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1. INTRODUCTION AND THE MAIN RESULTS

The purpose of this paper is to show the existence of a unique generalized solution of
Bellman’s equation

S¢(t,z) + max %cr2 (t,z,a)Szz(t,2) + b(¢, z,a)S(t,x))| =0 (1)
a€EA

with the boundary condition

S(T,x) = g(z) (2)

under the following conditions on the coefficients b, ¢ and on the terminal reward func-
tion g:
A1) the functions b and ¢ are measurable and bounded, i.e., for some C' > 0

Ib(t,,0)| + o (1,0, 0)] < €
A2) there exists a constant A > 0 such that for all t € [0,7],z € R,a € A
02(25,1’,(1) > A

A3) the functions b and ¢ are continuous in a for each t € [0,T],z € R;

A4) the function g belongs to the Sobolev space wt,

It is well known that the problem (1), (2) is closely connected to a stochastic control
problem for a system whose dynamics is discribed by the stochastic differential equation

(SDE)
dXt:b(t,Xt,ut)dt-I—O'(t,Xt,ut)th, Xo =x9 € R. (3)

Here (Wy,t > 0) is a standard Wiener process defined on a complete probability space
(2, F,P) and the control v = (ut,¢ € [0,T]) is a feedback of the current state, i.e.,
us = u(t, X¢) for some given function u(¢,s) taking values in a decision set A which
is assumed to be a separable metric space. To each control u we associate one (fixed)
solution of SDE (1) (the conditions A1)-A3) imply the existence of a weak solution of
SDE (1) ([3])) and the notation P is used for the distributon of this solution starting
at Xy = x. The problem is to maximize the expected cost E*g(X7) by a suitable choice
of feedback controls.

The formal application of Bellman’s ”dynamic programming” idea leads to the Bell-
man equation (1), (2) whose solution, if it exists, is easily shown to be the value function

S(¢, ) :supEmeg(XT) (4)
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of the control problem (E}, is the expectation relative to the measure P* ). Moreover,
if S solves (1), (2), then the optimal control v* may be constructed by the pointwise
maximization of the Hamiltonian

H(t,o,a) = %02(15,95, 0)Sua(t, 3) + b(t, 2, a)Sa (£, ). (5)

Therefore the main problem consists in finding conditions under which the solution of
Bellman’s equation exists.

The novelty of this paper is that the question of existence of optimal controls is solved
without any regularity assumptions on the coefficients and the use is made of singular
integral equations.

Our method is as follows: for the problem (1), (2) we compose a system of nonlinear
singular integral equations, namely

blt) = / g = by =Dy +

R

T
+ / / o (= by = @) G, v, (), Pu, y))dydu, (6)
R

It x) = / Mpr@ —ty — 2)(9(y) — 9(e))dy +
R

T
+//Mpw—t,y—x)[G(u,y,wu,y),d?(u,y))—
R

-G, x,dz(u,w),l[/(t,x))]dydu, (7)
where p"(t,z) = (Qrtr)_% exp{—%} and

1
G(t,z,p,g9) = max 5(02(25,1’,(1) —r)p+b(t,z,a)g|. (8)

This system can be obtained from the equation
T
Se(t, @) + ESEE (t,z) + G(t,z, Sz(t,x), Szz (¢, ) = 0,

which is equivalent to (1), using the Feynmann-Kac representation

T
S(t,z) = //pr(s —t,y— x)G(s,y, Sz(5,y), Szz(s,y))dsdy +
R

t

+ / p" (T — s,y — x)g(y)dy (9)
R

and taking the first and second derivatives in . We show that there exists a constant
7 > 0 for which the operator on the right-hand side of (6), (7), as a mapping of (L2([0,T] x
R) x L*([0,T] x R))? onto itself, is a contraction for sufficiently small T and thus the
system (6), (7) has a unique solution in the class (L2([0,T] x R) x L2([0,T] x R))? for
every small time interval. Further, the solution of the system (6), (7) is used to construct
the solution of Bellman’s equation.
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Define the Sobolev space W12 as the completion of the space of infinitely differentiable
finite functions C§° in the norm

lellwre= sup  [f (&) |+ fellz(o,1ixm) + [1f2ll 20,71 % B) H foz |l 20, 7 x R) -
(t,z)€[0,T]xR

The class W' is defined as the completion of the space of differentiable functions in the
norm

(1 lwr = fllz2gry + 1 f2ll L2 m)-

The following statements are proved in Sections 3 and 4 of this paper. In particular,
it is shown that the problems (1), (2) and (6), (7) are equivalent.

Theorem 1. Let the conditions Al) and A4) be satisfied. Then

a) If V is a solution of Bellman’s equation (1), (2) from the class W12, then the
pair (Vo,Vez) of generalized derivatives will be a solution of the system (6) (7) for each
r > 0.

b) If for some r > O there ewists a pair (11/,1[/) from the class L2([0,T] x R) x
L2([0,T] x R) which solves the system (6), (7), then the function

Vit z) Z/g(y)pr(T—ty—l’)dy-l-

R
T
+ / / G(v, v, ¥(v, ), (v, 9))p" (v = t,y — )dydv (10)
t R

will be a solution of Bellman’s equation (1), (2).

Theorem 2. Let r* = max((C + 1)%,1/)\), where C and X are constants from
A1)-A2). Then for any r > r* there ewists a unique solution of the system (6), (7)
which belongs to the class (L2([0,T] x R) x L?([0,T] x R)).

As a corollary of Theorems 1 and 2, we obtain the existence of a generalized solution
of Bellman’s equation. Moreover, it is shown in Section 4 that this solution coincides
with the value function of the optimal control problem under consideration.

Theorem 3. The value function (4) uniquely solves the Bellman equation (1), (2) in
the class WH2, If the decision set A is a compact subset of a metric space, then there
exists an optimal control in the class of markovian strategies. The optimal control u™* 1is
constructed from the mawimizing of the Hamiltonian (5)

H(t,z,u*(t,z)) = max H(t,z,a)
a€EA

for each (¢t,z) € [0,T] X R.

The dynamic programming method of proving the existence of an optimal control in
the case of diffusion processes for the first time was applied in [6] (Rishel) and [2] (Davis,
Varaiya). Theorem 3 was proved in [3] (Krylov) under the Lipschitz condition on the
coefficients b and o.
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2. ESTIMATES OF THE NORMS OF SINGULAR INTEGRAL OPERATORS

Let us consider in L2([0,T] x R) the operators

T
w(t,x):// y— o p (s =ty — z)o(s,y)dsdy, (11)
R

T
dit,z) = / / %Ms—w—xn@(s,y)—@(m)]dsdy (12)

and the operators from L?(R) to L?([0,T] x R)

/ r(yT_ - P (T —t,y — z)o(y)dy, (13)
R
Pt,2) = / %f@—w—xwy) SNy (1)

R
We make the convention p” (¢,#) = 0 for all t < 0. Using the function K (¢,z) = p"(—t,x)

defined on (=7, T) X R, one can rewrite the integral ftT fR p(s —t,z — y)p(s,y)dsdy as
a convolution

T T
(K *xo)(t,2) = / /I((t —s,¢ —y)e(s,y)dsdy = / /I((s,y)ap(t — 5,4 — y)dsdy.

—-T R —-T R

Similarly, introducing the L2[0,T]-valued function M(z) = p(T — -,z) the integral
fR o(T — t,y — z)p(y)dy can be written as (M * ¢)(t,z).

Proposition 1. If ¢ € C°((=T,T) X R), then the integrals (11) and (12) coincide
with
I 92
%UX * ) (¢, ), 57 — (K *p)(t, )
and for ¢ € C§°(R) the integrals from (13) and (14) are equal to

82

—2(M* (p)(nl’)v

i(M* )¢, x), e

dx

respectively.

Proof. The case of the first derivatives immediately follows from the integrability of

on(s,y) = %pr(s,y). The second derivative pf . (s,y) = y;_sgs p"(s,y) s not integrable

2
and the equality 88?(]( * 0)(t,z) = (Kgz * ¢)(¢t, ) is true if K5 is understood as a
generalized function. The standard calculation gives (see, €.g., [4])

T
(I\/ymmyw) Z//pm(&y)(llf(&y)—¢(070))d5dy
0 R

and consequently,

T
(I\mm *'LZ/ //Pmm s—ty— l’)(d}( 7y) w(t x))dey'
R

t
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Similarly one can show that

2 (M= o)1) = (Mas = )(00) = / pun (T = Ly — 2) ($(y) — (x))dy.
R

dx?

Corollary 1. The operators (11)-(14) are convolutions
(I\/r.r * 111)(1571’)7 (I(.r.r * 11/)(1571’)7 (Mm * 111)(1571’)7 (M.r.r * 11/)(1571’)7

respectively, where Ky, Kyz, My, Myy are understood as generalized functions.
The following statement is well-known (see, e.g.,[5]).

Proposition 2. The mapping

T
/1= z—x;ﬁ//f(fvx)e—”%—ipxdtdx

—-T R

from L2([=T,T] x R) to L?(Z x R,dndz) is the unitary operator with the inverse

1t

nr 1 ;
T — n,p)eFrdp.
m/f( p)e'"*dp
R

fﬁfvzv%zn:e

Moreover, f ;g = 2\/7TTf~§.

Now, using this proposition, we will represent the operators from (11)-(14) as multi-
plicative operators.

TRp?
T (=1)"” T2 -1

2VrT iy LED2

2

Lemma 1. K(n,p) =

Proof. By the definition of K, we have

0
. 1 e e—a” [2r]t|
K(n,p) = —— / /e_mf T dadt,
27T \/ 27|t

—-T R
and it remains to use the formula (6_$2/2‘1)/\ = \/Ee—ap2 /25, p.139]. W

Lemma 2. The operators (11) and (12) are bounded. The norm of (2.1) is equal to
% and the norm of (2.1) is estimated from above by \/¥~

Proof. By Proposition 2, the norms of the operators (11) and (12) are equal to
2V7T||Kz||oo and 2V 7T || Kzz||oo, respectively. Let us calculate 2v/77||Kz4|| 0. From
Lemma 1 and by the properties of the Fourier transform we have
2 T (—1)ne=Trp?/2 1

/7T inm—Trp2/2

Igy.r.r (nvp) = -

Therefore
R —_1)" —Trp2/2 1
VAT || K ae| oo = sup |Tp2w—2| -
o inw — Trp? /2

(-1)"e"9 -1 = 2 sup g (-1)"e=9—1

2
g—
T g>0,nezZ mT —q T g>0m€ez 4 /n2r? 4 g2
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Since
‘ (—1)"e=? -1 1—e79, ifn =2k
9= q - e
/n2x2 42 \/W(l-l—e 9y, ifn=2k+1,
we have
. 2 q _ _ 2
VT || Kzz||oo = —sup{(i(l—l—e q))\/(l—e q)}:—.
T g /72 4 42 7

— alte”?)
T Vrtg?
Similarly one can obtain the estimation 2v/ 7TT||I§'$||OO </ % [ |

The last equality is true because 1 —e~? < 1,7(g) < landlimg_o r(g) = 1.

Corollary 2. The mapping ¢ — (Kg x4, Kep * 1) is a bounded operator and his
norm 1s estimated from above by %(2 +V2rT).

Lemma 3. The mappings

L*(R) €4 — /¢(y)p(T -y —-)dy € L*([0,T] x R) (15)
R

and (13) are bounded operators. The operator (14) is bounded as a mapping from W1(R)
to L2([0,1] x R).

Proof. Denote by p* the Fourier-image of p with respect to the yariable z, l.e., ﬁf(t,p) =

\/% X fR p(t,z)e”*P*dg. The operator (15) is equivalent to ¢ — p%(T — -, )1, where
2 .. ~ . ~ ~ ~

2% (t,p) = eacp(—%|t|). By the equalities 5% (t,p) = —ipp¥(t,p), 4%, (t,p) = —p2p%(t,p),

the norms of the operators(15), (13), (14) are equal to

I = sup[|p(op)llp2po,myy 2 = sup |6z (o P)llzzp,ry 1o = sup 16z (5 P)| 20,7y
P P P

respectively. Calculating this expression, we obtain I; = VT, L, =1, I = co. Since
g € WH(R), we have fp2|g(p)|2dp < oo and

/llﬁim(wp)lle[o,T] la(p)[Pdp = / (1 = 7" T)|3(p) Pdp < /p2|§(p)|2dp < oo
R R R

Consequently, the function z — fR pza(T =+, y—1x)g(y)dy belongs to L2(R,L?[0,T]). W

3. THE EQUIVALENCE OF SOLVABILITY OF THE BELLMAN EQUATION AND THE SYSTEM OF
INTEGRAL EQUATIONS

In this section we show that the solvability of the problems (1), (2) and (6), (7) are
equivalent.
Proof of Theorem 1. Suppose, that there exists a solution of the Bellman equation (1),
(2) which belongs to the class W12, Let r be a strictly positive constant (the meaning of
which will be seen later). Applying the generalized It6 formula ([3], [1]) for the process
&= (\/TWs,t € [0,T]) and using the equality (1), we obtain

S(tvgt):/sm(syfs)\/;dws_/G(SyfaS.r(syfs)ys.r.r(syfs))d'sy (16)

where G(s,z,p,q) is defined by (9).
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Since the coefficients b, o are bounded and Sz, Sz» € L?([0,T] x R), we have

t t
E‘ / G(5,€s,82(5,€5), Saa(s,&s))ds| < Const/ /(|S$(s,x)| + |Sez (s, z)|)p" (s, @)ds <
0 0 R

< const |p"(| z2¢10, 71 x rRY 1S= 1220, 71 x B) + [|1S22(l22([0, 7] x R)) < 0 (17)
Since S(¢,€t) is bounded, the relations (16), (17) imply that the stochastic integral
fot Sz (s, Ss)\/rdWs is a uniformly integrable martingale and from (16) we obtain

t

E(S(t,&) — S(s,€5)/Fs) = —E(/G(s,fs,Sm(s,fs),Sm(s,fs))ds/]-})

s

forany 0 <s<t<7T.
Therefore, it follows from the boundary condition (2) and Markov property of ¢
(taking the inequality (17) and the boundedness and continuity of S into account) that

T

S(tvgt) = E(g(fT) +/G(57fs,sm(S,fs),Smm(s,fs))ds/ft), (18)

t

and, hence, dt X dP-a. e. the function S satisfies the relation (9). The differentiation of
the equation (9) in z implies that the pair (Sz, Szz) of the first and second generalized
derivatives of the function S will satisfy the system (6), (7).

If the pair (1, 1[/) is a solution of the system (6), (7) such that 1, = L2([0,T] x R),
then it can be easily seen that the function V' defined by (10) will be a solution of the
equation (6), (7).

Since ¥, 79 € L2([0,T] x R), the function G also belongs to the same class and,
therefore, the function V(¢,#) defined by (10) will be a solution of the Cauchy problem
(see, e.g., [4])

a 1 52 _ -
gV(t,l’) + 57“8—2‘/(25,1’) = G(t,z,Y(t,x), ¥ (1, ), (19)

xr

with the boundary condition V(T,z) = g(z).
Since the pair (¢, 1) is a solution of the system (6), (7), taking the first and the second
order generalized derivatives (at ) in the equality (10), we obtain that dt X dz-a. e.

Velt,z) = Y(t, ), Vialt,z) = 1[}(25,1’). (20)
Therefore, (19) and (20) imply that
a 1 2?2
vt i
o Ot 35
which gives that the function V = (V(t,z), t € [0,T], # € R) satisfies the Bellman
equation (1), (2). W

Vt,z) = Gt @, Val(t, @), Vaz (t, @) (21)

4. THE SOLVABILITY OF THE BELLMAN EQUATION AND THE SYSTEM OF NONLINEAR
SINGULAR EQUATIONS

Now consider the nonlinear part of the singular operators (6), (7). The function
G(t,z,p,q) defines the nonlinear operator

¥, J’) - G(wv J’) = {G(t,, w(tvl’)vlz(tvl’))}(t,m)e[O,T] xR
from L2([0,T] x R)? into L2([0,T] x R).
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Lemma 4. For ecach r > r* = max((C + 1)2, %), the function G and the operator G
satisfy the Lipschitz condition with the constant %(7’ - %)

Proof. It is sufficient to show that G is Lipschitzian. First note that for r > 7* 7* =
max((C +1)?, %), the inequalities |02 —r| < 7 — % and [b] < L(r— %) are true. Therefore,
using the inequality | sup, ¢ 4 f1(a) —sup,e 4 f2(a)| < sup,e 4 |f1(a)— f2(a)| which is valid
for any f1,f2 : A — R, we have

1
|G(t,z,p1,91) — G(t,%,p2,92)| < sup |5(cr(t79070t)2 — 7)) —92) +
a€EA

1
(r— ;)(|q1 —q|+|p1 —p2f). W

[N

+b(t, @, a)(p1 — p2)| <

Proposition 3. The mapping from L2([0,T] x R)? to L?([0,T] x R)? defined by

T
(0, @) — (//pg(s —t,y—x)G(s,y,0(s,y), #(s,v))dsdy, (22)
t R

T
/ / phals = t,y — 2)[Gs, v, (5, 9), B(5, ) — G(t,, W,x),@(t,x))]dsdy) 4
R

t

+(/pZ(T—tvy—x)g(y)dyv/pim(T—ny—x)(g(y)—g(x))dy)
R R

15 @ contraction if T < T%

Proof. By Lemma 4 and Corollary of Lemma 2, the Lipschitz constant of the mapping
(22) is equal to %(7’ — %)(%(2 +V2Tr))=1-— :—2 + %(1 — :—2)\/2T7°.
HET< Z thenl- L 4+101-502Tr<1i-L+(0-5)L=1-%<1 =

Proof of Theorems 2 and 3. Let 0 < tg < .-+ < tp < T be a partition of the time
interval [0,7] such that t;41 — t; < 2

Proposition 3, the operator (22) is contractive as a mapping from L?([t,—1,tn] X R)? to
L2?([tn—1,tn] x R)? and there exists a pair (¢, 1[}") € L?([tn—1,tn] x R)? which uniquely
solves the system (6), (7). Therefore Theorem 1 implies that the function

= . Consider the interval Jt,—1 — tn]. According to

T
S™ (¢, ) :/g(y)pr(T —t,y — ac)dy—l—// G(v,y,dz"(v,y),lz/"(v,y))pr(v -ty — z)dydv
R t R

is a solution of the problem (1), (2) on the set |tp—1,tn] X R with S™(¢t,_1,2) € W1.
Let us consider now the system (6), (7) on the interval ]¢,,_2,t5—1] with the func-
tion g(x) replaced by S™(tn—_1,#). Since S™(tp—1,2) € W1, there exsists a solution
(¢"_1,1L"_1) € L?([tn—2,tn—1] X R)? of the system (6), (7) and again by (10) one
can construct the solution S?~! of the Bellman equation (1), (2) on the time interval
Jtn—2,tn—1], etc. Evidently, Si(ti_l,x) =51 (ti—1,x) for each 1 <7 < n and it is easy
to see that the function

S(tyz) = Z Si(tvl’)l]tz_lytz]
=1

is a solution of (1), (2).
Now Theorem 1 implies that the pair (Sz, Szz ) satisfies the system (6), (7).
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Let V be a solution of Bellman's equation (1) (2) from the class W12, Let us show
that it coincides with the value function of the considered optimal control problem.

Applying the generalized It6 formula ([3],[1]) for the function V and the controlled
process X “, we have

t t
Vi, XP)=V(0,X0) + / Val(s, X2)o(s, X2, us)dWs + /(L“V)(S,X;‘)ds7 (23)
0 0

where
1
(L) (¢, X)) = felt, X2) + b(t, X ue) fo (8, XY + 502(t,XZ‘,ut)fm(t,XZ‘).

Since the process V (¢, X[*) is bounded and E fOT [(L*V')(s, X%*)|ds < oo, the stochastic
integral in the right-hand side of (23) is a uniformly integrable martingale. On the other
hand, we have from (1) that L*V (s, X*) < 0, and taking expectations in (23) we obtain
from the boundary condition (2) that

VI, Xy) > BX(V(T,X7)/Fe) = E*(g(X 1)/ Fo).
Therefore
Vit,z) > supEmeg(X%) = 5(t,z). (24)

Let us prove the inverse inequality. Since the function H defined by (5) is continuous
in a for each (¢,#) and the decision set A is compact by Filippov’s lemma, a measureble
function v* = (u(¢, z),t € [0,T],z € R) exists such that

H(t,z,u*(t,z)) = max H(¢,z,a).
a€EA

Therefore (L*V)(s, X;‘*) = 0, and using again the Ité formula, we obtain
V(t,a) = BuoV(T,XE ) = Biag(XE),
hence V(¢t,z) = S(t,z). W
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