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NEUMANN PROBLEM IN A CLASS OF HARMONIC FUNCTIONS

IN DOMAINS WITH A PIECEWISE-LYAPUNOV BOUNDARY

Abstract. The Neumann boundary value problem is considered in a

�nite simply connected domain D with piecewise Lyapunov boundary

free from zero interior angles. The solution is sought in the class of

harmonic functions u satisfying (1), where �

r

is the image of the circle

jzj = r under the conform mapping of the unit disc onto D.

reziume. nulovani ukuqcevis aramqone uban-uban liapunovis CiriT

SemosazGvrul sasrul caladbmul D areSi ganxilulia neimanis sa-

sazGvro amocana iseTi Harmoniuli u Punqciebis klasSi, romelTaTvisac

Sesrulebulia (1) piroba, sadac �

r

aris erTeulovani Cris D areze

konPormulad asaxvisas jzj = r CreCiris anasaxi. gamokvleulia sazG-

vris geometriis gavlena amoxsnadobaze da agebulia amonaxsnebi.

The solvability of boundary value problems for PDE depends on geo-

metrical properties of boundaries of the domains under consideration. (see,

e.g. [1]{[2]). In [2], we investigated the Dirichlet problem in a class of

harmonic functions which are the real part of an analytic function from the

Smirnov class E

p

(D), p > 1, when the boundary of the domain D is an arbi-

trary piecewise-Lyapunov curve � free from zero interior angles (admitting

however cusps with the angle 2�). In the present paper, under the same

conditions with respect to � we investigate the Neumann problem under

the assumption that partial derivatives of an unknown harmonic function

have bounded p-mean integrals along certain sequence of curves converging

to the boundary.

1

0

. Let D be a plane simply connected �nite domain whose Jordan

oriented boundary � consists of a �nite number of Lyapunov arcs meeting

at the points t

k

, k = 1; n, with interior (with respect to D), angles of

sizes ��

k

, 0 < �

k

� 2. Let, moreover, z = z(w) be a function mapping

conformally the unit circle U = fw : jwj < 1g onto the domain D and

w = w(z) be the inverse function.
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We say that the harmonic in D function u(x; y) � u(z) (z = x + iy)

belongs to the class e

0

p

(D), p > 0, if

sup

r<1

Z

�

r

�

�

�

�

@u

@x

�

�

�

p

+

�

�

�

@u

@y

�

�

�

p

�

jdzj <1; (1)

where �

r

is images of the circumference of radius r under the mapping

z = z(w).

Let v(z) be a function harmonically conjugate to u(z), and �(z) = u(z)+

iv(z). Since

@u

@x

=

@v

@y

and

@v

@x

= �

@u

@y

, while �

0

(z) =

@u

@x

+ i

@v

@x

, from (1) we

�nd that

sup

r<1

Z

�

r

j�

0

(z)j

p

jdzj <1;

that is, �

0

(z) belongs to the Smirnov class E

p

(D) (see, e.g., [3], Ch. X).

Thus e

0

p

(D) = ReE

0

p

(D), where E

0

p

(D) = f� : �

0

2 E

p

(D)g. This implies

that

@u

@x

and

@u

@y

have angular boundary values

�

@u

@x

�

+

and

�

@u

@y

�

+

which

are summable to the p-th power on �, i.e., belonging to L

p

(�).

Consider the Neumann problem formulated as follows: �nd a function u

from the conditions

@

2

u

@x

2

+

@

2

u

@y

2

= 0; (x; y) 2 D; u 2 e

0

p

(D); p > 1;

�

@u

@n

�

�

= f(t); f 2 L

p

(�);

(2)

where

�

@u

@n

�

�

=

�

@u

@x

�

+

cos(n; x) +

�

@u

@y

�

+

cos(n; y) �

�

@u

@x

�

+

(� sin�(t)) +

�

@u

@y

�

+

cos�(t) and �(t) is the angle between the tangent to � at t and the

abscissa axis.

The boundary condition from (2) is assumed to be ful�lled almost at all

points of �.

Let u = Re�. Since �

0

=

@u

@x

� i

@u

@y

, the boundary condition from (2) can

be written as

Re[ie

i�(t)

�

0

(t)] = f(t): (3)

Consequently, any solution of the problem (2) generates a solution � of

problem (3) for which �

0

2 E

p

(D).

2

0

. Following [4]{[5], we reduce the problem (3) to the problem of linear

conjugation. To this end, we assume that

p

p

z

0

(w)�

0

(z(w)) = 	(w); f(z(�)) � g

1

(�); j� j = 1

and write (3) in the form

Re

h

i exp i�(z(�))

p

p

z

0

(�)

	

+

(�)

i

= g

1

(�): (4)
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The function 	(w) in the circle U belongs to the Hardy class H

p

(see,

e.g., [3], Chs. IX{X). Suppose


(w) =

(

	(w); jwj < 1;

	(

1

w

); jwj > 1:

Then 
 2

e

K

p

(
) ([5], Lemma 4), where 
 = fj� j : j� j = 1g, and

e

K

p

(
) =

�

	 : 	(w) =

1

2�i

Z




 (�)d�

� � w

+ const; jwj 6= 1;  2 L

p

(
)

�

:

Assume also �(�) � �(z(�)). It follows from (4) that

exp i�(�)

�

p

p

z

0

(�)

�

�1




+

(�) + i exp i�(�)

�

p

p

z

0

(�)

�

�1




�

(�) = 2g

1

(�);

whence




+

(�) = � exp(2i�(�))

p

p

z

0

(�)

�

p

p

z

0

(�)

�

�1




�

(�) + g(�); (5)

where g(�) = �i exp(�i�(�))2f(z(�)); g 2 L

p

(
):

The homogeneous problem corresponding to (5) will be




+

(�) = exp(�2i�(�))

p

p

z

0

(�)

�

p

p

z

0

(�)

�

�1




�

(�): (5

0

)

Assume 


�

(w) = 


�

1

w

�

, jwj 6= 1:

For the restriction on U of the solution 
 2

e

K

p

(
) of the problem (5) to

provide a solution of the problem (4) of the class H

p

, it is necessary and

su�cient for 
 to satisfy


(w) = 


�

(w) (6)

(see [4], xx 40{43, [2]). Thus we can conclude that the problem (2) is equi-

valent to the problem (5) in the class

e

K

p

(
) with the additional condition

(6).

If 
 satis�es the boundary condition (5), then the same condition is also

satis�ed by the function 


�

(w) ([4], x41). It can be easily proved that if 
 2

e

K

p

(
), then 


�

2

e

K

p

(
) as well. Therefore the function

1

2

(
(w) + 


�

(w))

which already satis�es (6) will be a solution of the problem (5) from the

class

e

K

p

(
).

In particular, if (5) possesses a unique solution 
, then 


�

coincides with

it, and hence in this case the condition (6) is ful�lled for 
.

3

0

. The Homogeneous Problem. Let

y(w) = exp

�

1

2�i

Z

�

�2i�(�)d�

� � w

�

; jwj 6= 1; (7)

where �(�) is assumed to be continuous on the arcs (�

k

; �

k+1

), (k = 1; n; �

n+1

= �

1

) and to have at the points �

k

one-sided limits equal to the angle formed
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by the tangent at t

k

with the abscissa axis. Thus �(�) has at the points �

k

a

discontinuity equal to the angle size between the left and the right one-sided

tangents at t

k

or, which is the same, equal to �(1��

k

). Moreover, when the

point � leaves the circumference 
 to the left, the function �(�) admits an

increment equal to 2�. Let us choose on � a point �

0

, �

0

6= t

k

, and assume

it to be an initial point on 
. Then �(�) at this point has a discontinuity

equal to 2�. This implies that for the w-s close to 
, the following relation

is valid:

y(w) � (w � �

0

)

�2

n

Y

k=1

(w � �

k

)

�(1��

k

)

y

0

(w); (8)

where y

0

is continuous and di�erent from zero both in U and in CU (CU

is the supplement of U to the whole plane).

Let

e

X(w) =

(

�y(w)

p

p

z

0

(w); jwj < 1;

y(w)

p

p

z

0

(1=w); jwj > 1:

(9)

Since � is a piecewise-Lyapunov curve with interior angles of sizes ��

k

,

0 < �

k

� 2, according to Warschawski's theorem ([6], see also [7], Ch. I),

we have

z

0

(w) =

n

Y

k=1

(w � �

k

)

�

k

�1

z

0

(w); (10)

where z

0

is a function di�erent from zero and satisfying H�older's condition

on U .

Due to (8) and (10), we obtain from (9) that

e

X(w) = (w � �

0

)

�2

n

Y

k=1

(w � �

k

)

�

�

k

�1

p

0

X

0

(w); p

0

= p=p� 1; (11)

where

0 < m � jX

0

(w)j �M: (11

0

)

Assume

X(w) =

e

X(w)(w � �

0

)

2

Y

fk:�

k

�p

0

g

(w � �

k

); (12)

where the multipliers w � �

k

in the product are taken with respect to such

k-s that at the point t

k

(= z(�

k

)) the curve � has the angle equal to ��

k

with �

k

� p

0

. X(w) satis�es the condition (5

0

) and possesses the following

properties:

(i) it can be represented by a Cauchy type integral with density from

L

p

(
) and with a polynomial principal part of order {+2 at in�nity, where

{ is the number of angular points for which �

k

� p

0

;
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(ii) in the neighborhood of the points �

k

for which �

k

= p

0

(denote them

in the sequel by �

0

k

), by (12) and (11

0

) we have

X(w) = O((w � �

0

k

)

1=p

0

); (13)

(iii)

1

X

2

e

K

p

0

�"

(
) and has a zero of order { + 2 at the point z =1;

(iv) the functions (X

�

)

�1

are integrable to the p

0

-th power on every part

of 
 which is obtained from 
 by eliminating small neighborhoods of the

points �

0

k

.

If 


0

is a solution of the problem (5

0

), then F (w) = 


0

(w)X

�1

(w)

satis�es the condition

F

+

(�) = F

�

(�); � 2 
: (14)

Proceeding from properties (i){(iv) of the function X , we can justify,

just as in [2], that in the neighborhood of every point 
 di�erent from �

k

,

the function F (w) is analytic and may have perhaps only poles. Thus we

conclude that




0

(w) = X(w)

X

k

A

k

(w � �

0

k

)

n

k

;

where n

k

are nonnegative integers.

But 


0

2

e

K

p

(
) and therefore A

k

= 0, i.e., 


0

� 0. By the same

argument, only the constant functions are solutions of the problem (2) for

f = 0.

4

0

. Inhomogeneous Problem. If there are no points �

0

k

and also cusps

with �

k

= 2 for p � 2 (denote them by �

00

k

), then g=X

+

2 L

1+�

(
) and

therefore

Z




g

X

+

d�

� � w

2

e

K

1+�

(
); � > 0:

Taking this as a basis, we can suppose that as it is characteristic for the

linear problem of conjugation (see [8]), the function

e


(w) =

X(w)

2�i

Z




g(�)

X

+

(�)

d�

� � w

(15)

will be a solution of the problem (5).

From (11) and (11') as well as from the properties of the Cauchy type

integral in the unit circle, it easily follows that

e


2H

�

, �> 0, in the circle U .

Let us show that

e


 2 H

p

. By virtue of Smirnov's theorem, it su�ces to

show that 


+

2 L

p

(
).

We have

e




+

(�) =

1

2

g(�) +

X

+

(�)

2�i

Z




g(�)

X

+

(�)

d�

� � �

; (16)
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where

X

+

= O(�(�)); �(�) =

n

Y

k=1

(� � �

k

)

1��

k

p

0

:

Under the assumptions with respect to �

k

, we have

1��

k

p

0

2 (�

1

p

;

1

p

0

),

and since the Cauchy type singular operator is bounded in L

p

(
; r), where

r(�) =

Q

n

k=1

(���

k

)

�

k

with �

k

2 (�

1

p

;

1

p

0

) (see, e.g., [8]), we have

e


 2 L

p

(
).

This means that

e


 2 H

p

in U . From this in its turn it follows that

e


 belongs

to

e

K(
) if it has the limits when z !1. But as far as X(w) has at in�nity

the limit of order { + 2, it is necessary and su�cient that

Z




g(�)

X

+

(�)

�

k

d� = 0; k = 0; 1; : : : ; j{j; (17

0

)

or, which is the same,

Z

G

f(t) exp

�

1

�

Z




�(�)d�

� � w(t)

�

Y

�

k

�p

0

w(t)� w(t

0

)

w(t)� w(t

k

)

w

0

(t)w

k

(t)dt = 0; (17)

k = 0; 1; : : : j{j:

If the points t

0

k

(that is, t

k

for which �

k

= p

0

), do exist then one can

construct a function

e

f

0

2 L

p

(
) for which the conditions (17) are ful�lled,

but in this case the problem (4), and hence the problem (2), is unsolvable.

Such a construction is possible by the same way as for the Dirichlet problem

in the class ReE

p

(D) (see [2]). The similar conclusion is valid if p � 2 and

there exist the points t

k

on � for which �

k

= 2. Consequently, for the

problem (5) to be solvable, one has to strengthen the assumptions relative

the boundary function f . We assume that

f(t)

Y

�

k

=p

0

;�

k

6=2

ln jt� t

0

k

j

Y

�

k

=2

ln

�(p)

jt� t

00

k

j 2 L

p

(�); (18)

where �(p) = 1 for p � 2 and �(p) = 0 for p < 2.

Since for the curves under consideration arg(z(�) � z(�

k

)) are bounded

functions and z(�) � z(�

k

) = (� � �

k

)

�

k

z

1

(�); where z

1

(�) is a continuous

and di�erent from zero function ([6], [7]), it follows from (18) that

g(�)

Y

�

k

=p

0

;�

k

6=2

ln j� � �

k

j

Y

�

k

=2

ln

�(p)

j� � �

0

k

j 2 L

p

(
): (18

0

)

Now in the neighborhood of the singular points e�

k

�

= w(t

0

k

) or w(t

00

k

)

�

,

we have

g

X

+

= 0

�

(� � e�

k

)

�

1

p

ln

�1

(� � e�

k

)

�

which implies

g

X

+

2 L

1

(
). Then

the integral in (15) makes sense, and the function

e


 de�ned by (15) belongs

to H

�

, � > 0. Again, for this function to belong to

e

K

p

(
), it is su�cient
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that the conditions 


+

2 L

p

(
) and (17

0

) be ful�lled. This time, in the

integral from the equality (16) we have

X

+

(�) = O

�

r(�)

Y

�

k

=2

(� � �

00

k

)

Y

�

k

=p

0

(� � �

0

k

)

�

�

k

�1

p

0

+1

�

:

Represent the function g as

g(�) =

g(�)

Q

k

ln(� � e�

k

)

Q

k

ln(� � e�

k

)

=

g

�

(�)

Q

k

ln(� � e�

k

)

:

Owing to (18

0

), we have g

�

2 L

p

(
). We write the equality (15) in the form

e




+

(�) =

1

2

g(�) +

�(�)�(�)

Q

(� � e�

k

)

1=p

0

2�i

�

�

Z




g

�

(�)

�(�)�(�)

Y

[(� � e�

k

)

1=p

0

ln(� � e�

k

)]

�1

d�

� � �

; (19)

where 0 < m � j�(�)j � M . Since the points e�

k

are separated, using The-

orem 1 from [2] we conclude that

e


 2 L

p

(
). If we assume that conditions

(17) are ful�lled, then

e


 2

e

K

p

(
) and is a solution of the problem (5). Ac-

cording to 3

0

, (5) has no other solutions. Thus the condition (6) is ful�lled

for

e


, and therefore the function �

0

(z(w)) = 	(w) =

e


(w)

p

p

z

0

(w)

, jwj < 1, is a

solution of the problem (4).

Proceeding from the above, we can easily �nd a solution of the problem

(2) as well, namely

u(z) = Re

�

w(z)

Z

w(0)

e


(�)d�

p

p

z

0

(�)

�

+ C; (20)

where C is an arbitrary real constant and the integration is performed over

any recti�able path connecting the points o and w.

Remark. If � is a smooth curve, then the points t

k

are absent, so { = 0.

Moreover, one can prove that exp

�

1

�

R




�(�)d�

��w(t)

�

=

e

�i�(t)

w

0

(t)

. (To this end, we

choose �

0

= 1 and take into account that in the case where a domain is

bounded by a Lyapunov curve, the equality i ln z

0

(w)=

1

2�i

R




Re[i ln z

0

]

�

�+w

��w

d�

is valid and that

R

2�

0

�d�

���

= ln(1 � �) � i� � �i). Then the condition (17)

takes the form

Z




f(t)e

�i�(t)

dt =

Z




f(t)ds = 0;

which coincides with the condition of solvability of the Neumann problem

when considered in the class of functions for which partial derivatives are

continuous up to the boundary.

5

0

. Let us summarize the above-stated results in the form of
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Theorem. LetD be a simply connected domain whose Jordan boundary �

consists of a �nite number of Lyapunov arcs meeting at the points t

k

with

the angles (measured from the interior of D) of size ��

k

, 0 < �

k

� 2 and

e

0

p

, p > 1, is the class of harmonic functions satisfying the condition (1).

Denote by { a number the of angular points at which �

k

� p

0

, p

0

= p=p� 1,

and by X(w) the function de�ned by the formulas (12) and (9).

If f 2 L

p

(
) and there are no points t

0

k

for which �

k

= p

0

and, in the case

p � 2 also the points t

00

k

for which �

k

= 0, then for the Neumann problem

to be solvable in the class e

0

p

, it is necessary and su�cient that conditions

(17) be ful�lled.

If there exist the points t

0

k

and t

00

k

possessing the above-mentioned prop-

erties, then the problem (2) is, generally speaking, unsolvable for any f 2

L

p

(�) under the condition (17). In the case where the conditions (18) and

(17) are ful�lled, the problem is solvable.

In all the cases, the solution is given by the formula (20) in which

e


 is the

solution of the problem (5) given by the equality (15) and C is an arbitrary

constant.
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