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A SINGULAR EIGENVALUE PROBLEM FOR SECOND ORDER

LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Abstract. The Sturm-Liouville equation of the form

(p(t)x

0

)

0

+ �q(t)x = 0 (p(t) > 0; q(t) > 0); (A)

is considered on an in�nite interval [a;+1[ and the problem of �nding

the values of � for which (A) has a principal solution x

0

(t;�) satisfy-

ing �x

0

(a;�)� �p(a)x

0

0

(a;�) = 0, �

2

+ �

2

> 0, is studied: Assuming

that (A) is strongly nonoscillatory in the sense of Nehari, a general

theorem is proved asserting that, similarly to the regular eigenvalue

problems on compact intervals, there exists a sequence f�

n

g of eigen-

values such that �

1

< �

2

< � � � < �

n

< � � � , lim

n!1

�

n

= 1, and

the eigenfunction x

0

(t;�

n

) corresponding to � = �

n

has exactly n

zeros in (a;1).

reziume. ganxilulia Sturm-liuvilis

(p(t)x

0

)

0

+ �q(t)x = 0 (p(t) > 0; q(t) > 0); (A)

gantoleba usasrulo [a;+1[ intervalze da SesCavlilia amocana

�-s iseTi mniSvnelobebis povnis Sesaxeb, romelTaTvisac (A)-s �x(a)�

�p(a)x

0

(a) pirobebSi, sadac, �

2

+ �

2

> 0, aqvs mTavari amonaxsni

x

0

(t; �). (A) gantolebis neHaris azriT Zlierad ararxevadobis pi-

robebSi damtkicebulia zogadi Teorema romlis ZaliTac, kompaqtur

intervalebze ganxiluli amocanebis msgavsad, arsebobs sakuTriv mniS-

vnelobaTa iseTi f�

n

g mimdevroba, rom �

1

< �

2

< � � � < �

n

< � � � ,

= lim

n!1

�

n

=1 da � = �

n

-is Sesabamis sakuTriv x

0

(t;�

n

) Punq-

cias zustad n nuli aqvs (a;+1)-ze.

0. Introduction

We consider the Sturm-Liouville equation of the form

(p(t)x

0

)

0

+ �q(t)x = 0; t � a; (A)

where p(t) and q(t) are positive continuous functions on [a;1), a � 0, and

� is a positive parameter. We assume that (A) is strongly nonoscillatory,
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that is, (A) is nonoscillatory for all � > 0. In this case, it is known ([2, p.

355]) that there exists, for every � > 0, a principal solution x

0

(t;�) of (A)

which is uniquely determined up to a constant factor by the requirement

1

Z

dt

p(t)(x

0

(t;�))

2

=1: (0.1)

We are interested in the problem of �nding those values of � for which

(A) has a principal solution x

0

(t;�) satisfying the boundary condition at

t = a:

�x

0

(a;�)� �p(a)x

0

0

(a;�) = 0; (0.2)

where � and � are real constants such that �

2

+ �

2

> 0. This problem

may well be called the singular eigenvalue problem for (A) since requiring

x

0

(t;�) to be a principal solution can be regarded as imposing on x

0

(t;�) a

boundary condition at t =1; see, e.g., Hartman [3]. A solution x

0

(t;�) of

this problem will be termed a principal eigenfunction and the corresponding

value of � a principal eigenvalue. The main purpose of this paper is to prove

that, similarly to regular eigenvalue problems on compact intervals, there

exists a sequence of principal eigenvalues f�

n

g tending to in�nity and the

principal eigenfunction x

0

(t;�

n

) corresponding to � = �

n

has exactly n

zeros in (a;1).

Our goal is to prove the following theorem.

Theorem. Assume that (A) is strongly nonoscillatory. Put


 = � for the case where

1

Z

a

dt

p(t)

=1;


 = �+ �

�

1

Z

a

dt

p(t)

�

�1

for the case where

1

Z

a

dt

p(t)

<1:

:

(i) Let � = 0 or �
 > 0. Then there exists a sequence of principal

eigenvalues f�

n

g

1

n=0

such that

0 < �

0

< �

1

< � � � < �

n

< � � � ; lim

n!1

�

n

=1; (0:3)

and the principal eigenfunction x

0

(t;�

n

) corresponding to � = �

n

has ex-

actly n zeros in (a;1), n = 0; 1; 2; : : : .

(ii) Let 
 = 0 or �
 < 0. Then there exists a sequence of principal

eigenvalues f�

n

g

1

n=1

such that

0 < �

1

< �

2

< � � � < �

n

< � � � ; lim

n!1

�

n

=1; (0:4)

and the principal eigenfunction x

0

(t;�

n

) corresponding to � = �

n

has ex-

actly n zeros in (a;1), n = 1; 2; : : : .
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1. Preliminaries

We note that it su�ces to give a proof for the special case where p(t) � 1:

x

00

+ �q(t)x = 0; t � a; (B)

since the general case of (A) can be reduced to (B) by means of a change

of independent and/or dependent variables. It is known ([6]) that (B) is

strongly nonoscillatory if and only if q(t) 2 L(a;1) and

lim

t!1

t

1

Z

t

q(s)ds = 0: (1.1)

This condition is all that is required for the equation (B).

1.1. Normalized Principal Solutions. Let � > 0 be �xed arbitrarily and con-

sider the fundamental set of solutions fx

1

(t;�); x

2

(t;�)g of (B) determined

by the initial conditions

x

1

(a;�) = 1; x

0

1

(a;�) = 0; x

2

(a;�) = 0; x

0

2

(a;�) = 1:

Let x

0

(t;�) be a principal solution of (B). Then there exist constants c

1

(�)

and c

2

(�) depending on � such that

x

0

(t;�) = c

1

(�)x

1

(t;�) + c

2

(�)x

2

(t;�); t � a: (1.3)

Since a principal solution is unique up to a constant factor, we may suppose

that the coe�cients c

1

(�) and c

2

(�) in (1.3) satisfy

c

1

(�)

2

+ c

2

(�)

2

= 1: (1.4)

We require in addition that x

0

(t;�) be eventually positive. This require-

ment together with (1.4) determines a unique prinicpal solution for each

� > 0. The principal solution constructed in this manner is referred to as

the normalized principal solution of (B) and is denoted by X

0

(t;�).

1.2. Properties of the Normalized Principal Solutions. The following prop-

erties of X

0

(t;�) are needed in the proof of the main theorem.

(I) X

0

(t;�) is a continuous function of (t; �) 2 [a;1)� (0;1).

(II) If � > 0 is su�ciently small, then X

0

(t;�) > 0 on [a;1).

(III) For every � > 0, X

0

(t;�) = O(t

1=2

) and X

0

0

(t;�) = o(t

�1=2

) as

t!1; furthermore, X

0

(t;�)=X

0

0

(t;�)!1 as t!1.

(IV) X

0

(a;�)=X

0

0

(a;�)!1 as �! +0.
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To prove (I), we use the relations

lim

t!1

t

1=2

1

Z

t

s

1=2

q(s)ds = 0; (1.5)

lim

t!1

t

�1=2

t

Z

a

s

3=2

q(s)ds = 0; (1.6)

which are straightforward consequences of (1.1). Take any constant � > 0

and choose T > a large enough so that for t � T

�t

1=2

1

Z

t

s

1=2

q(s)ds � 1=3 and �t

�1=2

t

Z

a

s

3=2

q(s)ds � 1=3: (1.7)

We denote by E the set of the functions x(t;�) 2 C([T;1) � (0;�)) such

that

kxk = sup

n

t

�1=2

jx(t;�)j : (t; �) 2 [T;1)� (0;�)

o

<1: (1.8)

Clearly E is a Banach space with the norm k � k given by (1.8). Consider

the subset X � E and the mapping M : X ! E de�ned by

X =

n

x 2 E : 0 � x(t;�) � t

1=2

; (t; �) 2 [T;1)� (0; �)

o

(1.9)

and

(Mx)(t;�) =

1

3

T

1=2

+ �t

1

Z

t

q(s)x(s;�)ds +

+ �

t

Z

T

sq(s)x(s;�)ds; (t; �) 2 [T;1)� (0;�): (1.10)

Using (1.7), we easily see that M is well de�ned, maps X into itself, and

satis�es

kMx

1

�Mx

2

k �

2

3

kx

1

� x

2

k for all x

1

; x

2

2 X:

The contraction mapping principle then implies that there exists a unique

element x

0

2 X such that x

0

=Mx

0

, which satis�es the integral equation

x

0

(t;�) =

1

3

T

1=2

+ �t

1

Z

t

q(s)x

0

(s;�)ds+

+ �

t

Z

T

sq(s)x

0

(s;�)ds; (t; �) 2 [T;1)� (0;�): (1.11)
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Di�erentiation of (1.11) shows that x

0

0

(t;�) is continuous on (t; �) 2 [T;1)�

(0;�) and that, for each �xed � 2 (0;�), x

0

(t;�) is a solution of (B) on

[T;1). There exist constants k

1

(�) and k

2

(�) depending on � such that

x

0

(t;�) = k

1

(�)x

1

(t;�) + k

2

(�)x

2

(t;�);

x

0

0

(t;�) = k

1

(�)x

0

1

(t;�) + k

2

(�)x

0

2

(t;�);

from which, using the fact that x

1

(t;�)x

0

2

(t;�) � x

2

(t;�)x

0

1

(t;�) � 1, we

have

k

1

(�) = x

0

(t;�)x

0

2

(t;�)� x

2

(t;�)x

0

0

(t;�);

k

2

(�) = x

0

0

(t;�)x

1

(t;�)� x

0

1

(t;�)x

0

(t;�):

This shows that k

1

(�) and k

2

(�) depend continuously on � 2 (0;�). De�ne

X

0

(t;�) =

k

1

(�)

(k

1

(�)

2

+ k

2

(�)

2

)

1=2

x

1

(t;�) +

+

k

2

(�)

(k

1

(�)

2

+ k

2

(�)

2

)

1=2

x

2

(t;�); (t; �) 2 [a;1)� (0;�):

Then X

0

(t;�) is the normalized principal solution of (B) and is a continuous

function of (t;�) in [a;1) � (0;�). Since � > 0 is arbitrary and since the

normalized principal solution X

0

(t;�) is unique, we conclude that X

0

(t;�)

is continuous in (t; �) 2 [a;1) � (0;1), establishing the property (I) of

X

0

(t;�).

The property (II) of X

0

(t;�) is an existence result. Choose �

�

> 0 so

small that for t � a

�

�

(t� a+ 1)

1=2

1

Z

t

(s� a+ 1)

1=2

q(s)ds � 1=3;

�

�

(t� a+ 1)

�1=2

t

Z

a

(s� a+ 1)

3=2

q(s)ds � 1=3;

this is possible because of (1.5) and (1.6). De�ne E to be the Banach space

of continuous functions x(t;�) 2 C([a;1) � (0; �

�

)) satisfying

kxk = sup

n

(t� a+ 1)

�1=2

jx(t;�)j : (t; �) 2 [a;1)� (0; �

�

)

o

<1:

Consider the set X � E and the mapping M : X ! E de�ned by

X =

n

x 2 E : 0 � x(t;�) � (t� a+ 1)

1=2

; t � a

o
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and

(Mx)(t;�) =

1

3

+ �(t� a+ 1)

1

Z

t

q(s)x(s;�)ds +

+ �

t

Z

a

(s� a+ 1)q(s)x(s;�)ds; (t; �) 2 [a;1)� (0; �

�

):

Then it can be shown as in the proof of (I) thatM is a contraction mapping

on X , so that there exists a function x

0

2 X such that x

0

= Mx

0

, which

gives rise to a principal solution of (B) which is positive throughout [a;1).

The normalization procedure applied to x

0

ensures that the normalized

principal solution X

0

(t;�) of (B) is positive on [a;1) provided that 0 <

� < �

�

.

We now turn to the property (III) of X

0

(t;�). It su�ces to prove this

property for the solution x

0

(t;�) that was constructed in the above proof of

(I) (see (1.11)). It is almost trivial to see that x

0

(t;�) = O(t

1=2

) as t!1.

That x

0

0

(t;�) = o(t

�1=2

) as t!1 follows from the inequality

x

0

0

(t;�) = �

1

Z

t

q(s)x

0

(s;�)ds � t

�1=2

� �t

1=2

1

Z

t

s

1=2

q(s)ds:

Since x

0

(t;�) is eventually increasing in t, we have

x

0

(t;�)

x

0

0

(t;�)

�

x(b;�)

x

0

0

(t;�)

= x(b;�)

1

�

1

R

t

q(s)x

0

(s;�)ds

; t � b;

for some large b, which shows that x

0

(t;�)=x

0

0

(t;�)!1 as t!1.

The property (IV) of X

0

(t;�) is an easy consequence of the following

inequality for the solution x

0

(t;�) that was constructed in the proof of (II):

x

0

(a;�)

x

0

0

(a;�)

=

x

0

(a;�)

�

1

R

a

q(s)x

0

(s;�)ds

�

1=3

�

1

R

a

(s� a+ 1)

1=2

q(s)ds

:

The properties (I){(IV) of the normalized principal solutions have thus been

veri�ed.

2. Proof of the theorem

We now prove the main theorem for the equation (B). Let X

0

(t;�) be the

normalized principal solution of (B). We perform the Pr�ufer transformation:

X

0

(t;�) = r(t;�) sin �(t;�); X

0

0

(t;�) = r(t;�) cos �(t;�); (2.1)
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or equivalently

r(t;�) =

�

X

0

(t;�)

2

+X

0

0

(t;�)

2

�

1=2

;

�(t;�) = arctan

X

0

(t;�)

X

0

0

(t;�)

;

(2.2)

see e.g., Hartman [2; p. 332]. From the property (I) of X

0

(t;�) it follows

that r(t;�) and �(t;�) are continuous functions of (t; �) 2 [a;1) � (0;1);

in particular, �(t;�) is a continuous function of � for each �xed t � a.

Furthermore, r(t;�) and �(t;�) are continuously di�erentiable with respect

to t and �(t;�) satis�es the di�erential equation

�

0

(t;�) = cos

2

�(t;�) + �q(t) sin

2

�(t;�); t � a: (2.3)

From (2.3) it is easy to see that, for each �xed � > 0, �(t;�) is a strictly

increasing function of t and that, if 0 < � < �

0

and �(t

0

;�) � �(t

0

;�

0

) for

some t

0

2 [a;1), then �(t;�) < �(t;�

0

) for t 2 (t

0

;1). Using (2.1), (2.2)

and the property (III), we have

sin �(t;�) = 1 =

�

1 + (X

0

0

(t;�)=X

0

(t;�))

2

�

1=2

! 1

and

cos �(t;�) =

�

X

0

0

(t;�)=X

0

(t;�)

�

=

�

1 + (X

0

0

(t;�)=X

0

(t;�))

2

�

1=2

! 0

as t ! 1. This implies that lim

t!1

�(t;�) � �=2 (mod 2�) and so we may

assume with no loss of generality that

lim

t!1

�(t;�) =

�

2

; � > 0: (2.4)

We claim that, for each �xed t � a, �(t;�) is strictly decreasing in � > 0.

To see this, take any �

1

, �

2

with �

1

< �

2

, and put

W (t) = X

0

(t;�

1

)X

0

0

(t;�

2

)�X

0

(t;�

2

)X

0

0

(t;�

1

):

We then see that

W

0

(t) = (�

1

� �

2

)q(t)X

0

(t;�

1

)X

0

(t;�

2

) < 0 for all large t:

Since, by the property (III) of X

0

(t;�),

W (t) = t

�1=2

X

0

(t;�

1

) � t

1=2

X

0

0

(t;�

2

)� t

�1=2

X

0

(t;�

2

) � t

1=2

X

0

0

(t;�

1

)! 0

as t!1, it follows that W (t) > 0, that is,

X

0

(t;�

1

)=X

0

0

(t;�

1

) > X

0

(t;�

2

)=X

0

0

(t;�

2

) for all large t:

In view of (2.4), this inequality implies

�(t;�

1

) = arctan

X

0

(t;�

1

)

X

0

0

(t;�

1

)

> arctan

X

0

(t;�

2

)

X

0

0

(t;�

2

)

= �(t;�

2

) (2.5)
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for all su�ciently large t. Actually, (2.5) holds for all t � a; in fact, if (2.5)

were violated at some t

1

� a, then we would have �(t;�

1

) < �(t;�

2

) for all

t � t

1

, a contradiction to (2.5).

We observe that

lim

�!+0

�(a;�) =

�

2

; lim

�!1

�(a;�) = �1: (2.6)

The �rst of (2.6) is an immediate consequence of the properties (II) and

(IV) of the normalized principal solutions, while the second follows from

the fact that the number of zeros of any nontrivial solution of (B) can be

made as large as possible by taking � su�ciently large.

Our �nal task is to examine the possibility of �nding those values of �

for which the normalized solution X

0

(t;�) satis�es the boundary condition

�X

0

(a;�)� �X

0

0

(a;�) = 0; �

2

+ �

2

> 0: (2.7)

Case 1: � = 0. The boundary condition (2.7) takes the form X

0

(a;�)=0.

This is equivalent to �(a;�) � 0 (mod �). Noting that �(a;�) is continuous

and strictly decreasing in �, and using (2.6), we can choose, for every n =

0; 1; 2; : : : , a unique value �

n

of � such that �(a;�

n

) = �n�. Therefore, the

principal solution X

0

(t;�

n

) corresponding to � = �

n

satis�es the boundary

condition X

0

(a;�

n

) = 0. It is clear that X

0

(t;�

n

) has exactly n zeros in

(a;1).

Case 2: �� > 0. Then, the boundary condition (2.7) is translated into

�(a;�) = arctan�=�. Choose a unique 
 2 (0; �=2) such that tan 
 =

�=�. We then use (2.6) to make sure that, for every n = 0; 1; 2; : : : , there

exists a unique � = �

n

such that �(a;�

n

) = 
 � n�. It follows that the

principal solution X

0

(t;�

n

) satis�es the boundary condition in question and

has exactly n zeros in (a;1).

Case 3: � = 0. The boundary condition then reduces to X

0

0

(a;�) = 0,

which is equivalent to �(a;�) � �=2 (mod �). In this case, (2.6) guarantees,

for every n = 1; 2; : : : , the existence of the value of � = �

n

for which

�(a;�

n

) = �=2 � n�. The corresponding solution X

0

(t;�

n

) then satis�es

X

0

0

(a;�) = 0 and has exactly n zeros in (a;1).

Case 4: �� < 0. In this case there is a unique � 2 (��=2; 0) such that

tan � = �=�. In view of (2.6) there exists, for each n = 1; 2; : : : , a unique

value of � = �

n

such that �(a;�

n

) = �� (n� 1)�. Consider the normalized

principal solution corresponding to � = �

n

. Then, it satis�es the required

boundary condition at t = a and possesses exactly n zeros in (a;1).

This completes the proof of the main theorem for the equation (B).

Example. Consider the Hermite di�erential equation

(e

�t

2

x

0

)

0

+ �e

�t

2

x = 0: (2.8)

As is well-known (see e.g. [1]), for � = 2n, n 2 N [ f0g, (2.8) has a

polynomial solution of degree n; these solutions, suitably normalized, de�ne
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the Hermite polynomials H

n

(t) satisfying

H

n

(�t) = (�1)

n

H

n

(t); H

2n

(0) = (�1)

n

(2n)!

n!

;

H

0

2n

(0) = 0; H

2n+1

(0) = 0:

We now restrict our attention to (2.8) on the half-axis [0;1). It is easy to

check that (2.8) is strongly nonoscillatory on [0;1) and that all the Hermite

polynomials are principal solutions of (2.8) for � = 2n, n 2 N [ f0g. We

now apply the main theorem to the principal eigenvalue problems for (2.8)

conjoined with the boundary conditions x

0

(0;�) = 0 and x

0

0

(0;�) = 0,

respectively. The theorem then guarantees the existence of two sequences

of positive numbers f�

n

g

1

n=0

and f

e

�

n

g

1

n=1

which grow monotonically to 1

with n and have the property that, for � = �

n

, (2.8) possesses a principal

solution x

0

(t;�

n

) satisfying x

0

(0;�

n

) = 0 and having exactly n zeros in

(0;1), n = 0; 1; 2; : : : , and for � =

e

�

n

, (2.8) possesses a principal sotution

x

0

(t;

e

�

n

) satisfying x

0

0

(0;

e

�

n

) = 0 and having exactly n zeros in (0;1), n =

1; 2; : : : . In view of the uniqueness of the sequence of principal eigenvalues in

the main theorem, we conclude that (i) �

n

= 2(2n+1) and the corresponding

principal eigenfunction x

0

(t;�

n

) is a constant multiple of H

2n+1

(t), n =

0; 1; 2; : : : ; and (ii)

e

�

n

= 4n and the corresponding principal eigenfunction

x

0

(t;

e

�

n

) is a constant multiple of H

2n

(t), n = 1; 2; : : : .

Remark. For earlier studies of similar singular eigenvalue problems the

reader is referred to the papers [4] and [5].
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