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In the present paper, su�cient conditions for the oscillation of all proper solutions of

(1) are established. Analogous questions for deviating and general functional di�erential

equations were studied in a great deal of papers, for example, in [1,2], and for ordinary

di�erential equations, in [3,4,5].
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A proper solution of (1) is said to be oscillatory, if each of its components has a

sequence of zeroes tending to +1. Otherwise the solution is called nonoscillatory.

We say that the system (1) has the property A provided any of its solutions is oscil-

latory if n is even, and either is oscillatory or satis�es

jx

i

(t)j # 0; for t " +1 (i = 1; : : : ; n) (3)

if n is odd.

We say that the system (1) has the property B provided any of its solutions either is

oscillatory or satis�es (3) if n is even, and either is oscillatory or satis�es (3) or
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is ful�lled for odd n, then the system (1) has the property A.
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If, moreover, the condition (7) is ful�lled for odd n, then the system (1) has the

property A.
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If, moreover, the condition (7) is ful�lled for odd n, then the system (1) has the proper-
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If, moreover, the condition (7) is ful�lled, then the system (1) has the property A.
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Then the system (13) has the property A.
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if n is odd. Then the system (13) has the property B.
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if n is odd. Then the system (13) has the property B.
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