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SOME REMARKABLE PROPERTIES OF H-GRAPHS

ABSTRACT. It is proved that if H(u) is non-decreasing and if H(—o0)
# H(+400), then if u(z) describes a graph over a disk Bg(0), with
(upward oriented) mean curvature H(u), there is a bound on the
gradient | D u(0)| that depends only on R, on u(0), and on the partic-
ular function H(u). As a consequence a form of Harnack’s inequality
is obtained, in which no positivity hypothesis appears. The results
are qualitatively best possible, in the senses that a) they are false
if H is constant, and b) the dependences indicated are essential (If
H(—00) = —o00, H(+00) = oo, then the dependence on u(0) can be
deleted). The demonstrations are based on an existence theorem for
a nonlinear boundary problem with singular data, which is of inde-
pendent interest.
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In this note, we summarize and improve in some detail the material of
[1]. We consider the equation

1

Trara e
T+ug +uy

whose solutions are graphs u(z,y) of mean curvature H(u). Since (1) is of
elliptic type, the qualitative behavior of its solutions may be expected to em-
ulate what happens for the Laplace equation Au = 0, which is usually taken

div Tu =2H(u), Tu= (1)
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as prototype for elliptic equations. Notably, one expects an a-priori bound
on gradient of solutions, depending only on a bound for the magnitude of
the solution and on distance R to the boundary of the domain of definition.
Further, one expects for positive solutions a Harnack inequality, bounding
the values of a solution in a neighborhood of a point in terms of the value
at that point. Such formally analogous estimates have in fact been demon-
strated, see for example [2]-[6], but to restrict attention to them would
obscure important distinctions in behavior, as the solutions of (1) exhibit
much stronger regularity properties than are suggested by the analogies. In
fact, it was shown in [6] that if H = Hp # 0 and if R exceeds a critical
value Ry = (0.535...)/|H0|, then there is a gradient bound depending only
on R; such behavior is qualitatively very different from what happens with
uniformly elliptic equations.

We intend to show that if H is not constant then still more striking
differences in behavior can occur, exhibiting properties of the solutions that
differ basically from what happens when H = Hy,. We assert:

Theorem 1. Assume H'(u) > 0, H(—o0) # H(+00). Let u(z,y) be a
solution of (1) over a disk Br(0). Then |Vu(0)| is bounded, depending only
on R and on u(0). If H(—o0) = —oo, H(4+00) = 400, then the bound
depends only on R.

The significant new feature of this result is that the bound requires no
information on the magnitude of u, except perhaps at the single point of
evaluation. The result cannot be improved, in the sense that the depen-
dences on R and on u(0) both are necessary. Additionally, the theorem is
false if H = const. In contrast to that case, there is no requirement that
R be sufficiently large.

1/(2H")

Figure 1: Moon domain; H~ # H™.

From Theorem 1 we obtain by a formal integration a version of Harnack’s
Inequality, in which the one sided bound required in the usual form of that
inequality does not appear:

Theorem 2. Assume H'(u) > 0, H(—o00) # H(+00). Then there exist
a positive function p*(ug; R) < R and a continuous function Ut (uo; R; p)
with U™ (uo; R; 0) = ug such that if u(x,y) satisfies (1) in Br(0) and u(0) =
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ug, then uw < UY throughout B,+(0). There exist a positive p~ (ug; R) < R
and a continious U~ (ug; R; p) with U~ (ug; R;0) = ug such that u > U~
throughout B,-(0). If H(—00) = —oo, H(+00) = +o00, then the functions
Ut —ug and U™ —ug do not depend on ug, and additionally p™ = p~ = R.

Again the result is qualitatively best possible.

Our proofs of these results are obtained by comparison with the solution
of a singular nonlinear boundary problem, that has an independent interest
as a singular problem of capillarity theory (see, e.g., [7], Chapters 6, 7).
Set H- = H(—o0), HT = H(400). We assume at first that H—, H* are
finite. Figure 1 illustrates the case H~, HT > 0. If either is negative, the
orientation of the corresponding arc reverses.

Theorem 3. Assume H'(u) >0, H~ # H*. Then in any “moon domain”
(Figure 1) bounded by the two circular arcs ¥~ of radius 1/2H~ and ¥
of radius 1/2H™, there exists a unique solution w(x,y) of (1), such that
v-Tw=—1on X7, and v-Tw = +1 on ¥F, v being the exterior unit
normal. There holds w(z,y) = w(z,—y). On the symmetry line PQ, w
increases monotonely from —oo to + oo. As the size of M tends to zero
(that is, T, — 0), w'(z,0) = oo uniformly on the entire segement PQ.

Geometrically, Theorem 3 asserts the existence of a solution surface
w(z,y) of (1) that is tangent downward to vertical walls over ¥, and
tangent upward to vertical walls over 7. We note that it is essential for
this theorem that H~ # H*. The boundary conditions require |Vw| = oo
on ¥~ and on ¥, and it can be shown that w itself necessarily becomes
infinite on the two arcs. However, interior to the segment PQ, |Vw| is
bounded depending only on 7 and on the point of evaluation. The solution
can be regarded as the natural analogue of the vertical cylinder which is a
limiting case of solutions in the case of constant H.

The proof of Theorem 3 can be reduced to Theorem 7.10 of [7]. It should
be noted that it is essential that the two boundary arcs have exactly the
given curvatures; arbitrarily small smooth perturbations of these arcs can
lead to configurations for which there is no solution to the prescribed prob-
lem.

To prove Theorem 1, we compare the given solution u(z,y) in Bgr(0)
with the solution w(z,y) in a moon domain, that is chosen to lie interior
to Bgr(0) in such a way that w(0) = u(0) and Vw(0) is directed parallel to
Vu(0). This is always possible following a suitable choice of 7. See Figure 2.

We assert that then |Vw(0)| > |Vu(0)|. For if not, the size of M could
be decreased by decreasing 7, until equality is obtained. In that event we
would have two solutions u and w of (1) that agree to first order derivatives
at the point O, and it can be shown that a finite number N > 2 of dictinct
level curves of the difference function ¢ = w — w must then pass through
O. Tt follows that there would be at least four domains interior to M and
sharing the common boundary point O, in which, alternatively, w < u and
w > u, see Figure 3. Since the boundary of M decomposes into only two
sets in which respectively ¢ = 00, and two singular points E, F', we obtain
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contradiction with an extended form of the maximum principle, see [1]. This
contradiction yields the initial statement of Theorem 1.

Br(0)

Figure 2: Comparison procedure.

To complete the proof of the theorem, we show that if H(—o0) = —oo,
H(400) = 400 then there is a uniform bound for all solutions of (1) in
Br(0). In fact, for any R' < R, we consider a lower hemisphere Sgr : v(r)
of radius R', situated over Bg/(0) and lying above the surface u(z,y). We
now lower Spr until a first point P of contact occurs. Any such P must
be interior to Sgr, as v'(r) = oo on the boundary r = R'. Therefore
H(u) < H(v) =1/R' at P. There follows u < max{t : H(t) < 1/R'} which
is finite since H(400) = +oo. Similarly a bound from below is obtained.
The desired bound now follows by letting R’ — R and observing that u lies
below Sg throughout Br(0).

Thus, if H~ = —oo, HT = 0o, we may truncate these functions without
affecting the solutions; Theorem 3 then leads to the second assertion of
Theorem 1.

Figure 3: Division into subregions.
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For solutions u(z,y) of (1) in a general domain D, the conclusion of
Theorem 1 can be expressed as an inequality

[Vu(p)| < F(d,u), 2)

where d denotes the distance to the boundary. We consider u(p) as being
defined in a disk B4(p), and observe that along a ray from p to the boundary,
(2) yields

‘Z—Z‘ < F(d - s,u). (3)

This equation may be integrated locally, yielding Theorem 2 as result.
We emphasize again that the one sided bound essential for the classical
Harnack inequality does not appear in Theorem 2. If H is constant, such a
result would be false, as can be shown by example. It has to be expected
in general that p*, p~ < R, as occurs when H is constant, see [4] or [5].
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