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SOME REMARKABLE PROPERTIES OF H-GRAPHS

Abstract. It is proved that if H(u) is non-decreasing and if H(�1)

6= H(+1), then if u(x) describes a graph over a disk B

R

(0), with

(upward oriented) mean curvature H(u), there is a bound on the

gradient jDu(0)j that depends only on R, on u(0), and on the partic-

ular function H(u). As a consequence a form of Harnack's inequality

is obtained, in which no positivity hypothesis appears. The results

are qualitatively best possible, in the senses that a) they are false

if H is constant, and b) the dependences indicated are essential (If

H(�1) = �1; H(+1) = 1, then the dependence on u(0) can be

deleted). The demonstrations are based on an existence theorem for

a nonlinear boundary problem with singular data, which is of inde-

pendent interest.

reziume. vTqvaT, H(u) araklebadia da H(�1) 6= H(+1). damt-

kicebulia, rom Tu u(x) aGCers B

R

(0) Creze gansazGvruli Punqciis

graPiks (zeviT mimarTuli) H(u) saSualo simrudiT, maSin arsebobs

jD

u

(0)j gradientis SePaseba, romelic damokidebulia mxolod R-

ze, u(0)-ze da H(u) Punqciaze. Sedegis saxiT miGebulia Harnakis

utolobis erTi nairsaxeoba, romelSic ar Pigurirebs dadebiTobis

piroba. Sedegebi Tvisebrivad gauumJobesebadia im azriT, rom a) isini

araa samarTliani, Tu H mudmivia, da b) zemoT miTiTebuli damokide-

bulebebi arsebiTia (Tu H(�1) = �1; H(+1) =1, maSin u(0)-ze

damokidebulebas adgili ara aqvs). damtkicebebi eKrdnoba garkveuli

araCrPivi singularuli sasazGvro amocanisaTvis arsebobis erT, Tavis-

Tavadac saintereso Teoremas.

In this note, we summarize and improve in some detail the material of

[1]. We consider the equation

div Tu = 2H(u); Tu =

1

q

1 + u

2

x

+ u

2

y

hu

x

; u

y

i (1)

whose solutions are graphs u(x; y) of mean curvature H(u). Since (1) is of

elliptic type, the qualitative behavior of its solutions may be expected to em-

ulate what happens for the Laplace equation �u = 0, which is usually taken
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as prototype for elliptic equations. Notably, one expects an a-priori bound

on gradient of solutions, depending only on a bound for the magnitude of

the solution and on distance R to the boundary of the domain of de�nition.

Further, one expects for positive solutions a Harnack inequality, bounding

the values of a solution in a neighborhood of a point in terms of the value

at that point. Such formally analogous estimates have in fact been demon-

strated, see for example [2]{[6], but to restrict attention to them would

obscure important distinctions in behavior, as the solutions of (1) exhibit

much stronger regularity properties than are suggested by the analogies. In

fact, it was shown in [6] that if H � H

0

6= 0 and if R exceeds a critical

value R

0

= (0:535:::)=

�

�

H

0

�

�

, then there is a gradient bound depending only

on R; such behavior is qualitatively very di�erent from what happens with

uniformly elliptic equations.

We intend to show that if H is not constant then still more striking

di�erences in behavior can occur, exhibiting properties of the solutions that

di�er basically from what happens when H � H

0

. We assert:

Theorem 1. Assume H

0

(u) � 0, H(�1) 6= H(+1). Let u(x; y) be a

solution of (1) over a disk B

R

(0). Then jru(0)j is bounded, depending only

on R and on u(0). If H(�1) = �1, H(+1) = +1, then the bound

depends only on R.

The signi�cant new feature of this result is that the bound requires no

information on the magnitude of u, except perhaps at the single point of

evaluation. The result cannot be improved, in the sense that the depen-

dences on R and on u(0) both are necessary. Additionally, the theorem is

false if H � const. In contrast to that case, there is no requirement that

R be su�ciently large.

Figure 1: Moon domain; H

�

6= H

+

.

From Theorem 1 we obtain by a formal integration a version of Harnack's

Inequality, in which the one sided bound required in the usual form of that

inequality does not appear:

Theorem 2. Assume H

0

(u) � 0, H(�1) 6= H(+1). Then there exist

a positive function �

+

(u

0

;R) � R and a continuous function U

+

(u

0

;R; �)

with U

+

(u

0

;R; 0) = u

0

such that if u(x; y) satis�es (1) in B

R

(0) and u(0) =
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u

0

, then u � U

+

throughout B

�

+
(0). There exist a positive �

�

(u

0

;R) � R

and a continious U

�

(u

0

;R; �) with U

�

(u

0

;R; 0) = u

0

such that u � U

�

throughout B

�

�
(0). If H(�1) = �1, H(+1) = +1, then the functions

U

+

�u

0

and U

�

�u

0

do not depend on u

0

, and additionally �

+

= �

�

= R.

Again the result is qualitatively best possible.

Our proofs of these results are obtained by comparison with the solution

of a singular nonlinear boundary problem, that has an independent interest

as a singular problem of capillarity theory (see, e.g., [7], Chapters 6, 7).

Set H

�

= H(�1), H

+

= H(+1). We assume at �rst that H

�

; H

+

are

�nite. Figure 1 illustrates the case H

�

; H

+

> 0. If either is negative, the

orientation of the corresponding arc reverses.

Theorem 3. Assume H

0

(u) � 0, H

�

6= H

+

. Then in any \moon domain"

(Figure 1) bounded by the two circular arcs �

�

of radius 1=2H

�

and �

+

of radius 1=2H

+

, there exists a unique solution w(x; y) of (1), such that

� � Tw = �1 on �

�

, and � � Tw = +1 on �

+

, � being the exterior unit

normal. There holds w(x; y) = w(x;�y). On the symmetry line PQ, w

increases monotonely from �1 to +1. As the size of M tends to zero

(that is, �; �! 0), w

0

(x; 0)!1 uniformly on the entire segement PQ.

Geometrically, Theorem 3 asserts the existence of a solution surface

w(x; y) of (1) that is tangent downward to vertical walls over �

�

, and

tangent upward to vertical walls over �

+

. We note that it is essential for

this theorem that H

�

6= H

+

. The boundary conditions require jrwj = 1

on �

�

and on �

+

, and it can be shown that w itself necessarily becomes

in�nite on the two arcs. However, interior to the segment PQ, jrwj is

bounded depending only on � and on the point of evaluation. The solution

can be regarded as the natural analogue of the vertical cylinder which is a

limiting case of solutions in the case of constant H .

The proof of Theorem 3 can be reduced to Theorem 7.10 of [7]. It should

be noted that it is essential that the two boundary arcs have exactly the

given curvatures; arbitrarily small smooth perturbations of these arcs can

lead to con�gurations for which there is no solution to the prescribed prob-

lem.

To prove Theorem 1, we compare the given solution u(x; y) in B

R

(0)

with the solution w(x; y) in a moon domain, that is chosen to lie interior

to B

R

(0) in such a way that w(0) = u(0) and rw(0) is directed parallel to

ru(0). This is always possible following a suitable choice of � . See Figure 2.

We assert that then jrw(0)j > jru(0)j. For if not, the size of M could

be decreased by decreasing � , until equality is obtained. In that event we

would have two solutions u and w of (1) that agree to �rst order derivatives

at the point O, and it can be shown that a �nite number N � 2 of dictinct

level curves of the di�erence function ' = w � u must then pass through

O. It follows that there would be at least four domains interior to M and

sharing the common boundary point O, in which, alternatively, w < u and

w > u, see Figure 3. Since the boundary of M decomposes into only two

sets in which respectively ' = �1, and two singular points E;F , we obtain
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contradiction with an extended form of the maximum principle, see [1]. This

contradiction yields the initial statement of Theorem 1.

Figure 2: Comparison procedure.

To complete the proof of the theorem, we show that if H(�1) = �1,

H(+1) = +1 then there is a uniform bound for all solutions of (1) in

B

R

(0). In fact, for any R

0

< R, we consider a lower hemisphere S

R

0

: v(r)

of radius R

0

, situated over B

R

0

(0) and lying above the surface u(x; y). We

now lower S

R

0

until a �rst point P of contact occurs. Any such P must

be interior to S

R

0

, as v

0

(r) = 1 on the boundary r = R

0

. Therefore

H(u) � H(v) = 1=R

0

at P . There follows u � maxft : H(t) � 1=R

0

g which

is �nite since H(+1) = +1. Similarly a bound from below is obtained.

The desired bound now follows by letting R

0

! R and observing that u lies

below S

R

throughout B

R

(0).

Thus, if H

�

= �1; H

+

=1, we may truncate these functions without

a�ecting the solutions; Theorem 3 then leads to the second assertion of

Theorem 1.

Figure 3: Division into subregions.
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For solutions u(x; y) of (1) in a general domain D, the conclusion of

Theorem 1 can be expressed as an inequality

�

�

ru(p)

�

�

� F(d; u); (2)

where d denotes the distance to the boundary. We consider u(p) as being

de�ned in a disk B

d

(p), and observe that along a ray from p to the boundary,

(2) yields

�

�

�

du

ds

�

�

�

� F(d� s; u): (3)

This equation may be integrated locally, yielding Theorem 2 as result.

We emphasize again that the one sided bound essential for the classical

Harnack inequality does not appear in Theorem 2. If H is constant, such a

result would be false, as can be shown by example. It has to be expected

in general that �

+

; �

�

< R, as occurs when H is constant, see [4] or [5].
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