
Mem. Di�erential Equations Math. Phys. 13(1997), 121{129

M. Mania and R. Tevzadze

SOLUTION OF BELLMAN'S EQUATION BY MEANS OF A SYSTEM

OF NONLINEAR SINGULAR INTEGRAL EQUATIONS

(Reported on September 22, 29, 1997)

1. Introduction and the Main Results

The purpose of this paper is to show the existence of a unique generalized solution of

Bellman's equation

S

t

(t; x) + max

a2A

h

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x))

i

= 0 (1)

with the boundary condition

S(T;x) = g(x) (2)

under the following conditions on the coe�cients b; � and on the terminal reward func-

tion g:

A1) the functions b and � are measurable and bounded, i.e., for some C > 0

jb(t; x; a)j+ j�(t; x; a)j � C;

A2) there exists a constant � > 0 such that for all t 2 [0; T ];x 2 R; a 2 A

�

2

(t; x; a) > �;

A3) the functions b and � are continuous in a for each t 2 [0; T ]; x 2 R;

A4) the function g belongs to the Sobolev space W

1

:

It is well known that the problem (1), (2) is closely connected to a stochastic control

problem for a system whose dynamics is discribed by the stochastic di�erential equation

(SDE)

dX

t

= b(t;X

t

; u

t

)dt+ �(t;X

t

; u

t

)dW

t

; X

0

= x

0

2 R: (3)

Here (W

t

; t � 0) is a standard Wiener process de�ned on a complete probability space

(
;F; P ) and the control u = (u

t

; t 2 [0; T ]) is a feedback of the current state, i.e.,

u

t

= u(t;X

t

) for some given function u(t; x) taking values in a decision set A which

is assumed to be a separable metric space. To each control u we associate one (�xed)

solution of SDE (1) (the conditions A1)-A3) imply the existence of a weak solution of

SDE (1) ([3])) and the notation P

u

t;x

is used for the distributon of this solution starting

at X

t

= x. The problem is to maximize the expected cost E

u

g(X

T

) by a suitable choice

of feedback controls.

The formal application of Bellman's "dynamic programming" idea leads to the Bell-

man equation (1), (2) whose solution, if it exists, is easily shown to be the value function

S(t; x) = sup

u

E

u

t;x

g(X

T

) (4)
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of the control problem (E

u

t;x

is the expectation relative to the measure P

u

t;x

). Moreover,

if S solves (1), (2), then the optimal control u

�

may be constructed by the pointwise

maximization of the Hamiltonian

H(t; x; a) =

1

2

�

2

(t; x; a)S

xx

(t; x) + b(t; x; a)S

x

(t; x): (5)

Therefore the main problem consists in �nding conditions under which the solution of

Bellman's equation exists.

The novelty of this paper is that the question of existence of optimal controls is solved

without any regularity assumptions on the coe�cients and the use is made of singular

integral equations.

Our method is as follows: for the problem (1), (2) we compose a system of nonlinear

singular integral equations, namely

 (t; x) =

Z

R

y � x

r(T � t)

�

r

(T � t; y � x)g(y)dy +

+

T

Z

t

Z

R

y � x

r(u� t)

�

r

(u� t; y � x)G(u; y;  (u; y);

^

 (u; y))dydu; (6)

~

 (t; x) =

Z

R

(y � x)

2

� r(T � t)

r

2

(T � t)

2

�

r

(T � t; y � x)(g(y)� g(x))dy +

+

T

Z

t

Z

R

(y � x)

2

� r(u� t)

r

2

(u� t)

2

�

r

(u� t; y � x)[G(u; y;  (u; y);

~

 (u; y))�

�G(u; x; (u; x);

~

 (t; x))]dydu; (7)

where �

r

(t; x) = (2�tr)

�

1

2

expf�

x

2

2rt

g and

G(t; x; p; q) = max

a

h

1

2

(�

2

(t; x; a)� r)p+ b(t; x; a)q

i

: (8)

This system can be obtained from the equation

S

t

(t; x) +

r

2

S

xx

(t; x) + G(t; x; S

x

(t; x); S

xx

(t; x)) = 0;

which is equivalent to (1), using the Feynmann-Kac representation

S(t; x) =

T

Z

t

Z

R

�

r

(s� t; y � x)G(s; y; S

x

(s; y); S

xx

(s; y))dsdy +

+

Z

R

�

r

(T � s; y � x)g(y)dy (9)

and taking the �rst and second derivatives in x. We show that there exists a constant

r > 0 for which the operator on the right-handside of (6), (7), as a mapping of (L

2

([0;T ]�

R) � L

2

([0; T ]� R))

2

onto itself, is a contraction for su�ciently small T and thus the

system (6), (7) has a unique solution in the class (L

2

([0; T ]� R) � L

2

([0; T ]� R))

2

for

every small time interval. Further, the solution of the system (6), (7) is used to construct

the solution of Bellman's equation.
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De�ne the Sobolev spaceW

1;2

as the completionof the space of in�nitelydi�erentiable

�nite functions C

1

0

in the norm

kuk

W

1;2

= sup

(t;x)2[0;T ]�R

jf(t;x)j+kf

t

k

L

2

([0;T ]�R)

+ kf

x

k

L

2

([0;T ]�R)

+kf

xx

k

L

2

([0;T ]�R)

:

The class W

1

is de�ned as the completion of the space of di�erentiable functions in the

norm

kfk

W

1

= kfk

L

2

(R)

+ kf

x

k

L

2

(R)

:

The following statements are proved in Sections 3 and 4 of this paper. In particular,

it is shown that the problems (1), (2) and (6), (7) are equivalent.

Theorem 1. Let the conditions A1) and A4) be satis�ed. Then

a) If V is a solution of Bellman's equation (1), (2) from the class W

1;2

, then the

pair (V

x

; V

xx

) of generalized derivatives will be a solution of the system (6) (7) for each

r > 0.

b) If for some r > 0 there exists a pair ( ;

~

 ) from the class L

2

([0; T ] � R) �

L

2

([0; T ]� R) which solves the system (6), (7), then the function

V (t; x) =

Z

R

g(y)�

r

(T � t; y � x)dy +

+

T

Z

t

Z

R

G(v; y;  (v; y);

~

 (v; y))�

r

(v � t; y � x)dydv (10)

will be a solution of Bellman's equation (1), (2).

Theorem 2. Let r

�

= max((C + 1)

2

;1=�), where C and � are constants from

A1)-A2). Then for any r > r

�

there exists a unique solution of the system (6), (7)

which belongs to the class (L

2

([0; T ]�R)� L

2

([0; T ]�R)).

As a corollary of Theorems 1 and 2, we obtain the existence of a generalized solution

of Bellman's equation. Moreover, it is shown in Section 4 that this solution coincides

with the value function of the optimal control problem under consideration.

Theorem 3. The value function (4) uniquely solves the Bellman equation (1), (2) in

the class W

1;2

. If the decision set A is a compact subset of a metric space, then there

exists an optimal control in the class of markovian strategies. The optimal control u

�

is

constructed from the maximizing of the Hamiltonian (5)

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a)

for each (t; x) 2 [0; T ]�R.

The dynamic programming method of proving the existence of an optimal control in

the case of di�usion processes for the �rst time was applied in [6] (Rishel) and [2] (Davis,

Varaiya). Theorem 3 was proved in [3] (Krylov) under the Lipschitz condition on the

coe�cients b and �.
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2. Estimates of the Norms of Singular Integral Operators

Let us consider in L

2

([0; T ]�R) the operators

 (t; x) =

T

Z

t

Z

R

y � x

r(s� t)

�

r

(s� t; y � x)'(s; y)dsdy; (11)

~

 (t; x) =

T

Z

t

Z

R

y � x

2

� r(s� t)

r

2

(s� t)

2

�

r

(s� t; y � x)[ ~'(s; y)� ~'(t; x)]dsdy (12)

and the operators from L

2

(R) to L

2

([0; T ]� R)

 (t; x) =

Z

R

y � x

r(T � t)

�

r

(T � t; y � x)'(y)dy; (13)

~

 (t; x) =

Z

R

(y � x)

2

� r(T � t)

r

2

(T � t)

2

�

r

(T � t; y � x)[ ~'(y)� ~'(x)]dy: (14)

We make the convention �

r

(t; x) = 0 for all t < 0. Using the functionK(t; x) = �

r

(�t; x)

de�ned on (�T; T )�R, one can rewrite the integral

R

T

t

R

R

�(s� t; x� y)'(s; y)dsdy as

a convolution

(K � ')(t; x) =

T

Z

�T

Z

R

K(t� s; x� y)'(s; y)dsdy =

T

Z

�T

Z

R

K(s; y)'(t� s; x� y)dsdy:

Similarly, introducing the L

2

[0; T ]-valued function M(x) = �(T � �; x) the integral

R

R

�(T � t; y � x)'(y)dy can be written as (M � ')(t; x).

Proposition 1. If ' 2 C

1

0

((�T;T )� R), then the integrals (11) and (12) coincide

with

@

@x

(K � ')(t; x);

@

2

@x

2

(K � ')(t; x)

and for ' 2 C

1

0

(R) the integrals from (13) and (14) are equal to

@

@x

(M � ')(t; x);

@

2

@x

2

(M � ')(t; x);

respectively.

Proof. The case of the �rst derivatives immediately follows from the integrability of

�

r

x

(s; y) =

y

rs

�

r

(s; y). The second derivative �

r

xx

(s; y) =

y

2

�rs

r

2

s

2

�

r

(s; y) is not integrable

and the equality

@

2

@x

2

(K � ')(t; x) = (K

xx

� ')(t; x) is true if K

xx

is understood as a

generalized function. The standard calculation gives (see, e.g., [4])

(K

xx

;  ) =

T

Z

0

Z

R

�

xx

(s; y)( (s; y)�  (0;0))dsdy

and consequently,

(K

xx

�  )(t; x) =

T

Z

t

Z

R

�

xx

(s� t; y � x)( (s; y)�  (t; x))dsdy:
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Similarly one can show that

@

2

@x

2

(M � ')(t;x) = (M

xx

� ')(t; x) =

Z

R

�

xx

(T � t; y � x)( (y)�  (x))dy: �

Corollary 1. The operators (11)-(14) are convolutions

(K

x

�  )(t; x); (K

xx

�  )(t; x); (M

x

�  )(t; x); (M

xx

�  )(t; x);

respectively, where K

x

;K

xx

;M

x

;M

xx

are understood as generalized functions.

The following statement is well-known (see, e.g.,[5]).

Proposition 2. The mapping

f !

^

f =

1

2

p

�T

T

Z

�T

Z

R

f(t;x)e

�

itn�

T

�ipx

dtdx

from L

2

([�T;T ]�R) to L

2

(Z �R; dndx) is the unitary operator with the inverse

f ! f

_

=

1

p

2T

1

X

n

e

itn�

T

1

p

2�

Z

R

f(n;p)e

ipx

dp:

Moreover,

^

f � g = 2

p

�T

^

f � ĝ:

Now, using this proposition, we will represent the operators from (11)-(14) as multi-

plicative operators.

Lemma 1.

^

K(n; p) =

T

2

p

�T

(�1)

n

e

�

TRp

2

2

�1

in��

TRp

2

2

.

Proof. By the de�nition of K, we have

^

K(n; p) =

1

2

p

�T

0

Z

�T

Z

R

e

�in

�

T

t�ipx

e

�x

2

=2rjtj

p

2�rjtj

dxdt;

and it remains to use the formula (e

�x

2

=2�

)

^

=

p

�e

��p

2

=2

[5, p.139]. �

Lemma 2. The operators (11) and (12) are bounded. The norm of (2:1) is equal to

2

r

and the norm of (2:1) is estimated from above by

p

2T

r

.

Proof. By Proposition 2, the norms of the operators (11) and (12) are equal to

2

p

�Tk

^

K

x

k

1

and 2

p

�Tk

^

K

xx

k

1

, respectively. Let us calculate 2

p

�Tk

^

K

xx

k

1

. From

Lemma 1 and by the properties of the Fourier transform we have

^

K

xx

(n;p) = �p

2

T

2

p

�T

(�1)

n

e

�Trp

2

=2

� 1

in� � Trp

2

=2

:

Therefore

2

p

�Tk

^

K

xx

k

1

= sup

p;n

jTp

2

(�1)

n

e

�Trp

2

=2

� 1

in� � Trp

2

=2

j =

2

r

sup

q>0;n2Z

jq

(�1)

n

e

�q

� 1

in� � q

j =

2

r

sup

q>0;n2Z

jq

(�1)

n

e

�q

� 1

p

n

2

�

2

+ q

2

j:
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Since

�

�

�

q

(�1)

n

e

�q

� 1

p

n

2

�

2

+ q

2

�

�

�

�

(

1� e

�q

; if n = 2k

q

p

�

2

+q

2

(1 + e

�q

); if n = 2k+ 1;

we have

2

p

�Tk

^

K

xx

k

1

=

2

r

sup

q

n�

q

p

�

2

+ q

2

(1 + e

�q

)

�

_ (1� e

�q

)

o

=

2

r

:

The last equality is true because 1� e

�q

< 1; r(q) �

q(1+e

�q

)

p

�

2

+q

2

< 1 and lim

q!1

r(q) = 1:

Similarly one can obtain the estimation 2

p

�Tk

^

K

x

k

1

�

p

2T

r

: �

Corollary 2. The mapping  ! (K

x

�  ;K

xx

�  ) is a bounded operator and his

norm is estimated from above by

1

r

(2 +

p

2rT).

Lemma 3. The mappings

L

2

(R) 2  !

Z

R

 (y)�(T � �; y � �)dy 2 L

2

([0; T ]�R) (15)

and (13) are bounded operators. The operator (14) is bounded as a mapping from W

1

(R)

to L

2

([0;1]�R):

Proof. Denote by �̂

x

the Fourier-image of � with respect to the variable x, i.e., �̂

x

(t; p) =

1

p

2�

�

R

R

�(t; x)e

�ipx

dx: The operator (15) is equivalent to

^

 ! �̂

x

(T � �; �)

^

 ; where

�̂

x

(t; p) = exp(�

p

2

2

jtj). By the equalities �̂

x

x

(t; p) = �ip�̂

x

(t; p), �̂

x

xx

(t; p) = �p

2

�̂

x

(t; p),

the norms of the operators(15), (13), (14) are equal to

I

1

= sup

p

k�̂

x

(�; p)k

L

2

[0;T ]

; I

2

= sup

p

k�̂

x

x

(�; p)k

L

2

[0;T ]

; I

3

= sup

p

k�̂

x

xx

(�; p)k

L

2

[0;T ]

;

respectively. Calculating this expression, we obtain I

1

=

p

T , I

2

= 1, I

3

= 1. Since

g 2W

1

(R), we have

R

p

2

jg(p)j

2

dp <1 and

Z

R

k�̂

x

xx

(�; p)k

L

2

[0;T ]

jĝ(p)j

2

dp =

Z

R

jp

2

(1� e

�p

2

T

)jĝ(p)j

2

dp �

Z

R

p

2

jĝ(p)j

2

dp <1:

Consequently, the functionx!

R

R

�

xx

(T��; y�x)g(y)dy belongs to L

2

(R;L

2

[0; T ]): �

3. The Equivalence of Solvability of the Bellman Equation and the System of

Integral Equations

In this section we show that the solvability of the problems (1), (2) and (6), (7) are

equivalent.

Proof of Theorem 1. Suppose, that there exists a solution of the Bellman equation (1),

(2) which belongs to the classW

1;2

. Let r be a strictly positive constant (the meaning of

which will be seen later). Applying the generalized Itô formula ([3], [1]) for the process

� = (

p

rW

t

; t 2 [0; T ]) and using the equality (1), we obtain

S(t; �

t

) =

t

Z

0

S

x

(s; �

s

)

p

rdW

s

�

t

Z

0

G(s; �

s

; S

x

(s; �

s

); S

xx

(s; �

s

))ds; (16)

where G(s; x; p; q) is de�ned by (9).
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Since the coe�cients b; � are bounded and S

x

; S

xx

2 L

2

([0; T ]�R), we have

E

�

�

�

t

Z

0

G(s; �

s

; S

x

(s; �

s

); S

xx

(s; �

s

))ds

�

�

�

� const

t

Z

0

Z

R

(jS

x

(s; x)j+ jS

xx

(s; x)j)�

r

(s; x)ds �

� constk�

r

k

L

2

([0;T ]�R)

(kS

x

k

L

2

([0;T ]�R)

+ kS

xx

k

L

2

([0;T ]�R)

) <1: (17)

Since S(t; �

t

) is bounded, the relations (16), (17) imply that the stochastic integral

R

t

0

S

x

(s; S

s

)

p

rdW

s

is a uniformly integrable martingale and from (16) we obtain

E(S(t; �

t

)� S(s; �

s

)=F

s

) = �E

�

t

Z

s

G(s; �

s

; S

x

(s; �

s

); S

xx

(s; �

s

))ds=F

s

�

for any 0 � s � t � T .

Therefore, it follows from the boundary condition (2) and Markov property of �

t

(taking the inequality (17) and the boundedness and continuity of S into account) that

S(t; �

t

) = E(g(�

T

) +

T

Z

t

G(s; �

s

; S

x

(s; �

s

); S

xx

(s; �

s

))ds=�

t

); (18)

and, hence, dt� dP -a. e. the function S satis�es the relation (9). The di�erentiation of

the equation (9) in x implies that the pair (S

x

; S

xx

) of the �rst and second generalized

derivatives of the function S will satisfy the system (6), (7).

If the pair ( ;

~

 ) is a solution of the system (6), (7) such that  ;

~

 2 L

2

([0; T ]� R),

then it can be easily seen that the function V de�ned by (10) will be a solution of the

equation (6), (7).

Since  ;

~

 2 L

2

([0; T ] � R), the function G also belongs to the same class and,

therefore, the function V (t; x) de�ned by (10) will be a solution of the Cauchy problem

(see, e.g., [4])

@

@t

V (t; x) +

1

2

r

@

2

@x

2

V (t; x) = G(t; x;  (t; x);

~

 (t; x)); (19)

with the boundary condition V (T;x) = g(x):

Since the pair ( ;

~

 ) is a solution of the system (6), (7), taking the �rst and the second

order generalized derivatives (at x) in the equality (10), we obtain that dt� dx-a. e.

V

x

(t; x) =  (t; x); V

xx

(t; x) =

~

 (t; x): (20)

Therefore, (19) and (20) imply that

@

@t

V (t; x) +

1

2

r

@

2

@x

2

V (t; x) = G(t; x;V

x

(t; x); V

xx

(t; x)) (21)

which gives that the function V = (V (t; x); t 2 [0; T ]; x 2 R) satis�es the Bellman

equation (1), (2). �

4. The Solvability of the Bellman Equation and the System of Nonlinear

Singular Equations

Now consider the nonlinear part of the singular operators (6), (7). The function

G(t; x; p; q) de�nes the nonlinear operator

( ;

~

 )!

~

G( ;

~

 ) � fG(t; x;  (t; x);

~

 (t; x))g

(t;x)2[0;T ]�R

from L

2

([0; T ]� R)

2

into L

2

([0; T ]�R):
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Lemma 4. For each r > r

�

= max((C + 1)

2

;

1

�

), the function G and the operator

~

G

satisfy the Lipschitz condition with the constant

1

2

(r�

1

r

).

Proof. It is su�cient to show that G is Lipschitzian. First note that for r > r

�

; r

�

=

max((C+1)

2

;

1

�

), the inequalities j�

2

�rj < r�

1

r

and jbj <

1

2

(r�

1

r

) are true. Therefore,

using the inequality j sup

a2A

f

1

(a)�sup

a2A

f

2

(a)j � sup

a2A

jf

1

(a)�f

2

(a)j which is valid

for any f

1

; f

2

: A! R, we have

jG(t; x; p

1

; q

1

)�G(t; x; p

2

; q

2

)j � sup

a2A

j

1

2

(�(t; x; a)

2

� r))(q

1

� q

2

) +

+b(t; x; a)(p

1

� p

2

)j �

1

2

(r�

1

r

)(jq

1

� q

2

j+ jp

1

� p

2

j): �

Proposition 3. The mapping from L

2

([0; T ]�R)

2

to L

2

([0; T ]�R)

2

de�ned by

('; ~')!

�

T

Z

t

Z

R

�

r

x

(s� t; y � x)G(s; y; '(s; y); ~'(s; y))dsdy; (22)

T

Z

t

Z

R

�

r

xx

(s� t; y � x)[G(s; y; '(s; y); ~'(s; y))� G(t; x; '(t; x); ~'(t; x))]dsdy

�

+

+

�

Z

R

�

r

x

(T � t; y � x)g(y)dy;

Z

R

�

r

xx

(T � t; y � x)(g(y)� g(x))dy

�

is a contraction if T <

2

r

5

.

Proof. By Lemma 4 and Corollary of Lemma 2, the Lipschitz constant of the mapping

(22) is equal to

1

2

(r �

1

r

)(

1

r

(2 +

p

2Tr)) = 1�

1

r

2

+

1

2

(1�

1

r

2

)

p

2Tr:

If T <

2

r

5

, then 1�

1

r

2

+

1

2

(1�

1

r

2

)

p

2Tr < 1�

1

r

2

+ (1�

1

r

2

)

1

r

2

= 1�

1

r

4

< 1: �

Proof of Theorems 2 and 3. Let 0 � t

0

< � � � < t

n

< T be a partition of the time

interval [0; T ] such that t

i+1

� t

i

<

2

r

5

: Consider the interval ]t

n�1

� t

n

]: According to

Proposition 3, the operator (22) is contractive as a mapping from L

2

([t

n�1

; t

n

]�R)

2

to

L

2

([t

n�1

; t

n

]�R)

2

and there exists a pair ( 

n

;

~

 

n

) 2 L

2

([t

n�1

; t

n

]�R)

2

which uniquely

solves the system (6), (7). Therefore Theorem 1 implies that the function

S

n

(t; x)=

Z

R

g(y)�

r

(T � t; y � x)dy+

T

Z

t

Z

R

G(v; y;  

n

(v; y);

~

 

n

(v; y))�

r

(v� t; y � x)dydv

is a solution of the problem (1), (2) on the set ]t

n�1

; t

n

] � R with S

n

(t

n�1

; x) 2 W

1

.

Let us consider now the system (6), (7) on the interval ]t

n�2

; t

n�1

] with the func-

tion g(x) replaced by S

n

(t

n�1

; x). Since S

n

(t

n�1

; x) 2 W

1

, there exsists a solution

( 

n�1

;

~

 

n�1

) 2 L

2

([t

n�2

; t

n�1

] � R)

2

of the system (6), (7) and again by (10) one

can construct the solution S

n�1

of the Bellman equation (1), (2) on the time interval

]t

n�2

; t

n�1

], etc. Evidently, S

i

(t

i�1

; x) = S

i�1

(t

i�1

; x) for each 1 � i � n and it is easy

to see that the function

S(t; x) =

n

X

i=1

S

i

(t; x)I

]t

i�1

;t

i

]

is a solution of (1), (2).

Now Theorem 1 implies that the pair (S

x

; S

xx

) satis�es the system (6), (7).
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Let V be a solution of Bellman's equation (1) (2) from the class W

1;2

. Let us show

that it coincides with the value function of the considered optimal control problem.

Applying the generalized Itô formula ([3]; [1]) for the function V and the controlled

process X

u

, we have

V (t;X

u

t

) = V (0;X

0

) +

t

Z

0

V

x

(s;X

u

s

)�(s;X

u

s

; u

s

)dW

s

+

t

Z

0

(L

u

V )(s;X

u

s

)ds; (23)

where

(L

u

f)(t;X

u

t

) = f

t

(t;X

u

t

) + b(t;X

u

t

; u

t

)f

x

(t;X

u

t

) +

1

2

�

2

(t;X

u

t

; u

t

)f

xx

(t;X

u

t

):

Since the process V (t;X

u

t

) is bounded and E

R

T

0

j(L

u

V )(s;X

u

s

)jds < 1, the stochastic

integral in the right-hand side of (23) is a uniformly integrable martingale. On the other

hand, we have from (1) that L

u

V (s;X

u

s

) � 0, and taking expectations in (23) we obtain

from the boundary condition (2) that

V (t;X

u

t

) � E

u

(V (T;X

u

T

)=F

t

) = E

u

(g(X

u

T

)=F

t

):

Therefore

V (t; x) � sup

u

E

u

t;x

g(X

u

T

) = S(t; x): (24)

Let us prove the inverse inequality. Since the function H de�ned by (5) is continuous

in a for each (t; x) and the decision set A is compact by Filippov's lemma, a measureble

function u

�

= (u(t; x); t 2 [0; T ]; x 2 R) exists such that

H(t; x; u

�

(t; x)) = max

a2A

H(t; x; a):

Therefore (L

u

V )(s;X

u

�

s

) = 0, and using again the Itô formula, we obtain

V (t; x) = E

t;x

V (T;X

u

�

T

) = E

t;x

g(X

u

�

T

);

hence V (t; x) = S(t; x). �
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