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T. BURCHULADZE

ON THREE-DIMENSIONAL DYNAMICAL PROBLEMS OF THE
GENERALIZED THEORY OF ELASTOTHERMODIFFUSION

ABSTRACT. For Green—Lindsay’s and Lord-Shulman’s models, three—
dimensional boundary value and contact dynamical problems of the
mathematical theory of elasticity are considered. By the Riesz—Fisher—
Kupradze method (the discrete singularity method), approximate so-
lutions are effectively constructed.
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In the present paper, we investigate different three-dimensional boundary
value and contact dynamical problems for new models of the mathematical
theory of elasticity with conjugate fields. Intensively developing for the last
years new branches require the construction of a general theory of solvabil-
ity, the elaboration of analytic methods for solving complicated problems
dealing with the interaction of fields of different nature. One of the pos-
sible approaches allowing us to solve these problems is the well-elaborated
method of the potential theory and the theory of singular integral equations.
We present here a complete mathematical analysis of these problems as well
as give an effective algorithm for approximate construction of solutions of
boundary-value and contact problems. The results of our investigations in
this area can be found in [1, 2, 3] and in [4-14].

We consider a three-dimensional isotropic elastic medium in which ther-
modiffusion takes place. Deformation is described by the displacement vec-
tor v(z,t) = (v1,vs,v3)T = ||vk|lsx1 (one-column matrix), the variation of
temperature v4(x,t) and the “chemical potential” of the medium wvs(z,t);
x = (z1, 9, x3) are the points of the Euclidean space R?, ¢ > 0 is time, and
the sign “T"” stands for transposition.
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The objects of our investigations are the following systems of partial dif-

ferential equations of the generalized theory of elastothermodiffusion [1-3].
I. Green—Lindsay’s model:

. 0% o}
pAv + (A + p) graddive — p — e 271(1-1-7' 8_) gradvsy; =0,

) 9 vy a o\Ovs (1)
AV —ay (1 + T 8t) -V = % divey — aqs (1 +7° %)—t =0,
Us Vg
62A’U5-G2(1+T E)W Edlv’l} a12(1+7' E)W—O,

where the elastic, thermal, diffusion and relaxation constants satisfy the
natural restrictions [3]

p>0, 3X+2u>0, p>0, & >0, ar>0 (k=1,2), ajas—aj, >0,
m>7>0 (=71 =0 — Iisthe classical case).

II. Lord—Shulman’s model:

( 8%v 2

wAv + (A + p) graddive — p 52 ;w gradvz; =0,
5 —

01Avy — ay (1+Tt t) Y4 - (1+Tt— _
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)

here 7 > 0 is a relaxation constant.

The non-stationary systems (1) and (2) will be written below in the
vector-matrix form
0 0
(§?§
where V(z,t) = (v,v4,v5)T = ||vkllsx1, LV = [[(LV)gll5x1-
We consider two (possible) cases when unknown vector V' (z,t) depends
on the time ¢:
(a) vg(x,t) = Re[e~Ptuy(x,p)], steady (stationary) oscillations with the
frequency p > 0; '
(b) vg(x,t) = 2%” ::LZ;O eStug(z, ) d¢, ¢ = o +iq, o > 0 is the represen-
tation given by Laplace—Mellin’s integral (general dynamical case), k = 1, 5.
It can be easily seen that in both cases the dynamical system (3) (and
hence the systems (1) and (2)) is reduced with respect to the vector U(z,w) =

ﬁq%nzo, (3)
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[lug|lsx1 to the form

L(a%, —iw)U —0, (4)

where w = p > 0 in the case (a) and w = i in the case (b). L(a%, —iw)
is an elliptic matrix differential operator. Denote by ®(z; —iw) a matrix
of fundamental solutions of this operator. It can be constructed explicitly
in terms of elementary functions and has the form [3, 13] ®(z; —iw) =

12 5 k S
1®jkllsxs = |2, 9,...,®|l5x5, where & = (®1z, Pog, ..., B51)7, k = 1,5,

el

are column-vectors; ®(z; —iw) = Sp_, QF(2) o7 Where QF(Z) are
explicitly specified matrix differential operators and A\ (w) are the so-called
characteristic constants expressed explicitly in terms of the coefficients of
the differential operator under consideration. Behavior of the matrix of
fundamental solutions ® depends on the properties A (w); all the necessary

properties are established.

We have the following relation: &7 (—z;—iw) = ®(z;—iw), where
®(z; —iw) is the matrix of fundamental solutions of the associate (conju-
gate) operator L(B%, —iw) = LT(—B%, —iw).

For the systems (3) and (4), the basic initial-boundary and boundary
value problems for finite and infinite (unbounded) domains are investi-
gated; appropriate theorems for the uniqueness and existence of solutions
are proved; integral formulas convenient for numerical realizations are con-
structed. Along with general theoretical problems, great attention is given
to the approximate and efficient construction of solutions [3,4,5,7,8,13, 14].

Principal boundary differential operators of this theory are of the form

0 B) 2 L
Pl (%,H)U(w) = (T(%,n)U(ﬂ:) —n(z) Ew(l — liw)us,
0
— (01 + O2k)us + (03 + dor )01 %,

o T
— (v + GarJus + (32x + dox)d: %) :

0 0
Qk) (%,W)U(l“) = (U, (O1x + d21)01 % + (93k + dor)vs,

8’1)5 T
+ (01 + 03k )02 o0 T (621 + 50k)vs> , k=0,3,
where T(2,n) = ||udjk 2% + An; % + pny, %ng is a matrix differential
stress operator of the classical theory of elasticity [1], n(z) = (n1,n2,ns)
is the unit vector and d;; is the Kronecker symbol. The corresponding

associate operators are denoted by 15(,6), Q) Moreover, Q) = Q),
k=0,3.
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Let 1D C R® be a finite domain bounded by a surface S € Ly(a), & >0
[1], and oD = R3*\1D be an infinite domain. We consider the boundary
value problems for the system (4):

Problem P(jq) (w). In the domain ;D (j = 1,2), find a regular vector
U = (u,uq,us)T € C*(;D) N C?(; D) satisfying

Vo e D: L((%,—iw)U -0,

VzeS: (P(q)(%,n)U)j = F(z),

where .
(P(Q) (8%:’ n) U(Z))J - jDEla%rBZGS P (%’ n) U(z).

Problem Q{q) (w). In the domain ;D (j = 1,2) find a regular vector
U = (u,us,us)T € C1(;D) N C?(; D) satisfying

Vo e D : L((%,—iw)U —0,
VzeS: (Q(q) (%,n)U)j =F®(z),

where

=03, QF"Y eC™(S), P, F? ectl(s).

(In case j = 2, the solution U satisfies certain decrease conditions at infinity
[3]).

General theory of solvability of the above-mentioned problems is con-
structed [3-14]. (Corresponding theorems for the existence and uniqueness
of the solution are proved; the problems of smoothness are considered and
the estimates with respect to the parameter are given).

Here we begin with the actual construction of solutions. Consider, for
example, Problem P(lq) (i¢). We denote Green’s tensor of this problem by

Gp,, (z,y;i¢,1 D). We have [1, 3]:
GP(q) (xa Y; ZC) 1D) = (I)(ill' - Y C) - gP(q) (xa Y; ZC) 1D)7
where gp, is a regular component. The representation

) . g
Ve'e 1D : U(z0) :/S[Q(q)(a—y,n)c:,@(q) («°,y;i¢,1 D) | FM(y) d,S (5)

is valid [1, 3].
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Thus we have [1, 3] GITD(q) (2%,2) = ép(q) (z,2°), where (N}’p(q) (z,2°) =
&(z — 20) — g, (x,2°) is Green’s tensor of the associate problem ﬁ(lq) (i¢)
(with 20 as a pole):

Vz e Dy : E(%,C)INIZO, vyeS: (Pyl) =o.

Consequently, the representation (5) implies
~ P T
va e 0 U6 = [ |G (g5 #7 60 - )| FOGIG,S -
s

/{Q(q( )gp(q)(y, °)]TF(1)(y)dyS- (6)

It turns out that we can find a value @(q)ﬁp(q) (y,2%)|s, 2° € 1 D without
solving the problem.
Let S € Ls(a) be an arbitrary closed surface covering 1D and let

{o2* 1, C 25 be an everywhere dense countable set of points. Let ¢ gp( .
s =1,5, be the s-th vertical vector gp,, = ||gP(q),...,gP(q) II5x5-

S
By the formula of general integral representation of the vector ﬁp(q), we
have [1, 3]

/S I7(y — oa*, 0 (4,2°) dy S = O(oz*, 2°), )
where

0
Dy~ 2,¢) = P (5,m) 8~ :0),
P (y,2°) = Q) ((%)é(y,wo), 2* €D,

r~ £
O(xa*,2°%) = /S [Q)®(y — 22", Q)] Py ®(y —2°) d,S.
The vector equality (7) can be rewritten in terms of components as

/5 [T (4, 2%) d, S = 0, (a4, 29), ®)

k 0 Ly k44 k—1
¢(y):P(q)(a_y7n)q)(y_2x[ 5 ]7<)7 lk:k_S[T]a kZI,OO

([k] is the integral part of the number k). The following theorem is valid.
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k
Theorem 1. A system of vectors {1(y)}3>, is linearly independent and
complete in a vector (five-dimensional) Hilbert space Lo(S) (i-e., this system
is a basis in this space).

For the proof of the theorem see [1, 3].
Determine now the coefficients aj, k = 1, NV, from the condition

N =
~ k

i [~ b

% 1 2(S)

(here the sign — stands for “complex-conjugate”).
By Theorem 1 and the equality (8), we obtain a uniquely solvable alge-
braic system with respect to aj:

* 7 -
Za (%) = (5,0), j=T,N, 9)
where for the scalar product we adopt the notation
Eo_ ko &
(6.9) = [ DTS = (6.9,

According to the property of the Hilbert space Ly (S), we have

~ N %
[ Sabel, 0w
Introduce the notation:
N =
) = Y afi(e) = o (G d(,22) 7, s =T5,
~ I\~ . 1 - 5

(@0 (D)) = @b @), -

= | P2y w7 (2) ||5x5E

= H Zakd) Zakd] 5><5, (D

~ 0
V) = /S [Q@)(a—y)@T(arO—y)] FO () d,S -
- /S 1B @:2%), -y B0, 20| D (9) dy 5.

Thus due to (6), (8), (10) and (11), we finally have Vz° € 1D U 5D and
for an arbitrary natural N

U(@") = nU(2%)] <
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5
<Y N2 = @2 ) IFD @) lracs)- (12)
s=1

Consider now the so-called basic contact problem for an inhomogeneous
medium 1D U 2D [1]: 1D and 2D are filled with different homogeneous
isotropic elastic materials. Denote the elastothermodiffusion constants for
the domains ;D, j = 1,2, by ;X\, ju, jp, -.., and the differential operators
by ;L, j P4, and so on.

Problem A°¢(i¢). Define in 1D U D a regular vector
U(QT,C) = (U,U4,u5)T € Cl(lbu 25) n 02(1D U 2D)7
(ell,; = {C ReC>Ua‘},

(o > 0 is a given constant) satisfying

a)>

Vo e D : jL(%,C)U(x,C) —0, j=1,2,
Wes: (10u(5)00:0) (- (3)00:0)" = 100,
(1P (3)7:0) = (P (3) U :0) = Fl0:0)

(ko = 0,3 is a fixed number) and the asymptotic conditions at infinity
(lz] = o0)
0

Ul(z,¢) = O(lz| ), a—ka(w,C) =0(z|™), k=13

Let
Ge(z,2%i¢) = j®(x — 2°,0) — jgc(2,2°;i¢), =€ ;D, 2° € R*\S,
where j = 1,2 is Green’s tensor of the contact problem A¢(i(¢), z° is a pole
and ;jg. is aregular component. Denote g.(z,z°;i¢) = jg.(z,2°%i(), z € ; D,

=12, g. = ||51]C, . ,§C||5X5, where f}c is a column-vector, s = 1,5. The
existence of this tensor and its basic properties are established as usual [1, 3].
By means of the latter we can write the formula of general representation of
the solution of Problem A¢(i¢). We can easily see that the following formula
is valid:

Vit €1DUsD U0 = [ {[1QunGela”)} P a5 -

- [ {1 P00 Getna "} s, 13

where _ .
[Gely,2)] = Ge(2®,y),
éc(a:, 29;i(¢) is Green’s tensor of the conjugate Problem JC(iC).
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Having written (13) in an expanded form, we obtain
vz® € ;D: Uz, () = /S [1Q (ko) ;@7 (2° — )]  Fly) dy S —
- [ {1@ui e} P, -
~ [ [P0 =] 1) 4,5 +
+ [ {BPuiitn s} fw)d,S (=12

Taking into account (14), we make an important conclusion: in order to
construct (explicitly or approximately) the solution of Problem A°(i(), it is
sufficient to know on the surface S the following quantities:

[1@ ko) (i)gc(ya )]1 and [1P(k0)(aa )gc(y, )]1, ye S, zES.

(14)

With regard for the definition of ﬁc(a:, 20), s = 1,5, the formula of general
integral representation of solution of boundary value problems of this theory

gives

Vo € jD: / i Plko) ((%) ‘I’(Z/—ﬂf)]T{ @ko)(ag) (Y, )]1dy5—
[ 200 () w0 = )] Pl ()t )] 5 =
=;0(z), (15)

where j = 1,2, 3D = 1D, 10 = 0, 20 is a well-determined vector which is
expressed by 1P(k0)1(1) — QPkO)QCD and 1Q(k0)1(1) — QQkO)QCD.

Introduce the notation:

P (y,0) = 1¥5llox1 =
AT
= <[1Q(k0)( 0 )gc(y, )] [1P(k0)(aa )gc(y, )] >

an unknown vector,

P T o T
= H [ (ko)(a—y)ﬂ(y—x)] ) —{jQ(ko)(a—y)j‘?(y—x)]
5x5 5x5l5x10
(J=12).
Hence (15) takes the form
O(z), j=1,2 (17

Vr € jD: /Sj\I’(y 73 Q)" (y,0) S =
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Let 1S be a closed surface placed strictly in 1D and {ja*}2, C iS,
j = 1,2, be an everywhere dense countable set of points. By (10) we have

/ LB (y — 52, O (4,0) dyS = 1 0(az"),
s ) (18)
/5 2 U(y — 1%, O (9, ) dyS = ,0(2%).

Denote by ;¥!,... ;¥5 the columns of the matrix ;¥7. Then the fol-
lowing theorem holds.

Theorem 2. The countable set of vectors

00, b 00, 5
{1\1’1(?4 — ") k=1, 1=1 Y {2\1’1(3/ —1z") k=1,1=1 (19)

is linearly independent and complete in a vector (ten-dimensional) Hilbert
space Ly (S).

(For the proof see [1, 3]).
Renumerate (19) as follows:

k
1/](:[/) = ﬂkwlk(y_bkqu7<-)a k

=1, 00, (20)
where
[ 44 k41 O
R O
According to (18), the scalar product
k —=s ko~ -k ~ kK
0,07 = [[I750dS = [T dS = (5,0) = 0,00, (s,
s s
k=100 (21)

is known. Determine now the coefficients 37, k = 1,N, s = 1,5 from the
condition

min
Br

~ Noo%
5(2) = Y B ()|
k=1

La(S)



31

Repeating word by word the above-said, we obtain the following approx-
imate values:

N %
= Bi(y)
k=1

(1Q<ko)(aa )gc(y, ))1 = (N0 NS, N0E) | =

ko k &
ﬁz(¢17¢27"'7¢5) ’ (22)

I
] =

>
Il

1

~ 0 s 1 ~ ~ ~
((ko)(a—y)gc(y, )) E(N1/J§,N1/J$,---,N1/Jfo)TE
N _ _
5252(1]267127,---,1210)T-
k=1

Substituting the above values in (14), we construct the vector

Va0 €;D: LU, 0) :/ [1Q(k0 ( ) T (20 —y)] F(y)d,S —

- [ (1@ () e >]T)1F<y>dy5—

- [ [P (55) 7 —y)] F(w)dyS +

+/S< [1P(k0 (a T>1f (23)
(J=12).

Denote

(b2 (2)a]") = 2oty = 1¥ou e

~ o 1
([1P(k° (a_y) ] ) =Up(y,2°) = [ Tpullsxs,
1

N\ 17 0 =~ N7\
<N [1Q(k0) (B_y)gc] > =n~NYo(y,z"), (N |:1P(k0) (a—y)gc] ) =nYp.
From (14) and (23) we finally find that
VQ?OElDUQD' |U 0 —N(QZO | ||\I’Q

—NYq(z ||L2(S 1F|| 2o(s) +||‘I’P - NUp(x ||L2(S Nl za(s)

It should be noted that this method can be extended to some other more
complicated problems.
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