly perturbed system (1

(A+Q)="

) there are two solutions y

i

(t),

i = 1;2, such that the angles �

i

(t

2l

), i = 1; 2, between the straight lines containing these

solutions and the axis Ox

2

are �

1

(t

2l

) = exp[�

1

t

2l

], �

2

(t

2l

) = d(2l) exp[�

2

t

2l

] at the

moments t = t

2l

, l � l

0

, l 2Z

+

, where r

�4

� d(2l) � r

2

.

Let Q(�) = 0 on [1; t

2l

0

]. At the moment t = t

2l

0

; take the vectors y

i

(t

2l

0

) =

((�1)

l

0

+1

sin exp[�

i

t

2l

0

], (�1)

l

0

cos exp[�

i

t

2l

0

]). It is clear that these solutions may be

extended to the left by Cauchy matrixX

A="

(t;1) = diag[exp["

�1

tf

1

(t)+�

1

"

�1

]; exp["

�1

t

f

2

(t)� �

2

"

�1

]] of the system (1

A="

) on [1; t

2l

0

].

The further proof will be carried out by induction. Assume that at a moment t = t

2l

,

l � l

0

, l 2Z

+

, we have obtained the vectors

y

1

(t

2l

) = ((�1)

l+1

sin exp[�

1

t

2l

]; (�1)

l

cos exp[�

1

t

2l

])ky

1

(t

2l

)k;

y

2

(t

2l

) = ((�1)

l+1

� sin[d(2l) exp[�

2

t

2l

]]; (�1)

l

cos[d(2l) exp[�

2

t

2l

]])ky

2

(t

2l

)k:

We will construct on the segment [t

2l

; t

2l+2

] a perturbation Q(�); �[Q] � �� < 0; such

that at the moment t = t

2(l+1)

; the solutions y(t

2(l+1)

) will be represented in the same

form with l substituted by l+ 1:

LetQ(�) = 0 on the segment [t

2l

; �

2;2l+1

]:The Cauchymatrix of the system (1

(A+Q)="

)

isX

A="

(�

2;2l+1

; t

2l

) = diag[exp[�

1

"

�1

�

2;2l+1

+�

1

"

�1

t

2l

]; exp [��

2

"

�1

�

2;2l+1

��

2

"

�1

t

2l

]]:

Therefore the angles �

i

(�

2;2l+1

); i = 1;2; between the straight lines containing the solu-

tions y

i

(�

2;2l+1

), and axes Ox

1

will be represented as follows:

tg�

i

(�

2;2l+1

) = C

"

exp[��

1

"

�1

(� + 1)t

2l

] ctg�

i

(t

2l

)
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at the moment t = �

2;2l+1

. Hence, using (2), we obtain

r

�2

C

"

� �

1

(�

2;2l+1

) exp[�

1

"

�1

(� + 1)t

2l

+ �

1

t

2l

] � C

"

; (4)

�

2

(�

2;2l+1

) � r

4

C

"

exp[��

1

"

�1

(� + 1)t

2l

� �

2

t

2l

]: (5)

On the following segment [�

2;2l+1

; �

1;2l+1

]; we perform the rotation of the solutions

y

i

(t); i = 1;2; from the axes Ox

1

to the axis Ox

2

by the angle !

1;l

= �

1

(�

2;2l+1

) +

arctg(C

"

tg exp[
t

2l+1

]); where 
 � ��

2

���

1

"(�+1): It may be realized by the rotation

matrix Q(�) = Q

1;l

with the elements q

11

= q

22

= 0 and q

12

= �q

21

= "!

1;l

�

�1

: If we

note that 
 < ��; then using (3), (4) we get !

1;l

� (r + 1)C

"

exp[��t

2l

]: Therefore the

exponent of the matrix Q

1;l

(�) satis�es the required condition �[Q

1;l

] � �� < 0:

As a result of this rotation, we get the angles �

i

(�

1;2l+1

) = !

1;l

��

i

(�

2;2l+1

); i = 1; 2;

at the moment t = �

1;2l+1

between the axes Ox

1

and the staight lines containing the

solutions y

i

(�

1;2l+1

):

Let again Q(�) = 0 on [�

1;2l+1

; t

2l+1

]. Therefore we obtain the Cauchy matrix

X

A="

(t

2l+1

; �

1;2l+1

) = diag[exp[2��

1

"

�1

]; exp[�2��

2

"

�1

]]. By contracting to the axes

Ox

1

, the solutions y

i

(t) will be represented in the form

y

1

(t

2l+1

) = ((�1)

l+1

cos exp[
t

2l+1

]; (�1)

l+1

sin exp[
t

2l+1

])ky

1

(t

2l+1

)k

and

y

2

(t

2l+1

)=((�1)

l+1

cosarctg[C

�1

"

tg�

2

(�

1;2l+1

)]; (�1)

l+1

sinarctg[C

�1

"

�tg�

2

(�

1;2l+1

)]:

On the following "long" segment [t

2l+1

; �

2;2l+2

]; we takeQ(�) = 0. The Cauchymatrix

of the system (1

(A+Q)="

) has the form X

A="

(�

2;2l+2

; t

2l+1

) = diag[exp[��

1

"

�1

�

2;2l+2

�

�

1

"

�1

t

2l+1

]; exp[�

2

"

�1

�

2;2l+2

+ �

2

"

�1

t

2l+1

]]. The straight lines containing the solutions

y

i

(�

2;2l+2

) i = 1;2, form with the axis Ox

2

the angles

�

1

(�

2;2l+2

) = arctg[C

"

exp[��

1

"

�1

(� + 1)t

2l+1

] ctg exp[�
t

2l+1

]]

and

�

2

(�

2;2l+2

) = arctgC

2

"

exp[��

1

"

�1

(� + 1)t

2l+1

]

ctg�

2

(�

1;2l+1

)], respectively. By virtue of the de�nition of 
 and the inequalities (4), the

�rst angle admits the estimates

r

�2

C

"

exp[�

2

t

2l+2

] � �

1

(�

2;2l+2

) � C

"

exp[�

2

t

2l+2

] � C

"

exp[��t

2l+2

]: (6)

Using the inequalities (3), (4), (5), it is possible to obtain the estimate

�

2

(�

2;2l+2

) � r

3

C

"

exp[��

1

"

�1

(�

2

� 1)t

2l

+ �

1

t

2l

] (7)

for the angle �

2

(�

2;2l+2

).

Further, using the rotation matrices Q(�) = Q

2;l

with the elements q

11

= q

22

= 0

and q

12

= �q

21

= "!

2;l

�

�1

, we turn the system (1

(A+Q)="

) from the axis Ox

1

to thr

axis Ox

2

by the angle !

2;l

= �

1

(�

2;2l+2

)+arctg(C

"

tg exp[�

1

t

2l+2

]) on [�

2;2l+1

; �

1;2l+1

].

Taking into account (4) and (7), we see that the value of !

2;l

admits the estimates

!

2;l

� C

"

exp[�

2

t

2l+2

] + rC

"

exp[�

1

t

2l+2

] � rC

"

exp[��t

2l+2

]; (8)

and the exponent of this matrix �[Q

2;l

] � �� < 0:

After the rotation, we obtain the angles �

1

(�

1;2l+2

) = arctgC

"

tg exp[�

1

� t

2l+2

] and

�

2

(�

1;2l+2

) = !

2;l

� �

2

(�

2;2l+2

between the axis Ox

2

and the straight lines containing

the solutions y

i

(�

1;2l+2

), i = 1; 2. By (3), (7) and (8), the angle �

2

(�

1;2l+2

) admits

the estimates r

�3

C

"

exp[�

2

t

2l+2

] � �

2

(�

1;2l+2

) � rC

"

exp[�

2

t

2l+2

]. Requiring that the

obtained angle �

2

(�

1;2l+2

) = p(l+ 1)C

"

exp[�

2

t

2l+2

], where r

�3

� p(l+ 1) � r, would

be equal to arctg(C

"

tg(d(2l+ 2)exp[�

2

t

2l+2

])), we can de�ne the constant d(2l+ 2) as

the least positive solution of the equation (arctg(C

"

tgd(2l + 2)exp[�

2

t

2l+2

])) = p(l +

1)C

"

exp[�

2

t

2l+2

]. Hence we obtain r

�4

� d(2l+ 2) � r

2

:
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Note that by virtue of the arbitrary choice of r (it may be taken su�ciently close to

1), d(2l)! 1 as l! +1.

Putting Q(�) = 0 on the last segment [�

1;2l+2

; t

2l+2

], we obtain the Cauchy matrix

X

A="

(t

2l+2

; �

1;2l+2

) = diag[exp[�2��

1

"

�1

]; exp[2��

2

"

�1

]]. The solutions y

i

(t), i =

1;2, after being contracted to the axes Ox

2

; will be represented in the required form:

y

1

(t

2l+2

) = ((�1)

l+2

sin exp[�

1

t

2l+2

]; (�1)

l+1

cos� exp[�

1

t

2l+2

])ky

1

(t

2l+2

)k;

y

2

(t

2l+2

) = ((�1)

l+2

sin[d(2l+ 2)� exp[�

2

t

2l+2

]]; (�1)

l+1

cos[d(2l+ 2)exp[�

2

t

2l+2

]]):

Thus we obtain the angles �

1

(t

2l

) = exp[�

1

t

2l

]; �

2

(t

2l

) = d(2l) exp[�

2

t

2l

]; with the

axis Ox

2

at the moment t = t

2l

, l � l

0

; and the angles �

1

(t

2l+1

) = exp[��

1

"

�1

� (� +

1)t

2l+1

� �

2

t

2l+2

]; �

2

(t

2l+1

) = d(2l + 1)exp[��

1

"

�1

(� + 1)t

2l

� �

1

t

2l

]; with the axis

Ox

1

at the moment t = t

2l+1

; where d(k) 2 [r

�4

; r

2

], k � 2l

0

. These values allow us

to calculate by induction the growth of the norms of the solutions y

i

(t); i = 1;2; on the

segments [t

2l

0

; t

2l

] and [t

2l

0

+1

; t

2l+1

]; l � l

0

; and passing to limits as l! 1, we obtain

the exponential growth of the norms of these solutions in the form of following partial

exponents:

�

e

[y

1

] � lim

l!1

t

�1

2l

lnky

1

(t

2l

)k = �

2

"

�1

� �

1

"

�1

� (�

2

�

2

� �

1

)(�

2

� 1)

�1

;

�

o

[y

2

] � lim

l!1

t

�1

2l+1

lnky

2

(t

2l+1

)k = �

1

"

�1

+ �

1

"

�1

�

�1

+ (�

2

�

2

� �

1

)=�(�

2

� 1);

�

e

[y

2

] = �

2

"

�1

+ (�

2

� �

1

)=(�

2

� 1); �

o

[y

1

] = �

1

"

�1

� (�

2

� �

1

)�=(�

2

� 1):

Note that �

e

[y

i

] � �

o

[y

i

] for any point (�

1

; �

2

) 2 D.

Bounding from above the functions

 

i

(t) =  

i

2l+j�1

(�) � (t

2l+j�1

�)

�1

� ln ky

i

(t

2l+j�1

�)k;

i; j = 1; 2, t = t

2l+j�1

� , � 2 [1; �], on segments [t

2l+j�1

; t

2l+j

], l � l

0

, and using the

estimates for the norm growth of the solutions as well as the representationof the solutions

y

i

(t) = X

A="

(t; t

2l+j�1

)y

i

(t

2l+j�1

) on these segments, we �nd that the characteristic

exponents of the perturbed system (1

(A+Q)="

) �

i

[

A+Q

"

] = lim

t!1

 

i

(t) � �

e

[y

i

]. Besides,

as is already shown, there is a sequence t

2l

" 1 such that these limits are realized.

So, the lowest and highest characteristic exponents of the system (1

(A+Q)="

) are

�

e

[y

i

], i = 1;2, respectively.

The transformation

�

1

= �

2

"

�1

� �

1

"

�1

� (�

2

�

2

� �

1

)(�

2

� 1)

�1

;

�

2

= �

2

"

�1

+ (�

2

� �

1

)(�

2

� 1)

�1

maps the domain D determined by (2) to the domain

S = f(�

1

; �

2

) 2 R

2

: �

2

� �

0

(� � 1)

�1

� "�

1

< �

2

< "�

2

�

� (�

2

� "�

1

)�

�2

+ �

2

+ (�

0

+ �

1

� �

2

� "�)�

�1

g:

This completes the proof of the theorem.

Corollary 1. mesS

�

(A=")! +1 as " ! +0.
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