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KusaNO TAKASI AND MANABU NAITO

A SINGULAR EIGENVALUE PROBLEM FOR SECOND ORDER
LINEAR ORDINARY DIFFERENTIAL EQUATIONS

ABSTRACT. The Sturm-Liouville equation of the form

(p(H)2") + Aq(t)z =0 (p(t) >0, q(t) > 0), (A)

is considered on an infinite interval [a, +oco[ and the problem of finding
the values of A for which (A) has a principal solution zo(t; A) satisfy-
ing azo(a; ) — Bp(a)zy(a; A) = 0, a® + B2 > 0, is studied: Assuming
that (A) is strongly nonoscillatory in the sense of Nehari, a general
theorem is proved asserting that, similarly to the regular eigenvalue
problems on compact intervals, there exists a sequence {\, } of eigen-
values such that A1 < X2 < --- < Ap < ---, limp 300 Ay = 00, and
the eigenfunction zo(t;An) corresponding to A = X\, has exactly n
zeros in (a, 00).
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0. INTRODUCTION
We consider the Sturm-Liouville equation of the form
(p()a’) + \q(t)z =0, t>a, (A)

where p(t) and ¢(t) are positive continuous functions on [a, c0), a > 0, and
A is a positive parameter. We assume that (A) is strongly nonoscillatory,
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that is, (A) is nonoscillatory for all A > 0. In this case, it is known ([2, p.
355]) that there exists, for every A > 0, a principal solution zq(¢; A) of (A)
which is uniquely determined up to a constant factor by the requirement

o0

dt
/ POICICE . (0.1)

We are interested in the problem of finding those values of A for which
(A) has a principal solution zo(t; \) satisfying the boundary condition at
t=a:

azo(a; \) — Bp(a)zy(a; \) =0, (0.2)

where a and 3 are real constants such that a® + 32 > 0. This problem
may well be called the singular eigenvalue problem for (A) since requiring
xo(t; A) to be a principal solution can be regarded as imposing on zo(t; A) a
boundary condition at ¢ = coj; see, e.g., Hartman [3]. A solution zq(t; A) of
this problem will be termed a principal eigenfunction and the corresponding
value of \ a principal eigenvalue. The main purpose of this paper is to prove
that, similarly to regular eigenvalue problems on compact intervals, there
exists a sequence of principal eigenvalues {),} tending to infinity and the
principal eigenfunction zo(¢; A,,) corresponding to A = A, has exactly n
zeros in (a, 00).
Our goal is to prove the following theorem.

Theorem. Assume that (A) is strongly nonoscillatory. Put

Y=« for the case where /i = o0;
p(t)
T dt \ ' 7 dt '
:a-i—ﬁ(/—) orthecasewhere/—<oo.
1 ) 7 p(0)

(i) Let B = 0 or By > 0. Then there exists a sequence of principal
eigenvalues {\,}, such that
D<o <A< <A< ooy, lim A\, =0, (0.3)
n—oo
and the principal eigenfunction xo(t; Ay) corresponding to A = X\, has ex-
actly n zeros in (a,00), n=0,1,2,....
(ii) Let v = 0 or By < 0. Then there exists a sequence of principal
eigenvalues {\,}°>, such that
D<A << <A<+, lim A, = 00, (0.4)
n— 00
and the principal eigenfunction xo(t; Ay) corresponding to A = X\, has ex-
actly n zeros in (a,00), n=1,2,....
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1. PRELIMINARIES

We note that it suffices to give a proof for the special case where p(t) = 1:
2" +XM(t)z =0, t>a, (B)

since the general case of (A) can be reduced to (B) by means of a change
of independent and/or dependent variables. It is known ([6]) that (B) is
strongly nonoscillatory if and only if ¢(t) € L(a, c0) and

oo

lim t/q(s)ds =0. (1.1)

t—o00
t

This condition is all that is required for the equation (B).

1.1. Normalized Principal Solutions. Let A > 0 be fixed arbitrarily and con-
sider the fundamental set of solutions {z1(t; A), z2(t; A)} of (B) determined
by the initial conditions

zi(a;A) =1, 2y (a;\) =0, za(a;\) =0, zh(a;\) =1.

Let xo(t; A) be a principal solution of (B). Then there exist constants ¢ (\)
and c»(\) depending on A such that

zo(t; A) = cr(N)z1 (B A) + (V)22 (8 0), t> a. (1.3)

Since a principal solution is unique up to a constant factor, we may suppose
that the coefficients ¢1(A) and co(A) in (1.3) satisfy

ct(A\)? +e2a(N)? = 1. (1.4)

We require in addition that z¢(¢; \) be eventually positive. This require-
ment together with (1.4) determines a unique prinicpal solution for each
A > 0. The principal solution constructed in this manner is referred to as
the normalized principal solution of (B) and is denoted by Xo(¢; A).

1.2. Properties of the Normalized Principal Solutions. The following prop-
erties of X (¢; A) are needed in the proof of the main theorem.

(I) Xo(t;A) is a continuous function of (¢,\) € [a,00) % (0, 00).
(IT) If A > 0 is sufficiently small, then Xy (¢; A) > 0 on [a, 00).
(ITT) For every A > 0, Xo(t;\) = O(t'/?) and X}(t;\) = o(t~'/?) as
t — oo; furthermore, Xo(t; A)/X{(t; A) = o0 as t — oo.
(IV) Xo(a;N)/X§(a; A) — o0 as A — +0.
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To prove (I), we use the relations

o0
tlim t1/2/31/2q(5)ds =0, (1.5)
t
t
tli)rgot_l/2/s3/2q(s)ds =0, (1.6)

which are straightforward consequences of (1.1). Take any constant A > 0

)

and choose T' > a large enough so that for ¢t > T
00 t

Att/? / s'2q(s)ds < 1/3 and At~'/? / s2q(s)ds < 1/3.  (1.7)
t a

We denote by E the set of the functions z(t;A) € C([T,o0) x (0,A)) such
that

||| = sup {t*1/2|x(t;/\)| : (8, N) €T, 00) x (O,A)} <oco. (L.8)

Clearly FE is a Banach space with the norm || - || given by (1.8). Consider
the subset X C E and the mapping M : X — E defined by

X:{er; 0<z(t;\) < t1/2, (t,/\)e[T,oo)x(O,/\)} (1.9)

and

(Mz)(t; \) = %TI/Q + /\t/q(S)x(s; A)ds +

t
t

+ )\/sq(s)a:(s;/\)ds, (t,\) € [T,00) x (0,A). (1.10)
T

Using (1.7), we easily see that M is well defined, maps X into itself, and
satisfies

2
||M.’171 _MZ'QH < g ||$1 —272” for all T1,22 € X.

The contraction mapping principle then implies that there exists a unique
element xy € X such that xg = Mxo, which satisfies the integral equation

o0

1
xo(t; \) = 3 T2 + /\t/q(s)xo(s; A)ds +
t

+ )\/sq(s)xo(s;/\)ds, (t,\) € [T,00) x (0,A). (1.11)
T
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Differentiation of (1.11) shows that z{(¢; \) is continuous on (¢, \) € [T, 00) X
(0,A) and that, for each fixed A € (0,A), zo(t; A) is a solution of (B) on
[T, 00). There exist constants ki (\) and k2(\) depending on A such that

from which, using the fact that z;(¢; A)zh(t; ) — z2(8; M)z (5 A) = 1, we
have

ki (X) = o (t; N (£ A)
ko (A) = 2 (t; N)ai (£ A)
This shows that k1 (A\) and k() depend continuously on A € (0,A). Define

ki (X)

(k1 (N)? + E2(X)2)1/2
ka(N)

(k1 (N)2 + k2(N)?)1/2

Xo(t;A) =

z1(t;\) +

T2 (t; /\)7 (ta /\) € [aa OO) X (07 A)

Then Xy (¢; A) is the normalized principal solution of (B) and is a continuous
function of (¢; A) in [a,00) x (0,A). Since A > 0 is arbitrary and since the
normalized principal solution Xq(¢;\) is unique, we conclude that Xo(¢; A)
is continuous in (¢,A) € [a,00) X (0,00), establishing the property (I) of

The property (IT) of Xo(t;A) is an existence result. Choose A. > 0 so
small that for ¢t > a

[ee]
A t—a+11/2/ —a+1)2q(s)ds < 1/3,
t

Mt —a+1)"1/2 /(s a4 1)¥2g(s)ds < 1/3;

a

this is possible because of (1.5) and (1.6). Define E to be the Banach space
of continuous functions z(t; ) € C([a,00) x (0, \,)) satisfying

[lz|| = sup{(t —a+ 1)zt N)] (5N € [a,00) x (0,/\*)} < 0.
Consider the set X C E and the mapping M : X — E defined by

X:{er: 0<z(t:\) < (t—a+1)2 tza}
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and

1 o0
(Mz)(t; \) = §+/\t—a+1/q x(s; N)ds +
t

+A /(s —a+ Dg(s)z(s; Nds, (6 2) € [a,00) x (0, A,).

Then it can be shown as in the proof of (I) that M is a contraction mapping
on X, so that there exists a function zg € X such that o = M=xg, which
gives rise to a principal solution of (B) which is positive throughout [a, 00).
The normalization procedure applied to zy ensures that the normalized
principal solution Xy (t;\) of (B) is positive on [a,00) provided that 0 <
A< A

We now turn to the property (III) of Xg(¢;\). It suffices to prove this
property for the solution zo(¢; A) that was constructed in the above proof of
(I) (see (1.11)). Tt is almost trivial to see that zo(t;\) = O(t'/?) as t — oco.
That z}(t; \) = o(t~'/?) as t — oo follows from the inequality

oo

T (t;A) = )\/q(s)aro(s; A)ds < t71/2 -/\t1/2/51/2q(s)ds.
t

t

Since zo(t; \) is eventually increasing in ¢, we have

xo(t;N) S z(b;A) !
! . - (b A) ® ,
wo(BA) T wp(tN) A [ a(s)zo(s; Nds

t>b,

for some large b, which shows that zq(¢; X)/z{(t; A) — 00 as t — oo.
The property (IV) of Xo(¢;\) is an easy consequence of the following
inequality for the solution z((¢; A) that was constructed in the proof of (II):

zo(a; A) _ zo(a; \) S

1/3
zh(a;A) qu Seo(s:Nds A [ (s — a+ 1)1/2g(s)ds

a

The properties (I)—(IV) of the normalized principal solutions have thus been
verified.
2. PROOF OF THE THEOREM

We now prove the main theorem for the equation (B). Let Xo(t; ) be the
normalized principal solution of (B). We perform the Priifer transformation:

Xo(t;A) = r(t;N)sinf(t; X)),  X5(t;A) = r(t; X) cosO(¢; ), (2.1)
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or equivalently

r(t;A) = (Xo(t0)% + Xo(5:0)%) %,
Xo(t;\) (2.2)

0(t; \) = arctan XN

see e.g., Hartman [2; p. 332]. From the property (I) of Xo(¢;\) it follows
that r(¢t; \) and 6(t; A) are continuous functions of (¢, A) € [a, 00) x (0, 00);
in particular, 6(¢; A) is a continuous function of A for each fixed ¢ > a.
Furthermore, r(¢; \) and 6(¢; \) are continuously differentiable with respect
to t and 0(t; \) satisfies the differential equation

' (t; \) = cos? O(t; \) + Ag(t)sin? O(t; \), t > a. (2.3)

From (2.3) it is easy to see that, for each fixed A > 0, 8(¢; \) is a strictly
increasing function of ¢ and that, if 0 < A < X\’ and 0(t0, A) < 0(tg; X') for
some tg € [a,00), then O(t;\) < 0(t;/\’) for ¢t € (tp,00). Using (2.1), (2.2)
and the property (III), we have

1/2—>1

sinf(; X) =1/ [1+ (Xo(t;A)/Xo(t;1))?]
and
cosB(t; \) = (Xp(:N)/Xo(t; V) / [1+ (Xo(550)/Xo (1 1)?] > = 0
as t — oo. This implies that tlggo 6(t; ) = 7/2 (mod 27) and so we may
assume with no loss of generality that
lim 0(t;)) = g A> 0. (2.4)
We claim that, for each fixed ¢ > a, 8(¢; \) is strictly decreasing in A > 0.
To see this, take any A, Ay with A; < Az, and put
W (t) = Xo(t; M) X (t; A2) — Xo(t; X2) X (£ A1)
We then see that
W' (t) = (M — Xa2)q(t) Xo(t; A1) Xo(t;X2) < 0 for all large ¢.
Since, by the property (III) of Xo(¢; A),
W(t) =t 2 Xo(t; M) - /2 X (85 Aa) — t /2 X (85 Aa) - /2 X0 (5 01) — 0
as t — oo, it follows that W (t) > 0, that is,
Xo(t; M)/ X5t A1) > Xo(t; X2)/ X5(E; X2)  for all large  t.

In view of (2.4), this inequality implies

XoltiA) o cpan S0Uide) _ 0(t;X2)  (2.5)

0(t; /\1) = arctan m Xo(t; )\2)
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for all sufficiently large ¢. Actually, (2.5) holds for all ¢ > a; in fact, if (2.5)
were violated at some t; > a, then we would have 6(t; A1) < 6(¢; \2) for all
t > t1, a contradiction to (2.5).

We observe that

. ™ .
)‘lirgot‘)(a,/\) =5 )‘ILH;O f(a; \) = —o0. (2.6)

The first of (2.6) is an immediate consequence of the properties (II) and
(IV) of the normalized principal solutions, while the second follows from
the fact that the number of zeros of any nontrivial solution of (B) can be
made as large as possible by taking A sufficiently large.

Our final task is to examine the possibility of finding those values of A
for which the normalized solution Xg(¢; \) satisfies the boundary condition

aXo(a;\) — BX}(a;\) =0, o+ 32 > 0. (2.7)

Case 1: § = 0. The boundary condition (2.7) takes the form Xo(a;\)=0.
This is equivalent to 8(a; A\) =0 (mod 7). Noting that #(a; A) is continuous
and strictly decreasing in A, and using (2.6), we can choose, for every n =
0,1,2,..., a unique value A, of X such that 6(a; \,,) = —nm. Therefore, the
principal solution Xg(#; A,) corresponding to A = \,, satisfies the boundary
condition Xg(a;Ap) = 0. It is clear that Xo(#; A,) has exactly n zeros in
(a,00).

Case 2: af8 > 0. Then, the boundary condition (2.7) is translated into
f(a;\) = arctan3/a. Choose a unique v € (0,7/2) such that tany =
B/a. We then use (2.6) to make sure that, for every n = 0,1,2,..., there
exists a unique A = A, such that 6(a;\,) = v — nw. It follows that the
principal solution Xy (t; A,,) satisfies the boundary condition in question and
has exactly n zeros in (a, 00).

Case 3: @ = 0. The boundary condition then reduces to X{(a;\) = 0,
which is equivalent to f(a; A) = 7/2 (mod ). In this case, (2.6) guarantees,
for every n = 1,2,..., the existence of the value of A = )\, for which
f(a; A\,) = /2 — nw. The corresponding solution X (¢; A,,) then satisfies
X{(a; \) = 0 and has exactly n zeros in (a, 00).

Case 4: a8 < 0. In this case there is a unique § € (—7/2,0) such that
tand = B/a. In view of (2.6) there exists, for each n = 1,2,..., a unique
value of A = A, such that 8(a; A\,,) = d — (n — 1)w. Consider the normalized
principal solution corresponding to A = A,. Then, it satisfies the required
boundary condition at ¢ = ¢ and possesses exactly n zeros in (a, 00).

This completes the proof of the main theorem for the equation (B).
Example. Consider the Hermite differential equation
(e a') + A"z =0. (2.8)

As is well-known (see e.g. [1]), for A = 2n, n € N U {0}, (2.8) has a
polynomial solution of degree n; these solutions, suitably normalized, define
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the Hermite polynomials Hy(t) satisfying

Hp(—=t) = (=1)"Hp(t), H2,(0)=(-1)"

H,,.(0) =0, H,4+1(0) =0.

We now restrict our attention to (2.8) on the half-axis [0,00). It is easy to
check that (2.8) is strongly nonoscillatory on [0, 00) and that all the Hermite
polynomials are principal solutions of (2.8) for A = 2n, n € N U {0}. We
now apply the main theorem to the principal eigenvalue problems for (2.8)
conjoined with the boundary conditions z(0;A) = 0 and z{(0;\) = 0,
respectively. The theorem then guarantees the existence of two sequences
of positive numbers {\,}22, and {\,}52; which grow monotonically to co
with n and have the property that, for A = A, (2.8) possesses a principal
solution o (t; Ap) satisfying z9(0; A\,) = 0 and having exactly n zeros in
(0,00), n =0,1,2,..., and for A = Xn, (2.8) possesses a principal sotution
zo(t; Ay satisfying 2 (0; X,) = 0 and having exactly n zeros in (0,00), n =
1,2,.... In view of the uniqueness of the sequence of principal eigenvalues in
the main theorem, we conclude that (i) A, = 2(2n+1) and the corresponding
principal eigenfunction xo(t; A,) is a constant multiple of Hoy,q1(t), n =
0,1,2,...; and (ii) A, = 4n and the corresponding principal eigenfunction
xo(t; Xn) is a constant multiple of Hs,(t), n =1,2,....

Remark. For earlier studies of similar singular eigenvalue problems the
reader is referred to the papers [4] and [5].
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