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In the closed �rst quarter R

2

+

of R

2

, we consider the linear Pfa� system

@x

@t

1

= A(t)x;

@x

@t

2

= B(t)x; x 2 R

n

; t = (t

1

; t

2

) 2 R

2

+

; (1)

where A(t) and B(t) are bounded (kA(t)k � a; kB(t)k � b for t 2 R

2

+

) and continuously

di�erentiable matrices satisfying the following condition of complete integrability

@A(t)

@t

2

+ A(t)B(t) =

@B(t)

@t

1

+B(t)A(t); t 2 R

2

+

: (2)

Let x : R

2

+

! R

n

be a nontrivial solution of (1). By analogy with the characteristic

Lyapunov exponent [1, p.27], the lower Perron exponent [2, see also 3], the characteristic

Grudo vector [4] and the characteristic Gaishun functional [5, 6], we introduce the lower

characteristic vector p = (p

1

; p

2

) 2 R

2

de�ned by the following condition

l

x

(p) � lim

t!1

ln kx(t)k� (p; t)

ktk

= 0; lim

t!1

lnkx(t)k� (p; t)� "t

i

ktk

< 0 8" > 0; i = 1; 2

(the vector limit condition t ! 1 is equivalent to the unbounded growth of the norm

ktk =

p

t

2

1

+ t

2

2

! +1), and denoteit by p[x]. This notion has a direct application to

the investigation of the Poisson stability of the trivial solution of the Pfa� system.

It is known [7] that the ordinary linear system dx=dt = A(t)x; x 2 R

n

; t 2 [0;+1);

with continuous (and, even, in�nitely di�erentiable) bounded coe�cients, can have a

segment of positive measure for its set of lower characteristic exponents. It may be

assumed with a good reason that the set of characteristic vectors for solutions of the

Pfa� system (1) has zero plane Lebegue measure. It is of interest to know whether the

Pfa� system (1), with bounded and in�nitely di�erentiable matrices A and B satisfying

(2) in R

2

+

, exists such that its set �(A;B) of lower characteristic vectors (i.e., the union

of lower characteristic vectors p[x] of all nontrivial solutions x(t; x

0

)) has positive plane

Lebegue measure. The positive answer to this question is contained in the following

Theorem 1. For any �

1

� �

2

� 0 and positive integer n � 2 there exists a

completely integrable Pfa� system (1) such that the coe�cient matrices A(t) and B(t)

are bounded and in�nitely di�erentiable and its set of lower characteristic vectors is

�(A;B) = fp 2 R

2

�

: �

1

� p

1

+ p

2

� �

2

g:

Construction of the Pfa� system. In the trivial case �

1

= �

2

= � < 0, the

required system (1) is

@x

@t

i

= k�kE

�1

(t)

@E(t)

@t

i

x; x 2 R

n

; t 2 R

2

+

; i = 1;2; E(t)� e

�t

1

�

e

�t

2

;

1991 Mathematics Subject Classi�cation. 35G05.

Key words and phrases. Linear Pfa� system, lower charcteristic vector.



137

whose general solution is x(t; c) = (c

1

; : : : ; c

n

) � E

j�j

(t); t 2 R

2

+

. Moreover, any par-

tial solution x(t;�) 6= 0 has the same lower characteristic set (the set of all its lower

characteristic vectors) p

1

+ p

2

= �, p

i

� 0, i = 1;2.

Let us consider the nontrivial case �

1

< �

2

. From our paper [7] we copy the construc-

tion of a perfect set P

0

� � = [0;1] analogous to the Cantor discontinuum [8, p. 56] and

a modi�ed Cantor step-function �

1

(�) [8, p. 232], using, as distinct from the one from

[7], the value "

n

� exp[(�

1

� �

2

) exp2

n+1

], n 2 N .

Let �

(1)

0

= � be the initial segment, let �

(i)

1

� �

(1)

0

; i = 1; 2; be segments of the

�rst rank such that their length is equal to "

1

and the left (right) endpoints of �

(1)

1

and

�(�

(2)

1

and �) coincide; then �

(1)

1

= � n [

i

�

(i)

1

is an interval of the �rst rank. Similarly

we represent an arbitrary segment �

m

n

of the �rst rank (its length is equal to "

n

); m 2

2 f1; : : : ; 2

n

g; in the form of union of two nonintersecting segments �

(2m�1)

n�1

and �

(2m)

n+1

of the rank (n+1) and one interval �

(m)

n+1

= �

(m)

n

n(�

(2m�1)

n+1

[�

(2m)

n+1

) of the rank (n+1)

such that the length of these segments is equal to "

n+1

and their left and right endpoints

respectively coincide with the corresponding endpoints of �: We denote by �

(m)

n

the

midpoint of �

(m)

n

; m = 1; : : : ;2

n

: Finally, we introduce the set P

0

=

1

\

n=1

2

n

[

i=1

�

(i)

n

with

zero linear Lebesgue measure [see 7, p. 56].

On the segment � = [0;1], we set the Cantor step-function �

1

: �! [0;1] for which

the constancy sections are intervals �

(m)

n

: It is known [8, p. 232] that this function is

continuous on � and its range is [0;1] = f�

1

(�) : � 2 P

0

g: Now we de�ne the new

function �(�) = ��

2

+ (�

2

� ��

1

)�

1

(�) : [0; 1]! [j�

2

j; j�

1

j].

With the help of the straight line l

k

: t

1

+ t

2

= e

k

, t

i

� 0, we divide the quarter

R

2

+

= ft = (t

1

; t

2

) : t

i

� 0g into strips ft 2 R

2

+

: e

k

� t

1

+ t

2

< e

k+1

g, k � 0; denoted

consecutively by �

(m)

n

with the closed \left" and open \right" boundaries, so that the

right boundary of �

(m)

n

coincides with the left boundary of �

(m+1)

n

, m 2 f1; : : : ; 2

n

g;

besides, the right boundary of �

(2n)

n

coincides with the left boundary of �

(1)

n+1

and the

initial strip �

(1)

1

is situated between the intercepts of the straight lines l

0

and l

1

:

We set �

t

� t

1

+ t

2

; t 2 R

2

+

, and de�ne the functions f(�

t

) and F (�

t

) of the argument

�

t

2 [0;+1) as follows. We select respectively the left and right parts

e

�

(m)

n

= ft 2

�

(m)

n

: �(n;m) � �

t

< �(n;m)

p

eg and

�

�

(m)

n

= �

(m)

m

n

e

�

m

n

of the strip �

(m)

n

with the

left boundary �

t

= �(n;m):

Using the analogue

'(�

t

; �(1); �(2)) =

�

expf� ln

�2

(�

t

=�(1)� exp[� ln

�2

(�

t

=�(2)]g; �(1)< �

t

< �(2);

i� 1 for �

t

= �(i); i = 1;2;

for the standard function [9, p. 54] in�nitely di�erentiable on the segment [�(1); �(2)]; we

de�ne a bounded in�nitely di�erentiable function f(�

t

) as follows. We set f(�

t

) = j�

2

j

if t 2

e

�

(m)

n

for any n 2 N and admissible m and extend this value to the triangle

ft 2 R

2

+

: 0 � �

t

� 1g; in

�

�

(m)

n

we de�ne this function by

f(�

t

) =

(

j�

2

j+ [�(�

(m)

n

)� j�

2

j]'(�

t

; �(n;m)

p

e; ��(n;m)); t 2

�

�

(m)

n

;

�(�

(m)

n

+ [j�

2

j ��(�

(m)

n

)]'(�

t

; ��(n;m); �(n;m)

p

e); t 2

=

�

(m)

n

:

On the closure of

�

�

(m)

n

we set F (�

t

) = �

(m)

n

if t 2

�

�

(m)

n

; n 2 N; m = 1; : : : ; 2

n

and if

�

t

= �(n;m)

p

e, and in the strip

e

�

(m)

n

without its left boundary �

t

= �(n;m) we set

F (�

t

) = F (�(n;m)) + [F (�(n;m)

p

e)� F (�(n;m))]�

�'(�

t

; �(n;m); �(n;m)

p

e); �(n;m) < �

t

< �(n;m)

p

e:
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On the remaining triangle ft 2 R

2

+

: 0 � �

t

< 1g, we continue the function F (�

t

) as

the constant. This function is also bounded and in�nitely di�erentiable, moreover, it has

bounded derivatives @F (�

t

)=@t

i

, i = 1;2:

Let us introduce the function E(t) = e

�t

1

+ e

�t

2

; t 2 R

2

+

; and the two-dimensional

vector-function

x(t; c) = (C

1

[E(t)]

f(�

t

)

; [C

1

F (�

t

) + C

2

][E(t)]

j�

2

j

); t 2 R

2

+

; (3)

depending on an arbitrary constant vector c 2 R

2

and being the general solution of the

following two-dimensional linear system in partial derivatives

@x

@t

i

= A

i

(t)x; x 2 R

2

; t = (t

1

; t

2

) � 0; i = 1; 2; (4)

with bounded and in�nitely di�erentiable matrices

A

i

(t) =

0

@

@f(�

t

)

@t

i

lnE(t) + f(�

t

)

@E(t)=@t

i

E(t)

0

@F (�

t

)

@t

i

[E(t)]

j�

2

j�f(�

t

)

j�

2

j

@E(t)=@t

i

E(t)

1

A

; t 2 R

2

+

; i = 1;2:

Since the functions f(�

t

) and F (�

t

) are expressed linearly by means of '(�

t

; �(1); �(2));

the in�nite di�erentiability of the introduced matrices follows from the similar property

of '(�

t

; �(1); �(2)) and E(t);where E(t) is positive for all t 2R

2

+

: The boundedness of the

matrices A

1

(t) and A

2

(t) follows from their de�nition. From the in�nite di�erentiability

of the vector-function x(t; c); which is the general solution (3) of (4), it follows that the

condition (2) is ful�lled with A(t) = A

1

(t) and B(t) = A

2

(t): Hence the system (4) is

completely integrable.

The main step for construction of the lower characteristic set �(A

1

; A

2

) is the proof of

the following fact: the lower characteristic set of the solution x(t; a) with an initial vector

0 6= a = (c

1

;��c

1

); 0 < � 2 P

0

; is the intercept of the straight line p

1

+ p

2

= ��

1

(�)

on R

2

, de�ned by p

i

� 0; i = 1; 2:

To construct the desired system in the case n > 2, it is su�cient to complement the

system (4) with the general solution (3) by the diagonal system

@y

@t

i

= j�

1

jE

�1

(t)

@E(t)

@t

i

y; y 2 R

n�2

; t 2 R

2

+

; i = 1;2;

with bounded and in�nitely di�erentiable matrices A

2+i

(t) = j�

1

jE

�1

(t)� c@E(t)=@t

i

;

i = 1; 2: Then the required system is the block-diagonal system (1) with the matrices

A(t) = diag [A

1

(t);A

3

(t)] and B(t) = diag [A

2

(t); A

4

(t)]:
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