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A. CIALDEA

THE BROTHERS RIESZ THEOREM IN R AND LAPLACE SERIES

ABSTRACT. In the present paper the concept of series conjugate to a
Laplace series on the (n — 1)-dimensional sphere is introduced and a
Brothers Riesz Theorem for such series is proved.
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1. INTRODUCTION

It is well known that the classical Brothers Riesz theorem can be stated
in terms of Fourier series. Namely, if a trigonometric series and its conjugate
series

oo oo

“—20 +5 (arcoskd + bysinkd) , S (ay sinkd — by, cos k)
k=1 k=1
are both Fourier-Stieltjes series, then they are ordinary Fourier series (see,
e.g., [8], p-285). This means that, if « and 3 are two real measures such
that

2m 2m 2m 2m
/coskﬂda:/sinkﬂdﬁ, /sinkﬁda:—/coskﬂdﬁ (k=1,2,...), (1.1)
0 0 0 0

then a and (8 have to be absolutely continuous, i.e., there exist f, g €
L'(0,27) such that

a(B) = / f@)d9, BB = / 9(9) dv
B

B

for any Borel set B C [0,2n]. As far as generalizations of this theorem in
higher real dimensions are concerned, we recall that Bochner [1] proved a
result of this kind in the theory of multiple Fourier series. In [7], Mucken-
houpt and Stein have deeply studied some series arising from ultraspherical
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expansions of functions having appropriate rotational invariance. This has
led to consider some series generalizing the trigonometric ones. In this con-
text, they gave also a concept of conjugacy for such series and they proved a
result which is an analogue of the theorem of F. and M. Riesz. Because of the
rotational invariance, the series they have considered are one-dimensional.

The purpose of this paper is to prove theorem IV, which provides a
Brothers Riesz theorem for Laplace series. We remark that no rotational
invariance is supposed. The series conjugate to a Laplace series, which is
introduced in Section 3, is not a series of scalar functions, but of differential
forms of degree n — 2.

2. AN OVERVIEW OF PREVIOUS RESULTS

Let Q be a domain in R™. By C}(2) we denote the space of differential
forms of degree k (briefly k-forms) defined in © such that their coefficients
are of class C''. The differential and the co-differential of u are denoted
by du and du, respectively, while *u denotes the adjoint of v with respect
to the usual metric of R™. Namely, if u = Lu;, _; dz’ ... dz', where
ui, i, € C1(Q) are the components of a skew-symmetric covariant tensor,
then

1 Ouiy iy 5 o ;
du = — —2 deddg® . dz® , du= (=1)"*FtDH v dwqy
k! Ba:j
1 1

i1 In_k
T U s dT't L. dx .
k'(n _ k)' 81..8k%1--lpn—k 1 k

*y =
We say that non-homogeneous differential form U € C§(Q)®...CL(Q)
is self-conjugate if dU = 6U in Q. This means that, if U = >, _,ur (up
being a k-form), then du; = 0, dug, = dug42 (k=0,...,n —2), du,—1 =0.
It is possible to show that holomorphic functions of one complex variable,
solutions of the Moisil-Theodorescu system, quaternionic hyperholomorphic
functions, harmonic vectors (i.e. vectors w such that divw =0, curlw =
0) can be identified with particular self-conjugate forms (for the details,
see [4]).
In [3], [4] it is showed that several results of the theory of holomorphic
functions of one complex variable hold true for self-conjugate forms in R™.
Hereafter 2 denotes a bounded domain of IR™ such that its boundary ¥ is
a Lyapunov boundary and M (%) is the space of k-measures on ¥ (see [5]).

I. If a self-conjugate form U € C}(Q) & ... ® CL(Q) is such that U and
*xU admit traces on ¥ in My(X) & ... ® M,,_1(X), then these traces are
absolutely continuous.

This theorem provides a generalization of the classical Brothers Riesz
Theorem in IR"™ and in some domains it can be stated also in the follow-
ing way, where w;' " denotes the k-form wp(z)dz™ ...dz" and {wy} is a
complete system of homogeneous harmonic polynomials.
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II. Let Q be such that R® — Q is connected. If « = (a°,... o™ "), a =
(@,...,a') € My(B) ®...Dd M,,_1(X) are such that

/[ak A >kdu)fll“'i’c — 5w21'"i’“ A&k + dwfll“'i’c AaFT? — ok =2 A *wa;"'i’“] =0
)

(where o = a"~%* =0, k = —2,~1,n) for any 1 < i; < --- < i} < n,
h=1,2,... ,k=0,1,... ,n, then a, a are absolutely continuous.

For the details and the proofs of I and II we refer to [3].

3. THE SERIES CONJUGATE TO A LAPLACE SERIES

It is well known that if u is a harmonic function in the unit ball B = {x €
R” | |z] < 1}, then it can be expanded by means of harmonic polynomials

00 Pnh T
u(z) = Z |$|h Zathhk <m> 5
h=0 k=1

where pp, = (2h +n — 2) ((hntg;,i),'

spherical harmonics. We suppose {Y}} orthonormal, i.e.,

=1 ifh=randk=s
YirYrs d ’
/ ik trs €0 {: 0 otherwise.

and {Yj,} is a complete system of ultra-

by
The “trace” of w on ¥ = {z € R" | |z| = 1} is given by the expansion

00 Pnh

S > anYin(@) (el =1). (3.1)

h=0 k=1

If the coefficients apy, are

ahk = /thk do (ank = /th dp),
)

P

we say that (3.1) is the Laplace series of the function f (of the measure ).
Let us consider the 2-form

00 Pnh

S

h=0 k=1

and its adjoint

v = ipz (h+2)(“:’1h_ 5 * <thk (%) /\d(|x|h+2)) . (3.3)

h=0 k=1

It is possible to show that dv = 0, dv = du in B, i.e., the non—-homogeneous
form u + v is self-conjugate.
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If n = 2, then the series which is obtained by taking |z| = 1 in (3.3) is just
the series conjugate to (3.1); roughly speaking, it, represents the ”trace” of
the harmonic conjugate function on . So in general, for any n, we say
that (3.3) (with |z| = 1) is the series conjugate to (3.1). It represents the
“restriction” of *v on X, while the "restriction” of v, provided it does exist,
is equal to 0, as it follows from (3.2).

In order to write the conjugate series (3.3) more explicitly, let us consider

the polar coordinates in R™: z, = (0,91, ,n-1), h=1,...,n, and
the relevant metric tensor

ox y ox ox Xaz . 1. 1 azxax

fs— — -, s = (i — —— = ,n—1 = — —_—

Gij e acpj gni = Gin 905 ag 6,J = gnn 90 Do

Let {g%} be the inverse matrix of {g;;} (i.e., g"gjs = %) and let us set
g = det(gij)i j=1,.. ,n- We remark that we have gpn, = ¢"" = 1; ¢;; = 0 if
i# 7 and that.g = det(9s5)ij=1,... ,n—1-

If v = v;dy’ do, we have

1
v (n— 2)'611551“ Sn— 2\/_9]]9nn” dp™ ... dp** =
1
= 7@ %1 si"”sn 1\/_gs" Wn=tye . do®...dp°"—2,

and then we may write

n—1

*y = Z(—l)”fl*j\/ggjjvj do' .G .. .dp" T (3.4)

=1

(where j indicates that d(pJ‘“ is omitted). Therefore the restriction xv|y is
given by (3.4), where g, ¢77, v; are considered for ¢ = 1. In particular,
taking (3.2) as v, we find that the series conjugate to (3.1) can be written
as

Pn -1
iz Gk nZ( )" /gg “a "ol de" Tt (3.5)
CEa— hdp' 3.

h=0 k=1 =1

Let us consider now the space L2 ,(¥) endowed with the scalar product

(v, ¢) = /7/\;%/),

+5

where *¢ denotes the adjoint of 1) on ¥ with respect to the usual metric

on X. Namely, if ¢ = _2),1/)31 5o AP°1 .. dp®r—2 then
o= YL glent g gty gt (36)
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Let us introduce the following system of (n — 2)-forms

1
= * (dYp AN d h+2y =
T e R

n—1
1 h+1 n 1— 9Y hk 1 ;
o ———— ] (— —J g“ de ...7...dyp
h(n+ h —2) g; Ve

n—1

III. The system {{py} is orthonormal in L?_,(X).

If
n—1 » n—1 "
b= dhidet . jde™T, =) ade L de"
=1 j=1
taking into account (3.6), we get
n—1
o _ n 1—j 1 A- n 1,n—1 _
x4y = ;( Vgt P di’ =
j:
n—1
=) (-7 ; (3.7)
; \/_gJJ W d
from which easily follows
. n—1 1 .
+= y J=1
This implies
1 SOV OY,
, = Il — do
(Y, Yrs) Vhr(n +h=2)(n+r —2) Z/]Zlg Op; Opj

On the other hand,

Bth BYrs / ( ath)
i i Y, do =
/ Z B‘PJ aSOJ Z \/_ 6801 Vag

= — /Yrs AxYy do = h(n +h— 2) /Y}sth do
>

(Ax being the Laplace-Beltrami operator on ¥) shows that {ip} is or-
thonormal in L2 _,(2).
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We finally remark that the conjugate series (3.5) (or (3.3) with |z| = 1)

can be written also as
o0 Pnh
. 3.8
Z Y -y h ahk¢hk (3.8)

h=1 k=0
4. THE BROTHERS RIESZ THEOREM FOR LAPLACE SERIES

If (3.1) is a Laplace series of a function f € L?(X), then the conjugate
series (3.8) is a “Fourier series” of an (n—2)-form g € L2_,(%). This follows
immediately from Fischer-Riesz theorem since

o0 Pnh o0 Pnh

Y S D ahe < 4o
h=1 k=0 h=1 k=0
implies that there exists g € L2_,(X) such that

n+h
apk =\ ——— /gA*¢hk

and therefore the conjugate series is the “Fourier series” of g with respect to
the system {¢p}: Z Z (9, ¥nk) Ynr. Moreover, we may suppose g such

that (g, )_OV7eLn 2(E) (7 re) =0 (h=1,2,...;k=1,...,pnn)-
Because of a completeness theorem proved in [2] (p.195), these orthog-
onality conditions are equivalent to the following ones: (g,7) = 0V v €
°,(IR™) :dy=0o0n X. A similar question for measures is more delicate
and the theorem IT makes possible to prove the following result, which can
be considered as the Brothers Riesz theorem for Laplace series:

IV. Let (3.1) be a Laplace series of a measure u € M (X). If its conjugate
series (3.8) is a “Fourier series” of an (n — 2)-measure, I.e., if there exists
B € M,—2(X) such that

In+h—2
apk = T/ﬂAg¢hk (h=1,2,...;5k=1,... ,pnn), (4.1)
>

and if

/ﬂ/\*sz VyeCr?y(R") : dy=0o0nX, (4.2)
P
4+
then p and 3 are absolutely continuous.

We remark that in the case n = 2, (4.1) are nothing but (1.1), while (4.2)
is not restrictive. Observe now that we may write

10 1
Y = ——— hY = - hY .
wrdo . BQ(Q k) Q:1dg 5 d(0"Yhr)
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On the other hand, because of (3.7),

8th 1
x = = dYhi,
Vi = mz op; Wn+h-2)

and the conditions (4.1) can be written as

/,u/\*dw_/*dw/\,u /ﬂ/\dw—( )”/dw/\ﬂ (4.3)

+X +X +X

for any harmonic polynomial w. Here i1 € My(X) is defined by

/ﬁ/\wda:/wdu VY weC'D).

+X b))

In order to apply the theorem II, we have also to show that

1) / d(wdxPdz®) A B + / A x6(wdzPdx®) = 0 (4.4)
+3 5

for any harmonic polynomial w and for any 1 < p < s < n. Since
M(wdzPdz®) = w oda? — w pdz’®; *6(wdaPdz’®) = zpw s — 5w, (on X) (4.5)

(where w ), = g” ) and taking into account that if w is a harmonic homoge-
Tp

neous polynomial of degree h, then z,w s—2zsw ; is a harmonic homogeneous
polynomial of the same degree, it follows from (4.3)

/ A x6(wdzPdx’®) = /(zpw,s —Tswp) dp =
1z 5
1
=7 / BN xd(zpw s — Tswp) / BAd(zpw s —zswp).  (4.6)
>

Moreover (s and p are fixed),

_ - P _ s R . J —
d(Tpw,s — Tsw,p) = w,sda? — w pdT" + [Tpw,j5 — Tsw jpldr! =
- p_ s _ p
= wgdz? — wpda® + [2pw ps — Tsw pplda? +
n
. )
HEpw 55 — Tsw splda’® + E [Zpw, js — Tsw jplda’ .
Jj=1
J#p,s
Since

n n
TpW ps — TsW,pp = TjW,js + E , TsW kk — E TpW ks =

k=1 k=1
k#p,s k#p,s
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=(h=Dws+ Y (@wrk — Thw k),

k=1
k#p,s
and analogously
n
Tpw ss — TsW,sp = —(h — Dwp — E , (Tpw ik — TEW,pk)
k=1
k#p,s

we may write d(zpw s — xswp) = h(w sdzP — w pdz®) + A, where

A= [(#pw,5) = e )27 + (T jj =Tt ) AP + (2w pj — Tpw ) dz”] .
Jj=1
J#Dss

Because of (4.5) and (4.6), we have

/ﬁ/\*&(wdz”dws): /ﬂA&(wddeajs)-{—%/ﬁ/\A. (4.7)
+3 = +3

Let us fix j, s, p and consider the 1-form © = (z,w, — 5w ) dzd +
(zsw; — zjw,s) daP + (xjw, — zpw,;) de’, where w is a scalar function. A
direct computation (we omit for lack of space) shows that, up to a multi-
plicative constant, ;@ =l "o dw Adz' A...Adz=2. Then d»;@ =0

Jspit..in—

and therefore dx A = 0. By virtue of (4.2), we must have [, 8 AA = 0.
P

Now (4.4) follows from (4.7). By theorem II, 1z and (—1)"3 are absolutely
continuous and this completes the proof. Finally notice that, without (4.2),
the theorem is false (if n > 2).
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